Information Retrieval

Lecture 4: Search engines and linkage algorithms

Computer Science Tripos Part II

Simone Teufel

Natural Language and Information Processing (NLIP) Group

sht25@cl.cam.ac.uk

2

Today

- \bullet Fixed document collections \rightarrow World Wide Web: What are the differences?
- Linkage-based algorithms
 - PageRank (Brin and Page, 1998)
 - HITS (Kleinberg, 1998)

- Large-volume
 - Estimates of 80 billion pages for 2006 (1600 TB) (1TB = 1024 GB = 2^{40} B)
 - Google indexed 8 billion pages in 2004; coverage 15-20% of web
 - Size of the web is doubling every half a year (Lawrence and Giles, "Searching the world wide web", Science, 1998)
- Redundant (copied or dynamically generated)
- Unstructured/differently structured documents
- Heterogenous (length, quality, language, contents)
- Volatile/dynamic
 - 1 M new pages per day; average page changes every 2-3 weeks
 - 2-9% of indexed pages are invalid
- Hyperlinked

Differences closed-world/web: search algorithms

- Different syntactic features in query languages
 - Ranked with proximity, phrase units, order relevant, with or without stemming
- Different indexing ("web-crawling")
 - Heuristic enterprise; not all pages are indexed (est. 15-20% (2005); 28-55% (1999) of web covered)
- Different heuristics used (in addition to standard IR measures)
 - Proximity and location of search terms (Google)
 - Length of URL (AltaVista)
 - Anchor text pointing to a page (Google)
 - Quality estimates based on link structure

Web Crawling

- At search time, browsers do not access full text
- Index is built off-line; crawlers/spiders find web pages
 - Start with popular URLs and recursively follow links
 - Send new/updated pages to server for indexing
 - Search strategy: breadth-first, depth-first, backlink count, estimated popularity
- Parallel crawling
 - Avoid visiting the same page more than once
 - Partition the web and explore each partition exhaustively
- Agreement robots.txt: directories off-limits for crawlers
- In 1998, Google processed 4 M pages/day (50 pages, 500 links per second); fastest crawlers today: 10 M pages/day
- In 1998, AltaVista used 20 processors with 130G RAM and 500 GB disk each for indexing.

Link structure as a quality measure

- Links contain valuable information: latent human judgement
- Idea: derive quality measure by counting links
- Cf. citation index in science: papers which are cited more are considered to be of higher quality
- Similarity to scientific citation network
 - Receiving a "backlink" is like being cited (practical caveat: on the web, there is no certainty about the number of backlinks)

Suggestion: of all pages containing the search string, return the pages with the most backlinks

- Generalisation problem
 - Many pages are not sufficiently self-descriptive
 - Example: the term "car manufacturer" does not occur anywhere on Honda homepage
 - No endogenous information (ie. information found in the page itself, rather than elsewhere) will help
- Page quality not considered at all, only raw backlink number
 - Overall popular page (Yahoo, Amazon) would be wrongly considered an expert on every string it contains
 - A page pointed to by an important page is also important (even if it has only that one single backlink)
 - Possible to manipulate this measure

Additional problem: manipulatability

- Web links are not quite like scientific citations
 - Large variation in web pages: quality, purpose, number of links, length (scientific articles are more homogeneous)
 - * No publishing/production costs associated with web sites
 - * No quality check (cf. peer review in scientific articles)
 - * No cost associated with links (cf. length restrictions in scientific articles)
 - Therefore, linking is gratuitous (replicable), whereas citing is not
 - Any quality evaluation strategy which counts replicable features of web pages is prone to manipulation
- Therefore, raw counting will work less well than it does in scientific area
- Must be more clever when using link structure: PageRank, HITS

- L. Page et al: "The PageRank Citation Ranking: Bringing order to the web", Tech Report, Stanford Univ., 1998
- S. Brin, L. Page: "The anatomy of a large-scale Hypertextual Web Search Engine", WWW7/Computer Networks 30(1-7):107-117, 1998
- Goal: estimate overall relative importance of web pages
- Simulation of a random surfer
 - Given a random page, follows links for a while (randomly), with probability q assumption: never go back on already traversed links
 - Gets bored after a while and jumps to the next random page, with probability 1-q
 - Surfs infinitely long
- PageRank is the number of visits to each page

PageRank formula (simple case)

$$R(u) = (1-q) + q \sum\limits_{v \in B_u} \frac{R(v)}{N_v}$$

Simplified PageRank (q=1.0):

 $\begin{array}{ll} u & \mbox{a web page} \\ F_u & \mbox{set of pages } u \mbox{ points to ("Forward" set)} \\ B_u & \mbox{set of pages that point to } u \\ N_u = |F_u| & \mbox{number of pages } u \mbox{ points to} \\ q & \mbox{probability of staying locally on page} \end{array}$

This formula assumes that no PageRank gets lost in any iteration. In order for this to be the case, each page must have at least one outgoing link.

- The amount of pagerank in the web should be equal to N (so that the average page rank on the web is 1)
- Rank must stay constant in each step, but rank sinks lose infinitely much rank
- Rank also gets lost in each step for pages without onward links
- Solution: rank source \vec{e} counteracts rank sinks
- $\bullet~\vec{e}$ is the vector of the probability of random jumps of random surfer to a random page

An example: PageRank computation

X Z

$$R(u) = (1-q) + q \sum\limits_{v \in B_u} \frac{R(v)}{N_v}$$

This assumes that all R(v)s are from the previous iteration.

Iteration	PR(X)	PR(Y)	PR(Z)	$\Sigma(PR(i))$	Iteration	PR(X)	PR(Y)	PR(Z)	$\Sigma(PR(i))$
1	1.00000	1.000000	1.00000	3.00000	1	0.00000	0.00000	0.00000	0.00000
2	1.00000	0.575000	1.06375	2.63875	2	0.15000	0.21375	0.39543	0.75918
3	1.05418	0.598029	1.10635	2.75857	3	0.48612	0.35660	1.50243	1.50243
4	1.09040	0.613420	1.13482	2.83865	4	0.71075	0.45203	0.83633	1.99915
5	1.11460	0.623706	1.15385	2.89216	5	0.86088	0.51587	0.95436	2.33112
6	1.13077	0.630581	1.16657	2.92793	6	0.96121	0.55853	1.03325	2.55298
7	1.14158	0.635175	1.17507	2.95183	7	1.02826	0.58701	1.08597	2.70125
8	1.14881	0.638245	1.18075	2.96781	8	1.07307	0.60605	1.12120	2.80034
9	1.15363	0.640292	1.18454	2.97846	9	1.10302	0.61878	1.14475	2.86656
82	1.16336	0.64443	1.19219	2.99999	86	1.16336	0.64443	1.19219	2.99999
83	1.16336	0.64443	1.19219	3.00000	87	1.16336	0.64443	1.19219	3.00000

Matrix notation of PageRank

 $\vec{r} = c(qA\vec{r} + (1-q)m\vec{1})$

such that c is maximised and $||\vec{r}||_1 = 1$. $(||\vec{r}||_1 \text{ is the } L_1 \text{ norm of } \vec{r})$.

$$\vec{r} = c(qA + \frac{1-q}{N}\mathbf{1})\vec{r}$$

 $\begin{array}{ll} A & \mbox{normalised link matrix of the web:} \\ A_{uv} = \left\{ \begin{array}{ll} \frac{1}{N_v} & if \ \exists v \rightarrow u \\ 0 & otherwise \end{array} \right. \end{array}$

- PageRank vector (over all web pages), the desired result. \vec{r}
- 1 a column vector consisting only of ones
- a matrix filled with all ones 1
- m average pagerank per page (e.g., 1).

We know from linear algebra that $\vec{r} := A\vec{r}$; normalise (\vec{r}) ; $\vec{r} := A\vec{r} \dots$ will make \vec{r} converge to the dominant eigenvector of A (independently of \vec{r} 's initial value), with eigenvalue c.

- 1. Initialise \vec{r} , A
- 2. Loop:
 - $\vec{r} = c(qA + \frac{1-q}{N}\mathbf{1})\vec{r}$
 - Stop criterion: $||\vec{r_{i+1}} \vec{r_i}|| < N\epsilon$ $(||\vec{r_{i+1}} - \vec{r_i}||$ is page-wise "movement" in PageRank between two iterations)
 - This will result in a Page rank vector \vec{r} whose average PageRank per page is 1:

 $||\vec{r}_{i+1}||_1 = N$

Iterative matrix-based PageRank computation

 $B = \begin{bmatrix} .050 & .050 & .900 \\ .475 & .050 & .050 \\ .475 & .900 & .050 \end{bmatrix}$

Iterate $\vec{r_n} = Br_{n-1}$:

$$\vec{r_{0}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}; \vec{r_{1}} = \begin{bmatrix} 1.0000\\0.5750\\1.4250 \end{bmatrix}; \vec{r_{2}} = \begin{bmatrix} 1.3613\\0.5750\\1.0637 \end{bmatrix}; \vec{r_{3}} = \begin{bmatrix} 1.0542\\0.7285\\1.2173 \end{bmatrix}; \vec{r_{4}} = \begin{bmatrix} 1.1847\\0.5980\\1.2173 \end{bmatrix}; \vec{r_{5}} = \begin{bmatrix} 1.1847\\0.6535\\1.1618 \end{bmatrix};$$
$$\vec{r_{6}} = \begin{bmatrix} 1.1375\\0.6535\\1.2090 \end{bmatrix}; \vec{r_{7}} = \begin{bmatrix} 1.1776\\0.6335\\1.1889 \end{bmatrix}; \vec{r_{8}} = \begin{bmatrix} 1.1606\\0.6505\\1.1889 \end{bmatrix}; \vec{r_{9}} = \begin{bmatrix} 1.1606\\0.6432\\1.1962 \end{bmatrix}; \vec{r_{10}} = \begin{bmatrix} 1.1667\\0.6432\\1.1900 \end{bmatrix}...$$

- Space
 - Example: 75 M unique links on 25 M pages
 - Then: memory for PageRank 300MB
 - Link structures is compact (8B/link compressed)
- Time
 - Each iteration takes 6 minutes (for the 75 M links)
 - Whole process: 5 hours
 - Convergence after 52 iter. (322M links), 48 iter. (161M links)
 - Scaling factor linear in $\log\,n$
- Pages without children removed during iteration
- Raw data can be obtained during web crawl; cost of computing PageRank is insignificant compared to the cost of building a full index

PageRank versus usage data

- Difference between linking behaviour (public) and actual usage data (web page access numbers from NLANR)
 - PageRank uses only public information; thus fewer privacy implications than usage data (pages that are accessed but not linked to)
 - PageRank produces a finer resolution compared to small usage sample
 - But: not all web users create links
- Propagation simulates word-of-mouth effects in complex network (ahead of time):
 - PageRank can change fast (one link on Yahoo)
 - * Good pages often have only a few important backlinks (at first)
 - \ast Those pages would not be found by simply back-link counting
 - Net traffic can change fast (one mention on the radio)

- Model of collaborative trust; users want information from "trusted" sources
- PageRank is immune to manipulation: it must convince an important site, or many unimportant ones, to point to it
 - Spamming PageRank costs real money a good property for a search algorithm
 - Google's business model: never sell PageRank (only advertising space)
- PageRank is a good predictor of optimal crawling order

Top 15 PageRanks in July 1996

Download Netscape Software	11589.00
http://www.w3.org	10717.70
Welcome to Netscape	8673.51
Point: It's what you're searching for	7930.92
Web-Counter home page	7254.97
THe Blue Ribbon Campaign for Online Free Speech	7010.39
CERN Welcome	6562.49
Yahoo!	6561.80
Welcome to Netscape	6203.47
Wusage 4.1: A Usage Statistics System for Web Servers	5963.27
The World Wide Web consortium (W3C)	5672.21
Lycos, Inc. Home Page	4683.31
Starting Point	4501.98
Welcome to Magellan!	3866.62
Oracle Corporation	3587.63

- J. Kleinberg, "Authoritative sources in a hyperlinked environment", ACM-**SIAM 1998**
- Goal: find authorities on a certain topic (relevance, popularity)
- Idea: There are hubs and authorities on the web, which exhibit a mutually reinforcing relationship
- Hubs: Recommendation pages with links to highquality pages (authorities), e.g. compilations of favourite bookmarks, "useful links"
- Authorities: Pages that are recognised by others (particularly by hubs!) as experts on a certain topic
- Authorities are different from universally popular pages (high backlink count), which are not particular experts on that topic

- Each page has two non-negative weights: an authority weight a and a hub weight h
- At each iteration, update the weights:
 - If a page points at many good authorities, it is probably a good hub:

$$h_p = \sum_{q:\in A} a_q$$

- If a page is pointed to by many good hubs, it is probably a good authority:

$$a_p = \sum_{q: < q, p > \in A} h_q$$

Normalise weights after each iteration

- Start with the root set: set of web pages containing the query terms
- Create the base set: root set plus all pages pointing to the root set (cut-off if too many), and being pointed to by the root set
- The base set typically contains 1000-5000 documents

HITS: Algorithm

Given:

- a set $D = \{D_1 \dots D_n\}$ of documents (base set)
- A, the linking matrix: edge $\langle i, j \rangle \in A$ iff D_i points to D_j
- k, the number of desired iterations

Initialise: $\vec{a} = \{1, 1, ..., 1\}; \vec{h} = \{1, 1, ..., 1\}$ Iterate: for c = 1 ... k

- for $i = 1 \dots n : a_p = \sum_{q: < q, p > \in A} h_q$
- for $i = 1 \dots n$: $h_p = \sum_{q: < p, q > \in A} a_q$

Normalise \vec{a} and \vec{h} : $\sum_{i \in D_i} a_i = \sum_{i \in D_i} h_i = 1$

• Updates:

$$\vec{a} = A^T \vec{h}$$
 $\vec{h} = A \vec{a}$

• After the first iteration:

$$\vec{a}_1 = A^T A \vec{a}_0 = (A^T A) \vec{a}_0$$
 $\vec{h}_1 = A A^T \vec{h}_0 = (A A^T) \vec{h}_0$

• After the second iteration:

$$\vec{a}_2 = (A^T A)^2 \vec{a}_0$$
 $\vec{h}_2 = (A A^T)^2 \vec{h}_0$

- Convergence to
 - $\vec{a} \leftarrow \text{dominant eigenvector}(A^T A)$
 - $\vec{h} \leftarrow \text{dominant eigenvector}(AA^T)$

HITS: Example results

26

Authorities on "java"

0.328	http://www.gamelan.com	Gamelan
0.251	http://java.sun.com	JavaSoft home page
0.190	http://www.digitalfocus.com/digital	The Java Developer: How do I

Authorities on "censorship"

0.376	http://www.eff.org	EFF – The Electronic Frontier Fountation
0.344	<pre>http://www.eff.org/blueribbon.html</pre>	The Blue Ribbon Campaign for Online Free Speech
0.238	http://www.cdt.org	The Center for Democracy and Technology
0.235	http://www.vtw.org	Voters Telecommunication Watch
0.218	http://www.aclu.org	ACLU: American Civil Liberties Union

Authorities on "search engine"

0.346	http://www.yahoo.com	Yahoo
0.291	http://www.excite.com	Excite
0.239	http://www.mckinley.com	Welcome to Magellan
0.231	http://www.lycos.com	Lycos Home Page
0.231	http://www.altavista.digital.com	AltaVista: Main Page

- Both HITS and PageRank infer quality/"expert-ness" from link structure of the web
- Link structure contains latent human judgement
- Use different models of type of web pages
- Iterative algorithms
- Use of these weights for search (in different ways)
- Other differences between closed-world assumption (IR) and world wide web: data, indexing, query constructs, search heuristics