
2.2. GRAPHICAL REPRESENTATION 19

Definition 2: Register machine computation

A computation of a register machine is a (finite or infinite) sequence of configurations

c0, c1, c2, . . .

where

• c0 is an initial configuration,

• each c = (`, r0, . . . , rn) in the sequence determines the next configuration in the
sequence (if any) by carrying out the program instruction labelled L` with registers
containing r0, . . . , rn.

Halting For a finite computation c0, c1, . . . , cm, the last configuration cm = (`, r0, . . .) must be
a halting configuration, i.e. ` must satisfy:

either: the `
th instruction in the program has the body HALT (a “proper halt”);

or: ` is greater than the number of instructions in the program, so that there is no in-
struction labelled L` (an “erroneous halt”).

N.B. a program can always be modified (without affecting its computations) to turn all erroneous
halts into proper halts by adding extra HALT instructions to the list with appropriate labels.

Note that computations may never halt. For example, the following register machine with one
register R0 has only infinite computation sequences of the form (0, r), (0, r + 1), (0, r + 2), . . ..

L0 : R
+
0 ! L0

L1 : HALT

2.2 Graphical Representation

A register machine can be represented by a graph with one node (vertex) for each instruction.
The arcs (edges) represent jumps between instructions and thereby replace the labels. Because
the sequential ordering of instructions is lost, we need to indicate the initial instruction with
START.

program code graphical representation

R
+ ! L

R
+ [L]

R
� ! L,L

0
R

�
[L]

[L
0
]

HALT HALT

L0
START [L0]


