Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that

- Register Machine computable
- Turing computable
- = partial recursive.

Using this, we break the theorem into two parts:

- every partial recursive function is λ -definable
- \triangleright λ -definable functions are RM computable

L11 120

Recall: Representing primitive recursion

```
If f \in \mathbb{N}^n \to \mathbb{N} is represented by a \lambda-term F and
g \in \mathbb{N}^{n+2} \to \mathbb{N} is represented by a \lambda-term G,
we want to show \lambda-definability of the unique
h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} satisfying h = \Phi_{f,g}(h)
where \Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N}) is given by
        \Phi_{f,g}(h)(\vec{a},a) \triangleq if \ a = 0 \ then \ f(\vec{a})
                                     else g(\vec{a}, a-1, h(\vec{a}, a-1))
```

Representing primitive recursion

```
If f \in \mathbb{N}^n \to \mathbb{N} is represented by a \lambda-term F and
g \in \mathbb{N}^{n+2} \to \mathbb{N} is represented by a \lambda-term G,
we want to show \lambda-definability of the unique
h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} satisfying h = \Phi_{f,g}(h)
where \Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N}) is given by...
```

Strategy:

• show that $\Phi_{f,g}$ is λ -definable; (λ z z x . If (Eq x) (F x) (G x (Pred x)(z x (Pred x)))

Representing primitive recursion

```
If f \in \mathbb{N}^n \to \mathbb{N} is represented by a \lambda-term F and g \in \mathbb{N}^{n+2} \to \mathbb{N} is represented by a \lambda-term G, we want to show \lambda-definability of the unique h \in \mathbb{N}^{n+1} \to \mathbb{N} satisfying h = \Phi_{f,g}(h) where \Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N}) is given by...
```

Strategy:

- show that $\Phi_{f,g}$ is λ -definable;
- show that we can solve fixed point equations X = MX up to β -conversion in the λ -calculus.

L11 129

Curry's fixed point combinator Y

$$\mathbf{Y} \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

$$\mathbf{Y}M =_{\beta} M(\mathbf{Y}M)$$

Naive set theory

2 calculus

Russell Set:

$$R \triangleq \{x \mid \neg(x \in x)\}$$

$$R \triangleq \lambda x. not(xx)$$

not = λb. If b False True

Naive set theory

2 calculus

Russell Set:

$$R \triangleq \{x \mid \neg(x \in x)\}$$

Russell's Paradox:

$$R \triangleq \lambda x . not(xx)$$

$$RR =$$
 p $not(RR)$

Naive set theory

2 calculus

Russell Set:

$$\mathcal{R} \triangleq \{ x \mid \neg (x \in x) \}$$

Russell's Paradox:

$$R \triangleq \lambda x . not(xx)$$

$$RR = not(RR)$$

Ynot = RR =
$$(\lambda x. not(\alpha x))(\lambda x. not(\alpha x))$$

Naive set theory

2 calculus

Russell Set:

$$R \triangleq \{x \mid \neg(x \in x)\}$$

Russell's Paradox:

 $R \triangleq \lambda x . not(xx)$

$$RR =$$
 p $not(RR)$

Ynot =
$$RR = (\lambda x. not(\alpha x))(\lambda x. not(\alpha x))$$

Yf = $(\lambda x. f(xx))(\lambda x. f(xx))$
Y = $\lambda f. (\lambda x. f(xx))(\lambda x. f(xx))$

Curry's fixed point combinator Y

$$\mathbf{Y} \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

satisfies $YM \rightarrow (\lambda x. M(xx))(\lambda x. M(xx))$

Curry's fixed point combinator Y

$$\mathbf{Y} \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

```
satisfies YM \to (\lambda x. M(xx))(\lambda x. M(xx))
 \to M((\lambda x. M(xx))(\lambda x. M(xx)))
hence YM \to M((\lambda x. M(xx))(\lambda x. M(xx))) \leftarrow M(YM).
```

So for all λ -terms M we have

$$\mathbf{Y}M =_{\beta} M(\mathbf{Y}M)$$

Representing primitive recursion

If $f \in \mathbb{N}^n \to \mathbb{N}$ is represented by a λ -term F and $g \in \mathbb{N}^{n+2} \to \mathbb{N}$ is represented by a λ -term G, we want to show λ -definability of the unique $h \in \mathbb{N}^{n+1} \to \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$ where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ is given by $\Phi_{f,g}(h)(\vec{a},a) \triangleq if \ a = 0 \ then \ f(\vec{a})$ else $g(\vec{a}, a-1, h(\vec{a}, a-1))$

We now know that h can be represented by

$$Y(\lambda z \vec{x} x. \operatorname{lf}(\operatorname{Eq}_0 x)(F \vec{x})(G \vec{x} (\operatorname{Pred} x)(z \vec{x} (\operatorname{Pred} x)))).$$

Representing primitive recursion

Recall that the class **PRIM** of primitive recursive functions is the smallest collection of (total) functions containing the basic functions and closed under the operations of composition and primitive recursion.

Combining the results about λ -definability so far, we have: every $f \in PRIM$ is λ -definable.

So for λ -definability of all recursive functions, we just have to consider how to represent minimization. Recall...

Minimization

```
Given a partial function f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}, define \mu^n f \in \mathbb{N}^n \rightarrow \mathbb{N} by \mu^n f(\vec{x}) \triangleq \text{least } x \text{ such that } f(\vec{x}, x) = 0 \text{ and for each } i = 0, \dots, x - 1, f(\vec{x}, i) \text{ is defined and } > 0 (undefined if there is no such x)
```

So
$$\mu^{n}f(\vec{x}) = g(\vec{x},0)$$
 where in general $g(\vec{x},x)$ satisfies $g(\vec{x},x) = iff(\vec{x},x) = 0$ Hen x else $g(\vec{x},x+1)$

Minimization

```
Given a partial function f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}, define \mu^n f \in \mathbb{N}^n \rightarrow \mathbb{N} by \mu^n f(\vec{x}) \triangleq \text{least } x \text{ such that } f(\vec{x}, x) = 0 \text{ and for each } i = 0, \dots, x - 1, f(\vec{x}, i) \text{ is defined and } > 0 (undefined if there is no such x)
```

Can express $\mu^n f$ in terms of a fixed point equation: $\mu^n f(\vec{x}) \equiv g(\vec{x}, 0)$ where g satisfies $g = \Psi_f(g)$ with $\Psi_f \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N})$ defined by $\Psi_f(g)(\vec{x}, x) \equiv if \ f(\vec{x}, x) = 0 \ then \ x \ else \ g(\vec{x}, x+1)$

Representing minimization

Suppose $f \in \mathbb{N}^{n+1} \to \mathbb{N}$ (totally defined function) satisfies $\forall \vec{a} \exists a \ (f(\vec{a}, a) = 0)$, so that $\mu^n f \in \mathbb{N}^n \to \mathbb{N}$ is totally defined.

Thus for all $\vec{a} \in \mathbb{N}^n$, $\mu^n f(\vec{a}) = g(\vec{a}, 0)$ with $g = \Psi_f(g)$ and $\Psi_f(g)(\vec{a}, a)$ given by if $(f(\vec{a}, a) = 0)$ then a else $g(\vec{a}, a + 1)$.

So if f is represented by a λ -term F, then $\mu^n f$ is represented by

 $\lambda \vec{x}.Y(\lambda z \vec{x} x. lf(Eq_0(F \vec{x} x)) x (z \vec{x} (Succ x))) \vec{x} \underline{0}$

Recursive implies λ -definable

Fact: every partial recursive $f \in \mathbb{N}^n \to \mathbb{N}$ can be expressed in a standard form as $f = g \circ (\mu^n h)$ for some $g, h \in PRIM$. (Follows from the proof that computable = partial-recursive.)

Hence every (total) recursive function is λ -definable.

More generally, every partial recursive function is λ -definable, but matching up \uparrow with $\beta - nf$ makes the representations more complicated than for total functions: see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]

Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that computable = partial recursive $\Rightarrow \lambda$ -definable. So it just remains to see that λ -definable functions are RM computable. To show this one can

- ightharpoonup code λ -terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β -reduction.

Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that computable = partial recursive $\Rightarrow \lambda$ -definable. So it just remains to see that λ -definable functions are RM computable. To show this one can

- \blacktriangleright code λ -terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β -reduction.

Numerical coding of x-terms

Fix an emuration $x_0, x_1, x_2, ...$ of the set of variables. For each λ -term M, define $\lceil M \rceil \in \mathbb{N}$ by

(where $[n_0, n_1, ..., n_k]^7$ is the numerical usding of lists of numbers from p43).

Computable = λ -definable

Theorem. A partial function is computable if and only if it is λ -definable.

We already know that computable = partial recursive $\Rightarrow \lambda$ -definable. So it just remains to see that λ -definable functions are RM computable. To show this one can

- ightharpoonup code λ -terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β -reduction.

The details are straightforward, if tedious.

Summany

- Tormalization of intuitive notion of ALGORITHM in several equivalent ways

 Cf. "Church-Turing Thesis"
- Limitative results: sundecidable problems un computable functions
 - "programs as data" + diagonalization