CST 2022 Part IB
 Computation Theory Exercise Sheet

Exercise 1. Show that the following arithmetic functions are all register machine computable.
(a) First projection function $p \in \mathbb{N}^{2} \rightarrow \mathbb{N}$, where $p(x, y) \triangleq x$
(b) Constant function with value $n \in \mathbb{N}, c \in \mathbb{N} \rightarrow \mathbb{N}$, where $c(x) \triangleq n$
(c) Truncated subtraction function, $\dot{-}_{-} \in \mathbb{N}^{2} \rightarrow \mathbb{N}$, where $x \doteq y \triangleq \begin{cases}x-y & \text { if } y \leq x \\ 0 & \text { if } y>x\end{cases}$
(d) Integer division function, $_d i v_{-} \in \mathbb{N}^{2} \rightarrow \mathbb{N}$, where

$$
x \operatorname{div} y \triangleq \begin{cases}\text { integer part of } x / y & \text { if } y>0 \\ 0 & \text { if } y=0\end{cases}
$$

(e) Integer remainder function, $_\bmod \mathcal{L}_{-} \in \mathbb{N}^{2} \rightarrow \mathbb{N}$, where $x \bmod y \triangleq x \dot{\triangle}(x \operatorname{div} y)$
(f) Exponentiation base $2, e \in \mathbb{N} \rightarrow \mathbb{N}$, where $e(x) \triangleq 2^{x}$.
(g) Logarithm base $2, \log _{2} \in \mathbb{N} \rightarrow \mathbb{N}$, where $\log _{2}(x) \triangleq \begin{cases}\text { greatest } y \text { such that } 2^{y} \leq x & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}$

Exercise 2. Let $\phi_{e} \in \mathbb{N} \rightarrow \mathbb{N}$ denote the unary partial function from numbers to numbers computed by the register machine with code e. Show that for any given register machine computable unary partial function $f \in \mathbb{N} \rightarrow \mathbb{N}$, there are infinitely many numbers e such that $\phi_{e}=f$. (Two partial functions are equal if they are equal as sets of ordered pairs; which is equivalent to saying that for all numbers $x \in \mathbb{N}, \phi_{e}(x)$ is defined if and only if $f(x)$ is, and in that case they are equal numbers.)

Exercise 3. Consider the list of register machine instructions whose graphical representation is shown below. Assuming that register Z holds 0 initially, describe what happens when the code is executed (both in terms of the effect on registers A and S and whether the code halts by jumping to the label EXIT or HALT).

Exercise 4. Show that there is a register machine computable partial function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that both $\{x \in \mathbb{N} \mid f(x) \downarrow\}$ and $\{y \in \mathbb{N} \mid(\exists x \in \mathbb{N}) f(x)=y\}$ are register machine undecidable.

Exercise 5. Suppose S_{1} and S_{2} are subsets of \mathbb{N}. Suppose $f \in \mathbb{N} \rightarrow \mathbb{N}$ is register machine computable function satisfying: for all x in \mathbb{N}, x is an element of S_{1} if and only if $f(x)$ is an element of S_{2}. Show that S_{1} is register machine decidable if S_{2} is.

Exercise 6. Show that the set of codes $\left\langle e, e^{\prime}\right\rangle$ of pairs of numbers e and e^{\prime} satisfying $\phi_{e}=\phi_{e^{\prime}}$ is undecidable.

Exercise 7. For the example Turing machine given on slide 64, give the register machine program implementing $(S, T, D):=\delta(S, T)$, as described on slide 70. [Tedious!-maybe just do a bit.]

Exercise 8. Show that the following functions are all primitive recursive.
(a) Exponentiation, $\exp \in \mathbb{N}^{2} \rightarrow \mathbb{N}$, where $\exp (x, y) \triangleq x^{y}$.
(b) Truncated subtraction, minus $\in \mathbb{N}^{2} \rightarrow \mathbb{N}$, where $\operatorname{minus}(x, y) \triangleq \begin{cases}x-y & \text { if } x \geq y \\ 0 & \text { if } x<y\end{cases}$
(c) Conditional branch on zero, ifzero $\in \mathbb{N}^{3} \rightarrow \mathbb{N}$, where ifzero $(x, y, z) \triangleq \begin{cases}y & \text { if } x=0 \\ z & \text { if } x>0\end{cases}$
(d) Bounded summation: if $f \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is primitive recursive, then so is $g \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ where

$$
g(\vec{x}, x) \triangleq \begin{cases}0 & \text { if } x=0 \\ f(\vec{x}, 0) & \text { if } x=1 \\ f(\vec{x}, 0)+\cdots+f(\vec{x}, x-1) & \text { if } x>1\end{cases}
$$

Exercise 9. Recall the definition of Ackermann's function ack (slide 102). Sketch how to build a register machine M that computes $a c k\left(x_{1}, x_{2}\right)$ in $R 0$ when started with x_{1} in $R 1$ and x_{2} in $R 2$ and all other registers zero. [Hint: here's one way; the next question steers you another way to the computability of ack. Call a finite list $L=\left[\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots\right]$ of triples of numbers suitable if it satisfies
(i) if $(0, y, z) \in L$, then $z=y+1$
(ii) if $(x+1,0, z) \in L$, then $(x, 1, z) \in L$
(iii) if $(x+1, y+1, z) \in L$, then there is some u with $(x+1, y, u) \in L$ and $(x, u, z) \in L$.

The idea is that if $(x, y, z) \in L$ and L is suitable then $z=a c k(x, y)$ and L contains all the triples ($\left.x^{\prime}, y^{\prime}, a c k\left(x, y^{\prime}\right)\right)$ needed to calculate $a c k(x, y)$. Show how to code lists of triples of numbers as numbers in such a way that we can (in principle, no need to do it explicitly!) build a register machine that recognises whether or not a number is the code for a suitable list of triples. Show how to use that machine to build a machine computing $a c k(x, y)$ by searching for the code of a suitable list containing a triple with x and y in it's first two components.]

Exercise 10. For each $n \in \mathbb{N}$, let g_{n} be the function mapping mapping each $y \in \mathbb{N}$ to the value $a c k(n, y)$ of Ackermann's function at $(n, y) \in \mathbb{N}^{2}$.
(a) Show for all $(n, y) \in \mathbb{N}^{2}$ that $g_{n+1}(y)=\left(g_{n}\right)^{(y+1)}(1)$, where $h^{(k)}(z)$ is the result of k repeated applications of the function h to initial argument z.
(b) Deduce that each g_{n} is a primitive recursive function.
(c) Deduce that Ackermann's function is total recursive.

Exercise 11. If you are still not fed up with Ackermann's function ack $\in \mathbb{N}^{2} \rightarrow \mathbb{N}$, show that the λ-term ack $\triangleq \lambda x . x(\lambda f y . y f(f \underline{1}))$ Succ represents ack (where Succ is as on slide 123).

Exercise 12. Let I be the λ-term λx. x. Show that $\underline{n} \mid=\beta$ I holds for every Church numeral \underline{n}. Now consider

$$
\mathrm{B} \triangleq \lambda f g x \cdot g x \mid(f(g x))
$$

Assuming the fact about normal order reduction mentioned on slide 115, show that if partial functions $f, g \in \mathbb{N} \rightarrow \mathbb{N}$ are represented by closed λ-terms F and G respectively, then their composition $(f \circ g)(x) \equiv f(g(x))$ is represented by $\mathrm{B} F G$.

