Information Theory and Coding

Computer Science Tripos Part II, Michaelmas Term
J G Daugman
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. Foundations: Probability, Uncertainty, and Information

. Entropies Defined, and Why they are Measures of Information

Source Coding Theorem; Prefix, Variable-, & Fixed-Length Codes
Channel Types, Properties, Noise, and Channel Capacity
Continuous Information; Density; Noisy Channel Coding Theorem

Fourier Series, Convergence, Orthogonal Representation

. Useful Fourier Theorems; Transform Pairs; Sampling; Aliasing

. Discrete Fourier Transform. Fast Fourier Transform Algorithms

. The Quantized Degrees-of-Freedom in a Continuous Signal

. Gabor-Heisenberg-Weyl Uncertainty Relation. Optimal “Logons”

. Kolmogorov Complexity and Minimal Description Length
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Information Theory and Coding

J G Daugman

Prerequisite courses: Probability; Mathematical Methods for CS; Discrete Mathematics

Aims

The aims of this course are to introduce the principles and applications of information theory.
The course will study how information is measured in terms of probability and entropy, and the
relationships among conditional and joint entropies; how these are used to calculate the capacity
of a communication channel, with and without noise; coding schemes, including error correcting
codes; how discrete channels and measures of information generalise to their continuous forms;
the Fourier perspective; and extensions to wavelets, complexity, compression, and efficient coding
of audio-visual information.

Lectures

Foundations: probability, uncertainty, information. How concepts of randomness,
redundancy, compressibility, noise, bandwidth, and uncertainty are related to information.
Ensembles, random variables, marginal and conditional probabilities. How the metrics of
information are grounded in the rules of probability.

Entropies defined, and why they are measures of information. Marginal entropy,
joint entropy, conditional entropy, and the Chain Rule for entropy. Mutual information
between ensembles of random variables. Why entropy is the fundamental measure of infor-
mation content.

Source coding theorem; prefix, variable-, and fixed-length codes. Symbol codes.
The binary symmetric channel. Capacity of a noiseless discrete channel. Error correcting
codes.

Channel types, properties, noise, and channel capacity. Perfect communication
through a noisy channel. Capacity of a discrete channel as the maximum of its mutual
information over all possible input distributions.

Continuous information; density; noisy channel coding theorem. Extensions of the
discrete entropies and measures to the continuous case. Signal-to-noise ratio; power spectral
density. Gaussian channels. Relative significance of bandwidth and noise limitations. The
Shannon rate limit and efficiency for noisy continuous channels.

Fourier series, convergence, orthogonal representation. Generalised signal expan-
sions in vector spaces. Independence. Representation of continuous or discrete data by
complex exponentials. The Fourier basis. Fourier series for periodic functions. Examples.

Useful Fourier theorems; transform pairs. Sampling; aliasing. The Fourier trans-
form for non-periodic functions. Properties of the transform, and examples. Nyquist’s
Sampling Theorem derived, and the cause (and removal) of aliasing.

Discrete Fourier transform. Fast Fourier Transform Algorithms. Efficient al-
gorithms for computing Fourier transforms of discrete data. Computational complexity.
Filters, correlation, modulation, demodulation, coherence.



The quantised degrees-of-freedom in a continuous signal. Why a continuous sig-
nal of finite bandwidth and duration has a fixed number of degrees-of-freedom. Diverse
illustrations of the principle that information, even in such a signal, comes in quantised,
countable, packets.

Gabor-Heisenberg-Weyl uncertainty relation. Optimal “Logons”. Unification of
the time-domain and the frequency-domain as endpoints of a continuous deformation. The
Uncertainty Principle and its optimal solution by Gabor’s expansion basis of “logons”.
Multi-resolution wavelet codes. Extension to images, for analysis and compression.

Kolmogorov complexity. Minimal description length. Definition of the algorithmic
complexity of a data sequence, and its relation to the entropy of the distribution from
which the data was drawn. Fractals. Minimal description length, and why this measure of
complexity is not computable.

Objectives

At the end of the course students should be able to

calculate the information content of a random variable from its probability distribution

relate the joint, conditional, and marginal entropies of variables in terms of their coupled
probabilities

define channel capacities and properties using Shannon’s Theorems

construct efficient codes for data on imperfect communication channels

generalise the discrete concepts to continuous signals on continuous channels
understand Fourier Transforms and the main ideas of efficient algorithms for them

describe the information resolution and compression properties of wavelets

Recommended book

* Cover, T.M. & Thomas, J.A. (1991). Elements of information theory. New York: Wiley.
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4.2 Information sources with memory

We will wish to consider sources with memory, so we also consider Markov
processes. Our four event process (a symbol is generated on each edge) is
shown graphically together with a two state Markov process for the alphabet
{A, B, C, D, E} in figure 17. We can then solve for the state occupancy using
flow equations (this example is trivial).

D, 1/8 B, 3/8 D, 1/8

A, 1/2 c, 1/8 A, 1/2

B, 1/4 E, 1/4 B, 1/4

Figure 17: Graphs representing memoryless source and two state Markov pro-
cess

In general then we can define for a finite state process with states {51, .52, ...5,},
with transition probabilities p;(j) being the probability of moving from state S;
to state S; (with the emission of some symbol). First we can define the entropy
of each state in the normal manner:

Z pi(7) logy pi ()

and then the entropy of the system to be the sum of these individual state
entropy values weighted with the state occupancy (calculated from the flow
equations):

H = ZP-H-
== —Ezpzpz logpz() (45)

Clearly for a single state, we have the entropy of the memoryless source.

4.3 The Source Coding theorem

Often we wish to efficiently represent the symbols generated by some source.
We shall consider encoding the symbols as binary digits.
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Figure 18: Discrete memoryless source and encoder

4.3.1 Fixed length codes

Consider encoding the N symbols {s;}, entropy H, as a fixed length (R) block
binary digits. To ensure we can decode these symbols we need:

R log2(N) N a power of 2
| log2(N) | +1 otherwise

where | X | is the largest integer less than X. The code rate is then R bits per
symbol, and as we know H < logz(N) then H < R. The efficiency of the coding
7 is given by:
_H

=R
When the N symbols are equiprobable, and N is a power of two, n = 1 and
H = R. Note that if we try to achieve R < H in this case we must allocate at
least one encoding to more than one symbol — this means that we are incapable
of uniquely decoding.

Still with equiprobable symbols, but when N is not a power of two, this coding
is ineflicient; to try to overcome this we consider sequences of symbols of length
J and consider encoding each possible sequence of length .J as a block of binary
digits, then we obtain:

J

where R is now the average number of bits per symbol. Note that as J gets
large, n — 1.

4.3.2 Variable length codes

In general we do not have equiprobable symbols, and we would hope to achieve

some more compressed form of encoding by use of variable length codes — an
example of such an encoding is Morse code dating from the days of telegraphs.
We consider again our simple four symbol alphabet and some possible variable
length codes:

X ‘ P(X) ‘ Code1 Code?2 Code3
Al1/2 |1 0 0
B|1/4 |00 10 01
C|1/8 01 110 011
D|1/8 10 111 111
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We consider each code in turn:

1. Using this encoding, we find that presented with a sequence like 1001, we
do not know whether to decode as ABA or DC. This makes such a code
unsatisfactory. Further, in general, even a code where such an ambiguity
could be resolved uniquely by looking at bits further ahead in the stream
(and backtracking) is unsatisfactory.

Observe that for this code, the coding rate, or average number of bits per
symbol, is given by:
2isibi =

X1+3Ex2+2x%x2

B | QoKD [

which is less than the entropy.

2. This code is uniquely de-codable; further this code is interesting in that
we can decode instantaneously — that is no backtracking is required; once
we have the bits of the encoded symbol we can decode without waiting
for more. Further this also satisfies the prefix condition, that is there is
no code word which is prefix (i.e. same bit pattern) of a longer code word.
In this case the coding rate is equal to the entropy.

3. While this is de-codable (and coding rate is equal to the entropy again),
observe that it does not have the prefix property and is not an instanta-
neous code.

Shannon’s first theorem is the source-coding theorem which is:

For a discrete memoryless source with finite entropy H; for any
(positive) € it is possible to encode the symbols at an average rate
R, such that:

R=H +¢

(For proof see Shannon & Weaver.) This is also sometimes called the noiseless
coding theorem as it deals with coding without consideration of noise processes
(i.e. bit corruption etc).

The entropy function then represents a fundamental limit on the number of bits
on average required to represent the symbols of the source.

4.3.3 Prefix codes

We have already mentioned the prefix property; we find that for a prefix code
to exist, it must satisfy the Kraft-McMillan inequality. That is,a necessary (not
sufficient) condition for a code having binary code words with lengths 5 < ng <
--- < ny to satisfy the prefix condition is:

N o
<1
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4.4 Discrete Memoryless Channel

We have considered the discrete source, now we consider a channel through
which we wish to pass symbols generated by such a source by some appropriate
encoding mechanism; we also introduce the idea of noise into the system — that
is we consider the channel to modify the input coding and possibly generate
some modified version.

We should distinguish between systematic modification of the encoded symbols,
i.e. distortion, and noise. Distortion is when an input code always results in the
the same output code; this process can clearly be reversed. Noise on the other
hand introduces the element of randomness into the resulting output code.

|
|
Symbols | Source Symbols
> 4\/—' Decoder " »
| encoder
|
|

Channel L » Y

Figure 19: Coding and decoding of symbols for transfer over a channel.

We consider an input alphabet X = {z,...,2;} and output alphabet } =
{y1,...,yx} and random variables X and Y which range over these alphabets.
Note that J and K need not be the same — for example we may have the binary
input alphabet {0,1} and the output alphabet {0,1, L}, where L represents
the decoder identifying some error. The discrete memoryless channel can then
be represented as a set of transition probabilities:

plyklz;) = P(Y = g X = 2;)

That is the probability that if z; is injected into the channel, y; is emitted;
p(yk|z;) is the conditional probability. This can be written as the channel
matriz:

plyiler)  plyzlz) ... plyxle:)
Pl = p(ylzlafz) p(y2:|932) p(yfxz'lm)
plyiles) ply2les) ... plyuxles)

Note that we have the property that for every input symbol, we will get some-

thing out:
K

> pyela;) =1

k=1
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Next we take the output of a discrete memoryless source as the input to a chan-
nel. So we have associated with the input alphabet of the channel the probabil-
ity distribution of output from a memoryless source {p(z;),j =1,2,...J}. We
then obtain the joint probability distribution of the random variables X and
Y:

p(zjye) = PX =2;Y =y)
= pyelz;)p(z;)

We can then find the marginal probability distribution of Y, that is the proba-
bility of output symbol y; appearing:

plye) = PY =yx)
J
= 2 pule)p(e))

If we have J = K, we often identify each output symbol as being the desired
result of some input symbol. Or we may select some subset of output symbols,
for example in the input {0, 1} and output {0, 1, L }.We then define the average
probability of symbol error as:

K

P. = > PY=wylX=u)
k=1,k#j
K J
= D > plulre(z)) (46)
k=1j=1,j#k

and correspondingly, the average probability of correct reception as 1 — P..

4.4.1 Binary symmetric channel

The binary symmetric channel has two input and output symbols (usually writ-
ten {0,1}) and a common probability, p, of “incorrect” decoding of an input
at the output; this could be a simplistic model of a communications link, fig-
ure 20a.

However, to understand the averaging property of the error rate P. described
above, consider the figure 20b, where we have 10° symbols, of which the first has
a probability of being received in error (of 0.1), and the remainder are always
received perfectly. Then observing that most of the terms in the sum on the
right of equation 46 are zero:

P. = p(yilzo)p(zo)
= 0.1x107°
= 1077 (47)

23



1 [ 2 o
1-p 999999 f)————» @ 99997

Figure 20: a) Binary symmetric channel, b) Tale of the unlucky symbol

4.5 Mutual information and entropy

Extending the ideas of information and entropy for the discrete source, we can
now consider the information about X obtained by observing the value of the
Y. We define the entropy after observing Y = y;:

J
H(X|Y = yr) = _p(w;lye) log (W)

i=1
this is a random variable, so we can take the average again:

K

H(X|Y) = > HX|Y =yp)p(ye)
i=1

K J 1
= > plajly) log (7) p(yr)

= p(z;ily)

K J 1
S ple ) loe (—) (4s)

Pt p(z;ilyr)

H(X|Y) is the conditional entropy. We then write the mutual information of
the channel:

Y)

I(X;))= H(X) - H(X

This provides us with a measure of the amount of information or uncertainty
reduced about X after observing the output Y of a channel fed by X. The
mutual information tells us something about the channel.

An alternative viewpoint is to think about the channel together with a correc-
tion device fed with information from observations of both the input and output
of the channel, e.g. figure 21. One might ask how much information must be
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Figure 21: Correction system
passed along the correction channel to reconstruct the input; this turns out to
be H(X|Y).

We can further rewrite the entropy function H(X') as a sum over the joint
probability distribution:

M

H(X) = =) plz))log(p(z;)) x 1

b
Il
—

Il
-M“

K
p(z;) log(p(z;)) x Y plyklz;)
k=1

by
Il
—

K
Z (vklzj)p(z;) log(p(z;))

[l
.
i M“
n
= ||

I
]~

p(x;, yx) log(p(z;))

1 k=1

o,
Il

Hence we obtain an expression for the mutual information:

L& p(z;]y)
I(X;) =Y p(xj,yk) log (]7’“)

j=1k=1 p(z;)
We can deduce various properties of the mutual information:
1. I(X;Y) > 0.

To show this, we note that p(z;|yx)p(yx) = p(z;, yx) and substitute this
in the equation above:

K J ;
1Y) = >0 plaj, yx) log (%)
o (49)

by use of the inequality we established previously.
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2. I(X;Y) =0if X and Y are statistically independent.
If X and Y are independent, p(z;,yx) = p(z;)p(yx), hence the log term
becomes zero.

3. I'is symmetric, I(X;Y) = I[(Y; X).
Using p(z;|yx)p(ye) = p(yklz;)p(z;), we obtain:

1Y) = D> plaj, ue)log (%)

— 1) (50)

4. The preceding leads to the obvious symmetric definition for the mutual
information in terms of the entropy of the output:

1(X;Y) = H(Y) - HY|X)
5. We define the joint entropy of two random variables in the obvious man-

ner, based on the joint probability distribution:
J K

H(X,Y) == > plzj,yx) log(p(z, yr))

1=1k=1
The mutual information is the more naturally written:

[(X;Y) = H(X)+ H(Y) - H(X,))

4.5.1 Binary channel

Consider the conditional entropy and mutual information for the binary sym-
metric channel. The input source has alphabet X = {0,1} and associated
probabilities {1/2,1/2} and the channel matrix is:

I-p p
p o l=p

Then the entropy, conditional entropy and mutual information are given by:
HX) =1
H(X]Y) = -—plog(p) — (1 - p)log(l - p)
(X)) = 14plog(p)+ (1 - p)log(l - p)

Figure 22a shows the capacity of the channel against transition probability.
Note that the capacity of the channel drops to zero when the transition proba-
bility is 1/2, and is maximized when the transition probability is 0; or 1 — if we
reliably transpose the symbols on the wire we also get the maximum amount
of information through! Figure 22b shows the effect on mutual information for
asymmetric input alphabets.
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Figure 22: Capacity of binary channel a) symmetric, b) asymmetric

4.6 Channel capacity

We wish to define the capacity of a channel, using the model of a free input
alphabet and dependent output alphabet (given by the channel matrix). We
note that for a given channel, if we wish to maximize the mutual information,
we must perform a maximization over all probability distributions for the input
alphabet X. We define the channel capacity, demoted by C, as:

C = max I(X;Y 51

(max T(X3) (51)

When we achieve this rate we describe the source as being matched to the
channel.

4.7 Channel coding

To overcome the problem of noise in the system, we might consider adding
redundancy during the encoding process to overcome possible errors. The ex-
amples that are used here are restricted to sources which would naturally be
encoded in a noiseless environment as fixed size block codes — i.e. a source al-
phabet X', which has 2™ equiprobable symbols; however, the discussion applies
to more general sources and variable length coding schemes.

One particular aspect to be considered in real uses of channel coding is that many
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sources which we are interested in encoding for transmissions have a significant
amount of redundancy already. Consider sending a piece of syntactically cor-
rect and semantically meaningful English or computer program text through a
channel which randomly corrupted on average 1 in 10 characters (such as might
be introduced by transmission across a rather sickly Telex system). e.g.:

1. Bring reinforcements, we're going to advance

2. It’s easy to recognise speech
Reconstruction from the following due to corruption of 1 in 10 characters would
be comparatively straight forward:

1. Brizg reinforce ents, we’re going to advance

2. It’s easy mo recognise speech
However, while the redundancy of this source protects against such random
character error, consider the error due to a human miss-hearing;:

1. Bring three and fourpence, we’re going to a dance.

2. It’s easy to wreck a nice peach.
The coding needs to consider the error characteristics of the channel and de-

coder, and try to achieve a significant “distance” between plausible encoded
messages.

4.7.1 Repetition Codes

One of the simplest codes is a repetition code. We take a binary symmetric
channel with a transition probability p; this gives a channel capacity C' =
1+ plog(p) + (1 — p) log(1 — p). The natural binary encoding for this is then
{0, 1} — the repetition code will repeat these digits an odd number of times and
perform majority voting.

Hence we transmit n = 2m+ 1 bits per symbol, and will obtain an error if m+1
or more bits are received in error, that is:

2m+1 ;.

2m+1 . _

Po= ) ( i )1[’2(1—20)27”+1 ’
i=m+1

Consider a transition probability of 0.01. The channel capacity as given by
equation 51 is C' = 0.9192 (figure 23a). The code rate of the repetition technique
against the residual probability of error is demonstrated in figure 23b.
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Figure 23: a) Capacity of binary symmetric channel at low loss rates, b) Effi-
ciency of repetition code for a transition probability of 0.01

4.8 Channel Coding Theorem

We arrive at Shannon’s second theorem, the channel coding theorem:

For a channel of capacity C' and a source of entropy H; if H < C,
then for arbitrarily small ¢, there exists a coding scheme such that
the source is reproduced with a residual error rate less than e.

Shannon’s proof of this theorem is an existence proof rather than a means to
construct such codes in the general case. In particular the choice of a good
code is dictated by the characteristics of the channel noise. In parallel with the
noiseless case, better codes are often achieved by coding multiple input symbols.

4.8.1 An efficient coding

Consider a rather artificial channel which may randomly corrupt one bit in each
block of seven used to encode symbols in the channel — we take the probabil-
ity of a bit corruption event is the same as correct reception. We inject N
equiprobable input symbols (clearly N < 27 for unique decoding). What is the
capacity of this channel?

We have 27 input and output patterns; for a given input z; with binary digit
representation bybybsbabsbebr, we have eight equiprobable (i.e. with 1/8 proba-
bility) output symbols (and no others):
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b1b2b3b4bsbebr
b1babsbsbsbebs
b1bob3babsbebr
b1babsbybsbebz
b1babsbabsbebr
b1babsbsbsbebr
b1babsbsbsbebr
b1babsbabsbebr

Then considering the information capacity per symbol:

X))

= (7 ZZP (yele;) log( o m)) (wj))
(-I—ZS log1 1)

8 1.1

C = max(HQY)-H(QY

=~ =

=1 =

=1~ =1

The capacity of the channel is 4/7 information bits per binary digit of the
channel coding. Can we find a mechanism to encode 4 information bits in 7
channel bits subject to the error property described above?

The (7/4) Hamming Code provides a systematic code to perform this — a sys-
tematic code is one in which the obvious binary encoding of the source symbols
is present in the channel encoded form. For our source which emits at each time
interval 1 of 16 symbols, we take the binary representation of this and copy it
to bits bz, bs, bg and by of the encoded block; the remaining bits are given by
b4, ba, b1, and syndromes by s4, $2, 81:

b4 = b5 @bg@ b7 and,

54 = by®bsDbsD by
by = b3 D beD by and,
s = by ®b3DbsD by
by = b3@bs P by and,

51 = by ®bsDbs Dby

On reception if the binary number s4s95; = 0 then there is no error, else b, s, s,
is the bit in error.

This Hamming code uses 3 bits to correct 7 (= 2% — 1) error patterns and
transfer 4 useful bits. In general a Hamming code uses m bits to correct 2™ — 1
error patterns and transfer 27 — 1 — m useful bits. The Hamming codes are
called perfect as they use m bits to correct 2™ — 1 errors.

30



The Hamming codes exist for all pairs (2" — 1,2"7!) and detect one bit errors.
Also the Golay code is a (23,12) block code which corrects up to three bit
errors, an unnamed code exists at (90, 78) which corrects up to two bit errors.

le-10 [ 1

Residual error rate

1le-20 1 1 1 1 1 1
le-08 1e-07 1le-06 1le-05 0.0001 0.001 0.01 0.1
Mean error rate

Figure 24: (7/4) Hamming code residual error rate

We can then consider the more general case, where we have random bit errors
uniformly distributed (i.e. we allow the possibility of two or more bit errors per
7 bit block). Again we obtain the probability of residual error as the remainder
of the binomial series:

5 Continuous information

We now consider the case in which the signals or messages we wish to transfer
are continuously variable; that is both the symbols we wish to transmit are
continuous functions, and the associated probabilities of these functions are
given by a continuous probability distribution.

We could try and obtain the results as a limiting process from the discrete case.
For example, consider a random variable X which takes on values z; = kdx,
k= 0,4£1,42,..., with probability p(zx)dz, i.e. probability density function
p(zr). We have the associated probability normalization:

Zp(xk)éx =1
k
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Using our formula for discrete entropy and taking the limit:

. . 1
H(X) = 51;510%:[)(%)0“0%2 <m>

B T
k

> Sz — log,(dx) Zp(m)ém]
k

80 p(zk)
oo 1 ) ) 00
= /_Oo p(x) log, <p(x)> de — <81;E>1010g2(cu)> X /_Oo p(a)da
= h(X) — lim logy(dz) (52)

This is rather worrying as the latter limit does not exist. However, as we are
often interested in the differences between entropies (i.e. in the consideration
of mutual entropy or capacity), we define the problem away by using the first
term only as a measure of differential entropy:

b= [ ple)toy (o ) do (53)

— 00

We can extend this to a continuous random vector of dimension n concealing
the n-fold integral behind vector notation and bold type:

hX) = [~ ptog (p(lx)) dx (54)

— 00

We can then also define the joint and conditional entropies for continuous dis-
tributions:

hX,Y) = //p(x,y)logz <%> dxdy
MX|Y) = //px y) 10g2< Py ))>dxdy

(x,
p(x,y) log, p(x dxdy
p(%,y)

pa) = [plxydy
ply) = / p(x,y)dx

‘—’“<1

h(Y[X)

with:

Finally, mutual information of continuous random variables X and Y is defined
using the double integral:

i(X;Y) // xylog( (|§)>dacdy

with the capacity of the channel given by maximizing this mutual information
over all possible input distributions for X.
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5.1 Properties

We obtain various properties analagous to the discrete case. In the following
we drop the bold type, but each distribution, variable etc should be taken to
be of n dimensions.

1. Entropy is maximized with equiprobable “symbols”. If z is limited to
some volume v (i.e. is only non-zero within the volume) then h(z) is max-
imized when p(z) = 1/v.

2. h(z,y) < h(z) + h(y)

3. What is the maximum differential entropy for specified variance — we
choose this as the variance is a measure of average power. Hence a re-
statement of the problem is to find the maximum differential entropy for
a specified mean power.

Consider the 1-dimensional random variable X, with the constraints:

/p(w)dw =1
[@-wayis = o
where: ¢ = /.Lp(.L)d.L
(55)
This optimization problem is solved using Lagrange multipliers and max-
imizing;:
[ (=p(@) 108 p(2) + Ap(a) (e = ) + Aaple)) do
which is obtained by solving;:
—1—logp(z) + Mz —p)> + X2 =0

so that with due regard for the constraints on the system:

1

p(z) = Tona

e_(x_#)2/20-2

hence:

W(X) = ; log(2nec”) (56)

We observe that: i) for any random variable Y with variance o, A(Y) <
h(X), ii) the differential entropy is dependent only on the variance and
is independent of the mean, hence iii) the greater the power, the greater
the differential entropy.

This extends to multiple dimensions in the obvious manner.
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5.2

Ensembles

In the case of continuous signals and channels we are interested in functions (of
say time), chosen from a set of possible functions, as input to our channel, with
some perturbed version of the functions being detected at the output. These
functions then take the place of the input and output alphabets of the discrete

case.

We must also then include the probability of a given function being injected
into the channel which brings us to the idea of ensembles — this general area of
work is known as measure theory.

For example, consider the ensembles:

1.

fo(t) =sin(t +0)

Each value of 8 defines a different function, and together with a probability
distribution, say P(6), we have an ensemble. Note that # here may be
discrete or continuous — consider phase shift keying.

Consider a set of random variables {a;;¢ = 0,+1,+2,...} where each
a; takes on a random value according to a Gaussian distribution with
standard deviation v/ N; then:

f({a;},t) = Z a;sinc(2Wt — i)

is the “white noise” ensemble, band limited to W Hertz and with average
power N2,

. More generally, we have for random variables {z;} the ensemble of band-

limited functions:

f{zi}, t) = Z zisinc (2Wt — 1)

where of course we remember from the sampling theorem that:

=)

If we also consider functions limited to time interval T, then we ob-
tain only 2TW non-zero coefficients and we can consider the ensemble
to be represented by an n-dimensional (n = 2T'W)probability distribution

p(z1, 22, ..., &0).

. More specifically, if we consider the ensemble of limited power (by P),

band- limited (to £W) and time- limited signals (non-zero only in interval
(0,7)), we find that the ensemble is represented by an n-dimensional
probability distribution which is zero outside the n-sphere radius r =

2WP.
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By considering the latter types of ensembles, we can fit them into the finite
dimensional continuouus differential entropy definitions given in section 5.

5.3 Channel Capacity

We consider channels in which noise is injected independently of the signal; the
particular noise source of interest is the so called additive white Gaussian notse.
Further we restrict considerations to the final class of ensemble.

We have a signal with average power P, time limited to 7" and bandwidth
limited to W.

We then consider the n = 2WT samples (Xj; and Y}) that can be used to
characterise both the input and output signals. Then the relationship between
the input and output is given by:

Ye =Xy + N, k=1,2,...n

where Ny, is from the band limited Gaussian distribution with zero mean and
variance:

0'2 = N()W
where Ny is the power spectral density.
As N is independent of X we obtain the conditional entropy as being solely
dependent on the noise source, and from equation 56 find its value:
1
h(YlX) = h(]V) = 5 log 277617\701’1/
Hence:
i(X;Y)=h(Y) - h(N)

The capacity of the channel is then obtained by maximizing this over all input
distributions — this is achieved by maximizing with respect to the distribution
of X subject to the average power limitation:

E[X}]=P

As we have seen this is achieved when we have a Gaussian distribution, hence
we find both X and Y must have Gaussian distributions. In particular X has
variance P and Y has variance P + NoW.

We can then evaluate the channel capacity, as:

1
rY) = §log2ﬂ'e(P+NoW)
hN) = %logQWe(NOW)
1 P -
C = §log<1—|—NOW> (57)

35



This capacity is in bits per channel symbol, so we can obtain a rate per second,
by multiplication by n/T, i.e. from n = 2WT, multiplication by 2W:

P .
C:WIOg 2 <1-|— W) blt/S

So Shannon’s third theorem, the channel capacity theorem:

The capacity of a channel bandlimited to W Hertz, perturbed by
additive white Gaussian noise of power spectral density Ny and band-
limited to W is given by:

P :

where P is the average transmitted power.

5.3.1 Notes

The second term within the log in equation 58 is the signal to noise ratio (SNR).

1. Observe that the capacity increases monotonically and without bound
as the SNR increases.

2. Similarly the capacity increases monotonically as the bandwidth increases
but to a limit. Using Taylor’s expansion for In:

2 3 4

In(1+ a) o _I_a o 4
n A= — — 4+ — — — F--.
2 3 4

we obtain:
P
C—>Nolog26

3. This is often rewritten in terms of energy per bit, Fy, which is defined by
P = F3C. The limiting value is then:

By 1oe 9= 0.693
R o) = U.
No Be

This is called the Shannon Limit.

4. The capacity of the channel is achieved when the source “looks like noise”.
This is the basis for spread spectrum techniques of modulation and in

particular Code Division Multiple Access (CDMA).
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Introduction to Fourier Analysis, Synthesis, and Transforms

It has been said that the most remarkable and far-reaching relationship in all of mathemat-
ics is the simple Euler Relation,

€m+1=0 (1)
which contains the five most important mathematical constants, as well as harmonic analysis.
This simple equation unifies the four main branches of mathematics: {0,1} represent arithmetic,
T represents geometry, ¢ represents algebra, and e = 2.718... represents analysis, since one way
to define e is to compute the limit of (1 + )™ as n — oo.

Fourier analysis is about the representation of functions (or of data, signals, systems, ...) in
terms of such complex exponentials. (Almost) any function f(z) can be represented perfectly as
a linear combination of basis functions:

fl@) =2 crWi(z) (2)

where many possible choices are available for the expansion basis functions Wy(x). In the case
of Fourier expansions in one dimension, the basis functions are the complex exponentials:

Uy (x) = exp(ipy) (3)

where the complex constant ¢ = /—1. A complex exponential contains both a real part and an
imaginary part, both of which are simple (real-valued) harmonic functions:

exp(i6) = cos(f) + isin(0) (4)

which you can easily confirm by using the power-series definitions for the transcendental functions
exp, cos, and sin:

6 6 @ o
exp(f) = 1+ﬂ+§+§+“'+a+-“, (5)
92 94 96
cos(f) = 1—54-1_&4_...’ (6)
. 0> 6 0
sin(d) = 9_§+5_ﬂ+“" (7)

Fourier Analysis computes the complex coefficients ¢, that yield an expansion of some function
f(z) in terms of complex exponentials:

flx) = > crexplime) (8)
k=—n

where the parameter iy, corresponds to frequency and n specifies the number of terms (which
may be finite or infinite) used in the expansion.

Each Fourier coefficient ¢, in f(z) is computed as the (“inner product”) projection of the function
f(z) onto one complex exponential exp(—iuxz) associated with that coefficient:

o= [ p(o) expl i) da (9)

—T/2
where the integral is taken over one period (T") of the function if it is periodic, or from —oo to
+oo if it is aperiodic. (An aperiodic function is regarded as a periodic one whose period is 00).
For periodic functions the frequencies py used are just all multiples of the repetition frequency;
for aperiodic functions, all frequencies must be used. Note that the computed Fourier coefficients
¢ are complex-valued.
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1 Fourier Series and Transforms

Consider real valued periodic functions f(z),i.e. for some @ and Vo, f(z+a) =
f(z). Without loss of generality we take a = 2r.

We observe the orthogonality properties of sin(maz) and cos(nz) for integers m
and n:

2m ] B B

0 TOmn oOtherwise

2m . o
/ sin(nz) sin(mz)dz = { 0 ifm=n=0

0 7O0mn Otherwise

27
/ sin(nz) cos(mz)de = 0 Ym,n (1)
0

We use the Kronecker § function to mean:

5mn:{ 1 m:n.

0 otherwise

) is

Then the Fourier Series for f

[z
70 i_o: (@, cos(nz) + b, sin(nz)) (2)

where the Fourier Coeflicients are:

an = %/zﬂf(x) cos(nz)dz n >0 (3)
b, = %/wa(x) sin(nz)dz n>1 (4)

We hope that the Fourier Series provides an expansion of the function f(z) in
terms of cosine and sine terms.

1.1 Approximation by least squares

Let S (z) be any sum of sine and cosine terms:
/ N-—
Sh(z) = ?0 g al, cos(nz) + b, sin(nz)) (5)
and Sy (z), the truncated Fourier Series for a function f(z):

N-1
Sn(z) = % + > (an cos(nz) + by, sin(nz))

n=1
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where a, and b, are the Fourier coefficients. Consider the integral giving the
discrepancy between f(z) and S/ (z) (assuming f(z) is well behaved enough for
the integral to exist):

T (@) - S(2)) da

0

which simplifies to:

[y a

N-1
- 2%@8—%2(@%—}—()2)
n=1
N-1
+ 2m(ap — o)+ 7 3 {(a), — @a) + (8, — ba)?} (6)
n=1

Note that the terms involving ¢’ and b’ are all > 0 and vanish when a!, = a,
and b/, = b,. The Fourier Series is the best approzimation ,in terms of mean
squared error, to f that can be achieved using these circular functions.

1.2 Requirements on functions

The Fourier Series and Fourier coefficients are defined as above. However we
may encounter some problems:

1. integrals in equations 3, 4 fail to exist. e.g.:

f(z) = =

Z
or

0 =z irrational

f(a) = { 1 =z rational

2. although a,, b, exist, the series does not converge,

3. even though the series converges, the result is not f(z)

f(x):{-l—l 0<z<m

-1 n<az<2n

then:

0 neven

m 4
a, =0, b, = 2/ sin(nz)dr = { rr 1 odd
0

S0O:

(@) 2 % [sin(x) 4 sin (3z) 4 sin (5z) L ]

3

but series gives f(nm) <.
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-1.5
-0.2

-0.15

fseries( 1,x) —
fseries( 7,x) -
fseries(63,x) -
rect(x)
0.5 i
0
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-1 W e
-1.5 L 1 1
-1 0 1 4 5 6
Figure 1: Approximations to rectangular pulse
5 T T T T T T
1F fseries( 63,x) —
fseries(163,x) ———
rect(x) -----

Figure 2: Gibbs phenomenon
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However, in real life examples encountered in signal processing things are sim-
pler as:

1. If f(z) is bounded in (0,27) and piecewise continuous, the Fourier series

converges to { f(z_) + f(x4+)} /2 at interior points and { f(04) 4+ f(27_)} /2
at 0 and 2. !

2. If f(z) is also continuous on (0, 27), the sum of the Fourier Series is equal
to f(z) at all points.

3. a, and b, tend to zero a least as fast as 1/n.

1.3 Complex form

Rewrite using €*™* in the obvious way from the formula for sin and cos:

n=1
ao o0 (einz‘ + e—inx) (einz‘ e—inx)
= 5 n bn
2+22G 2 + %
= Z cpe'™ (7)
with:
Co = a0/2
n>0 ¢ = (a,—1b,)/2 (8)
c.pn = (ap+1iby,)/2
observe: c¢_, =

where ¢, denotes the complex conjugate, and:

! /027r f(z)e " dz (9)

Cp = —
27

1.4 Approximation by interpolation

Consider the value of a periodic function f(z) at N discrete equally spaced
values of x:
27

r.=r¢ (¢p= N r
try to find coefficients ¢, such that:

=0,1,...,N—1)

N-1
f(ro) = Z c et (10)
n=0

! A notation for limits is introduced here flz2) =limeyo f(z—e)and f(z4) =limeso f(z+

€).
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Multiply by e~**" and sum with respect to r:

S0O:

N-1

> frg)emor
r=0

N-1N-1

_ Z Z Cneidw(n—m)
r=0 n=0
but by the sum of a geometric series and blatant assertion:
1— ei¢N(n—m)
N-1 - =0 n 75 m
Z ei(br(n—m) — 1 — et¢(n—m)
=0
’ N n=m
1 N-1
Cm =

the original equations

Exercise for the reader: show inserting equation 11 into equation 10 satisfies

(11)

'trig.pts.8’ -
"trig.pts.64’

saw(x)

Figure 3: 8 and 64 point interpolations to sawtooth function

We can translate this back into cos and sin series:

flz,) =ao+ Z (@ (:05(27;V

where (for 0 < n < N/2):

Qg

N/2-1

n=1

1 N-1

N

> I

r=0
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2 27r 2wrn
n = X7 f
¢ VZ:% () cos(=~)
N-1
b, = %;ﬂQNﬂ)sin(QZ") (12)

As we increase N we can make the interpolation function agree with f(z) at
more and more points. Taking a, as an example, as n — oo (for well behaved

f(=)):

N )F - f(z) cos(na)dx (13)

1N 9ny 27rn. 27 1/27r
T

0

1.5 Cosine and Sine Series

Observe that if f(z) is symmetric, that is f(—z) = f(z) then:

ap = 2/Trf(:zc)dav

TJo
2 ™

a, = —/ f(z) cos(nz)dx
TJ o

b, = 0

hence the Fourier series is simply:

-I— Z ay, cos(nw)

n>0

On the other hand if f(z) = —f(—x): then we get the corresponding sine series:

with:

b, = —/ f(z)sin(nz)dz

TJ o
Example, take f(z) = 1 for 0 < 2 < 7m. We can extend this to be periodic
with period 27 either symmetrically, when we obtain the cosine series (which
is simply ag = 1 as expected), or with antisymmetry (square wave) when the
sine series gives us:

4 . .
1= 4 ein() + smg}x) n sin(5z)
T

—{—] (for0 <z < m)

Another example, take f(z) = z(m — z) for 0 < z < m. The cosine series is:

72 cos(4z)  cos(6z)

flz)= s cos(2z) — PRy
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hence as f(z) = 0 as ¢ — 0:

2

6

the corresponding sine series is:

1 1
=1+2—2‘|‘3—2+"'

sin(3z)  sin(bx) n

z(m—1z) = 8 [Sin(:c) + 33 + 73

T

and at ¢ = 7/2:

5 [ 11 ]
=321 +— e

© 33 T 53

Observe that one series converges faster than the other, when the values of the

basis functions match the values of the function at the periodic boundaries.

1.6 Fourier transform

Starting from the complex series in equation 9, make a change of scale — consider
a periodic function g(z) with period 2X; define f(z) = g(«X/n), which has

period 27.

Cc, =

c(k) =

i/7r f(x)e_i”xdx

X .
- n g(y)e—z'mry/Xdy

1 /X (y)e=vd
L ue ,
o _ng Y

where k = nrw /X, and ¢(k) = X¢, /7. Hence:

writing 8k for the step 7/X. Allowing X — oo, then we hope:

Z c(k)e
k

— Z cneinl‘
= zk:c(k)eiky§

= E c(k)e*v sk

k

M%h%/ G(k)e*vdk

Hence we obtain the Fourier Transform pair:

1

— ° ikx
"QWLMGMF dk

= / g(z)e "o dy

— 00
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Equation 16 expresses a function as a spectrum of frequency components. Taken
together (with due consideration for free variables) we obtain:

e* ==Y g 1
27r/ / y (8)

Fourier’s Integral Theorem is a statement of when this formula holds; if f(z) is
of bounded variation, and |f(z)| is integrable from —oo to oo, then equation 18

holds (well more generally the double integral gives (f(z4+) + f(x-))/2).

1.7 FT Properties

Writing g(z) = G(k) to signify the transform pair, we have the following prop-
erties:

1. Symmetry and reality
o if g(z) real then G(—k) = G* (k)

e if g(z) real and even:

= 2/ ) cos(kz)dz
o if g(z) real and odd
G(k) = —Qi/ f(2) sin(kz)da
0

The last two are analogues of the cosine and sine series — cosine and sine
transforms.

2. Linearity; for constants ¢ and b, if ¢1(z) = Gy(k) and g2(z) = Ga(k)
then
agi(z) + bga(z) = aG1(k) 4+ bGy (k)

. Space/time shifting g(z — a) = e~***G(k)

3
4. Frequency shifting g(z)e"” = G(k — )
5. Differentiation once ¢'(z) = kG (k)

6

..and n times, (") (z) = (ik)"G(k)

1.8 Convolutions

Suppose f(z) = F(k), g(z) = G(k); what function h(z) has a transform
H(k) = F(k)G(k)? Inserting into the inverse transform:

h(z) = %/Fk(}ke““dk

_ : ///f k@) gl dyd>
- Tl o sn
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From equation 18, we then obtain the convolution of f and g:

h(z) = [szmw—yﬂy (19)
= f(@)xg(x) (20)
| [~ 1wt - vy = FRGE)
Similarly:

Iwew) = [~ FONGE - Ndx

— 00

As a special case convolve the real functions f(z) and f(—=z), then:
F(=k) = F(k)

= |F(k)} (21)
pz) = [mf@ﬁ@+wﬂy (22)

The function ps in Equation 22 is the autocorrelation function (of f), while
|F (k) in equation 21 is the spectral density. Observe Parseval’s theorem:

o0 1 (o]
pO0)= [ wPdy=5- [ IF@)PaE
1.9 Some FT pairs
Some example Transform pairs:

1. Simple example:

f(2) =

e >0 1
{ 0 <0 ’F(k)_a—l—ik

If we make the function symmetric about 0:

fla) = e F(ly = o

a? + k2
2. Gaussian example (see figure 4):

f(w) — e_/\2$2
F(k) = /e—,\%?—ikxdx

e ax? (23)



Figure 4: Gaussian distributions and their transforms

Gaussian function is self dual. Consider what happens as A — oo.

3. Rectangular pulse function:

L |z| <a sin(ka
R SN TR 21

Notice that as @ — 0, and observe R(k) — 1; what happens to r(z)?

1.10 The Dirac delta function

We shall find the Dirac §-function to be of considerable use in the consideration
of sampling. However, this “function” is not a function at all in the classical
analysis sense, and we will play fast and loose with its properties as a full
discussion is beyond the scope of this course. The treatment below is purely
formal.

Considering the rectangular pulse example above in equation 24 we are inter-
ested in the properties of r(z) (replacing a by €) as ¢ — 0.

[ orwi={y 07, 2

On the wild assumption that it exists:
lim r(z) = 6(x)

e—0

Some properties:
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1. conceptually
‘o0’ 2 =0
oz) = { 0 z#0
2. taking the limit of equation 25:
v 1 y>0
d(x)dx =
/_oo (:v) ‘ { 0 y<0

3. assuming f(z) is continuous in the interval (¢ — ¢, ¢+ ¢) and using the
displaced pulse function r.(z — ¢); by the intermediate value theorem for
some £ in the interval (¢ — ¢, ¢+ ¢€):

[t = ods = 16

— 00

Hence with usual disregard for rigorousness, taking the limit:

| f@dte=ayda = 1o

— 00
Observe this is a convolution ...
4. further note ¢g(z)é(z — ¢) = g(c)é(z — ¢).
In some ways the §-function and its friends can be considered as analogous to
extending the rationals to the reals; they both enable sequences to have limits.

We define the ideal sampling function of interval X as:
dx(z) = Eé(m - nX)
we can Fourier transform this (exercise for the reader) and obtain:
1 .
Ax (k)= % ;d(kX —2mm)

with dx = Ax.

1.11 Sampling Theorem

Our complex and cosine/sine series gave us a discrete set of Fourier coefficients
for a periodic function; or looking at it another way for a function which is
non-zero in a finite range, we can define a periodic extension of that function.
The symmetric nature of the Fourier transform would suggest that something
interesting might happen if the Fourier transform function is also non-zero only
in a finite range.
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Consider sampling a signal g(z) at intervals X to obtain the discrete time signal:
Zg(nX)é(m —nX) (26)

i3
= g(x)dx(z)
Remember the properties of convolutions, we know that a product in the z
domain is a convolution in the transform domain. With ¢g(z) & G(k) and

gx(z) = Gx(k):
Gx(k) = G(k)xAx(k)

_ %ZG(k) «6(kX — 27m)

1 2rm
= =) Glk——— 2
TN 27)
From this we note that for any g(z) = G(k) the result of sampling at intervals
X in the 2 domain results in a transform G x (k) which is the periodic extension

of G(k) with period 27/X.

Conversely if g(z) is strictly band-limited by W (radians per z unit), that is
G(k) is zero outside the interval (—W, W), then by sampling at intervals 27 /2W
in the z domain:

G(k) = WGX(]C) (=W <k <W)

as shown in figure 5. Performing the Fourier transform on equation 26, we
obtain:

2 2 -
Gk) = oo > g(Gr)e ™2 (W < k< W) (28)

But we know G(k) = 0 for all [k| > W; therefore the sequence {g(n/2W)}
completely defines G(k) and hence g(z). Using equation 28 and performing the
inverse transform:

1 e .
= — k)e™ dk

g) = 5= [ Glwe
1 W 2r nw

- L —tknm /W zkx
21 Jow 2W (W) dk

wr W
— tk(z—nm /W)
2W 290G [y a*
B nm sm(Wx — mr)
N Zg(W) Wz —nr (29)

n

Taking the example of time for the X domain, we can rewrite this in terms of
the sampling frequency fs normally quoted in Hertz rather than radians per
sec:

s = Ejppﬂ%gf?ﬁﬁ
(

= Zg )sinc(fst — n) (30)
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Y

Y

W0 W
H (k)
(C) >
w0 w

Figure 5: Band-limited signals: (a) Spectrum of g(z). (b) Spectrum of gx ().
(c) Ideal filter response for reconstruction

The Nyquist rate: a signal band-limited by W (Hertz) can be uniquely de-
termined by sampling at a rate of fs > 2W. The minimum sampling rate
fs = 2W is the Nyquist rate. The sampling theorem is sometimes called the
Nyquist theorem.

1.12 Aliasing

In reality is is not possible to build the analogue filter which would have the per-
fect response required to achieve the Nyquist rate (response shown figure 5(c)).

Figure 7 demonstrates the problem if the sampling rate is too low for a given
filter. We had assumed a signal band-limited to W and sampled at Nyquist
rate 2, but the signal (or a badly filtered version of the signal) has non-zero
frequency components at frequencies higher than W which the periodicity of
the transform G'x (k) causes to be added in. In looking only in the interval
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Figure 6: The sinc function, sin{nz)

T

Figure 7: Aliasing effect example
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(=W, W) it appears that the tails have been folded over about « = —W and
x = W with higher frequencies being reflected as lower frequencies.

To avoid this problem, it is normal to aim to sample well above the Nyquist
rate; for example standard 64Kbps CODECs used in the phone system aim to
band-limit the analogue input signal to about 3.4kHz and sample at 8kHz.

Examples also arise in image digitization where spatial frequencies higher than
the resolution of the scanner or video camera cause aliasing effects.

2 The Discrete Fourier Transform

We have seen how we can describe a periodic signal by a discrete set of Fourier
coefficients and conversely how a discrete set of points can be used to describe
a band-limited signal.

Time to come to earth; we shall concern ourselves with band-limited periodic
signals and consider the Discrete Fourier Transform as this lends itself to com-
putation. Furthermore the DFT is also amenable to efficient implementation
as the Fast Fourier Transform.

2.1 Definitions

Consider a data sequence {g,} = {g0,91,.-.9n-1}. For example these could
represent the values sampled from an analogue signal s(¢) with g, = s(nT5).

The Discrete Fourier Transform is:

N-1
_2mig,

Gr=Y gue " (k=0,1,...,N—1) (31)

n=0

and its inverse:

1 N-1 2mi
gn=VZerTk”,(n:O,l,...,N—l) (32)

‘ k=0

One major pain of the continuous Fourier Transform and Series now disappears,
there is no question of possible convergence problems with limits as these sums
are all finite.

2.2 Properties

The properties of the DF'T mimic the continuous version:

1. Symmetry and reality
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o if g, real then G_ = G}
® as g, Is periodic, G(nyg)—p = G?N/2)+k
2. Linearity; ag, + bh, has DFT aG}j + bH}y in the obvious manner.

3. Shifting; observe a shift in the g, values is really a rotation. For the
rotated sequence g,_,, the DFT is Ge=2mkmo /N,

There is also the parallel of convolution. The circular convolution of sequences
gn and h,, is defined by:

N-1
Yn = Zgrhn_r ,(n=0,1,...N - 1)
r=0

The DFT of y, is then:

N-1 i
Y, = yne_Tkn

n=0
N—-1N-1 i

- grhn—re_Tkn
n=0 r=0
N-1 i N-1 i

— Z gre—Tkr Z hn_re—Tk(n—r)
r=0 r=0

= GrHy (33)

2.3 Fast Fourier Transform

A simplistic implementation of the DFT would require N? complex multipli-
cations and N(N — 1) complex additions. However the symmetry of the DFT
can be exploited and a divide and conquer strategy leads to the Fast Fourier
Transform when N is a power of 2.

For simplicity we write w = e"2™/N _ then the DFT for an even number N = 2L,

becomes:
2I—1
Gp = > g™, k=0,1,...2L -1 (34)

n=0
-1 2I—1

— Zgnwnk+ Z gnwnk
n=0 n=L
L-1

Y (0ot
n=0
L—-1

= > (gn+ gnrrn(-D)F) (35)
n=0
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' > > ! — (75

92 + >
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
gs > > - — Ge
1 1
: Fw? r=-------- 1 :
ga > > g :—»: G4
1 1 1 1
: /><><\ - -
kW 1 A 1
gs > - ~ 4-point — G
1 1 DFT 1 !
! //\\ 2 1 1 I
! kW [ [ !
ge > > g :—»: G
1 \ 1 1 I
: wP : :
gr > > > —
L e - - = J 1
L o o e J
Figure 8: Division of 8-point into two 4-point DFTs
L _ kL __ k :
as, w” = —1, hence W™ = (—1)". We can then simply separate out even and

odd terms of (G}, and we obtain:

L-1
GQZ - Z(gn+gn+L)(w2)ln7120717"'71/_1

n=0

L—1
Goy1 = Z((gn - gn+L)w”)(w2)l” ,1=0,1,...,L -1

n=0

Observe that these are two [-point DFTs of the sequences {g, + gn+r} and
{(gn = gnyr)w"}.
If N is a power of 2, then we can decompose in this manner log, N times until

we obtain N single point transforms.

The diagram in figure 8 shows the division of an 8-point DFT into two 4-point
DFTs. Recursive division in this manner results in the Fast Fourier Transform

(FFT).

Figure 9 shows the repetitive pattern formed between certain pairs of points
— this butlerfly pattern highlights some features of the FFT:
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Figure 9: An example butierfly pattern at each of the three stages is shown in

bold

1. Each butterfly requires one complex multiplication and two additions —
hence FFT requires (N/2)logy, N complex multiplications and Nlogs N
complex additions — we have reduced the O(N?) DFT process to an
O(Nlog, N) one.

2. At each iteration within each stage, we need consider only two input
coeflicients which generate two output coefficients — if we were to store
the coefficients in an array, the two outputs can occupy the same locations
as the two inputs (this of course destroys the input in the process). Even
if we store the output in another array this algorithm is still only O(N)
in space terms.

3. To find the location of G in the FFT output array, take k£ as an binary
number of log, N bits, reverse them and treat as index into array.

2.4 Inverse DFT by FFT
The Inverse DFT is given by:
1 N-1 2mi
gn=— > Gre ™ (n=0,1,...,N - 1)
k=0
This can be rewritten as:
N-1
Ng: = Z Gk (n=0,1,...,N = 1)
k=0

This is seen to be a DFT of the complex conjugates of the Fourier coefficients;
thus the FFT can be used as an inverse DFT after appropriate massaging of
the coefficients on input and output.
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2.5 More dimensions

When operating on images, we often wish to consider the two dimensional ver-
sion of the Fourier Series / Transform / Discrete Transform. For the DFT that

means describing a function of two variables f(z,y) as components e~ 2mi(nz/N+my/M).
| M-1N-1 N
_ —2mi( B4+ 2
Frg = YN Z Z Jm.me MN
m=0 n=0

Figure 10 shows some of the cosine basis functions. For a sequence of images,
we might consider 3 dimensions (two space, one time).

s
“ s“‘ W“;A‘“i

A'.""
""""'""""1'

Figure 10: 2-D cosine basis functions

The FFT algorithm applies equally well in higher dimensions; for dimension d,
we obtain an O(N?log N) algorithm rather than the O(N4+1).

3 Discrete Transforms and other animals

We have migrated from Fourier Series and Transforms of continuous space or
time functions which express signals in frequency space to discrete transforms
of discrete functions. However, we can recast the DF'T in a more general frame-
work. Working in two dimensions, we write [f] to represent the matrix:

f0,0 fO,l e fO,N—l
= f1:,0 fig o fl,]?f—l
fv—10 fm—1n 0 fm-iN-1

then writing []=! for the inverse of the relevant matrix, the DFT pair is the
obvious matrix products:

[F] = [®m,m][/1[®N,nN]

(/1= [@mm] [Fl[@nn] !
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where [® 7] is the J x J matrix with element (m,n) given by:

T _2mi
—e 7" myn=0,1,...,J -1

J

In general then for non-singular matrices [P] and [@], we can consider the
generalised discrete transform pair given by:

[F] = [PI[/]IQ]

(/1= [P FQI™
At first sight this style of presentation for a 2D function would appear to indicate
that we must be dealing with an O(N?3) process to evaluate the transform
matrix, but in many cases of interest (as we have seen the FFT) use of symmetry
and orthogonality relations provides a more efficient algorithm.

3.1 The Discrete Cosine Transform

The DCT is now widely used in image compression (JPEG and MPEG I&II);
an image is carved up into small square tiles of N x N pixels and the DCT
applied to each tile (after luminance/chrominance separation). By appropriate
quantization and encoding of the coefficients a highly compressed form of the
image can be generated (note that this is not usually a loss free process).

0.4 DCT —
DFT ----
Original -----

Figure 11: DCT v. DFT to avoid blocking artifacts - original signal is random

The tile is extended in a symmetric manner to provide a function which repeats
in both # and y coordinates with period 2N. This leads to only the cosine
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terms being generated by the DFT. The important property of this is that at
the N x N pixel tile edges, the DCT ensures that f(z_) = f(z4). Using the
DFT on the original tile leads to blocking artifacts, where after inversion (if we
have approximated the high frequency components), the pixel tile edges turn
out to have the mean value of the pixels at the end of each row or column.
Figure 11 shows the effect.

3.2 The Hadamard or Walsh Transform

A (2D) Hadamard matrix, [Hj j], is a symmetric J X J matrix whose elements
are either +1 and where the rows (and hence necessarily columns) are mutually
orthogonal. For example:

1 1 1 1
1 1 -1 -1
1 -1 -1 1
1 -1 1 -1

As with the DFT, the Hadamard tranform has a fast version, as have Haar
matrices (with coefficients 0, £1). Note that the transformations here are some-
what simpler to compute with than the complex terms of the DFT.

3.3 Orthonormal functions

In general we are looking for a set of orthornormal functions (we have used sine,
cosine, complex expoentials, and finally Hadamard) with which to represent a
function.

The examples given so far are all a prescribed set of functions independant of
the function which we are trying to represent; however, it is also possible to
select orthonormal basis functions which are optimised for a particular function,
or more interestingly a family of functions.

The Karhunen-Loéve theorem describes such a technique in which eigenvectors
(matrices) of the autocorrelation function are the basis. It can be shown that
this decomposition is the best achievable. However the computation of these
eigenvectors is expensive, O(N?) for a 2D image, although faster versions do
exists based on FFT — the derivation of which is not for the squeamish (see
Rosenfeld and Kak, Digital Picture Processing).

3.4 Convolution

Many processes in signal reconigition involve the use of convolution.
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3.4.1 Gradient

Consider the problem of edge detection in a 2D image, where the edge is not
necessarily vertical or horizontal. This involves a consideration of the gradient of
the function f(z,y) along paths on the surface; that is the vector of magnitude,

V(0f]0x)2+ (0f/0y)?, and direction tan~1((3f/0y)/(0f/0z)).

200 T T T T T

100 1

-50 | 1 b

100 1 1 1 1 1
0 50 100 150 200 250 300

Figure 12: 1D edge detection by convolution

For a digital representation this indicates a difference equation:

(Al‘f)(x’y) = f(xay)_f(x_lay)
(Ayf)(z,y) = flz,y) - flz,y—1)

Note that this is a convolution of f in the  and y directions with {g} given by:
{-1,1,0,0,...}

3.4.2 Laplacian

We are interested in reconstructing a 2D image (which had initial pixel values
f(z,y)), from blurred images observed some time later; the blurred image at
time ¢ is g(z,y,t). We might model the bluring of an image as a diffusion
process over time — if so we need to consider the solution to the well know
partial differential equation involving the Laplacian:

g 09 _ 109
dz?  oy2 kOt
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We had at time ¢t = 0, g(z,y,0) the unblurred image of f(z,y), but at some
time ¢ = 7 we have observed the blurred picture g(z,y, 7). Using the Taylor
expansion:

2

_ dg 20%g
g(x,y,O)— g($7y77—)_ Ta_t(a:7y77—)+7— 8?(%73/77—) -

To the first order we obtain:
J=9-krViyg
Again in difference equations:

V2f($7y):f($+17y)+f($_17y)+f($7y+1)+f($7y_1)_4f($7y)

and the convolution kernel:

3.4.3 Noise removal

If we know there is some periodic signal embedded in a very noisy signal, we
can use the autocorrelation function to extract the signal. We take a single sine
wave in uniform white noise with a SNR or 0.1 or -10dB:

The noise is of course uncorrelated at points other than n = 0. In the case of a
set of superimposed periodic signals, we can use the autocorrelation function to
remove the noise and then perform the DFT to extract the individual frequency
components. Such techniques have applicability in passive sonar.

T 9000 T
/P0903A.DAT' — “P0903B.DAT' —
a 4 8000 4
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0

Figure 13: (a) sine wave in noise and (b) autocorrelation
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9 Quantized Degrees-of-Freedom in a Continuous Signal

We have now encountered several theorems expressing the idea that even though a signal
is continuous and dense in time (i.e. the value of the signal is defined at each real-valued
moment in time), nevertheless a finite and countable set of discrete numbers suffices to
describe it completely, and thus to reconstruct it, provided that its frequency bandwidth is
limited.

Such theorems may seem counter-intuitive at first: How could a finite sequence of num-
bers, at discrete intervals, capture exhaustively the continuous and uncountable stream of
numbers that represent all the values taken by a signal over some interval of time?

In general terms, the reason is that bandlimited continuous functions are not as free to
vary as they might at first seem. Consequently, specifying their values at only certain
points, suffices to determine their values at all other points.

Three examples that we have already seen are:

e Nyquist’s Sampling Theorem: If a signal f(z) is strictly bandlimited so that it
contains no frequency components higher than W, i.e. its Fourier Transform F'(k)
satisfies the condition

F(k) =0 for |k| > W (1)

then f(z) is completely determined just by sampling its values at a rate of at least
2W. The signal f(z) can be exactly recovered by using each sampled value to fix the
amplitude of a sinc(x) function,

sin(7x)

sinc(z) = — (2)

whose width is scaled by the bandwidth parameter W and whose location corresponds
to each of the sample points. The continuous signal f(z) can be perfectly recovered
from its discrete samples f,,(77) just by adding all of those displaced sinc(z) functions
together, with their amplitudes equal to the samples taken:

f@) =3 1 (Z;) W 3)

Thus we see that any signal that is limited in its bandwidth to W, during some
duration T has at most 2W7T degrees-of-freedom. It can be completely specified by
just 2WT real numbers (Nyquist, 1911; R V Hartley, 1928).

e Logan’s Theorem: If a signal f(z) is strictly bandlimited to one octave or less, so
that the highest frequency component it contains is no greater than twice the lowest
frequency component it contains

kmax < kazn (4)
i.e. F(k) the Fourier Transform of f(z) obeys
F(|k| > kmaz = 2kmin) =0 (5)

and
F(k| < kmin) =0 (6)

and if it is also true that the signal f(x) contains no complex zeroes in common with
its Hilbert Transform (too complicated to explain here, but this constraint serves to
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exclude families of signals which are merely amplitude-modulated versions of each
other), then the original signal f(z) can be perfectly recovered (up to an amplitude
scale constant) merely from knowledge of the set {z;} of zero-crossings of f(z) alone:

{z;} such that f(z;) =0 (7)

Comments:
(1) This is a very complicated, surprising, and recent result (W F Logan, 1977).

(2) Only an existence theorem has been proven. There is so far no stable constructive
algorithm for actually making this work — i.e. no known procedure that can actually
recover f(z) in all cases, within a scale factor, from the mere knowledge of its zero-
crossings f(x) = 0; only the existence of such algorithms is proven.

(3) The “Hilbert Transform” constraint (where the Hilbert Transform of a signal

is obtained by convolving it with a hyperbola, h(x) = 1/, or equivalently by shifting

the phase of the positive frequency components of the signal f(x) by +m/2 and shifting

the phase of its negative frequency components by —m/2), serves to exclude ensem-

bles of signals such as a(z) sin(wzx) where a(x) is a purely positive function a(x) > 0.

Clearly a(z) modulates the amplitudes of such signals, but it could not change any
T 2r 3w

of their zero-crossings, which would always still occur at z = 0, 7, <%, 2%, ..., and so

such signals could not be uniquely represented by their zero-crossings.

(4) It is very difficult to see how to generalize Logan’s Theorem to two-dimensional
signals (such as images). In part this is because the zero-crossings of two-dimensional
functions are non-denumerable (uncountable): they form continuous “snakes,” rather
than a discrete and countable set of points. Also, it is not clear whether the one-octave
bandlimiting constraint should be isotropic (the same in all directions), in which case
the projection of the signal’s spectrum onto either frequency axis is really low-pass
rather than bandpass; or anisotropic, in which case the projection onto both frequency
axes may be strictly bandpass but the different directions are treated differently.

(5) Logan’s Theorem has been proposed as a significant part of a “brain theory”
by David Marr and Tomaso Poggio, for how the brain’s visual cortex processes and
interprets retinal image information. The zero-crossings of bandpass-filtered retinal
images constitute edge information within the image.

The Information Diagram: The Similarity Theorem of Fourier Analysis asserts
that if a function becomes narrower in one domain by a factor a, it necessarily becomes
broader by the same factor a in the other domain:

f(x) — F(k) (8)

flax) — 151F (%) )

a

The Hungarian Nobel-Laureate Dennis Gabor took this principle further with great
insight and with implications that are still revolutionizing the field of signal processing
(based upon wavelets), by noting that an Information Diagram representation of sig-
nals in a plane defined by the axes of time and frequency is fundamentally quantized.
There is an irreducible, minimal, area that any signal can possibly occupy in this
plane. Its uncertainty (or spread) in frequency, times its uncertainty (or duration) in
time, has an inescapable lower bound.
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10 Gabor-Heisenberg-Weyl Uncertainty Relation. “Logons.”

10.1 The Uncertainty Principle

If we define the “effective support” of a function f(z) by its normalized variance, or the
normalized second-moment:

" F@) @)@ — p)de
(Ag)? = == (10)

| @

— 00

where p is the mean value, or normalized first-moment, of the function:

“+o0o
| at@r @y
f="3x (11)

and if we similarly define the effective support of the Fourier Transform F'(k) of the function
by its normalized variance in the Fourier domain:

/ T ) F () — ko)2dk
o (12)
F(k)F* (k) dk

—00
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where ko is the mean value, or normalized first-moment, of the Fourier transform F'(k):

/ T L (6 () dk
o = L= (13)
F(k)F* (k) dk

—0o0

then it can be proven (by Schwartz Inequality arguments) that there exists a fundamental
lower bound on the product of these two “spreads,” regardless of the function f(x):

(Ax)(AK) > £ (14)

This is the famous Gabor-Heisenberg-Weyl Uncertainty Principle. Mathematically it is
exactly identical to the uncertainty relation in quantum physics, where (Az) would be
interpreted as the position of an electron or other particle, and (Ak) would be interpreted
as its momentum or deBroglie wavelength. We see that this is not just a property of nature,
but more abstractly a property of all functions and their Fourier Transforms. It is thus a
still further respect in which the information in continuous signals is quantized, since the
minimal area they can occupy in the Information Diagram has an irreducible lower bound.

10.2 Gabor “Logons”

Dennis Gabor named such minimal areas “logons” from the Greek word for information, or
order: 16gos. He thus established that the Information Diagram for any continuous signal
can only contain a fixed number of information “quanta.” Each such quantum constitutes
an independent datum, and their total number within a region of the Information Diagram
represents the number of independent degrees-of-freedom enjoyed by the signal.
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The unique family of signals that actually achieve the lower bound in the Gabor-Heisenberg-
Weyl Uncertainty Relation are the complex exponentials multiplied by Gaussians. These
are sometimes referred to as “Gabor wavelets:”

f(x) _ e—(x—m0)2/a2€_iko(:c—xo) (15>

localized at “epoch” xg, modulated by frequency kg, and with size or spread constant a.
It is noteworthy that such wavelets have Fourier Transforms F'(k) with exactly the same
functional form, but with their parameters merely interchanged or inverted:

F(k’) — e*(k7k0)2a2€ix0(k7ko) (16)

Note that in the case of a wavelet (or wave-packet) centered on z¢ = 0, its Fourier Trans-
form is simply a Gaussian centered at the modulation frequency kg, and whose size is 1/a,
the reciprocal of the wavelet’s space constant.

Because of the optimality of such wavelets under the Uncertainty Principle, Gabor (1946)
proposed using them as an expansion basis to represent signals. In particular, he wanted
them to be used in broadcast telecommunications for encoding continuous-time informa-
tion. He called them the “elementary functions” for a signal. Unfortunately, because such
functions are mutually non-orthogonal, it is very difficult to obtain the actual coefficients
needed as weights on the elementary functions in order to expand a given signal in this
basis. The first constructive method for finding such “Gabor coefficients” was developed
in 1981 by the Dutch physicist Martin Bastiaans, using a dual basis and a complicated
non-local infinite series.

The following diagrams show the behaviour of Gabor elementary functions both as complex
wavelets, their separate real and imaginary parts, and their Fourier transforms. When a
family of such functions are parameterized to be self-similar, i.e. they are dilates and trans-
lates of each other so that they all have a common template (“mother” and “daughter”),
then they constitute a (non-orthogonal) wavelet basis. Today it is known that an infinite
class of wavelets exist which can be used as the expansion basis for signals. Because of
the self-similarity property, this amounts to representing or analyzing a signal at different
scales. This general field of investigation is called multi-resolution analysis.
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Gabor wavelets are complex-valued functions, so for each value of x we have a phasor in
the complex plane (top row). Its phase evolves as a function of x while its magnitude grows
and decays according to a Gaussian envelope. Thus a Gabor wavelet is a kind of localised
helix. The difference between the three columns is that the wavelet has been multiplied
by a complex constant, which amounts to a phase rotation. The second row shows the
projection of its real and imaginary parts (solid and dotted curves). The third row shows
its Fourier transform for each of these phase rotations. The fourth row shows its Fourier
power spectrum which is simply a Gaussian centred at the wavelet’s frequency and with
width reciprocal to that of the wavelet’s envelope.
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The first three rows show the real part of various Gabor wavelets. In the first column,
these all have the same Gaussian envelope, but different frequencies. In the second column,
the frequencies correspond to those of the first column but the width of each of the Gaussian
envelopes is inversely proportional to the wavelet’s frequency, so this set of wavelets form a
self-similar set (i.e. all are simple dilations of each other). The bottom row shows Fourier
power spectra of the corresponding complex wavelets.
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2D Gabor Wavelet: Real Part 2D Fourier Transform
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Figure 1: The real part of a 2-D Gabor wavelet, and its 2-D Fourier transform.

10.3 Generalization to Two Dimensional Signals

An effective strategy for extracting both coherent and incoherent image structure is the
computation of two-dimensional Gabor coefficients for the image. This family of 2-D filters
were originally proposed as a framework for understanding the orientation-selective and
spatial-frequency-selective receptive field properties of neurons in the brain’s visual cortex,
and as useful operators for practical image analysis problems. These 2-D filters are con-
jointly optimal in providing the maximum possible resolution both for information about
the spatial frequency and orientation of image structure (in a sense “what”), simultane-
ously with information about 2-D position (“where”). The 2-D Gabor filter family uniquely
achieves the theoretical lower bound for joint uncertainty over these four variables, as dic-
tated by the inescapable Uncertainty Principle when generalized to four-dimensional space.

These properties are particularly useful for texture analysis because of the 2-D spectral
specificity of texture as well as its variation with 2-D spatial position. A rapid method
for obtaining the required coefficients on these elementary expansion functions for the pur-
pose of representing any image completely by its “2-D Gabor Transform,” despite the non-
orthogonality of the expansion basis, is possible through the use of a relaxation neural net-
work. A large and growing literature now exists on the efficient use of this non-orthogonal
expansion basis and its applications.

Two-dimensional Gabor filters over the image domain (x,y) have the functional form
f(x, y) — 6_[(x—cco)Q/a2+(y—yO)2/62] efi[uo(mfxo)Jrvo(y—yO)} (17>

where (zg,yo) specify position in the image, («, 3) specify effective width and length, and
(up, vo) specify modulation, which has spatial frequency wy = y/u2 + v and direction 6y =
arctan(vg/ug). (A further degree-of-freedom not included above is the relative orientation of
the elliptic Gaussian envelope, which creates cross-terms in xy.) The 2-D Fourier transform
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F(u,v) of a 2-D Gabor filter has exactly the same functional form, with parameters just
interchanged or inverted:

F(U,U) _ e—[(u—u0)2a2+(v—v0)252]ei[xo(u—uo)-i-yo(v—vo)] (18)

The real part of one member of the 2-D Gabor filter family, centered at the origin (xg, y9) =
(0,0) and with unity aspect ratio §/a = 1 is shown in the figure, together with its 2-D
Fourier transform F'(u,v).

2-D Gabor functions can form a complete self-similar 2-D wavelet expansion basis, with
the requirements of orthogonality and strictly compact support relaxed, by appropriate
parameterization for dilation, rotation, and translation. If we take ¥(z,y) to be a chosen
generic 2-D Gabor wavelet, then we can generate from this one member a complete self-
similar family of 2-D wavelets through the generating function:

Uonpgo (2, y) = 272 U(2/,y) (19)

where the substituted variables (z’,y’) incorporate dilations in size by 27", translations in
position (p, q), and rotations through orientation 6:

x' =27z cos(h) + ysin(f)] — p (20)
y = 27" [—xsin(f) + ycos(d)] — ¢ (21)
It is noteworthy that as consequences of the similarity theorem, shift theorem, and modu-
lation theorem of 2-D Fourier analysis, together with the rotation isomorphism of the 2-D
Fourier transform, all of these effects of the generating function applied to a 2-D Gabor
mother wavelet ¥(z,y) = f(x,y) have corresponding identical or reciprocal effects on its

2-D Fourier transform F'(u,v). These properties of self-similarity can be exploited when
constructing efficient, compact, multi-scale codes for image structure.

10.4 Grand Unification of Domains: an Entente Cordiale

Until now we have viewed “the space domain” and “the Fourier domain” as somehow oppo-
site, and incompatible, domains of representation. (Their variables are reciprocals; and the
Uncertainty Principle declares that improving the resolution in either domain must reduce
it in the other.) But we now can see that the “Gabor domain” of representation actually
embraces and unifies both of these other two domains. To compute the representation of
a signal or of data in the Gabor domain, we find its expansion in terms of elementary
functions having the form
f(l') _ e—ikoxe—(x—x0)2/a2 (22)
The single parameter a (the space-constant in the Gaussian term) actually builds a con-
tinuous bridge between the two domains: if the parameter a is made very large, then the
second exponential above approaches 1.0, and so in the limit our expansion basis becomes
: —tkox
Jim f(z) = e (23)
the ordinary Fourier basis. If the frequency parameter kg and the size parameter a are
instead made very small, the Gaussian term becomes the approximation to a delta function
at location x,, and so our expansion basis implements pure space-domain sampling:

Jim f(w) = 8(z — o) (24)

Hence the Gabor expansion basis “contains” both domains at once. It allows us to make
a continuous deformation that selects a representation lying anywhere on a one-parameter
continuum between two domains that were hitherto distinct and mutually unapproachable.
A new Entente Cordiale, indeed.
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Reconstruction of Lena: 25, 100, 500, and 10,000 Two-Dimensional Gabor Wavelets

Figure 2: Hlustration of the completeness of 2-D Gabor wavelets as basis functions.
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11 Kolmogorov Complexity and Minimal Description Length

An idea of fundamental importance is the measure known as Kolmogorov complexity: the
complexity of a string of data is defined as the length of the shortest binary program for
computing the string. Thus the complexity is the data’s “minimal description length.”

It is an amazing fact that the Kolmogorov complexity K of a string is approximately
equal to the entropy H of the distribution from which the string is a randomly drawn
sequence. Thus Kolmogorov descriptive complexity is intimately connected with informa-
tion theory, and indeed K defines the ultimate data compression. Reducing the data to a
program that generates it exactly is obviously a way of compressing it; and running that
program is a way of decompressing it. Any set of data can be generated by a computer
program, even if (in the worst case) that program simply consists of data statements. The
length of such a program defines its algorithmic complexity.

It is important to draw a clear distinction between the notions of computational com-
plezity (measured by program execution time), and algorithmic complexity (measured by
program length). Kolmogorov complexity is concerned with finding descriptions which
minimize the latter. Little is known about how (in analogy with the optimal properties
of Gabor’s elementary logons in the 2D Information Plane) one might try to minimize
simultaneously along both of these orthogonal axes that form a “Complexity Plane.”

Most sequences of length n (where “most” considers all possible permutations of n
bits) have Kolmogorov complexity K close to n. The complexity of a truly random binary
sequence is as long as the sequence itself. However, it is not clear how to be certain of
discovering that a given string has a much lower complexity than its length. It might be
clear that the string

0101010101010101010101010101010101010101010101010101010101010101

has a complexity much less than 32 bits; indeed, its complexity is the length of the program:
Print 32 "01"s. But consider the string

0110101000001001111001100110011111110011101111001100100100001000

which looks random and passes most tests for randomness. How could you discover that
this sequence is in fact just the binary expansion for the irrational number v/2 —1, and that
therefore it can be specified extremely concisely?

Fractals are examples of entities that look very complex but in fact are generated by
very simple programs (i.e. iterations of a mapping). Therefore, the Kolmogorov complexity
of fractals is nearly zero.

A sequence 1,3, 3, ..., T, of length n is said to be algorithmically random if its Kol-
mogorov complexity is at least n (i.e. the shortest possible program that can generate the
sequence is a listing of the sequence itself):

K(z1mox3...20|0) > 1 (25)

An infinite string is defined to be incompressible if its Kolmogorov complexity, in the limit
as the string gets arbitrarily long, approaches the length n of the string itself:
K(z12973...20|0)

lim
n—00 n

=1 (26)
An interesting theorem, called the Strong Law of Large Numbers for Incompressible Se-

quences, asserts that the proportions of 0’s and 1’s in any incompressible string must be
nearly equal! Moreover, any incompressible sequence must satisfy all computable statistical
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tests for randomness. (Otherwise, identifying the statistical test for randomness that the
string failed would reduce the descriptive complexity of the string, which contradicts its
incompressibility.) Therefore the algorithmic test for randomness is the ultimate test, since
it includes within it all other computable tests for randomness.
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