Recall: λ -Terms, M

are built up from a given, countable collection of

► variables x, y, z,...

by two operations for forming λ -terms:

• λ -abstraction: $(\lambda x.M)$

(where x is a variable and M is a λ -term)

application: (MM')
 (where M and M' are λ-terms).

β-Reduction

Recall that $\lambda x.M$ is intended to represent the function f such that f(x) = M for all x. We can regard $\lambda x.M$ as a function on λ -terms via substitution: map each N to M[N/x].

Substitution *N*[*M*/*x*]

$$x[M/x] = M$$

$$y[M/x] = y \quad \text{if } y \neq x$$

$$(\lambda y.N)[M/x] = \lambda y.N[M/x] \quad \text{if } y \# (M x)$$

$$(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]$$

Substitution *N*[*M*/*x*]

x[M/x] = M $y[M/x] = y \quad \text{if } y \neq x$ $(\lambda y.N)[M/x] = \lambda y.N[M/x] \quad \text{if } y \# (M x)$ $(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]$

Side-condition y # (M x) (y does not occur in M and $y \neq x$) makes substitution "capture-avoiding". E.g. if $x \neq y$

 $(\lambda y.x)[y/x] \neq \lambda y.y$

Substitution *N*[*M*/*x*]

$$x[M/x] = M$$

$$y[M/x] = y \quad \text{if } y \neq x$$

$$(\lambda y.N)[M/x] = \lambda y.N[M/x] \quad \text{if } y \# (M x)$$

$$(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]$$

$$(M_1 N_2)[M/x] = N_1[M/x] N_2[M/x]$$

$$(N_1 N_2)[M/x] = N_1[M/x] N_2[M/x]$$

 $(\lambda y.x)[y/x] =_{\alpha} (\lambda z.x)[y/x] = \lambda z.y$

In fact $N \mapsto N[M/x]$ induces a totally defined function from the set of α -equivalence classes of λ -terms to itself.

 $\lambda x, (\lambda z, z) y x [\lambda z, y/y]$

no possible Capture $\lambda \infty$, $(\lambda z. z)$ y $\infty [\lambda z. y/y]$

$$\lambda x, (\lambda z.z) y x [\lambda z.y/y]$$

= $\lambda x. (\lambda z.z) (\lambda z.y) x$

$$\lambda x. (\lambda u. u) x y [\lambda y. x / y]$$

$$\lambda x. (\lambda z. z) y x [\lambda x. y/y]$$

= $\lambda x. (\lambda z. z) (\lambda x. y) x$

$$\lambda x. (\lambda u. u) x y [\lambda y. x / y] possible capture$$

$$\lambda x, (\lambda z.z) y x [\lambda x.y/y]$$

= $\lambda x. (\lambda z.z) (\lambda x.y) x$

$$\lambda_{\mathbf{x}} (\lambda_{\mathbf{u}} \cdot \mathbf{u}) x y \begin{bmatrix} \lambda_{\mathbf{y}} \cdot \mathbf{x} / y \end{bmatrix} \text{ possible } \underset{\text{capture ...}}{\text{possible } \underset{\text{capture ...}}{\text{capture ...}} = \lambda_{\mathbf{z}} (\lambda_{\mathbf{u}} \cdot \mathbf{u}) z y \begin{bmatrix} \lambda_{\mathbf{y}} \cdot \mathbf{x} / y \end{bmatrix} \cdots \alpha - \text{convert} \underset{\text{to envoid}}{\text{to envoid}}$$

$$\lambda x, (\lambda z.z) y x [\lambda x.y/y]$$

= $\lambda x. (\lambda z.z) (\lambda x.y) x$

$$\lambda x. (\lambda u.u) x y \begin{bmatrix} \lambda y.x / y \end{bmatrix} possible capture...$$

= $\lambda z. (\lambda u.u) z y \begin{bmatrix} \lambda y.x / y \end{bmatrix} \dots a - convert to envoid$

= $\lambda z \cdot (\lambda u \cdot u) z (\lambda y \cdot x)$

β-Reduction

Recall that $\lambda x.M$ is intended to represent the function f such that f(x) = M for all x. We can regard $\lambda x.M$ as a function on λ -terms via substitution: map each N to M[N/x].

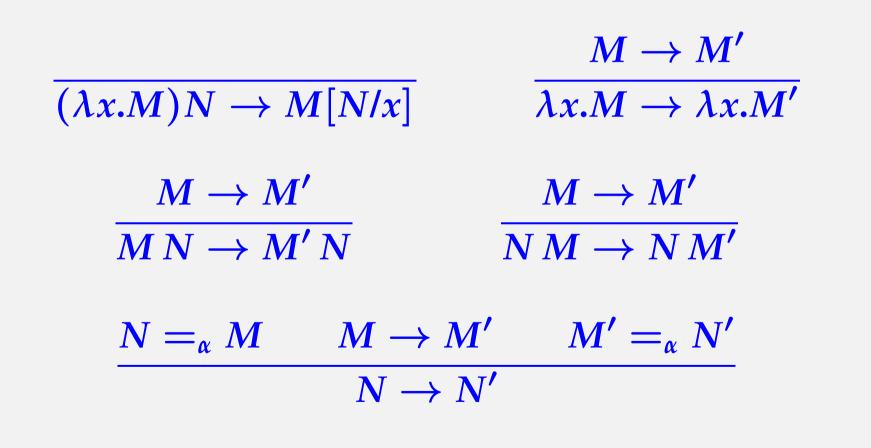
So the natural notion of computation for $\lambda\text{-terms}$ is given by stepping from a

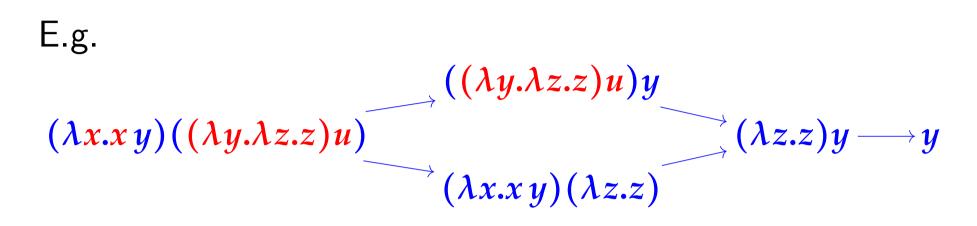
 β -redex $(\lambda x.M)N$

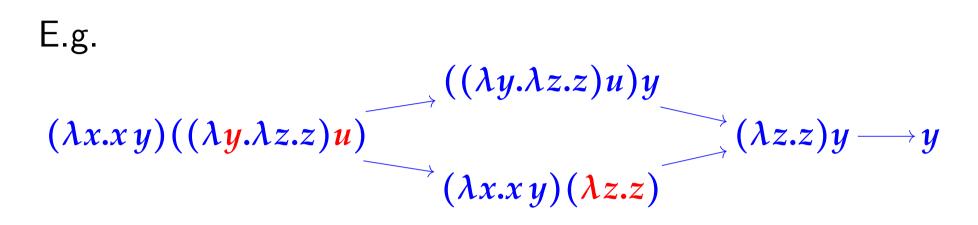
to the corresponding

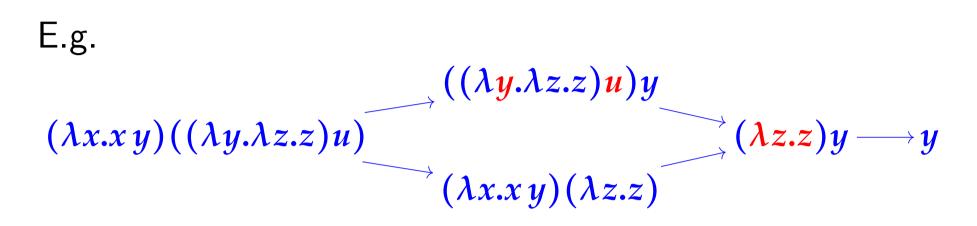
 β -reduct M[N/x]

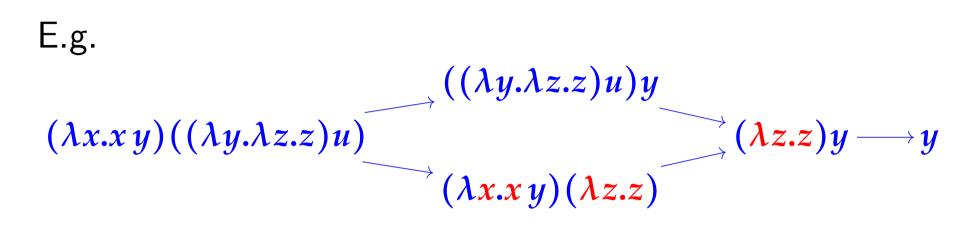
One-step β -reduction, $M \rightarrow M'$:

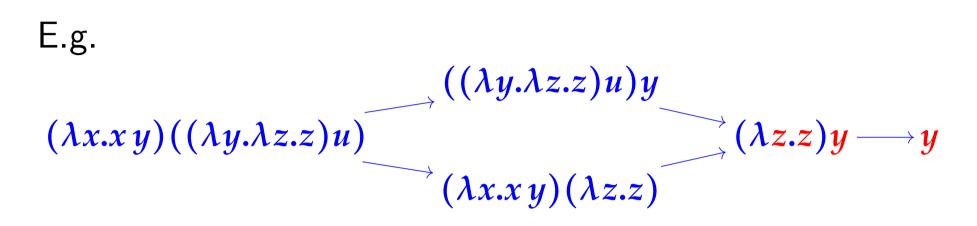




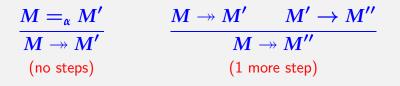








Many-step β -reduction, $M \rightarrow M'$:



E.g.

 $(\lambda x.x y)((\lambda y z.z)u) \twoheadrightarrow y$ $(\lambda x.\lambda y.x)y \twoheadrightarrow \lambda z.y$

$$\beta$$
-Conversion $M =_{\beta} N$

E.g. $u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)$ because $(\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)$

and so we have

 $u((\lambda x y. v x)y) =_{\alpha} u((\lambda x y'. v x)y)$

$$\beta$$
-Conversion $M =_{\beta} N$

E.g. $u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)$ because $(\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)$

and so we have

$$\begin{array}{rcl} u\left((\lambda x \, y. \, v \, x)y\right) &=_{\alpha} & u\left((\lambda x \, y'. \, v \, x)y\right) \\ & \to & u(\lambda y'. \, v \, y) & \text{reduction} \end{array}$$

$$\beta$$
-Conversion $M =_{\beta} N$

E.g. $u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)$ because $(\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)$

and so we have

$$u((\lambda x y. v x)y) =_{\alpha} u((\lambda x y'. v x)y) \rightarrow u(\lambda y'. v y)$$
 reduction
$$=_{\alpha} u(\lambda x. v y)$$

$$\beta$$
-Conversion $M =_{\beta} N$

E.g. $u((\lambda x y. v x)y) =_{\beta} (\lambda x. u x)(\lambda x. v y)$ because $(\lambda x. u x)(\lambda x. v y) \rightarrow u(\lambda x. v y)$

and so we have

$$\begin{array}{ll} u\left((\lambda x \, y. \, v \, x)y\right) &=_{\alpha} & u\left((\lambda x \, y'. \, v \, x)y\right) \\ & \to & u(\lambda y'. \, v \, y) & \text{reduction} \\ &=_{\alpha} & u(\lambda x. \, v \, y) \\ & \leftarrow & (\lambda x. \, u \, x)(\lambda x. \, v \, y) & \text{expansion} \end{array}$$

$$\beta$$
-Conversion $M =_{\beta} N$

is the binary relation inductively generated by the rules:

$$\frac{M =_{\alpha} M'}{M =_{\beta} M'} \qquad \frac{M \to M'}{M =_{\beta} M'} \qquad \frac{M =_{\beta} M'}{M' =_{\beta} M}$$
$$\frac{M =_{\beta} M' \qquad M' =_{\beta} M''}{M =_{\beta} M''} \qquad \frac{M =_{\beta} M'}{\lambda x.M =_{\beta} \lambda x.M'}$$
$$\frac{M =_{\beta} M' \qquad N =_{\beta} N'}{M N =_{\beta} M' N'}$$

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

[Proof omitted.]

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. To show that two terms are β -convertible, it suffices to show that they both reduce to the same term. More precisely: $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \twoheadrightarrow M \leftarrow M_2)$.

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \rightarrow M \leftarrow M_2)$.

Proof. = $_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely,

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \twoheadrightarrow M \leftarrow M_2)$.

Proof. = $_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \ll M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M (M_1 \twoheadrightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_1 \longrightarrow M \leftarrow M_2 \longrightarrow M' \leftarrow M_3$

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \twoheadrightarrow M \leftarrow M_2)$.

Proof. = $_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \leftarrow M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M \ (M_1 \twoheadrightarrow M \twoheadleftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem: $M_1 \longrightarrow M \twoheadleftarrow M_2 \longrightarrow M' \twoheadleftarrow M_3$

Theorem. \rightarrow is confluent, that is, if $M_1 \leftarrow M \rightarrow M_2$, then there exists M' such that $M_1 \rightarrow M' \leftarrow M_2$.

Corollary. $M_1 =_{\beta} M_2$ iff $\exists M (M_1 \twoheadrightarrow M \leftarrow M_2)$.

Proof. = $_{\beta}$ satisfies the rules generating \rightarrow ; so $M \rightarrow M'$ implies $M =_{\beta} M'$. Thus if $M_1 \rightarrow M \ll M_2$, then $M_1 =_{\beta} M =_{\beta} M_2$ and so $M_1 =_{\beta} M_2$.

Conversely, the relation $\{(M_1, M_2) \mid \exists M (M_1 \rightarrow M \leftarrow M_2)\}$ satisfies the rules generating $=_{\beta}$: the only difficult case is closure of the relation under transitivity and for this we use the Church-Rosser theorem. Hence $M_1 =_{\beta} M_2$ implies $\exists M (M_1 \rightarrow M' \leftarrow M_2)$.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M =_{\beta} N$ with N a β -nf.

β -Normal Forms

Definition. A λ -term N is in β -normal form (nf) if it contains no β -redexes (no sub-terms of the form $(\lambda x.M)M'$). M has β -nf N if $M =_{\beta} N$ with N a β -nf.

Note that if N is a β -nf and $N \rightarrow N'$, then it must be that $N =_{\alpha} N'$ (why?).

Hence if $N_1 =_{\beta} N_2$ with N_1 and N_2 both β -nfs, then $N_1 =_{\alpha} N_2$. (For if $N_1 =_{\beta} N_2$, then by Church-Rosser $N_1 \twoheadrightarrow M' \twoheadleftarrow N_2$ for some M', so $N_1 =_{\alpha} M' =_{\alpha} N_2$.)

So the β -nf of M is unique up to α -equivalence if it exists.

$$(and if M does have $\beta - nf N$, then
 $M \rightarrow N$)$$

Non-termination

Some λ terms have no β -nf.

E.g. $\Omega \triangleq (\lambda x.x x)(\lambda x.x x)$ satisfies

- $\Omega \to (x x)[(\lambda x.x x)/x] = \Omega$,
- $\Omega \twoheadrightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

Non-termination

Some λ terms have no β -nf.

E.g. $\Omega \triangleq (\lambda x.x x)(\lambda x.x x)$ satisfies

- $\Omega \to (x x)[(\lambda x.x x)/x] = \Omega$,
- $\Omega \rightarrow M$ implies $\Omega =_{\alpha} M$.

So there is no β -nf N such that $\Omega =_{\beta} N$.

A term can possess both a β -nf and infinite chains of reduction from it.

E.g. $(\lambda x.y)\Omega \to y$, but also $(\lambda x.y)\Omega \to (\lambda x.y)\Omega \to \cdots$.

Non-termination

Normal-order reduction is a deterministic strategy for reducing λ -terms: reduce the "left-most, outer-most" redex first. More specifically:

A redex is in head position in a λ -term M if M takes the form

 $\lambda x_1 \dots \lambda x_n (\lambda x.M') M_1 M_2 \dots M_m \quad (n \ge 0, m \ge 1)$

where the redex is the underlined subterm. A λ -term is said to be in head normal form if it contains no redex in head position, in other words takes the form $\lambda x_1 \dots \lambda x_n \dots x_{m-1} M_1 M_2 \dots M_m \ (m, n \ge 0)$ Normal order reduction first continually reduces redexes in head position; if that process terminates then one has reached a head normal form and one continues applying head reduction in the subterms M_1, M_2, \dots from left to right.

Fact: normal-order reduction of M always reaches the β -nf of M if it possesses one.