
UNIVERSITY OF

CAMBRIDGE

Floating Point Computation

(A four-lecture course)

Alan Mycroft

Computer Laboratory, Cambridge University

http://www.cl.cam.ac.uk/users/am/

Michaelmas 2006

Floating Point Computation 1 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Overall motto: threat minimisation

• Algorithms involving floating point (float and double in C,

[misleadingly named] real in ML and Fortran) pose a significant

threat to the programmer or user.

• Learn to distrust your own näıve coding of such algorithms, and,

even more so, get to distrust others’.

• Start to think of ways of sanity checking (by human or machine)

any floating point value arising from a computation, library or

package—unless its documentation suggests an attention to detail

at least that discussed here (and even then treat with suspicion).

• Just because the “computer produces a numerical answer”

doesn’t mean this has any relationship to the ‘correct’ answer.

Here be dragons!

Floating Point Computation 2 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

What’s this course about?

• How computers represent and calculate with ‘real number’ values.

• What problems occur due to the values only being finite (both

range and precision).

• How these problems add up until you get silly answers.

• How you can stop your programs and yourself from looking silly

(and some ideas on how to determine whether existing programs

have been silly).

• Chaos and ill-conditionedness.

• Knowing when to call in an expert—remember there is 50+ years

of knowledge on this and you only get 4 lectures from me.

Floating Point Computation 3 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Part 1

Introduction/reminding you what

you already know

Floating Point Computation 4 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Back to school

Scientific notation (from Wikipedia, the free encyclopedia)

In scientific notation, numbers are written using powers of ten in the

form a × 10b where b is an integer exponent and the coefficient a is

any real number, called the significand or mantissa.

In normalized form, a is chosen such that 1 ≤ a < 10. It is implicitly

assumed that scientific notation should always be normalized except

during calculations or when an unnormalized form is desired.

What Wikipedia should say: zero is problematic—its exponent

doesn’t matter and it can’t be put in normalised form.

Floating Point Computation 5 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Back to school (2)

Multiplication and division (from Wikipedia, with some changes)

Given two numbers in scientific notation,

x0 = a0 × 10b0 x1 = a1 × 10b1

Multiplication and division;

x0 ∗ x1 = (a0 ∗ a1) × 10b0+b1 x0/x1 = (a0/a1) × 10b0−b1

Note that result is not guaranteed to be normalised even if inputs

are: a0 ∗ a1 may now be between 1 and 100, and a0/a1 may be

between 0.1 and 10 (both at most one out!). E.g.

5.67 × 10−5 ∗ 2.34 × 102 ≈ 13.3 × 10−3 = 1.33 × 10−2

2.34 × 102/5.67 × 10−5 ≈ 0.413 × 107 = 4.13 × 106

Floating Point Computation 6 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Back to school (2a)

Addition and subtraction require the numbers to be represented

using the same exponent, normally the bigger of b0 and b1. W.l.o.g.

b0 > b1, so write x1 = (a1 ∗ 10b1−b0) × b0 (a shift!) and add/subtract

the mantissas.

x0 ± x1 = (a0 ± (a1 ∗ 10b1−b0)) × 10b0

E.g.

2.34× 10−5 + 5.67× 10−6 = 2.34× 10−5 + 0.567× 10−5 ≈ 2.91× 10−5

A cancellation problem we will see more of:

2.34 × 10−5 − 2.33 × 10−5 = 0.01 × 10−5 = 1.00 × 10−7

When numbers reinforce (e.g. add with same-sign inputs) new

mantissa is in range [1, 20), when they cancel it is in range [0..10).

After cancellation we may require several shifts to normalise.

Floating Point Computation 7 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Sex, lies and sig.figs.

When using scientific-form we often compute repeatedly keeping the

same number of digits in the mantissa. In science this is often the

number of digits of accuracy in the original inputs—hence the term

significant figures (sig.figs. or sf).

This is risky for two reasons:

• As in the last example, there may be 3sf in the result of a

computation but little accuracy left.

• 1.01 × 101 and 9.98 are quite close, and both have 3sf, but

changing the lsd (least significant digit) changes the value by

nearly 1% (1 part in 101) in the former and about 0.1% (1 part

in 998) in the latter.

Floating Point Computation 8 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Sex, lies and sig.figs.(2)

You might prefer to say sig.figs.(4.56) = − log10 0.01/4.56 so that

sf (1.01) and sf (101) is about 3, and sf (9.98) and sf (0.0000998) is

nearly 4. (BTW, a good case can be made for 2 and 3 respectively

instead.)

Exercise: with this more precise understanding of sig.figs. how do the

elementary operations (+,−, ∗, /; operating on nominal 3sf

arguments to give a nominal 3sf result) really behave?

Floating Point Computation 9 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Get your calculator out!

Calculators are just floating point computers. Note that physical

calculators often work in decimal, but calculator programs (e.g.

xcalc) often work in binary. Many interesting examples on this

course can be demonstrated on a calculator—the underlying problem

is floating point computation and näıve-programmer failure to

understand it rather than programming per se.

Amusing to try (computer output is red)

(1 + 1e20) − 1e20 = 0.000000 1 + (1e20− 1e20) = 1.000000

But everyone knows that (a + b) + c = a + (b + c) (associativity) in

maths and hence (a + b) − d = a + (b − d) [just write d = −c]!!!

Floating Point Computation 10 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Get your calculator out (2)

How many sig.figs. does it work to/display [example is xcalc]?

1 / 9 = 0.11111111

<ans> - 0.11111111 = 1.111111e-09

<ans> - 1.111111e-9 = 1.059003e-16

<ans> - 1.059e-16 = 3.420001e-22

Seems to indicate 16sf calculated (16 ones before junk) and 7/8sf

displayed [Why does it display 8sf for the first number but only 7sf

for the rest? I don’t know—perhaps just an ordinary bug].

Stress test it:

sin 1e40 = 0.3415751

Does anyone believe this result? [Try your calculator/programs on it.]

Floating Point Computation 11 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Computer Representation

A computer representation must be finite. If we allocate a fixed size

of storage for each then we need to

• fix a size of mantissa (sig.figs.)

• fix a size for exponent (exponent range)

Why “floating point”? Because the exponent logically determines

where the decimal point is placed within (or even outside) the

mantissa. This originates as an opposite of “fixed point” where a

32-bit integer might be treated as having a decimal point between

(say) bits 15 and 16.

Floating point can simple be thought of simply as values in scientific

notation held in a computer.

But it’s now time to turn to binary representations.

Floating Point Computation 12 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Part 2

Floating point representation

Floating Point Computation 13 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Standards

In the past every manufacturer produced their own floating point

hardware and floating point programs gave different answers. IEEE

standardisation fixed this.

There are two different IEEE standards for floating-point

computation.

IEEE 754 is a binary standard that requires base = 2, p = 24

(number of mantissa bits) for single precision and p = 53 for double

precision. It also specifies the precise layout of bits in a single and

double precision. [Edited quote from Goldberg.]

IEEE 854 is more general and allows binary and decimal

representation without fixing the bit-level format.

IEEE 754 is being revised –

http://en.wikipedia.org/wiki/IEEE 754r

Floating Point Computation 14 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

IEEE 754 Floating Point Representation

Actually, I’m giving the version used on x86 (similar issues arise as in

the ordering of bytes with an 32-bit integer).

Single precision: 32 bits (1+8+23), IEEE write p = 24

sign
31

expt
30 23

mantissa
22 0

Double precision: 64 bits (1+11+52), IEEE write p = 53

sign
63

expt
62 52

mantissa
51 0

Value represented is typically: (s? −1 : 1) ∗ 1.mmmmmm ∗ 2eeeee.

Note hidden bit : 24 (or 53) sig.bits, only 23 (or 52) stored!

Floating Point Computation 15 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Hidden bit and exponent representation

Advantage of base-2 exponent representation: all normalised numbers

start with a ’1’, so no need to store it. (Just like base 10, there

normalised numbers start 1..9, in base 2 they start 1..1.)

Floating Point Computation 16 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Hidden bit and exponent representation (2)

But: what about the number zero? Need to cheat, and while we’re at

it we create representations for infinity too. In single precision:

exponent exponent value represented

(binary) (decimal)

00000000 0 zero if mmmmm = 0

(‘denormalised number’ otherwise)

00000001 1 1.mmmmmm ∗ 2−126

.

01111111 127 1.mmmmmm ∗ 2−0 = 1.mmmmmm

10000000 128 1.mmmmmm ∗ 21

.

11111110 254 1.mmmmmm ∗ 2127

11111111 255 infinity if mmmmm = 0 (‘NaN’s otherwise)

Floating Point Computation 17 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Hidden bit and exponent representation (3)

Double precision is similar, except that the 11-bit exponent field now

gives non-zero/non-infinity exponents ranging from 000 0000 0001

representing 2−1022 via 011 1111 1111 representing 20 to

111 1111 1110 representing 21023.

This representation is called “excess-127” (single) or “excess-1023”

(double precision).

Why use it?

Because it means that (for positive numbers, and ignoring NaNs)

floating point comparison is the same as integer comparison.

Why 127 not 128? The committee decided it gave a more symmetric

number range (see next slide).

Floating Point Computation 18 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Solved exercises

What’s the smallest and biggest normalised numbers in single

precision IEEE floating point?

Biggest: exponent field is 0..255, with 254 representing 2127. The

biggest mantissa is 1.111...111 (24 bits in total, including the implicit

leading zero) so 1.111...111 × 2127. Hence almost 2128 which is

28 ∗ 2120 or 256 ∗ 102412, i.e. around 3 ∗ 1038.

FLT_MAX from <float.h> gives 3.40282347e+38f.

Smallest? That’s easy: −3.40282347e+38! OK, I meant smallest

positive. I get 1.000...000 × 2−126 which is by similar reasoning

around 16 × 2−130 or 1.6 × 10−38.

FLT_MIN from <float.h> gives 1.17549435e-38f.

Floating Point Computation 19 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Solved exercises (2)

[Not part of this course: ‘denormalised numbers’ can range down to

2−150 ≈ 1.401298e-45, but there is little accuracy at this level.]

And the precision of single precision? 223 is about 107, so in principle

7sf. (But remember this is for representing a single number,

operations will rapidly chew away at this.)

And double precision? DBL MAX 1.79769313486231571e+308 and

DBL MIN 2.22507385850720138e-308 with around 16sf.

How many single precision floating point numbers are there?

Answer: 2 signs * 254 exponents * 223 mantissas for normalised

numbers plus 2 zeros plus 2 infinities (plus NaNs and denorms not

covered in this course).

Floating Point Computation 20 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Solved exercises (3)

Which values are representable exactly as single precision floating

point numbers?

Answer: ± i/2j where 0 ≤ i < 223 and −126 ≤ j ≤ 127

Compare: what values are exactly representable in 3sf decimal?

Answer: i/10j where 0 ≤ i < 1000.

How many sig.figs. to I have to print out a single-precision float to be

able to read it in again exactly?

Answer: The smallest (relative) gap is from 1.111110 to 1.1111111, a

difference of about 1 part in 224. If this of the form 1.xxx× 10b when

printed in decimal then we need 9 sig.figs. (including the leading ‘1’,

i.e 8 after the decimal point in scientific notation) as an lsb change is

1 part in 108 and 107 ≤ 224 ≤ 108.

[But you may only need 8 sig.figs if the decimal starts with

9.xxx—see printsigfig float.c].

Floating Point Computation 21 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Signed zeros, signed infinities

Signed zeros can make sense: if I repeatedly divide a positive number

by two until I get zero (‘underflow’) I might want to remember that

it started positive, similarly if I repeatedly double an number until I

get overflow then I want a signed infinity.

However, while differently-signed zeros compare equal, not all

’obvious’ mathematical rules remain true:

int main() {

double a = 0, b = -a;

double ra = 1/a, rb = 1/b;

if (a == b && ra != rb)

printf("Ho hum a=%f = b=%f but 1/a=%f != 1/b=%f\n", a,b, ra,rb);

return 0; }

Gives:

Ho hum a=0.000000 = b=-0.000000 but 1/a=inf != 1/b=-inf

Floating Point Computation 22 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Why infinities and NaNs?

The alternatives are to give either a wrong value, or an exception.

An infinity (or a NaN) propagates ‘rationally’ through a calculation

and enables (e.g.) a matrix to show that it had a problem in

calculating some elements, but that other elements can still be OK.

Raising an exception is likely to abort the whole matrix computation

and given wrong values is just plain dangerous.

The most common way to get a NaN is by calculating 0.0/0.0

(there’s no obvious ‘better’ interpretation of it) and library calls like

sqrt(-1) generally also return NaNs.

Floating Point Computation 23 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Part 3

Floating point operations

Floating Point Computation 24 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

IEEE arithmetic

This is a very important slide.

IEEE basic operations (+,−, ∗, / are defined as follows):

Treat the operands (IEEE values) as precise, do perfect mathematical

operations on them (NB the result might not be representable as an

IEEE number, analogous to 7.47+7.48 in 3sf decimal). Round(*) this

mathematical value to the nearest representable IEEE number and

store this as result. In the event of a tie (e.g. the above decimal

example) chose the value with an even (i.e. zero) lsb.

[This last rule is statistically fairer than the “round down 0–4, round

up 5–9” which you learned in school.]

This is a very important slide.

[(*) See next slide]

Floating Point Computation 25 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

IEEE Rounding

In addition to rounding prescribed above (whish is the default

behaviour) IEEE requires there to be a global flag which can be set

of one of 4 values:

Unbiased which rounds to the nearest value, if the number falls

midway it is rounded to the nearest value with an even (zero)

least significant bit. This mode is required to be default.

Towards zero

Towards positive infinity

Towards negative infinity

Be very sure you know what you are doing if you set change the

mode, or if you are editing someone else’s code which exploits a

non-default mode setting.

Floating Point Computation 26 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Errors in Floating Point

When we do a floating point computation, errors (w.r.t. perfect

mathematical computation) essentially arise from two sources:

• the inexact representation of constants in the program and

numbers read in as data. (Remember even 0.1 in decimal cannot

be represented exactly in as an IEEE value, just like 1/3 cannot

be represented exactly as a finite decimal. Exercise: write 0.1 as

a (recurring) binary number)

• rounding errors produced by (in principle) every IEEE operation.

These errors build up during a computation, and we wish to be able

to get a bound on them (so that we know how accurate our

computation is).

Floating Point Computation 27 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Errors in Floating Point (2)

It is useful to identify two ways of measuring errors. Given some

value a and an approximation b of a, the

Absolute error is ǫ = |a − b|

Relative error is η =
|a − b|
|a|

[http://en.wikipedia.org/wiki/Approximation_error]

Floating Point Computation 28 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Errors in Floating Point (3)

Of course, we don’t normally know the exact error in a program,

because if we did then we could calculate the floating point answer

and add on this known error to get a mathematically perfect answer!

So, when we say the “relative error is (say) 10−6” we mean that the

true answer lies within the range [(1 − 10−6)v..(1 10−6)v]

x ± ǫ is often used to represent any value in the range [x − ǫ..x + ǫ].

This is the idea of “error bars” from the sciences.

Floating Point Computation 29 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Errors in Floating Point Operations

Errors from +,−: these sum the absolute errors of their inputs

(x ± ǫx) + (y ± ǫy) = (x + y) ± (ǫx + ǫy)

Errors from ∗, /: these sum the relative errors (if these are small)

(x(1 ± ηx)) ∗ (y(1 ± ηy)) = (x ∗ y)(1 ± (ηx + ηy) ± ηxηy)

and we discount the ηxηy product as being negligible.

If the justifications trouble you, then ask your supervisor—you don’t

need to be able to reproduce them for this course.

Beware: when addition or subtraction causes partial or total

cancellation the relative error of the result can be much larger than

that of the operands.

Floating Point Computation 30 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Gradual loss of significance

Consider the program (see the calculator example earlier)

double x = 1.0/9.0

for (i=0; i<30; i++)

{ printf("%e\n", x);

x = (x - 1) * 10; // C treats as (x-1.0) * 10.0

}

Initially x has around 16sf of accuracy (IEEE double). But after

every cycle round the loop it still stores 16sf, but the accuracy of the

stored value reduces by 1sf per iteration. [Try it!]

This is called “gradual loss of significance” and is in practice at least

as much a problem as overflow and underflow and much harder to

identify.

Floating Point Computation 31 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Machine Epsilon

Machine epsilon is often defined (e.g. ISO C) as the difference

between 1.0 and the smallest representable number which is greater

than one, i.e. 2−23 in single precision, and 2−52 in double.

As such it gives an upper bound on the relative error caused by

getting the lsb of a floating point number out by one, and is therefore

useful for expressing errors independent of floating point size.

In C, using IEEE arithmetic, it is defined as

#define FLT_EPSILON 1.19209290e-7F

#define DBL_EPSILON 2.2204460492503131e-16

Some (older?) sources define machine epsilon as the smallest number

which when added to one gives a number greater than one. (This

definition is approximately half of the previous one due to rounding.)

There seems some dispute here, so fine details are non-examinable.

Floating Point Computation 32 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Revisiting sin 1e40

The answer given by xcalc earlier is totally bogus. Why?

1040 is stored (like all numbers) with a relative error of around

machine epsilon. (Changing the lsb of the mantissa by one results in

an absolute error of 1040 × machine epsilon.) Even for double, this

absolute error of representation is around 1024. But the sin function

cycles every 2π. So we can’t even represent which of many billions of

cycles of sine that 1040 should be in, let alone whether it has any

sig.figs.!

On a decimal calculator 1040 is stored accurately, but I would need π

to 50sf to have 10sf left when I have range-reduced 1040 into the

range [0, π/2]. So, who can calculate sin 1e40? Volunteers?

Floating Point Computation 33 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Part 4

Simple maths, simple programs

Floating Point Computation 34 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Non-iterative programs

Iterative programs need additional techniques, because the program

may be locally sensible, but a small representation or rounding error

can slowly grows over many iterations so as to render the result

useless.

So let’s first consider a program with a fixed number of operations:

x =
−b ±

√
b2 − 4ac

2a

Or in C:

double root1(double a, double b, double c)

{ return (-b + sqrt(b*b - 4*a*c))/(2*a); }

double root2(double a, double b, double c)

{ return (-b - sqrt(b*b - 4*a*c))/(2*a); }

What could be wrong with this so-simple code?

Floating Point Computation 35 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Solving a quadratic

To be written.

Floating Point Computation 36 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Part 5

Infinitary/limiting computations

Floating Point Computation 37 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Rounding versus Truncation Error

Many mathematical processes are infinitary, e.g. limit-taking

(including differentiation, integration, infinite series), and iteration

towards a solution.

There are now two logically distinct forms of error in our calculations

Rounding error the error we get by using finite arithmetic during

a computation. [We’ve talked about this exclusively until now.]

Truncation error the error we get by stopping an infinitary process

after a finite point. [This is new.]

Note the general antagonism: the finer the mathematical

approximation the more operations which need to be done, and hence

the worse the accumulated error. Need to compromise, or really

clever algorithms (beyond this course).

Floating Point Computation 38 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation

Suppose we have a nice civilised function f (we’re not even going to

look at malicious ones). By civilised I mean smooth (derivatives

exist) and f(x), f ′(x) and f ′′(x) are around 1 (i.e. between, say, 0.1

and 10 rather than 1015 or 10−15 or, even worse, 0.0). Let’s suppose

we want to calculate an approximation to f ′(x) at x = 1.0 given only

the code for f .

So, we just calculate (f(x + h) − f(x))/h, don’t we?

Well, just how do we choose h? Does it matter?

BTW, the Wikipedia entry

http://en.wikipedia.org/wiki/Standard ML shows (Nov 2006) a

failure to consider x being large or small without noting this fact.

Floating Point Computation 39 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation (2)

The maths for f ′(x) says take the limit as h tends to zero. But if h is

smaller than machine epsilon (2−23 for float and 2−52 for double)

then, for x about 1, x + h will compute to the same value as x. So

f(x + h) − f(x) will evaluate to zero!

There’s a more subtle point too, if h is small then f(x + h) − f(x)

will produce lots of cancelling (e.g. 1.259 − 1.257) hence a high

relative error (few sig.figs. in the result).

‘Rounding error.’

But if h is too big, we also lose: e.g. dx2/dx at 1 should be 2, but

taking h = 1 we get (22 − 12)/1 = 3.0. Again a high relative error

(few sig.figs. in the result).

‘Truncation error.’

Floating Point Computation 40 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation (3)

Answer: the two errors vary oppositely w.r.t. h, so compromise by

making the two errors of the same order to minimise their total effect.

The truncation error can be calculated by Taylor:

f(x + h) = f(x) + hf ′(x) + h2f ′′(x)/2 + O(h3)

So the truncation error in the formula is approximately h/f ′′(x)/2

(check it yourself), i.e. about h given the assumption on f ′′ being

around 1.

Floating Point Computation 41 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation (4)

For rounding error use Taylor again, and allow a minimal error of

macheps to creep into f and get (remember we’re also assuming f(x)

and f ′(x) is around 1, and we’ll write macheps for machine epsilon):

(f(x+h)−f(x))/h = (f(x)+hf ′(x)±macheps−f(x))/h = 1±macheps/h

So the rounding error is macheps/h.

Equating rounding and truncation errors gives h = macheps/h, i.e.

h =
√

machine epsilon (around 3.10−4 for single precision and 10−8

for double).

[See diff float.c for a program to verify this—note the truncation

error is fairly predictable, but the rounding error is “anywhere in an

error-bar”]

Floating Point Computation 42 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series

Various problems can be solved by summing a Taylor series, e.g.

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

Mathematically, this is as nice as you can get—it unconditionally

converges everywhere. However, computationally things are trickier.

Floating Point Computation 43 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (2)

Trickinesses:

• How many terms? [stopping early gives truncation error]

• Large cancelling intermediate terms can cause loss of precision

[hence rounding error]

e.g. the biggest term in sin(15) [radians] is over -334864 giving

(in single precision float) a result with only 1 sig,fig.

[See sinseries float.c.]

Floating Point Computation 44 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (3)

Solution:

• Do range reduction—use identities to reduce the argument to the

range [0, π/2] or even [0, π/4]. However: this might need a lot of

work to make sin(1040) or sin(2100) work (since we need π to a

large accuracy).

• Now we can choose a fixed number of iterations and unroll the

loop (conditional branches can be slow in pipelined

architectures), because we’re now just evaluating a polynomial.

Floating Point Computation 45 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (4)

If we sum a series up to terms in xn, i.e. we compute

i=n∑

i=0

aixi

then the first missing term will by in xn+1 (or xn+2 for sin(x)). This

will be the dominant error term, at least for small x.

However, xn+1 is unpleasant – it is very very small near the origin

but its maximum near the ends of the input range can be thousands

of times bigger.

Floating Point Computation 46 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (5)

There’s amazing (but non-examinable) technology “Chebyshev

polynomials” whereby the total error is re-distributed from the edges

of the input range to throughout the input range and at the same

time the maximum absolute error is reduced by orders of magnitude.

Basically we merely calculate a new polynomial

i=n∑

i=0

a′

ixi

where a′

i is a small adjustment of ai above. This is called ‘power

series economisation’ because it can cut the number of terms (and

hence the execution time) needed for a given Taylor series to a

produce given accuracy.

Floating Point Computation 47 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Why fuss about Taylor . . .

. . . and not (say) integration or similar?

It’s a general metaphor—in four lectures I can’t tell you 50 years of

maths and really clever tricks (and there is comparable technology

for integration, differential equations etc.!). [Remember when the CS

Diploma here started in 1953 almost all of the course material would

have been on such numerical programming; in earlier days this course

would have been called an introduction to “Numerical Analysis”.]

But I can warn you that if you need precision, or speed, or just to

show your algorithm is producing a mathematically justifiable answer

then you may (and will probably if the problem is non-trivial) need

to consult an expert, or buy in a package with certified performance

(e.g. NAGLIB, Matlab, Maple, Mathematica, REDUCE . . .).

Floating Point Computation 48 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

How accurate do you want to be?

If you want to implement (say) sin(x)

double sin(double x)

with the same rules as the IEEE basic operations (the result must be

the nearest IEEE representable number to the the mathematical

result when treating the argument as precise) then this can require a

truly Herculean effort. (You’ll certainly need to do much of its

internal computation in higher precision than its result.)

On the other hand, if you just want a function which has known error

properties (e.g. correct apart from the last 2 sig.figs.) and you may

not mind oddities (e.g. your implementation of sine not being

monotonic in the first quadrant) then the techniques here suffice.

Floating Point Computation 49 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

How accurate do you want to be? (2)

Sometimes, e.g. writing a video game, profiling may show that the

time taken in some floating point routine like sqrt may be slowing

down the number of frames per second below what you would like,

Then, and only then, you could consider alternatives, e.g. rewriting

your code to avoid using sqrt or replacing calls to the system

provided (perhaps accurate and slow) routine with calls to a faster

but less accurate one.

Give ACR’s nice example code here.

Floating Point Computation 50 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Why do I use float so much . . .

. . . and is it recommended? [No!]

I use single precision because the maths uses smaller numbers (223

instead of 252), but for most practical problems I would recommend

you use double almost exclusively.

Why: smaller errors, often no little speed penalty.

What’s the exception: floating point arrays where the size matters

and where the accuracy lost in the storing/reloading process is

manageable and analysable.

Floating Point Computation 51 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Notes for C users

• float is very much a second class type like char and short.

• Constants 1.1 are type double unless you ask 1.1f.

• floats are implicitly converted to doubles at various points (e.g.

for ‘vararg’ functions like printf).

• The ISO/ANSI C standard says that a computation involving

only floats may be done at type double, so f and g in

float f(float x, float y) { return (x+y)+1.0f; }

float g(float x, float y) { float t = (x+y); return t+1.0f; }

may give different results.

So: use double rather than float whenever possible for language as

well as numerical reasons.

Floating Point Computation 52 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Part 6

Some nastier issues

Floating Point Computation 53 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Ill-conditioned and chaotic systems

To be written.

• Ill-conditioned 2x2 matrix equation

• Example Verhulst’s Logistic map

xn+1 = rxn(1 − xn)

with r = 4.

• Mandelbrot at high magnification?

Floating Point Computation 54 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Part 6

Alternative Technologies to

Floating Point

(which avoid doing all this analysis)

Floating Point Computation 55 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Alternatives to IEEE arithmetic

What if, For one reason or another:

• we cannot find a way to compute a good approximation to the

exact answer of a problem, or

• we know an algorithm, but are unsure as to how errors propagate

so that the answer may well be useless.

Alternatives:

• print(random()) [well at least it’s faster than spending a long

time producing the wrong answer, and it’s intellectually honest.]

• interval arithmetic

• arbitrary precision arithmetic

• exact real arithmetic

Floating Point Computation 56 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Interval arithmetic

The idea here is to represent a mathematical real number value with

two IEEE floating point numbers. One gives a representable number

guaranteed to be lower or equal to the mathematical value, and the

other greater or equal. Each constant or operation must preserve this

property (e.g. (aL, aU)− (bL, bU) = (aL − bU , aU − bL) and you might

need to mess with IEEE rounding modes to make this work; similarly

1.0 will be represented as (1.0,1.0) but 0.1 will have distinct lower

and upper limits.

This can be a neat solution to some problems. Downsides:

• can be slow (but correctness is more important than speed)

• some algorithms converge in practice (like Newton-Raphson)

while the computed bounds after doing the algorithm can be

spuriously far apart.

Floating Point Computation 57 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Interval arithmetic (2)

C++ fans: this is an ideal class for you to write:

class interval

{ interval(char *) { /* constructor... */ }

static interval operator +(interval x, interval y) { ... };

};

and a bit of trickery such as #define float interval will get you

started coding easily.

Floating Point Computation 58 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Arbritrary Precision Floating Point

To be written.

Floating Point Computation 59 Michaelmas 2006

UNIVERSITY OF

CAMBRIDGE

Exact Real Arithmetic

To be written.

Floating Point Computation 60 Michaelmas 2006

