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Today 2

• Definition of the information retrieval problem
• Query languages and retrieval models

– Boolean model
– Vector space model

• Logical model of a document/a term
– Term weighting
– Term stemming



Information Retrieval: the task 3

Problem: given a query, find documents that are “relevant” to the query

• Given: a large, static document collection
• Given: an information need (reformulated as a keyword-based query)
• Task: find all and only documents that are relevant to this query

Issues in IR:

• How can I formulate the query? (Query type, query constructs)
• How does the system find the best-matching document? (Retrieval

model)
• How are the results presented to me (unsorted list, ranked list, clus-

ters)?

Query and document representation 4
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Indexing 5

• Indexing: the task of finding terms that describe documents well
• Manual indexing by cataloguers, using fixed vocabularies (“thesauri”)

– labour and training intensive
• Automatic indexing

– Term manipulation (certain words count as the same term)
– Term weighting (certain terms are more important than others)
– Index terms can only be those words or phrases that occur in the

text

Fixed indexing languages/vocabularies (“thesauri”) 6

• Large vocabularies (several thousand items)
• Examples: ACM – subfields of CS; Library of Congress Subject Head-

ings
• Problems:

– High effort in training in order to achieve consistency
– Subject matters emerge → schemes change constantly

• Advantages:
– High precision searches
– Works well for valuable, closed collections like books in a library



Examples, fixed indexing languages 7

Medical Subject Headings (MeSH)
...

Eye Diseases C11
Asthenopia C11.93
Conjunctival Diseases C11.187

Conjunctival Neoplasms C11.187.169
Conjunctivitis C11.187.183

Conjunctivitis, Allergic C11.187.183.200
Conjunctivitis, Bacterial C11.187.183.220

Conjunctivitis, Inclusion C11.187.183.220.250
Ophthalmia Neonatorum C11.187.183.220.538
Trachoma C11.187.183.220.889

Conjunctivitis, Viral C11.187.183.240
Conjunctivitis, Acute Hemorrhagic C11.187.183.240.216

Keratoconjunctivitis C11.187.183.394
Keratoconjunctivitis, Infectious C11.187.183.394.520
Keratoconjunctivitis Sicca C11.187.183.394.550

Reiter’s Disease C11.187.183.749
Pterygium C11.187.781
Xerophthalmia C11.187.810
...

ACM Computing Classification System (1998)
B Hardware
B.3 Memory structures
B.3.0 General
B.3.1 Semiconductor Memories (NEW) (was B.7.1)

Dynamic memory (DRAM) (NEW)
Read-only memory (ROM) (NEW)
Static memory (SRAM) (NEW)

B.3.2 Design Styles (was D.4.2)
Associative memories
Cache memories
Interleaved memories
Mass storage (e.g., magnetic, optical, RAID)
Primary memory
Sequential-access memory
Shared memory
Virtual memory

B.3.3 Performance Analysis and Design Aids
Formal models
Simulation
Worst-case analysis

B.3.4 Reliability, Testing, and Fault-Tolerance
Diagnostics
Error-checking
Redundant design
Test generation

...

Free indexing languages 8

• No predefined set of index terms
• Instead: use natural language as indexing language
• Mappings words → meanings is not 1:1

– Synonymy (n words : 1 meaning) sofa – couch
– Polysemy (1 word : n meanings) bank – bank

• Do the terms get manipulated?
– De-capitalised? Turkey – turkey
– Stemmed? advice – advised
– Stemmed and POS-tagged? can – can

• Use important phrases, instead of single words
cheque book (rather than cheque and book)

Implementation of indexes: inverted files



Inverted files 9

Doc 1
Except Russia
and Mexico no
country had had
the decency
to come to the
rescue of the
government.

Doc 2
It was a dark
and stormy night
in the country
manor. The
time was past
midnight.

Term Doc no Freq Offset
a 2 1 2

and 1 1 2
and 2 1 4

come 1 1 11
country 1 1 5
country 2 1 9

dark 2 1 3
decency 1 1 9

except 1 1 0
government 1 1 17

had 1 2 6,7
in 2 1 7
it 2 1 0

manor 2 1 10
mexico 1 1 3

midnight 2 1 17
night 2 1 6

no 1 1 4
of 1 1 15

past 2 1 15
rescue 1 1 14
russia 1 1 1

stormy 2 1 5
the 1 2 8,13
the 2 2 8,12

time 2 1 14
to 1 2 10,12

was 2 2 16

Information kept for each
term:

• Document ID where this
term occurs

• Frequency of occurrence
of this term in each doc-
ument

• Possibly: Offset of this
term in document

Information Retrieval systems: Methods 10

• Boolean search
– Binary decision: Document is relevant or not (no ranking)
– Presence of term is necessary and sufficient for match
– Boolean operators are set operations (AND, OR, NOT, BUT)

• Ranked algorithms
– Ranking takes frequency of terms in document into account
– Not all search terms necessarily present in document
– Incarnations:

∗ The vector space model (SMART, Salton et al, 1971)
∗ The probabilistic model (OKAPI, Robertson/Spärck Jones, 1976)
∗ Web search engines



The Boolean model 11

Monte Carlo AND (importance OR stratification) BUT gambling

Monte
Carlo

importance

stratification

gambling

• Set theoretic interpretation of connectors AND OR BUT
• Often in use for bibliographic search engines (library)
• Problem 1: Expert knowledge necessary to create high-precision queries
• Problem 2: Binary relevance definition → unranked result lists (frustrat-

ing, time consuming)

The Vector Space model 12

• A document is represented as a point in high-dimensional vector space
• Query is also represented in vector space
• Select document(s) with highest document–query similarity
• Document–query similarity is model for relevance → ranking

3-dimensional term vector
space:
• Dimension 1: “information”
• Dimension 2: “retrieval”
• Dimension 3: “system”



Documents and queries in term feature space 13

Doc1 Doc2 Doc3 ... Docn Q
term1 14 6 1 ... 0 ↔ 0
term2 0 1 3 ... 1 ↔ 1
term3 0 1 0 ... 2 ↔ 0

... ... ... ... ... ↔ ...
termN 4 7 0 ... 5 ↔ 1

Decisions to take:

1. Choose dimensionality of vector: what counts as a term?
2. Choose weights for each term/document mapping (cell)

• presence or absence (binary)
• term frequency in document
• more complicated weight, eg. TF*IDF (cf. later in lecture)

3. Choose a proximity measure

Proximity measures 14

A proximity measure can be defined either by similarity or dissimilarity.
Proximity measures are

• Symmetric (∀i, j : d(j, i) = d(i, j))
• Maximal/minimal for identity:

– For similarity measures: ∀i : d(i, i) = maxkd(i, k)

– For dissimilarity measures: ∀i : d(i, i) = 0

• A distance metric is a dissimilarity metric that satisfies the triangle in-
equality

∀i, j, k : d(i, j) + d(i, k) ≥ d(j, k)

• Distance metrics are non-negative: ∀i, k : d(i, k) ≥ 0



Similarity measures, binary 15

X is the set of all terms occurring in document DX, Y is the set of all terms occurring in
document DY .

• Raw Overlap: raw overlap(X, Y ) = |X ∩ Y |
• Dice’s coefficient: (normalisation by average size of the two original vectors)

dice(X, Y ) =
2|X ∩ Y |
|X| + |Y |

• Jaccard’s coefficient: (normalisation by size of combined vector – penalises small
number of shared feature values)

jacc(X, Y ) =
|X ∩ Y |
|X ∪ Y |

• Overlap coefficient:
overlap coeff(X, Y ) =

|X ∩ Y |
min(|X|, |Y |)

• Cosine: (normalisation by vector lengths)

cosine(X, Y ) =
|X ∩ Y |

√

|X| ·
√

|Y |

Similarity measures, weighted 16

Weighted versions of Dice’s and Jaccard’s coefficient exist, but are used rarely for IR:

• Vectors are extremely sparse

• Vectors are of very differing length

Cosine (or normalised inner product) is the measure of choice for IR
Document i is represented as a vectors of terms or lemmas ( ~wi); t is the total number of
index terms in system, wi,j is the weight associated with j th term of vector ~wi.
Vector length normalisation by the two vectors | ~wi| and | ~wk|:

cos( ~wi, ~wk) =
~wi ~wk

| ~wi| · | ~wk|
=

∑d
j=1 wi,j · wk,j

√

∑d
j=1 w2

i,j ·
√

∑d
j=1 w2

k,j



Distance measures 17

• Euclidean distance: (how far apart in vector space)

euc( ~wi, ~wk) =

√

√

√

√

√

√

d
∑

j=1

(wi,j − wk,j)2

• Manhattan distance: (how far apart, measured in ’city blocks’)

manh( ~wi, ~wk) =
d

∑

j=1

|wi,j − wk,j|

Term importance and frequency 18

Zipf’s law: the rank of a word is reciprocally proportional to its frequency:

freq(wordi) =
1

iθ
freq(word1)

(with 1.5 < θ < 2 for most languages)
(wordi being the ith most frequent word of the language)

I II III rank

freq.

• Zone I: High frequency words tend to be
functional words (“the”, “of”)

• Zone III: Low frequency words tend to
be typos, or unimportant words (too spe-
cific) (“Uni7ed”, “super-noninteresting”,
“87-year-old”, “0.07685”)

• Zone II: Mid-frequency words are the
best indicators of what the document is
about



Term Weighting: TF*IDF 19

Not all terms describe a document equally well:
• Terms which are frequent in a document

are better → tfw,d = freqw,d should be
high

• Terms that are overall rare in the docu-
ment collection are better
→ idfw,D = log |D|

nw,D
should be high

→
• TF*IDF formula: tf ∗idfw,d,D = tfw,d ·idfw,D

should be high

• Improvement: Normalise tfw,d by term
frequency of most frequent term in doc-
ument: tfnorm,w,d =

freqw,d

maxl∈dfreql,d

– Normalised TF*IDF:
tf ∗ idfnorm,w,d,D = tfnorm,w,d · idfw,D

tfw,d: Term frequency of word w

in document d

nw,D: Number of documents in
document collection D

which contain word w

idfw,D: Inverse document fre-
quency of word w in
document collection D

tf ∗ idfw,d,D: TF*IDF weight of word w

in document d in document
collection D

tf ∗ idfnorm,w,d,D: Length-normalised TF*IDF
weight of word w in docu-
ment d in document collec-
tion D

tfnorm,w,d: Normalised term fre-
quency of word w in
document d

maxl∈dfreql,d: Maximum term frequency
of any word in document d

Example: TF*IDF 20

Document set: 30,000

Term tf nw,D TF*IDF
the 312 28,799 5.55
in 179 26,452 9.78
general 136 179 302.50
fact 131 231 276.87
explosives 63 98 156.61
nations 45 142 104.62
1 44 2,435 47.99
haven 37 227 78.48
2-year-old 1 4 3.88

IDF(“the”) = log (30,000

28,799
) = 0.0178

TF*IDF(“the”) = 312 · 0.0178 = 5.55



Example: VSM (TF*IDF; cosine) 21

Query: hunter gatherer Scandinavia

Q D7655 D454

hunter 19.2 56.4 112.2
gatherer 34.5 122.4 0
Scandinavia 13.9 0 30.9
30,000 0 457.2 0
years 0 12.4 0
BC 0 200.2 0
prehistoric 0 45.3 0
deer 0 0 23.6
rifle 0 0 452.2
Mesolithic 0 344.2 0
barber 0 0 25.2
household 0 204.7 0
... ... ... ...

(Normally there would be many more terms in D7655 and D454)

cos(Q, D7655) = 19.2·56.4+34.5·122.4+13.9·0√
19.22+34.52+13.92·

√
56.42+122.42+457.22+12.42+200.22+45.32+344.22+204.72+...

= .1933303426

cos(Q, D454) = 19.2·112.2+34.5·0+13.9·30.9√
19.22+34.52+13.92·

√
112.22+30.92+23.62+452.22+25.22+...

= .1318349238

→ choose document D7655

Self test VSM/ TF*IDF 22

• Build a document-term matrix for three (very!) short documents of your
choice

• Weight by presence/absence (binary) and by TF*IDF (with estimated
IDFs)

• Write a suitable query
• Calculate document–query similarity, using

– cosine
– inner product (i.e. cosine without normalisation)

• What effect does normalisation have?



Term Manipulation 23

• So far: each term is indexed and weighted only in string-equal form
• This misses many semantic similarities between morphologically re-

lated words (“whale” → “whaling”, “whales”)
• Automatic models of term identity

– The same string between blanks or punctuation
– The same prefix (eg. up to 6 characters)
– The same stem (e.g. Porter stemmer)
– The same linguistic lemma (sensitive to Parts-of-speech)

• Effect of term manipulation on retrieval result
– changes the counts, reduces total number of terms
– increases recall
– might decrease precision, introduction of noise

Stemming: the Porter stemmer 24

M. Porter, “An algorithm for suffix stripping”,
Program 14(3):130-137, 1980

• Removal of suffixes without a stem dictionary,
only with a suffix dictionary

• Terms with a common stem have similar mean-
ings:

CONNECT
CONNECTED
CONNECTING
CONNECTION
CONNECTIONS

• Deals with inflectional and derivational morphology
• Conflates relate — relativity — relationship
• Treats Sand — sander and wand — wander the same (does not con-

flate either, though sand/sander arguably could be conflated)
• Root changes (deceive/deception, resume/resumption) aren’t dealt with,

but these are rare



Stemming: Representation of a word 25

[C] (VC){m}[V]

C one or more adjacent consonants
V one or more adjacent vowels
[ ] optionality
( ) group operator
{x} repetition x times
m the “measure” of a word

shoe [sh]C[oe]V m=0
Mississippi [M]C([i]V [ss]C)([i]V [ss]C)([i]V [pp]C)[i]V m=3
ears ([ea]V [rs]C) m=1

Notation: m is calculated on the word excluding the suffix of the rule under
consideration (eg. In m=1 for ’element’ in rule “(m > 1) EMENT”, so this
rule would not trigger.)

Porter stemmer: rules and conditions 26

Rules in one block are run through in top-to-bottom order; when a condition
is met, execute rule and jump to next block
Rules express criteria under which suffix may be removed from a word to
leave a valid stem: (condition) S1 → S2
Possible conditions:
• constraining the measure:

(m > 1) EMENT → ε (ε is the empty string)
REPLACEMENT → REPLAC

• constraining the shape of the word piece:
– *S – the stem ends with S
– *v* – the stem contains a vowel
– *d – the stem ends with a double consonant (e.g. -TT, -SS).
– *o – the stem ends cvc, where the second c is not W, X or Y (e.g. -WIL, -HOP)

• expressions with AND, OR and NOT:
– (m>1 AND (*S OR *T)) – a stem with m> 1 ending in S or T



Porter stemmer: selected rules 27

SSES → SS
IES → I
SS → SS
S →

caresses → caress
cares → care

(m>0) EED → EE
feed → feed
agreed → agree
BUT: freed, succeed

(*v*) ED →
plastered → plaster
bled → bled

Porter stemmer: the algorithm 28

Step 1: plurals and past participles
Step 1a
SSES → SS caresses → caress
IES → I ponies → poni

ties → ti
SS → SS caress → caress
S → ε cats → cat

Step 1b
(m>0) EED → EE feed → feed

agreed → agree
(*v*) ED → ε plastered → plaster

bled → bled
(*v*) ING → ε motoring → motor

sing → sing
If rule 2 or 3 in Step 1b applied, then clean up:
AT → ATE conflat(ed/ing) → conflate
BL → BLE troubl(ed/ing) → trouble
IZ → IZE siz(ed/ing) → size
(*d and not (*L or *S or *Z)) → single letter hopp(ed/ing) → hop

hiss(ed/ing) → hiss
(m=1 and *o) → E fil(ed/ing) →file

fail(ed/ing) → fail
Step 1c
(*v*) Y → I happy → happi

sky → sky



Step 2: derivational morphology
(m>0) ATIONAL → ATE relational → relate
(m>0) TIONAL → TION conditional → condition

rational → rational
(m>0) ENCI → ENCE valenci → valence
(m>0) ANCI → ANCE hesitanci → hesitance
(m>0) IZER → IZE digitizer → digitize
(m>0) ABLI → ABLE conformabli → conformable
(m>0) ALLI → AL radicalli → radical
(m>0) ENTLI → ENT differentli → different
(m>0) ELI → E vileli → vile
(m>0) OUSLI → OUS analogousli → analogous
(m>0) IZATION → ISE vietnamization → vietnamize
(m>0) ISATION → ISE vietnamization → vietnamize
(m>0) ATION → ATE predication → predicate
(m>0) ATOR → ATE operator → operate
(m>0) ALISM → AL feudalism → feudal
(m>0) IVENESS → IVE decisiveness → decisive
(m>0) FULNESS → FUL hopefulness → hopeful
(m>0) OUSNESS → OUS callousness → callous
(m>0) ALITI → AL formaliti → formal
(m>0) IVITI → IVE sensitiviti → sensitive
(m>0) BILITI → BLE sensibiliti → sensible

Step 3: more derivational morphology

(m>0) ICATE → IC triplicate → triplic
(m>0) ATIVE → ε formative → form
(m>0) ALIZE → AL formalize → formal
(m>0) ALISE → AL formalise → formal
(m>0) ICITI → IC electriciti → electric
(m>0) ICAL → IC electrical → electric
(m>0) FUL → ε hopeful → hope
(m>0) NESS → ε goodness → good



Step 4: even more derivational morphology
(m>1) AL → ε revival → reviv
(m>1) ANCE → ε allowance → allow
(m>1) ENCE → ε inference → infer
(m>1) ER → ε airliner → airlin
(m>1) IC → ε gyroscopic → gyroscop
(m>1) ABLE → ε adjustable → adjust
(m>1) IBLE → ε defensible → defens
(m>1) ANT → ε irritant → irrit
(m>1) EMENT → ε replacement → replac
(m>1) MENT → ε adjustment → adjust
(m>1) ENT → ε dependent → depend
(m>1 and (*S or *T)) ION → ε adoption → adopt
(m>1) OU → ε homologou → homolog
(m>1) ISM → ε communism → commun
(m>1) ATE → ε activate → activ
(m>1) ITI → ε angulariti → angular
(m>1) OUS → ε homologous → homolog
(m>1) IVE → ε effective → effect
(m>1) ISE → ε bowdlerize → bowdler
(m>1) IZE → ε bowdlerize → bowdler

Step 5: cleaning up
Step 5a
(m>1) E → ε probate → probat

rate → rate
(m=1 and not *o) E → ε cease → ceas

Step 5b

(m > 1 and *d and *L) → single letter controll → control
roll → roll

Self test Porter Stemmer 32

1. Show which stems rationalisations, rational, rationalizing result in, and
which rules they use.

2. Explain why sander and sand do not get conflated.
3. What would you have to change if you wanted to conflate them?
4. Find five different examples of incorrect stemmings.
5. Can you find a word that gets reduced in every single step (of the 5)?
6. Exemplify the effect that stemming (eg. with Porter) has on the Vector

Space Model, using your example from before.



Summary and literature 33

• Indexing languages
• Retrieval models
• Term weighting
• Term stemming

Textbook (Baeza-Yates and Ribeiro-Neto):

• 2.5.2 Boolean model
• 6.3.3 Zipf’s law
• 2.5.3 Vector space model, TF*IDF
• 7.2 Term manipulation, stemming


