Information Retrieval

Lecture 2: Retrieval models

Computer Science Tripos Part II

Simone Teufel

Natural Language and Information Processing (NLIP) Group

sht25@cl.cam.ac.uk

Today

- Definition of the information retrieval problem
- Query languages and retrieval models
 - Boolean model
 - Vector space model
- Logical model of a document/a term
 - Term weighting
 - Term stemming

Problem: given a query, find documents that are "relevant" to the query

- Given: a large, static document collection
- Given: an information need (reformulated as a keyword-based query)
- Task: find all and only documents that are relevant to this query

Issues in IR:

- How can I formulate the query? (Query type, query constructs)
- How does the system find the best-matching document? (Retrieval model)
- How are the results presented to me (unsorted list, ranked list, clusters)?

Query and document representation

Indexing

- Indexing: the task of finding terms that describe documents well
- Manual indexing by cataloguers, using fixed vocabularies ("thesauri")
 labour and training intensive
- Automatic indexing
 - Term manipulation (certain words count as the same term)
 - Term weighting (certain terms are more important than others)
 - Index terms can only be those words or phrases that occur in the text

Fixed indexing languages/vocabularies ("thesauri")

- Large vocabularies (several thousand items)
- Examples: ACM subfields of CS; Library of Congress Subject Headings
- Problems:
 - High effort in training in order to achieve consistency
 - Subject matters emerge \rightarrow schemes change constantly
- Advantages:
 - High precision searches
 - Works well for valuable, closed collections like books in a library

wedical Subject neadings (wesn)				
Eye Diseases	C11			
Asthenopia	C11.93			
Conjunctival Diseases	C11.187			
Conjunctival Neoplasms	C11.187.169			
Conjunctivitis	C11.187.183			
Conjunctivitis, Allergic	C11.187.183.200			
Conjunctivitis, Bacterial	C11.187.183.220			
Conjunctivitis, Inclusion	C11.187.183.220.250			
Ophthalmia Neonatorum	C11.187.183.220.538			
Trachoma	C11.187.183.220.889			
Conjunctivitis, Viral	C11.187.183.240			
Conjunctivitis, Acute Hemorrhagic	C11.187.183.240.216			
Keratoconjunctivitis	C11.187.183.394			
Keratoconjunctivitis, Infectious	C11.187.183.394.520			
Keratoconjunctivitis Sicca	C11.187.183.394.550			
Reiter's Disease	C11.187.183.749			
Pterygium	C11.187.781			
Xerophthalmia	C11.187.810			

Madical Subject Headings (MaSH)

ACM Computing Classification System (1998)

В	Hardware
B.3	Memory structures
B.3.0	General
B.3.1	Semiconductor Memories (NEW) (was B.7.1)
	Dynamic memory (DRAM) (NEW)
	Read-only memory (ROM) (NEW)
	Static memory (SRAM) (NEW)
B.3.2	Design Styles (was D.4.2)
	Associative memories
	Cache memories
	Interleaved memories
	Mass storage (e.g., magnetic, optical, RAID)
	Primary memory
	Sequential-access memory
	Shared memory
	Virtual memory
B.3.3	Performance Analysis and Design Aids
	Formal models
	Simulation
	Worst-case analysis
B.3.4	Reliability, Testing, and Fault-Tolerance
	Diagnostics
	Error-checking
	Redundant design
	Test generation

Free indexing languages

- No predefined set of index terms
- Instead: use natural language as indexing language
- Mappings words \rightarrow meanings is not 1:1
 - Synonymy (n words : 1 meaning)
 - Polysemy (1 word : n meanings) bank bank
- Do the terms get manipulated?
 - De-capitalised?
 - Stemmed?
 - Stemmed and POS-tagged?
- Use important phrases, instead of single words cheque book (rather than cheque and book)

Implementation of indexes: inverted files

Turkey – turkey advice – advised can – can

sofa – couch

Inverted files

Doc 1 Except Russia and Mexico no country had had the decency to come to the rescue of the government.

Doc 2 It was a dark and stormy night in the country manor. The time was past midnight.

Term	Doc no	Freq	Offset
а	2	1	2
and	1	1	2
and	2	1	4
come	1	1	11
country	1	1	5
country	2	1	9
dark	2	1	3
decency	1	1	9
except	1	1	0
government	1	1	17
had	1	2	6,7
in	2	1	7
it	2	1	0
manor	2	1	10
mexico	1	1	3
midnight	2	1	17
night	2	1	6
no	1	1	4
of	1	1	15
past	2	1	15
rescue	1	1	14
russia	1	1	1
stormy	2	1	5
the	1	2	8,13
the	2	2	8,12
time	2	1	14
to	1	2	10,12
was	2	2	16

Information kept for each term:

- Document ID where this term occurs
- Frequency of occurrence of this term in each document
- Possibly: Offset of this term in document

Information Retrieval systems: Methods

- Boolean search
 - Binary decision: Document is relevant or not (no ranking)
 - Presence of term is necessary and sufficient for match
 - Boolean operators are set operations (AND, OR, NOT, BUT)
- Ranked algorithms
 - Ranking takes frequency of terms in document into account
 - Not all search terms necessarily present in document
 - Incarnations:
 - * The vector space model (SMART, Salton et al, 1971)
 - * The probabilistic model (OKAPI, Robertson/Spärck Jones, 1976)
 - * Web search engines

9

- gambling
- Set theoretic interpretation of connectors AND OR BUT
- Often in use for bibliographic search engines (library)
- Problem 1: Expert knowledge necessary to create high-precision queries
- Problem 2: Binary relevance definition → unranked result lists (frustrating, time consuming)

The Vector Space model

12

- A document is represented as a point in high-dimensional vector space
- Query is also represented in vector space
- Select document(s) with highest document-query similarity
- \bullet Document–query similarity is model for relevance \rightarrow ranking

3-dimensional term vector space:

- Dimension 1: "information"
- Dimension 2: "retrieval"
- Dimension 3: "system"

	Doc_1	Doc_2	Doc_3	 Doc_n		Q
term ₁	14	6	1	 0	\leftrightarrow	0
$term_2$	0	1	3	 1	\leftrightarrow	1
term ₃	0	1	0	 2	\leftrightarrow	0
				 	\leftrightarrow	
$term_N$	4	7	0	 5	\leftrightarrow	1

Decisions to take:

- 1. Choose dimensionality of vector: what counts as a term?
- 2. Choose weights for each term/document mapping (cell)
 - presence or absence (binary)
 - term frequency in document
 - more complicated weight, eg. TF*IDF (cf. later in lecture)
- 3. Choose a proximity measure

Proximity measures

14

A proximity measure can be defined either by similarity or dissimilarity. Proximity measures are

- Symmetric ($\forall i, j : d(j, i) = d(i, j)$)
- Maximal/minimal for identity:
 - For similarity measures: $\forall i : d(i, i) = max_k d(i, k)$
 - For dissimilarity measures: $\forall i : d(i, i) = 0$
- A distance metric is a dissimilarity metric that satisfies the triangle inequality

$$\forall i,j,k: d(i,j)+d(i,k) \geq d(j,k)$$

• Distance metrics are non-negative: $\forall i, k : d(i, k) \ge 0$

X is the set of all terms occurring in document D_X , Y is the set of all terms occurring in document D_Y .

- Raw Overlap: $raw_overlap(X, Y) = |X \cap Y|$
- Dice's coefficient: (normalisation by average size of the two original vectors)

$$dice(X,Y) = \frac{2|X \cap Y|}{|X| + |Y|}$$

 Jaccard's coefficient: (normalisation by size of combined vector – penalises small number of shared feature values)

$$jacc(X,Y) = \frac{|X \cap Y|}{|X \cup Y|}$$

• Overlap coefficient:

$$overlap_coeff(X,Y) = \frac{|X \cap Y|}{min(|X|,|Y|)}$$

• Cosine: (normalisation by vector lengths)

$$cosine(X,Y) = \frac{|X \cap Y|}{\sqrt{|X|} \cdot \sqrt{|Y|}}$$

Similarity measures, weighted

Weighted versions of Dice's and Jaccard's coefficient exist, but are used rarely for IR:

- Vectors are extremely sparse
- Vectors are of very differing length

Cosine (or normalised inner product) is the measure of choice for IR

Document *i* is represented as a vectors of terms or lemmas $(\vec{w_i})$; *t* is the total number of index terms in system, $w_{i,j}$ is the weight associated with *j* th term of vector $\vec{w_i}$.

Vector length normalisation by the two vectors $|\vec{w_i}|$ and $|\vec{w_k}|$:

$$\cos(\vec{w_i}, \vec{w_k}) = \frac{\vec{w_i} \vec{w_k}}{|\vec{w_i}| \cdot |\vec{w_k}|} = \frac{\sum_{j=1}^d w_{i,j} \cdot w_{k,j}}{\sqrt{\sum_{j=1}^d w_{i,j}^2} \cdot \sqrt{\sum_{j=1}^d w_{k,j}^2}}$$

• Euclidean distance: (how far apart in vector space)

$$euc(\vec{w_i}, \vec{w_k}) = \sqrt{\sum\limits_{j=1}^d (w_{i,j} - w_{k,j})^2}$$

• Manhattan distance: (how far apart, measured in 'city blocks')

$$manh(\vec{w_i}, \vec{w_k}) = \sum_{j=1}^d |w_{i,j} - w_{k,j}|$$

Term importance and frequency

Zipf's law: the rank of a word is reciprocally proportional to its frequency:

$$freq(word_i) = \frac{1}{i^{\theta}} freq(word_1)$$

(with $1.5 < \theta < 2$ for most languages) (*word_i* being the *i*th most frequent word of the language)

- Zone I: High frequency words tend to be functional words ("the", "of")
- Zone III: Low frequency words tend to be typos, or unimportant words (too specific) ("Uni7ed", "super-noninteresting", "87-year-old", "0.07685")
- Zone II: Mid-frequency words are the best indicators of what the document is about

Not all terms describe a document equally well:

- Terms which are frequent in a document are better $\rightarrow tf_{w,d} = freq_{w,d}$ should be high
- Terms that are overall rare in the document collection are better $\rightarrow idf_{w,D} = log \frac{|D|}{n_{w,D}}$ should be high \rightarrow
- TF*IDF formula: $tf * idf_{w,d,D} = tf_{w,d} \cdot idf_{w,D}$ should be high
- Improvement: Normalise $tf_{w,d}$ by term frequency of most frequent term in document: $tf_{norm,w,d} = \frac{freq_{w,d}}{max_{l\in d}freq_{l,d}}$
 - Normalised TF*IDF: $tf * idf_{norm,w,d,D} = tf_{norm,w,d} \cdot idf_{w,D}$

tf,	Term frequency of word w				
$v_{Jw,d}$.	in decument J				
$n_{w,D}$:	Number of documents in				
	document collection D				
	which contain word w				
$idf_{w,D}$:	Inverse document fre-				
	quency of word w in				
	document collection D				
$tf * idf_{w,d,D}$:	TF*IDF weight of word w				
	in document d in document				
	collection D				
$tf * idf_{norm,w,d,D}$:	Length-normalised TF*IDF				
, , , ,	weight of word w in docu-				
	ment d in document collec-				
	tion D				
$tf_{norm,w,d}$:	Normalised term fre-				
	quency of word w in				
	document d				
$max_{l \in d} freq_{l,d}$:	Maximum term frequency				
/ "	of any word in document d				

Example: TF*IDF

20

Document set: 30,000

Term	tf	$n_{w,D}$	TF*IDF
the	312	28,799	5.55
in	179	26,452	9.78
general	136	179	302.50
fact	131	231	276.87
explosives	63	98	156.61
nations	45	142	104.62
1	44	2,435	47.99
haven	37	227	78.48
2-year-old	1	4	3.88

 $\begin{array}{l} \mathsf{IDF}(``the") = \mathsf{log}\;(\frac{30,000}{28,799}) = 0.0178\\ \mathsf{TF}^*\mathsf{IDF}(``the") = 312\cdot 0.0178 = 5.55 \end{array}$

Example: VSM (TF*IDF; cosine)

	Q	D_{7655}	D_{454}	
hunter	19.2	56.4	112.2	-
gatherer	34.5	122.4	0	
Scandinavia	13.9	0	30.9	
30,000	0	457.2	0	
years	0	12.4	0	
BC	0	200.2	0	(Normally there would be many more terms in $D_{\rm eq}$ and $D_{\rm eq}$)
prehistoric	0	45.3	0	(normally there would be many more terms in D_{7655} and D_{454})
deer	0	0	23.6	
rifle	0	0	452.2	
Mesolithic	0	344.2	0	
barber	0	0	25.2	
household	0	204.7	0	
$rac(\Omega, D, \lambda) =$				19.2.56.4+34.5.122.4+13.9.0 - 1022202426
$(Q, D_{7655}) = \sqrt{10}$	$9.2^2 + 34$	$.5^2 + 13.9^2$	$2 \cdot \sqrt{56.4^2}$	$\frac{1}{122.4^2 + 457.2^2 + 12.4^2 + 200.2^2 + 45.3^2 + 344.2^2 + 204.7^2 + \dots} = .1933303420$
$\cos(Q, D_{454}) = \frac{1}{\sqrt{19}}$.22+34.	$\frac{19.2}{5^2+13.9^2}$	$\frac{112.2+34}{\sqrt{112.2^2}}$	$\frac{4.5 \cdot 0 + 13.9 \cdot 30.9}{+30.9^2 + 23.6^2 + 452.2^2 + 25.2^2 + \dots} = .1318349238$

Query: hunter gatherer Scandinavia

Self test VSM/ TF*IDF

- Build a document-term matrix for three (very!) short documents of your choice
- Weight by presence/absence (binary) and by TF*IDF (with estimated IDFs)
- Write a suitable query
- Calculate document-query similarity, using
 - cosine
 - inner product (i.e. cosine without normalisation)
- What effect does normalisation have?

- So far: each term is indexed and weighted only in string-equal form
- This misses many semantic similarities between morphologically related words ("whale" → "whaling", "whales")
- Automatic models of term identity
 - The same string between blanks or punctuation
 - The same prefix (eg. up to 6 characters)
 - The same stem (e.g. Porter stemmer)
 - The same linguistic lemma (sensitive to Parts-of-speech)
- Effect of term manipulation on retrieval result
 - changes the counts, reduces total number of terms
 - increases recall
 - might decrease precision, introduction of noise

Stemming: the Porter stemmer

M. Porter, "An algorithm for suffix stripping", Program 14(3):130-137, 1980

- Removal of suffixes without a stem dictionary, only with a suffix dictionary
- Terms with a common stem have similar meanings:
- Deals with inflectional and derivational morphology
- Conflates relate relativity relationship
- Treats Sand sander and wand wander the same (does not conflate either, though sand/sander arguably could be conflated)
- Root changes (deceive/deception, resume/resumption) aren't dealt with, but these are rare

$[C] (VC)\{m\}[V]$

	C one or more adjacent consonantsV one or more adjacent vowels
	 [] optionality () group operator {x} repetition x times m the "measure" of a word
shoe	$[sh]_C[oe]_V$ m=0
Mississipp	oi $[M]_C([i]_V[ss]_C)([i]_V[ss]_C)([i]_V[pp]_C)[i]_V m=3$
ears	$([ea]_V[rs]_C)$ m=1

Notation: m is calculated on the word excluding the suffix of the rule under consideration (eg. In m=1 for 'element' in rule "(m > 1) EMENT", so this rule would not trigger.)

Porter stemmer: rules and conditions

Rules in one block are run through in top-to-bottom order; when a condition is met, execute rule and jump to next block

Rules express criteria under which suffix may be removed from a word to leave a valid stem: (condition) $S1 \rightarrow S2$

Possible conditions:

• constraining the measure:

```
(m > 1) EMENT \rightarrow \epsilon (\epsilon is the empty string)
```

 $\textbf{REPLACEMENT} \rightarrow \textbf{REPLAC}$

- constraining the shape of the word piece:
 - *S the stem ends with S
 - v^* the stem contains a vowel
 - *d the stem ends with a double consonant (e.g. -TT, -SS).
 - *o the stem ends cvc, where the second c is not W, X or Y (e.g. -WIL, -HOP)
- expressions with AND, OR and NOT:
 - (m>1 AND (*S OR *T)) a stem with m> 1 ending in S or T

 $\begin{array}{|c|c|c|c|} SSES \rightarrow SS \\ IES \rightarrow I \\ SS \rightarrow SS \\ S \rightarrow \\ Caresses \rightarrow caress \\ cares \rightarrow care \end{array}$

 $\begin{array}{c} (m{>}0) \ EED \rightarrow EE \\ \hline feed \rightarrow feed \\ agreed \rightarrow agree \\ BUT: freed, succeed \end{array}$

 $\begin{array}{c} ({}^{*}v^{*}) \: ED \to \\ plastered \to plaster \\ bled \to bled \end{array}$

Porter stemmer: the algorithm

Step 1:	plural	s and	past p	artio	ciples			
Step 1a								
SSES IES	$\stackrel{\rightarrow}{\rightarrow} SS \\ \stackrel{\rightarrow}{\rightarrow} I$	caress ponies ties	ses \rightarrow s \rightarrow	care pon ti	ess ii			
SS S		caress cats	s → →	care cat	ess			
Step 1b								
(m>0)	EED	$\rightarrow EE$	feed aaree	d	\rightarrow fee \rightarrow agr	d ee		
(*v*)	ED	$\rightarrow \epsilon$	plaste bled	red	$\rightarrow pla$ $\rightarrow ble$	ster d		
(*v*)	ING	$\rightarrow \epsilon$	motori sing	ing	\rightarrow mo \rightarrow sin	tor g		
If rule 2 of	or 3 in S	Step 1b	applied	, the	n clean	up:		
AT BL IZ (*d and (m=1 ar	not (*L nd *o)	or *S or	*Z))	$ ightarrow A^{-}$ ightarrow B^{-} ightarrow IZ ightarrow Si ightarrow E^{-}	TE LE /E ngle let	ter	conflat(ed/ing) troubl(ed/ing) siz(ed/ing) hopp(ed/ing) hiss(ed/ing) fil(ed/ing) fail(ed/ing)	
Step 1c							(ee, mg)	

 $\begin{array}{ccc} ({}^{\star}v{}^{\star}) & Y & \rightarrow I & happy & \rightarrow happi \\ & sky & \rightarrow sky \end{array}$

Step 2: derivational morphology

(m>0)	ATIONAL	$\rightarrow ATE$	relational	\rightarrow relate
(m>0)	TIONAL	\rightarrow TION	conditional	\rightarrow condition
			rational	\rightarrow rational
(m>0)	ENCI	\rightarrow ENCE	valenci	\rightarrow valence
(m>0)	ANCI	\rightarrow ANCE	hesitanci	\rightarrow hesitance
(m>0)	IZER	\rightarrow IZE	digitizer	\rightarrow digitize
(m>0)	ABLI	$\rightarrow ABLE$	conformabli	\rightarrow conformable
(m>0)	ALLI	\rightarrow AL	radicalli	\rightarrow radical
(m>0)	ENTLI	$\rightarrow ENT$	differentli	\rightarrow different
(m>0)	ELI	$\rightarrow E$	vileli	\rightarrow vile
(m>0)	OUSLI	ightarrow OUS	analogousli	ightarrow analogous
(m>0)	IZATION	\rightarrow ISE	vietnamization	\rightarrow vietnamize
(m>0)	ISATION	\rightarrow ISE	vietnamization	\rightarrow vietnamize
(m>0)	ATION	$\rightarrow ATE$	predication	\rightarrow predicate
(m>0)	ATOR	$\rightarrow ATE$	operator	\rightarrow operate
(m>0)	ALISM	\rightarrow AL	feudalism	\rightarrow feudal
(m>0)	IVENESS	$\rightarrow IVE$	decisiveness	\rightarrow decisive
(m>0)	FULNESS	\rightarrow FUL	hopefulness	\rightarrow hopeful
(m>0)	OUSNESS	ightarrow OUS	callousness	\rightarrow callous
(m>0)	ALITI	\rightarrow AL	formaliti	\rightarrow formal
(m>0)	IVITI	$\rightarrow IVE$	sensitiviti	\rightarrow sensitive
(m>0)	BILITI	\rightarrow BLE	sensibiliti	\rightarrow sensible

Step 3: more derivational morphology

$\text{ICATE} \rightarrow$	IC	triplicate	\rightarrow triplic
$ATIVE \to$	ϵ	formative	\rightarrow form
$ALIZE \to$	AL	formalize	\rightarrow formal
$\text{ALISE} \rightarrow$	AL	formalise	\rightarrow formal
$ICITI \to$	IC	electriciti	\rightarrow electric
$ICAL \to$	IC	electrical	\rightarrow electric
$FUL \to$	ϵ	hopeful	\rightarrow hope
$\text{NESS} \rightarrow$	ϵ	goodness	\rightarrow good
	$\begin{array}{l} \text{ICATE} \rightarrow \\ \text{ATIVE} \rightarrow \\ \text{ALIZE} \rightarrow \\ \text{ALISE} \rightarrow \\ \text{ICITI} \rightarrow \\ \text{ICAL} \rightarrow \\ \text{FUL} \rightarrow \\ \text{NESS} \rightarrow \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Step 4: even more derivational morphology

(m>1)	$AL \to$	ϵ	revival	\rightarrow reviv
(m>1)	$\text{ANCE} \rightarrow$	ϵ	allowance	\rightarrow allow
(m>1)	$ENCE \rightarrow$	ϵ	inference	\rightarrow infer
(m>1)	$ER \to$	ϵ	airliner	\rightarrow airlin
(m>1)	$IC \rightarrow$	ϵ	gyroscopic	\rightarrow gyroscop
(m>1)	$ABLE \to$	ϵ	adjustable	ightarrow adjust
(m>1)	$IBLE \to$	ϵ	defensible	\rightarrow defens
(m>1)	$ANT \rightarrow$	ϵ	irritant	\rightarrow irrit
(m>1)	$EMENT \to$	ϵ	replacement	\rightarrow replac
(m>1)	$MENT \to$	ϵ	adjustment	ightarrow adjust
(m>1)	$ENT \to$	ϵ	dependent	\rightarrow depend
(m>1 and (*S or *T))	$ION \to$	ϵ	adoption	\rightarrow adopt
(m>1)	$OU \rightarrow$	ϵ	homologou	\rightarrow homolog
(m>1)	$ISM \to$	ϵ	communism	\rightarrow commun
(m>1)	$ATE \rightarrow$	ϵ	activate	\rightarrow activ
(m>1)	$ITI \rightarrow$	ϵ	angulariti	ightarrow angular
(m>1)	$OUS \rightarrow$	ϵ	homologous	\rightarrow homolog
(m>1)	$IVE \rightarrow$	ϵ	effective	\rightarrow effect
(m>1)	$ISE \rightarrow$	ϵ	bowdlerize	\rightarrow bowdler
(m>1)	$IZE \to$	ϵ	bowdlerize	\rightarrow bowdler
Step 5: cleaning up				
Step 5a				

(m>1)	$E \to \epsilon$	probate rate	\rightarrow probat \rightarrow rate	
(m=1 and not *o)	$E \to \epsilon$	cease	→ ceas	
Step 5b				
(m > 1 and *d and	l *L) →	single lette	er controll roll	

Self test Porter Stemmer

- 1. Show which stems *rationalisations, rational, rationalizing* result in, and which rules they use.
- 2. Explain why sander and sand do not get conflated.
- 3. What would you have to change if you wanted to conflate them?
- 4. Find five different examples of incorrect stemmings.
- 5. Can you find a word that gets reduced in every single step (of the 5)?
- 6. Exemplify the effect that stemming (eg. with Porter) has on the Vector Space Model, using your example from before.

- Indexing languages
- Retrieval models
- Term weighting
- Term stemming

Textbook (Baeza-Yates and Ribeiro-Neto):

- 2.5.2 Boolean model
- 6.3.3 Zipf's law
- 2.5.3 Vector space model, TF*IDF
- 7.2 Term manipulation, stemming