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Course Overview

• Sideways from the “Operational Semantics” course.

• Background implementation ideas for “Compiler Construction”.

• Rough area: λ-calculus and its applications

λx.e [Church 1941] is parallel notation to ML “fn x=>e”

• Wikipedia articles:

http://en.wikipedia.org/wiki/Alonzo_Church

http://en.wikipedia.org/wiki/Lambda_calculus
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(Pure) Lambda Calculus

e ::= x | e e′ | λx.e

Syntax:

• x variables

• λx.e (lambda-) abstraction

• e e′ (function) application

“The world’s smallest programming language”:

• α-, β-, η-reduction.

• when are λ-terms equal?

• choice of evaluation strategies.
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Pure Lambda Calculus is Universal

Can encode:

• Booleans including Conditional

• Integers

• Pairs

• Disjoint Union

• Lists

• Recursion

within the λ-calculus.

Can even simulate a Turing Machine or Register Machine (see

“Computation Theory”) so “Turing Universal”
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(Applied) Lambda Calculus

e ::= x | e e′ | λx.e | c

• x variables

• λx.e (lambda-) abstraction

• e e′ (function) application

• c constants

Elements of c can directly represent not only integers (etc.) but also

function constants such as addition or function composition.

• “δ-reduction”.
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Combinators

e ::= e e′ | c (omit x and λx.e)

• Remarkably: making c = {S,K} regains the power of pure

λ-calculus.

• Translation: λ-calculus to/from combinators, including (almost)

equivalent reduction rules.
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Evaluation Mechanisms/Facts

• Eager Evaluation

• Lazy Evaluation

• Confluence “There’s always a meeting place downstream”

• Implementation Techniques
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Continuations

• Lambda expressions restricted to always return ‘()’

[continuations] can implement all lambda expressions.

• Continuations can also represent many forms of non-standard

control flow, including exceptions.

• call/cc

Wikipedia article:

• http://en.wikipedia.org/wiki/Continuation
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Real Implementations of λ−expressions

• “Functional Languages”.

• Don’t do substitution, use environments instead.

• Haskell, ML.
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SECD Machine

• An historic (but simple) abstract machine.

• 4 registers S, E, C, D

• Rules (S, E, C, D) −→ (S′, E′, C ′, D′)
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Types

• Most of this course is typeless.

• ML type system is a ‘sweet spot’ in some senses.
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ML type system semi-formally

How to implement/understand ML types

• polymorphism for λ-calculus

• additional effects of let

• Y has a type, but cannot be expressed in ML
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Part 1

Lambda-Calculus
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Lambda Calculus

The terms of the λ-calculus, known as λ-terms, are constructed

recursively from a given set of variables x, y, z, . . .. They may take

one of the following forms:

x variable

(λx.M) abstraction, where M is a term

(MN) application, where M and N are terms

We use capital letters like L, M , N , . . . for terms. We write M ≡ N

to state that M and N are identical λ-terms. The equality between

λ-terms, M = N , will be discussed later.
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Bound and Free Variables

BV(M), the set of all bound variables in M , is given by

BV(x) = ∅

BV(λx.M) = BV(M) ∪ {x}

BV(MN) = BV(M) ∪ BV(N)

FV(M), the set of all free variables in M , is given by

FV(x) = {x}

FV(λx.M) = FV(M) \ {x}

FV(MN) = FV(M) ∪ FV(N)
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Substitution

M [L/y], the result of substituting L for all free occurrences of y

in M , is given by

x[L/y] ≡







L if x ≡ y

x otherwise

(λx.M)[L/y] ≡







(λx.M) if x ≡ y

(λx.M [L/y]) otherwise

(MN)[L/y] ≡ (M [L/y] N [L/y])

Substitution notation is part of the meta-language (talks about the

lambda calculus) not part of the lambda-calculus itself. (Later, we

see environments as explicit representation of substitutions.)
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Variable Capture – to be avoided

Substitution must not disturb variable binding. Consider

(λx.(λy.x)). When applied to N it should give function (λy.N).

Fails for N ≡ y. This is variable capture – would make the

lambda-calculus inconsistent mathematically.

The substitution M [N/x] is safe provided the bound variables of M

are disjoint from the free variables of N :

BV(M) ∩ FV(N) = ∅.

We can always rename the bound variables of M , if necessary, to

make this condition true.
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Lambda Conversions

The idea that λ-abstractions represent functions is formally

expressed through conversion rules for manipulating them. There are

α-conversions, β-conversions and η-conversions.

The α-conversion (λx.M) →α (λy.M [y/x]) renames the abstraction’s

bound variable from x to y. It is valid provided y does not occur

(free or bound) in M . For example, (λx.(xz)) →α (λy.(yz)). We shall

usually ignore the distinction between terms that could be made

identical by performing α-conversions.

The β-conversion ((λx.M)N) →β M [N/x] substitutes the

argument, N , into the abstraction’s body, M . It is valid provided

BV(M) ∩ FV(N) = ∅. For example, (λx.(xx))(yz) →β ((yz)(yz)).

β-conversion does all the ‘real work’
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Lambda Conversions (2)

The η-conversion (λx.(Mx)) →η M collapses the trivial function

(λx.(Mx)) down to M . It is valid provided x 6∈ FV(M). Thus, M

does not depend on x; the abstraction does nothing but apply M to

its argument. For example, (λx.((zy)x)) →η (zy).

Observe that the functions (λx.(Mx)) and M always return the same

answer, (MN), when applied to any argument N . The η-conversion

rule embodies a principle of extensionality : two functions are equal if

they always return equal results given equal arguments. In some

situations, this principle (and η-conversions) are dispensed with.

[Think: is fn x=>sin x the same as sin in ML?]

Later, when we introduce constants into the lambda-calculus we will

also add δ-reductions (zero or more for each constant) these also do

‘real work’.
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Lambda Reductions

Lecture 2
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Lambda Reduction (1)

Reductions: (non-α) conversions in context.

• Although we’ve introduced the conversions (→α, →β , →η), they

are not much use so far, e.g.

((λx.x)(λy.y))(λz.z)

does not convert. And it should!

• ((λx.x)(λy.y)) already does though. Need to formalise.

• We also need to avoid people saying that λx.x reduces to λy.y

reduces to λx.x . . . . It clearly does not reduce (think of ‘make

computational progress’).
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Lambda Reduction (2)

Fix 1. For each conversion (seen as an axiom) such as

((λx.M)N) →β M [N/x]

we also add three context rules (x = α, β, η)

M →x M ′

(λx.M) →x (λx.M ′)

M →x M ′

(MN) →x (M ′N)

M →x M ′

(LM) →x (LM ′)

(you’ve seen such rules before in “Operational Semantics”).

BEWARE: the first of these context rules is very dodgy from a

programming language viewpoint (a frequent source of diversion from

the λ-calculus which has surprisingly little effect—because

programming languages do not print or otherwise look inside

functions, only apply them).
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Lambda Reduction (3)

. . . we also add three context rules

M →x M ′

(λx.M) →x (λx.M ′)

M →x M ′

(MN) →x (M ′N)

M →x M ′

(LM) →x (LM ′)

FUTURE DIRECTION: we might also prioritise the 2nd and 3rd

rules—lazy vs. eager evaluation.

E.g. ((λx.xx) ((λy.y)(λz.z)))
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Lambda Reduction (4)

Fix 2. (and DEFINITION) We say that M → N , or M reduces to N ,

if M →β N or M →η N . (Because α-conversions are not directional,

and are not interesting, we generally ignore them—they don’t do real

work.)

BEWARE: η-reduction is also dodgy from a programming language

point of view, but again it only affects functions and so tends to be

harmless.

FUTURE: We treat reduction as including δ-reduction (for constants

when we introduce them later).
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Normal Forms

If a term admits no reductions then it is in normal form—think

‘value’.

For example, λxy.y and xyz are in normal form.

To normalise a term means to apply reductions until a normal form

is reached. A term has a normal form if it can be reduced to a term

in normal form. For example, (λx.x)y is not in normal form, but it

has the normal form y.

Many λ-terms cannot be reduced to normal form. For instance,

(λx.xx)(λx.xx) reduces to itself by β-conversion. This term is

usually called Ω (Ω is an abbreviation—not part of the calculus).

Note that some terms which have normal forms, also have infinite

reduction sequences, e.g. (λx.λy.x)(λz.z)Ω.
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Normal Forms (2)

For programming language purposes, the idea of weak head normal

form (WHNF) is also of interest. A term is in WHNF if it admits no

reduction (same as before) but when we exclude reductions reached

by using the first context rule

M →x M ′

(λx.M) →x (λx.M ′)

E.g. λx.Ω is in WHNF but not in NF. However Ω is neither in NF

nor in WHNF.
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Currying

[You already know this from ML.]

Functions in the λ calculus take one argument and give one result.

Two-argument (or more!) functions can be encoded via currying

(actually due to Schönfinkel rather than Curry): if f abbreviates

λx.λy.L then

f MN →β (λy.L[M/x]) →β L[M/x][N/y]

Multiple results (and an alternative way of doing arguments) can be

achieved by pairing—see later how this can be simply encoded

without additional magic.
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Syntactic simplification

[You already know this from ML.]

Because λ-calculus evolved before programming languages, it is often

presented (as we did) with excessive bracketing, e.g. ((λx.(xy)) (yz))

However, omit brackets by use of operator precedence, treating:

• λxy.M as (λx.(λy.M))

• L MN as ((L M)N)

• λx.MN as (λx.(MN))

BEWARE: λxyz.xyz is far from (λt.t). It is literally

(λx.(λy.(λz.((xy)z))))
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Multi-step reduction

M ։ M ′ iff M can re-write to M ′ using k ≥ 0 (→)-steps

or

M ։ M ′ iff (∃k ≥ 0,∃M0 . . .Mk)M ≡ M0 → · · · →≡ Mk ≡ M ′

or

(։) = (→)∗ (reflexive/transitive closure)

Just like → this is not deterministic—consider

((λx.xx) ((λy.y)(λz.z))) but something deterministic is happening

(see confluence soon).
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Equality

Two λ-terms, M and M ′, are equal M = M ′ if there is a sequence of

forwards and backwards reductions (backwards reductions are

sometimes called expansions) from M to M ′.

M M1 M2· · ·Mk−1 Mk = M ′

ցց ււ ցց ււ ցց ււ

N1 N2 · · · Nk

I.e.

(=) = ((→) ∪ (→)−1)∗ (reflexive/symmetric/transitive closure)

= ((։) ∪ (։)−1)∗
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Equality Properties

It’s simple to show that equality satisfies all the expected things:

First of all, it is an equivalence relation—it satisfies the reflexive,

symmetric and associative laws:

M = M
M = N

N = M

L = M M = N

L = N

Furthermore, it satisfies congruence laws for each of the ways of

constructing λ-terms:

M = M ′

(λx.M) = (λx.M ′)

M = M ′

(MN) = (M ′N)

M = M ′

(LM) = (LM ′)

I.e.

M = N ⇒ C[M ] == C[N ] for any context C[· · · ]
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Equality (2)

Note (M ։ N ∨ N ։ M) suffices to imply M = N .

But M = N does not imply (M ։ N ∨ N ։ M). (Exercise: why?)
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Equality – bug in lecture notes

Definition 5 (page 8) is wrong. It needs to say ...

M = M
M = N

N = M

L = M M = N

L = N

Furthermore, it satisfies congruence laws for each of the ways of

constructing λ-terms:

M = M ′

(λx.M) = (λx.M ′)

M = M ′

(MN) = (M ′N)

M = M ′

(LM) = (LM ′)

Definition 5 Equality of λ-terms is the least relation satisfying the

six rules above and also M = N if there is a (α/β/η) conversion from

M to N .
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Church-Rosser Theorem – determinism

We saw the λ-calculus is non-deterministic locally, e.g.

((λx.xx) ((λy.y)(λz.z)))

But: “There’s always a place (pub) to meet at downstream” (hence

the alternative name “confluence”).

Church-Rosser Theorem (BIG THEOREM): If M = N then

there exists L such that M ։ L and N ։ L.

For instance, (λx.ax)((λy.by)c) has two different reduction sequences,

both leading to the same normal form. The affected subterm is

underlined at each step:

(λx.ax)((λy.by)c) → a((λy.by)c) → a(bc)

(λx.ax)((λy.by)c) → (λx.ax)(bc) → a(bc)
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Consequences

• If M = N and N is in normal form, then M ։ N ; if a term can

transform into normal form using reductions and expansions,

then the normal form can be reached by reductions alone.

• If M = N where both terms are in normal form, then M ≡ N

(up to renaming of bound variables). Conversely, if M and N are

in normal form and are distinct, then M 6= N ; there is no way of

transforming M into N . For example, λxy.x 6= λxy.y.

• λ-calculus is consistent [nice to know!]
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Diamond Properties

The key step in proving the Church-Rosser Theorem is

demonstrating the diamond property—if M ։ M1 and M ։ M2

then there exists a term L such that M1 ։ L and M2 ։ L. Then

‘tiling’ suffices. Here is the diagram:

M

ււ ցց

M1 M2

ցց ււ

L

You might wonder that this would also be true of single-step

reductions (as if there was independent concurrent evaluation in the

two directions of the diamond). But...
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Diamond Properties (2)

Note that → (one-step reduction) does not satisfy the diamond

property

M

ւ ց

M1 M2

ց ւ

L

Consider the term (λx.xx)( I a), where I ≡ λx.x. In one step, it

reduces to (λx.xx)a or to ( I a)( I a).
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Diamond Properties (3)

These both reduce eventually to aa, but there is no way to complete

the diamond with a single-step reduction:

(λx.xx)( I a)

ւ ց

( I a)( I a) (λx.xx)a

. . . ւ

aa

Why? (λx.xx) replicates its argument, doubling the work needed.

Difficult cases involve one possible reduction contained inside

another. Reductions that do not overlap, such as M → M ′ and

N → N ′ in the term xMN , commute trivially to produce xM ′N ′.

(Like concurrency.)
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Confluence is trickily worded

Although different reduction sequences cannot yield different normal

forms, they can yield completely different outcomes: one could

terminate while the other runs forever!

For example, recall that Ω reduces to itself, where

Ω ≡ (λx.xx)(λx.xx).

However, the reduction

(λy.a)Ω → a

reaches normal form, erasing the Ω. This corresponds to a

call-by-name treatment of functions: the argument is not reduced but

substituted ‘as is’ into the body of the abstraction.
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Confluence is trickily worded (2)

Attempting to normalise the argument first generates a

non-terminating reduction sequence:

(λy.a)Ω → (λy.a)Ω → · · ·

Evaluating the argument before substituting it into the body

corresponds to a call-by-value treatment of function application. In

this example, the call-by-value strategy never reaches the normal

form.

So: is there a best evaluation strategy, or do we have to search like

Prolog does . . . ?
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Normal Order Reduction

Is there a best evaluation strategy (gives a normal form if one exists)?

Yes—Normal Order Reduction.

The normal order reduction strategy is, at each step, to perform the

leftmost outermost β-reduction. (The η-reductions can be left until

last.) Leftmost means, for instance, to reduce L before N in LN .

Outermost means, for instance, to reduce (λx.M)N before reducing

M or N .

Normal order reduction (almost) corresponds to call-by-name

evaluation. The “Standardisation Theorem” states that it always

reaches a normal form if one exists. As a flavour as to why: we have

to erase as many computations as we can (so they don’t explode)—so

in LN we reduce L first because it may transform into an

abstraction, say λx.M . Reducing (λx.M)N may erase N .
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Reduction Strategies

• Call-by-value (eager) evaluation, always evaluates the argument

to a function exactly once. But may spuriously look.

• Call-by-name (normal order) evaluation, always gives a result if

one exists (but can be exponentially slower as it evaluates

function arguments 0, 1, 2, . . . times.

Compromise?

• Call-by-need (lazy) evaluation, represent λ-terms as a (shared)

graph. Evaluate the first time they are encountered and save the

result (e.g. by over-writing) for subsequent uses. (Duplication of

terms caused by β-reduction need not duplicate computation.)
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Encoding Data in the λ-Calculus

Lecture 3

Foundations of Functional Programming 43 Lent 2007



UNIVERSITY OF

CAMBRIDGE

More on intuition behind the course

• λ-calculus is a very simple programming language which is the

basis either explicitly (ISWIM, ML) or implicitly for many

programming languages.

• λ-calculus is used as a (meta-language) notation for explaining

various other bits of CS.

• ‘fun’ (or at least programming-like) things happen in it.

• a bridge towards compiler notions such as environment.
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Encoding Data in the λ-Calculus

The λ-calculus is expressive enough to encode boolean values,

ordered pairs, natural numbers and lists—all the data structures we

may desire in a functional program. These encodings allow us to

model virtually the whole of functional programming within the

simple confines of the λ-calculus.

The encodings may not seem to be at all natural, and they certainly

are not computationally efficient. In this, they resemble Turing

machine encodings and programs. Unlike Turing machine programs,

the encodings are themselves of mathematical interest, and return

again and again in theoretical studies. Many of them involve the idea

that the data can carry its control structure with it. (Think iterators

in C++.)

Once understood, these constructs can be hard-coded (see later).

Foundations of Functional Programming 45 Lent 2007



UNIVERSITY OF

CAMBRIDGE

Encoding Booleans

It’s not obvious that we can even encode if-then-else in λ-calculus

(think about it).

An encoding of the booleans must define the terms true , false and

if , satisfying (for all M and N)

if trueMN = M

if falseMN = N.

Note true , false and if , are just abbreviations for λ-terms and not

(yet!) constants or anything else within the λ-calculus.

Note also the use of ‘=’ (recall what it means).
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Encoding Booleans (2)

The following encoding is usually adopted:

true ≡ λxy.x

false ≡ λxy.y

if ≡ λpxy.pxy

We have true 6= false by the Church-Rosser Theorem, since true

and false are distinct normal forms. As it happens, if is not even

necessary. The truth values are their own conditional operators:

trueMN ≡ (λxy.x)MN ։ M

falseMN ≡ (λxy.y)MN ։ N
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Encoding Booleans (3)

These reductions hold for all terms M and N , whether or not they

possess normal forms (step through it!). Note that

if LMN ։ LMN ; it is essentially an identity function on L. The

equations given above even hold as reductions:

if trueMN ։ M

if falseMN ։ N.

This is nice, because equations (‘=’) might mean forwards and

backwards reduction. Using ։ means ‘computation like’.

Indeed using Normal Order Reduction starting with (e.g.)

if trueMN

will eventually (around 4 steps—try it) produce M to reduce next.

This isn’t true for all evaluation strategies.
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More Booleans

Once we have defined the essential parts of an implementation of an

ADT/interface additional operators can be defined in terms of the

core ones. E.g. all the usual operations on truth values can be

defined in terms of the conditional operator. Here are negation,

conjunction and disjunction:

and ≡ λpq. if p q false

or ≡ λpq. if p true q

not ≡ λp. if p false true
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More Data Types

Idea: repeat the trick above, but at each stage we can use not only

the λ-calculus itself, but the encodings already derived.
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Encoding Pairs

Assume that true and false are defined as above. The function

pair , which constructs pairs, and the projections fst and snd ,

which select the components of a pair, are encoded as follows:

pair ≡ λxyf.fxy

fst ≡ λp.p true

snd ≡ λp.p false

See how pair squirrels away x and y waiting for an f to select one of

them.
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Encoding Sums—ML constructors

There are many ways of doing this, but a simple way is to encode the

‘tag field’ using a boolean:

inl ≡ λx.pair truex

inr ≡ λy.pair false y

case ≡ λsfg = if ( fst s)(f( snd s))(g( sndx))
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Encoding Natural Numbers

The following encoding of the natural numbers is the original one

developed by Church. Alternative encodings are sometimes preferred

today, but Church’s numerals continue our theme of putting the

control structure in with the data structure.

Such encodings are elegant; moreover, all these work in the

second-order (typed) λ-calculus (presented in the Types course in

CST Part II).
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Encoding Natural Numbers (2)

The following encoding of the natural numbers is the original one

Define

0 ≡ λfx.x

1 ≡ λfx.fx

2 ≡ λfx.f(fx)

...
...

...

n ≡ λfx. f(· · · (f
︸ ︷︷ ︸

n times

x) · · · )

Thus, for all n ≥ 0, the Church numeral n is the function that maps

f to fn. Each numeral is an iteration operator (see how n acts as a

sort of ‘map’ function with argument f).

Remember also the CST Part Ia exercises using these?
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Arithmetic on Church Numerals

Just having numbers isn’t enough, we need to do arithmetic. Can

Church numerals do this? Using this encoding, addition,

multiplication and exponentiation can be defined immediately:

add ≡ λmnfx.mf(nfx)

mult ≡ λmnfx.m(nf)x

expt ≡ λmnfx.nmfx

Addition is easy to validate:

add m n ։ λfx. mf( n fx)

։ λfx.fm(fnx)

≡ λfx.fm+nx

≡ m + n
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More Arithmetic

Sadly, just being able to do addition, multiplication and

exponentiation doesn’t give full (Turing) computational power.

Register machines (also Turing powerful) exploit increment,

decrement and test-for-zero:

suc ≡ λnfx.f(nfx)

iszero ≡ λn.n(λx. false ) true

The following reductions hold for every Church numeral n :

suc n ։ n + 1

iszero 0 ։ true

iszero ( n + 1 ) ։ false

But what about pre ?
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Encoding Predecessor

It’s not obvious how we can convert a function which self-composes

its argument n times into one which does so n − 1 times (of course

n > 0)

But it is possible. Here’s my trick (different from the notes). Take an

argument x, pair it with true (a ‘first time’ flag) and manufacture

function g which flips the flag if it is true and otherwise applies f to

the x component of the pair, finally dropping the flag before

returning (thus doing f a total of n − 1 times):

pre ≡ λnfx. snd (n

(λy. if ( fst y)(pair false ( snd y))(pair false (f( snd y))))

(pair truex))

Wheee! This is programming. (I could even use case here.)
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Encoding Subtraction

Subtraction is just repeated predecessor:

sub ≡ λmn.nprem

You might want to think about what sub 4 6 is. We know it is a

λ-expression (there is nothing else yet it can be, no “bus error, core

dumped” message). It may or may not have a normal form, and if it

does, it may or may not represent a Church numeral. It’s just not

defined mathematically as we can’t represent negative numbers yet,

so getting a junk result is quite acceptable.

Of course, I could encode signed numbers by pair b n where b is a

boolean, and even IEEE floating point arithmetic, but that’s perhaps

a bit overkeen use of a coding demonstrating theoretical power rather

than run-time efficiency!
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Encoding Lists

We could encode the number n as the list [(), . . . , ()] in ML. Church

numerals could similarly be generalized to represent lists. The list

[x1, x2, . . . , xn] would essentially be represented by the function that

takes f and y to fx1(fx2 . . . (fxny) . . .). Such lists would carry their

own control structure with them.

But, we’ve defined pairing and sums (tagged union), so let’s use

those . . .
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Encoding Lists (2)

Here is our encoding of lists:

nil ≡ λz.z

cons ≡ λxy.pair false (pairxy)

null ≡ fst

hd ≡ λz. fst ( snd z)

tl ≡ λz. snd ( snd z)

This accidentally works; we really should have used

nil ≡ pair trueλz.z

where the λz.z represents ‘()’ and won’t be used in the computation.
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Encoding Lists (3)

The following properties are easy to verify; they hold for all terms M

and N :

null nil ։ true

null ( consMN) ։ false

hd ( consMN) ։ M

tl ( consMN) ։ N

Note that null nil ։ true happens really by chance, while the

other laws hold by our operations on pairs.
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Recursion

We’ve defined almost everything used in programming, except

recursion. How can recursive functions be defined?
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Recursion and HNF

Lecture 4

Foundations of Functional Programming 63 Lent 2007



UNIVERSITY OF

CAMBRIDGE

Recursion (2)

Recursion is obviously essential in functional programming. The

traditional way to express recursion is a fixed point combinator, Y

which essentially maps

letrec f(x) = M in N

into

let f = Y (λf.λx.M) in N

or

(λf.N)(Y λf.λx.M)

By using this idea along with suc , pre and iszero we can encode

any Register Machine from Computation Theory as a λ-term and

hence the λ-calculus has at least the power of Turing machines and

Register Machines (actually equipotent as the SECD machine given

below can be coded as a Register Machine fairly simply).
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Recursion (3)

Slick answer: we almost almost almost don’t need recursion as

things like Church numerals essentially code C++ iterators. Even

Ackermann’s function (see Computation Theory) can be defined:

ack ≡ λm.m(λfn.nf(f 1 )) suc

But hey, this is hard, and we did say “almost”.
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Recursion (4)

Why can’t we just say:

fact ≡ λf.λx. if ( iszerox) 1 (multx( fact (prex)))?

Because fact would then have an infinite number of symbols and all

λ-terms (just like programs) are of finite size.

(Why: the RHS has about 100 more characters in it than the LHS

( fact ) does.)
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Recursion—the Y operator

More general answer: use a fixed point combinator—a term Y such

that Y F = F (Y F ) for all terms F .

Terminology: A fixed point of the function F is any X such that

FX = X; here, X ≡ Y F . A combinator (here, but see later) is any

λ-term containing no free variables (also called a closed term).

To code recursion, F represents the body of the recursive definition;

the law Y F = F (Y F ) permits F to be unfolded as many times as

necessary.

But does such a Y exist?
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Recursion—the Y operator (2)

Example: consider (intuitively, or using Boolean and Church numeral

encodings)

F ≡ λf.λx. if ( iszerox) 1 (multx(f(prex)))

and consider F (λx. 1 ).

(λx. 1 ) agrees with the factorial function for 0 and 1, but F (λx. 1 )

agrees with the factorial function for 0, 1 and 2.

Indeed, if f agrees with factorial for argument values 0..n then Ff

agrees with factorial for 0..n + 1 (this is even true if f did not even

agree with factorial at 0).

So the ‘only’ function on natural numbers satisfying f = Ff is

factorial, hence we can define fact = Y F .

But does such a Y exist?
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Recursion—the Y operator (3)

More examples:

We shall encode the factorial function, the append function on lists,

and the infinite list [0, 0, 0, . . .] in the λ-calculus, realising the

recursion equations

factN = if ( iszeroN) 1 (multN( fact (preN)))

appendZW = if (nullZ)W ( cons (hdZ)(append ( tlZ)W ))

zeroes = cons 0 zeroes

These lines are hopes, not yet proper definitions, as they are

self-referential.
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Recursion—the Y operator (4)

To realize these, we simply put

fact ≡ Y (λgn. if ( iszeron) 1 (multn(g(pren))))

append ≡ Y (λgzw. if (null z)w( cons (hd z)(g( tl z)w)))

zeroes ≡ Y (λg. cons 0 g)

These now are definitions, if Y exists.

But they won’t have a NF!
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Recursion—Y exists (1)

The combinator Y was discovered by Haskell B. Curry. It is defined

by

Y ≡ λf.(λx.f(xx))(λx.f(xx))

Let us calculate to show the fixed point property:

Y F → (λx.F (xx))(λx.F (xx))

→ F ((λx.F (xx))(λx.F (xx)))

= F (Y F )

This consists of two β-reductions followed by a β-expansion. No

reduction Y F ։ F (Y F ) is possible!
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Recursion—Y exists (2)

There are other fixed point combinators, such as Alan Turing’s Θ:

A ≡ λxy.y(xxy)

Θ ≡ AA

This has the reduction ΘF ։ F (ΘF ):

ΘF ≡ AAF ։ F (AAF ) ≡ F (ΘF )
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But Y has no Normal Form!

If M = xM then M has no normal form. For if M ։ N where N is

in normal form, then N = xN . Since xN is also in normal form, the

Church-Rosser Theorem gives us N ≡ xN . But again N cannot

contain itself as a subterm (count the number of its symbols)!

By similar reasoning, if M = PM then M usually has no normal

form, unless P is something like a constant function or identity

function. So anything defined with the help of a fixed point

combinator, such as fact , is unlikely to have a normal form.

Although fact has no normal form, we can still compute with it;

fact 5 does have a normal form, namely 120 . We can use infinite

objects (including functions as above, and also lazy lists) by

computing with them for a finite time and requesting a finite part of

the result.
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But Y has no Normal Form! (2)

The Goldilocks analogy:

• saying “nice λ-terms have a NF” is too strong (because we want

fact to be considered nice).

• saying “nice λ-terms have a WHNF” is too weak (because we

probably don’t want λx.Ω to be considered nice).

• Instead we say “nice λ-terms have a head normal form (HNF)”.
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Digression – 5 slides

Only the definition of HNF (and NF, WHNF) is examinable this year!

Historically, people wanted to say “Nice terms have a NF, and their

‘value’ is that NF (which is unique)”, and then all terms without an

NF are nasty and should all be treated as equal”.

fact lacks a normal form, as do similar (but different functions),

such as the function to calculate the nth triangular number (same

text as fact but with multiply replaced with addition).

So, failing to have a NF isn’t too bad.
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Digression continued

It turns out that terms without a WHNF (earlier) truly are

useless—they all loop, and so after often equated (indeed courses

write ⊥ for this).

But historically, this isn’t how things were done, and the concept of

head normal form [intermediate in strength between HF and WNHF]

captures things better.

Terms without a HNF can be seen as useless. Note that both Y and

fact do have a HNF.

Intuition. Given a closed (no FV’s) term in HNF we can always get a

NF by applying it to suitable arguments. This is not true of λx.Ω.
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Head Normal Form

A term is in head normal form (HNF) if and only if it looks like this:

λx1 . . . xm.yM1 . . .Mk (m, k ≥ 0)

Examples of terms in HNF include

x λx.yΩ λx y.x λz.z((λx.a)c)

But λy.(λx.a)y is not in HNF because it admits the so-called head

reduction

λy.(λx.a)y → λy.a.

Some obvious facts: a term in normal form is also in head normal

form; a term in head normal form is also in weak head normal form.
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Head Normal Form (2)

Some terms do not even have a head normal form. Recall Ω, defined

by Ω = (λx.xx)(λx.xx). A term is reduced to HNF by repeatedly

performing leftmost reductions. With Ω we can only do Ω → Ω,

which makes no progress towards an HNF. Another term that lacks

an HNF is λy.Ω; we can only reduce λy.Ω → λy.Ω.

It can be shown that if MN has an HNF then so does M . Therefore,

if M has no HNF then neither does any term of the form

MN1N2 . . . Nk. A term with no HNF behaves like a totally undefined

function: no matter what you supply as arguments, evaluation never

returns any information. It is not hard to see that if M has no HNF

then neither does λx.M or M [N/x], so M really behaves like a black

hole. The only way to get rid of M is by a reduction such as

(λx.a)M → a. This motivates the following definition of definedness.
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Head Normal Form (3)

Some technical stuff – interesting to some people – background here.

A term is defined if and only if it can be reduced to head normal

form; otherwise it is undefined.

A term M is called solvable if and only if there exist variables x1,

. . . , xm and terms N1, . . . , Nn such that

(λx1 . . . xm.M)N1 . . . Nn = I .

Deep theorem: a term is defined iff is it solvable.

Foundations of Functional Programming 79 Lent 2007



UNIVERSITY OF

CAMBRIDGE

Recursion—Summary

To express a recursive definition, e.g.

letrec d = M in N

we treat it as

let d = Y (λd.M) in N

or

(λd.N)(Y λd.M)

The special case of M ≡ λx.M ′ being a λ-abstraction is common

(and is required in ISWIM/ML – modulo mutual recursion using

pairing below).

Mutual recursion can be achieved by constructing a fixed point which

is a pair (or triple etc.), often a pair (etc.) of functions.
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ISWIM – λ-calculus as a Programming Language

Landin [1966] “The Next 700 Programming Languages”(!) observed

that λ-calculus explained much of the existing 700 programming

languages; proposed ISWIM “If you See What I Mean” as basis for

the next 700.

Hugely influential – and ML is essentially ISWIM.
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ISWIM—Syntax

ISWIM started with the λ-calculus:

x variable

(λx.M) abstraction

(MN) application

It also allowed local declarations:

let x = M in N simple declaration

let f x1 · · ·xk = M in N function declaration

letrec f x1 · · ·xk = M in N recursive declaration
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ISWIM—Syntax (2)

Local declarations could be post-hoc:

N where x = M

N where f x1 · · ·xk = M

N whererec f x1 · · ·xk = M

Big language? No...
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ISWIM—Syntactic Sugar

N where x = M ≡ let x = M in N (etc.)

let x = M in N ≡ (λx.N)M

let f x1 · · ·xk = M in N ≡ let f = λx1 · · ·xk.M in N

≡ (λf.N)(λx1 · · ·xk.M)

letrec f x1 · · ·xk = M in N ≡ letrec f = λx1 · · ·xk.M in N

≡ let f = Y (λf.λx1 · · ·xk.M) in N

≡ (λf.N)(Y (λfx1 · · ·xk.M))

Desugaring explains new syntax by translation into a smaller core

language; avoids unexpected behaviour from complex interactions of

features.
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ISWIM—Constants

Programmers did not have to use Church numerals either, constants

were built-in which had the same effect. So core syntax is now

M ::= x | c | λx.M | MM ′

Constants include

0 1 −1 2 −2 . . . integers

+ − × / arithmetic operators

= 6= < > ≤ ≥ relational operators

true false booleans

and or not boolean connectives

Extra ‘syntax’ (see later for desugaring):

ifE then M else N conditional
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ISWIM—Constants (2)

Constants reduce by each having one or more δ-reduction rules, e.g.

+ 0 0 →δ 0 and + 5 6 →δ 11.

We would want these to be nice (e.g. deterministic, i.e. forbidding

things like ⊕ 0 →δ 0 with ⊕ 0 →δ 1); modelling λ-expressible things

would guarantee this.

So, ISWIM is just the λ-calculus with constants, but historically with

eager evaluation (call-by-value). ISWIM also acquired mutable

operations like ML’s (ref, :=, etc.) – it’s hard to reason about these

with lazy evaluation.
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ISWIM—Constants (3)

The earlier primitives for if-then-else does not work properly with

eager evaluation. Consider if true 1Ω.

So, adopt a new desugaring (assuming x does not appear in M ,N):

ifE then M else N ≡ ( if E (λx.M) (λx.N)) (λz.z)

This is suitable for call-by-value. Note that we often (as in ML)

replace x and λz.z with ()—once we have defined the empty tuple!
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ISWIM—Pattern Matching

Pairing and unpairing is done by constants ((M, N) is sugar for

pairMN)

(M, N) pair constructor

fst snd projection functions

For pattern-matching, λ(p1, p2).E desugars to

λz.(λp1 p2.E)( fst z)( snd z)

where p1 and p2 may themselves be patterns. Thus, we may write

let (x, y) = M in E taking apart M ’s value

let f(x, y) = E in N defining f on pairs

n-tuples (M1, ...Mn) desugar just to iterated pairs (M1, (M2, ...Mn)).
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ISWIM—Mutual Recursion

Just use the desugarings so far:

letrec f1 ~x1 = M1

and f2 ~x2 = M2

...

and fk ~xk = Mk

in N

can be translated to an expression involving pattern-matching:

(λ(f1, . . . , fk).N)(Y (λ(f1, . . . , fk).(λ~x1.M1, λ~x2.M2, . . . , λ~xk.Mk)))

So, all this ‘normal ML-style language’ is really only the λ-calculus

with constants (and syntactic desugaring).
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ISWIM—Mutability

Practically all programming language features, including goto

statements and pointer variables, can be formally specified in the

λ-calculus—denotational semantics uses is as its meta-language.

ISWIM is much simpler than that; it is programming directly in the

λ-calculus. To allow imperative programming, we can even define

sequential execution, letting M ; N abbreviate (λx.N)M ; the

call-by-value rule will evaluate M before N . However, imperative

operations must be adopted as primitive; they cannot be defined by

simple translation into the λ-calculus.

We’ll see how control-flow can be encoded within the λ-calculus when

we study continuations, and explicit stores enable us to capture

mutable objects.
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Real λ-evaluators

Lecture 5
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Real λ-evaluators

We want a real λ-evaluator to execute ISWIM, which is a real

programming language.

What do we take as values: constants and functions. But for a

programming language we don’t want to reduce inside a function

body until is it called. So ‘function values’ means λ-expressions in

WHNF (not HNF or NF) which evaluate inside a function before it is

called.

We don’t use the β-rule’s textual substitution on programs on

efficiency grounds—instead we do delayed substitution by using an

environment and ensure that the expressions encountered by the

evaluator are all subterms of the original program (since there are

only a finite number of these they may be compiled to (real or

abstract) machine code. Later we will see combinator evaluation as

another way to avoid variables and hence substitution.
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Environments and Closures

Consider the (β-)reduction sequence

(λxy.x + y) 3 5 → (λy.3 + y) 5 → 3 + 5 → 8.

Substitution is too slow to be effective for parameter passing; instead,

the SECD machine records x = 3 in an environment.

With curried functions, (λxy.x + y) 3 is a legitimate value. We

represent it by a closure, packaging the λ-abstraction with its current

environment:

Clo( y

↑

bound variable

, x + y

↑

function body

, x = 3

↑

environment

)
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Environments and Closures (2)

Clo( y

↑

bound variable

, x + y

↑

function body

, x = 3

↑

environment

)

When an interpreter applies this function value to the argument 5, it

restores the environment to x = 3, adds the binding y = 5, and

evaluates x + y in this augmented environment.

A closure is so-called because it “closes up” the function body over

its free variables. This operation is costly; most programming

languages forbid using functions as values—indeed Lisp historically

cheated here...
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Static and Dynamic Binding

Traditionally, many versions of Lisp let a function’s free variables pick

up any values they happened to have in the environment of the call

(not that of the function’s definition!); with this approach, evaluating

let x = 1 in

let g(y) = x + y in

let f(x) = g(1) in

f(17)

would return 18, using 17 as the value of x in g! This is dynamic

binding, as opposed to the usual static binding. Dynamic binding is

confusing because the scope of x in f(x) can extend far beyond the

body of f—it includes all code reachable from f (including g in this

case).
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The SECD Machine

A Virtual Machine for ISWIM (the IVM?!?)—also due to Landin!

The SECD machine has a state consisting of four components (think

‘machine registers’) S, E, C, D:

• The Stack is a list of values, typically operands or function

arguments; it also returns the result of a function call.

• The Environment has the form x1 = a1; · · · ; xn = an, expressing

that the variables x1, . . . , xn have the values a1, . . . , an,

respectively.

• The Control is a list of commands. For the interpretive SECD

machine, a command is a λ-term or the word app; the compiled

SECD machine has many commands.
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The SECD Machine (2)

• The Dump is empty (−) or is another machine state of the form

(S, E, C, D). A typical state looks like

(S1, E1, C1, (S2, E2, C2, . . . (Sn, En, Cn,−) . . .))

It is essentially a list of triples (S1, E1, C1), (S2, E2, C2), . . . ,

(Sn, En, Cn) and serves as the function call stack.
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The SECD Machine—state transitions

Let us write SECD machine states as boxes:

Stack

Environment

Control

Dump
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The SECD Machine—state transitions (2)

To evaluate the λ-term M , the machine begins execution an the

initial state where M is the Control (left):

S −

E −

C M

D −

S a

E −

C −

D −

The right diagram shows a final state from which the result of the

evaluation, say a, is obtained (the Control and Dump are empty, and

a is the sole value on the Stack).

If the Control is non-empty, then its first command triggers a state

transition. There are cases for constants, variables, abstractions,

applications, and the app command.
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The SECD Machine—state transitions (3)

A constant is pushed on to the Stack (left): the value of a variable is

taken from the Environment and pushed on to the Stack. If the

variable is x and E contains x = a then a is pushed (right):

S

E

k; C

D

7−→

k; S

E

C

D

S

E

x; C

D

7−→

a; S

E

C

D
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The SECD Machine—state transitions (4)

A λ-abstraction is converted to a closure, then pushed on to the

Stack. The closure contains the current Environment (left):

S

E

λx.M ; C

D

7−→

Clo(x, M, E); S

E

C

D

S

E

MN ; C

D

7−→

S

E

N ; M ;app; C

D

A function application is replaced by code to evaluate the argument

and the function, with an explicit app instruction (right).
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The SECD Machine—state transitions (5)

The app command calls the function on top of the Stack, with the

next Stack element as its argument. A primitive function, like +

or ×, delivers its result immediately:

f ; a; S

E

app; C

D

7−→

f(a); S

E

C

D
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The SECD Machine—state transitions (6)

The closure Clo(x, M, E′) is called by creating a new state to

evaluate M in the Environment E′, extended with a binding for the

argument. The old state is saved in the Dump:

Clo(x, M, E′); a; S

E

app; C

D

7−→

−

x = a; E′

M

(S, E, C, D)
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The SECD Machine—state transitions (7)

The function call terminates in a state where the Control is empty

but the Dump is not. To return from the function, the machine

restores the state (S, E, C, D) from the Dump, then pushes a on to

the Stack. This is the following state transition:

a

E′

−

(S, E, C, D)

7−→

a; S

E

C

D

The case of where the LHS D component is empty halts the machine

(see earlier).
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The Compiled SECD Machine

It takes 17 steps to evaluate ((λx y.x + y) 3) 5 using the SECD

machine (see notes)! Much faster execution is obtained by first

compiling the λ-term. Write [[M ]] for the list of commands produced

by compiling M ; there are cases for each of the four kinds of λ-term.

Constants are compiled to the const command, which will (during

later execution of the code) push a constant onto the Stack:

[[k]] = const(k)

Variables are compiled to the var command, which will push the

variable’s value, from the Environment, onto the Stack:

[[x]] = var(x)
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The Compiled SECD Machine (2)

Abstractions are compiled to the closure command, which will push

a closure onto the Stack. The closure will include the current

Environment and will hold M as a list of commands, from

compilation:

[[λx.M ]] = closure(x, [[M ]])

Applications are compiled to the app command at compile time.

Under the interpreted SECD machine, this work occurred at run

time:

[[MN ]] = [[N ]]; [[M ]];app
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The Compiled SECD Machine (3)

We could add further instructions, say for conditionals. Let

test(C1, C2) be replaced by C1 or C2, depending upon whether the

value on top of the Stack is true or false :

[[ if E then M else N ]] = [[E]]; test([[M ]], [[N ]])
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The Compiled SECD Machine (4)

To allow built-in 2-place functions such as + and × could be done in

several ways. Those functions could be made to operate upon

ordered pairs, constructed using a pair instruction. More efficient is

to introduce arithmetic instructions such as add and mult , which

pop both their operands from the Stack. Now ((λx y.x + y) 3) 5

compiles to

const(5); const(3); closure(x, C0);app;app

and generates two further lists of commands:

C0 = closure(y, C1)

C1 = var(y);var(x); add
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The Compiled SECD Machine (5)

Many further optimisations can be made, leading to an execution

model quite close to conventional hardware (certainly close to JVM).

Variable names could be removed from the Environment, and bound

variables referred to by depth rather than by name. Special

instructions enter and exit could efficiently handle functions that

are called immediately (say, those created by the declaration

let x = N in M), creating no closure:

[[(λx.M)N ]] = [[N ]]; enter; [[M ]]; exit
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The Compiled SECD Machine (6)

Tail recursive (sometimes called iterative) function calls could be

compiled to the tailapp command, which would cause the following

state transition:

Clo(x, C, E′); a

E

tailapp

D

7−→

−

x = a; E′

C

D

The useless state (−, E,−, D) is never stored on the dump, and the

function return after tailapp is never executed—the machine jumps

directly to C!

Compare this to the Part IA treatment of iteration vs. recursion.
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The SECD Machine—Recursion

The usual fixed point combinator, Y , fails under the SECD machine;

it always loops. A modified fixed point combinator, including extra

λ’s to delay evaluation (just like if-then-else earlier!), does work:

λf.(λx.f(λy.x x y)(λy.x x y))

But it is hopelessly slow! Recursive functions are best implemented

by creating a closure with a pointer back to itself.
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The SECD Machine—Recursion (2)

Suppose that f(x) = M is a recursive function definition. The value

of f is represented by Y (λf x.M). The SECD machine should

interpret Y (λfx.M) in a special manner, applying the closure for

λf x.M to a dummy value, ⊥. If the current Environment is E then

this yields the closure

Clo(x, M, f = ⊥; E)

Then the machine modifies the closure, replacing the ⊥ by a pointer

looping back to the closure itself:

Clo(x, M, f = · ; E)
-
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The SECD Machine—Recursion (3)

When the closure is applied, recursive calls to f in M will re-apply

the same closure. The cyclic environment supports recursion

efficiently.

The technique is called “tying the knot” and works only for function

definitions. It does not work for recursive definitions of data

structures, such as the infinite list [0, 0, 0, . . .], defined as

Y (λl. cons 0 l). Therefore strict languages like ML allow only

functions to be recursive.
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Relation to Operational Semantics

A virtual machine (like the SECD machine) has operational semantic

rules which are all axioms

(S, E, C, D) 7−→ (S′, E′, C ′, D′)

Often semantics are simpler to understand if the traversing of

expressions in the Control C (done explicitly in the SECD machine)

are done implicitly using rules rather than axioms, e.g.

M → M ′

MN → M ′N

This enables us to drop the axioms (SECD reductions, such as that

for MN ; C) which explicitly manipulate the structure of C. You

might prefer the lambda interpreter written in ML (next few slides)

which uses the ML call stack to traverse the structure of the

expression to be evaluated—it’s a big-step semantics.
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A lambda-interpreter in ML

The SECD-machine, while conceptually “merely an abstract

machine” does a fair amount of administration for the same reason

(e.g. it has explicitly to save its previous state when starting to

evaluate a λ-application).

Syntax of the λ-calculus with constants in ML as

datatype Expr = Name of string |

Numb of int |

Plus of Expr * Expr |

Fn of string * Expr |

Apply of Expr * Expr;

Values are of course either integers or functions (closures):

datatype Val = IntVal of int | FnVal of string * Expr * Env;
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A lambda-interpreter in ML (2)

Environments are just a list of (name,value) pairs (these represent

delayed substitutions—we never actually do the substitutions

suggested by β-reduction, instead we wait until we finally use a

substituted name and replace it with the λ-value which would have

been substituted at that point);

datatype Env = Empty | Defn of string * Val * Env;

and name lookup is natural:

fun lookup(n, Defn(s, v, r)) =

if s=n then v else lookup(n, r);

| lookup(n, Empty) = raise oddity("unbound name");
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A lambda-interpreter in ML (3)

The main code of the interpreter is as follows:

fun eval(Name(s), r) = lookup(s, r)

| eval(Numb(n), r) = IntVal(n)

| eval(Plus(e, e’), r) =

let val v = eval(e,r);

val v’ = eval(e’,r)

in case (v,v’) of (IntVal(i), IntVal(i’)) => IntVal(i+i’)

| (v, v’) => raise oddity("plus of non-number") end

| eval(Fn(s, e), r) = FnVal(s, e, r)

| eval(Apply(e, e’), r) =

case eval(e, r)

of IntVal(i) => raise oddity("apply of non-function")

| FnVal(bv, body, r_fromdef) =>

let val arg = eval(e’, r)

in eval(body, Defn(bv, arg, r_fromdef)) end;
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A lambda-interpreter in ML (4)

Note particularly the way in which dynamic typing is handled (Plus

and Apply have to check the type of arguments and make

appropriate results). Also note the two different environments (r,

r fromdef) being used when a function is being called.

A fuller version of this code (with test examples and with the “tying

the knot” version of Y appears on the course web page.
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Do we really do environment name-lookup?

Our environments (for both SECD and AST-walking interpreters)

consisted of name-value pairs. This is surely slow—both in practice

and gives O(n) variable access instead of O(1).

This overhead is pretty unavoidable if interpreting, but in the

compiled SECD machine (or any other way of compiling the

λ-calculus) we change the access instruction from variable x from

var(x) to var′(i) where i is the (compile-time calculable) offset of x

in E. This means that we no longer have to store name-value pairs in

E, just values.
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Do we really do environment name-lookup (2)

By doing a bit more work when making a closure:

• loading and saving the values of all its free variables as a vector

within the closure—rather than just saving E itself there; and

• leaving the argument(s) on S (an implicit cons, rather than an

explicit one)

we can ensure that all variable access is O(1).

This is what ML does.
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Lazy evaluation systems

Lecture 6
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Lazy evaluation systems

Idea 1: change SECD machine for call-by-need (lazy evaluation): as

follows. When a function is called, its argument is stored unevaluated

in a closure containing the current environment. Thus, the call MN

is treated something like M(λu.N), where u does not appear in N .

This closure is called a suspension or a thunk. When a strict, built-in

function is called, such as +, its argument is evaluated in the usual

way.

It is essential that no argument be evaluated more than once, no

matter how many times it appears in the function’s body:

let sqr n = n × n in

sqr(sqr(sqr 2))
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Lazy evaluation systems (2)

If this expression were evaluated by repeatedly duplicating the

argument of sqr, the waste would be intolerable. Therefore, the lazy

SECD machine updates the environment with the value of the

argument, after it is evaluated for the first time. But the cost of

creating suspensions makes this machine ten times slower than the

strict SECD machine, according to David Turner.

Idea 2: Turner (1976) showed how Combinatory Logic (a

variable-free system equivalent to λ-calculus) could do things better:

en.wikipedia.org/wiki/Combinatory_logic

en.wikipedia.org/wiki/Graph_reduction
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Combinators and their Evaluators

Combinators exist in a system called combinatory logic (CL). This

name derives from historical reasons—we will not treat it as a logic.

Simplest version:

P ::= c | PP ′ with c ::= K | S

(essentially the λ-calculus with constants, but without variables or

λ-abstractions!)

We will use P , Q and R to range over combinator terms. (Note that

now K and S are constants within the language rather than the use

of symbols of this font-style as abbreviations earlier in the notes.)
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Combinators and their Evaluators (2)

While combinatory terms do not formally contain variables, it is

convenient to allow them as an extension (for example during

intermediate stages of the translation of λ-terms to combinatory

terms, e.g. Kx(S Kx)(K S K y)S . Although CL is not

particularly readable, it is powerful enough to encode the λ-calculus

and hence all the computable functions!

This is what we to exploit!
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Combinators and their Evaluators (3)

The combinators obey the following (δ-)reductions:

KP Q →w P

SP Q R →w P R(Q R)

Thus, the combinators could have been defined in the λ-calculus by

as the following abbreviations

K ≡ λx y.x

S ≡ λf g x.(f x)(g x)

But note that S K does not reduce—because S requires three

arguments — while the corresponding λ-term does. For this reason,

combinator reduction is known as weak reduction (hence the “w” in

→w). [This concept is distinct from that of WHNF earlier.]
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Combinators and their Evaluators (4)

Here is an example of weak reduction:

S K KP →w KP (KP ) →w P

Thus S K KP ։w P for all combinator terms P ; we can define the

identity combinator by I ≡ S K K .

Equivalently, we could introduce it as a constant with δ-reduction

IP →w P

Many of the concepts of the λ-calculus carry over to combinators. A

combinator term P is in normal form if it admits no weak reductions.

Combinators satisfy a version of the Church-Rosser Theorem: if

P = Q (by any number of reductions, forwards or backwards) then

there exists a term Z such that P ։w Z and Q ։w Z.
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Combinators encode λ

Any λ-term may be transformed into a roughly equivalent

combinatory term. The key is the transformation of a combinatory

term P into another combinator term, written as λ∗x.P since it

behaves like a λ-abstraction even though it is a metalanguage

concept—it translates one combinatory term into another rather

than being part of any combinatory term.

The operation λ∗x, where x is a variable, is defined recursively as

follows:

λ∗x.x ≡ I

λ∗x.P ≡ KP (x not free in P )

λ∗x.P Q ≡ S (λ∗x.P )(λ∗x.Q)
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Example translation

For example:

λ∗x y.y x ≡ λ∗x.(λ∗y.y x)

≡ λ∗x.S (λ∗y.y)(λ∗y.x)

≡ λ∗x.(S I )(Kx)

≡ S (λ∗x.S I )(λ∗x.Kx)

≡ S (K (S I ))(S (λ∗x.K )(λ∗x.x))

≡ S (K (S I ))(S (K K ) I )

Beware: each λ∗ operation can double the size of its operand. Hence

removing n nested λs with λ∗ gives exponential blow-up. Turner

showed how to do better (later).
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Combinators encode λ-reduction

Using (λ∗x.P )x ։w P , we may derive an analogue of β-reduction for

combinatory logic. We also get a strong analogue of

α-conversion—changes in the abstraction variable are absolutely

insignificant, yielding identical terms:

For all combinatory terms P and Q,

(λ∗x.P )Q ։w P [Q/x]

λ∗x.P ≡ λ∗y.P [y/x] if y 6∈ FV(P )
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Formal translation

The mapping ( )CL converts a λ-term into a combinator term. It

simply applies λ∗ recursively to all the abstractions in the λ-term;

note that the innermost abstractions must be performed first

(because λ∗ is not defined on terms with a λ-abstraction in them!).

The inverse mapping, ( )λ, converts a combinator term into a λ-term.

Note that the latter is pretty trivial, we merely treat each use of S

or K as if it were an abbreviation.
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Formal translation (2)

The mappings ( )CL and ( )λ are defined recursively as follows:

(x)CL ≡ x

(M N)CL ≡ (M)CL(N)CL

(λx.M)CL ≡ λ∗x.(M)CL

(x)λ ≡ x

(K )λ ≡ λx y.x

(S )λ ≡ λx y z.x z(y z)

(P Q)λ ≡ (P )λ(Q)λ
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Formal translation—properties

Different versions of combinatory abstraction yield different versions

of ( )CL; the present one causes exponential blow-up in term size, but

it is easy to reason about. Note that the reverse translation ( )λ is

just linear.

Let us abbreviate (M)CL as MCL and (P )λ as Pλ. It is easy to check

that ( )CL and ( )λ do not add or delete free variables:

FV(M) = FV(MCL) FV(P ) = FV(Pλ)

Foundations of Functional Programming 133 Lent 2007



UNIVERSITY OF

CAMBRIDGE

Formal translation—properties (2)

But, normal forms and reductions are not preserved. For instance,

S K is a normal form of combinatory logic; no weak reductions apply

to it. But the corresponding λ-term is not in normal form:

(S K )λ ≡ (λx y z.x z(y z))(λx y.x) ։ λy z.z

Hence equality is not obviously preserved.
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Formal translation—properties (3)

But, if we add extensionality (in combinatory logic, extensionality

takes the form of a new rule for proving equality):

Px = Qx

P = Q
(x not free in P or Q)

In the λ-calculus, extensionality is expressed by by η-reduction:

λx.Mx →η M (x not free in M)

or it can be represented directly by a similar rule to that in

combinatory logic above.
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Formal translation—properties (4)

Assuming extensionality, the mappings preserve equality

[Barendregt]:

(MCL)λ = M in the λ-calculus

(Pλ)CL = P in combinatory logic

M = N ⇐⇒ MCL = NCL

P = Q ⇐⇒ Pλ = Qλ
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Using Combinators for Compilation

Combinator abstraction gives us a theoretical basis for removing

variables from λ-terms, and will allow efficient graph reduction.

But first, we need a better mapping from λ-terms to combinators.

The improved version of combinatory abstraction relies on two new

combinators, B and C , to handle special cases of S :

BP Q R →w P (Q R)

CP Q R →w P R Q

Note that BP Q R yields the function composition of P and Q.
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Using Combinators for Compilation (2)

Let us call the new abstraction mapping λT , after David Turner, its

inventor:

λT x.x ≡ I

λT x.P ≡ KP (x not free in P )

λT x.P x ≡ P (x not free in P )

λT x.P Q ≡ BP (λT x.Q) (x not free in P )

λT x.P Q ≡ C (λT x.P )Q (x not free in Q)

λT x.P Q ≡ S (λT x.P )(λT x.Q) (x free in P and Q)
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Using Combinators for Compilation (3)

Although λT is a bit more complicated than λ∗, it generates much

better code (i.e. combinators). The third case, for P x, takes

advantage of extensionality; note its similarity to η-reduction. The

next two cases abstract over P Q according to whether or not the

abstraction variable is actually free in P or Q. Let us do our example

again:

λT x y.y x ≡ λT x.(λT y.y x)

≡ λT x.C (λT y.y)x

≡ λT x.C Ix

≡ C I

The size of the generated code has decreased by a factor of four!
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Using Combinators for Compilation (4)

Unfortunately, λT can still cause a quadratic blowup in code size;

additional primitive combinators can be introduced; all the constants

of the functional language—numbers, arithmetic operators,

etc.—must be taken as primitive combinators.

Having more and more primitive combinators makes the code smaller

and faster. This leads to the method of super combinators, where the

set of primitive combinators is extracted from the program itself.

For a good set of combinators the translation if a λ-term of n symbols

only requires n log n combinators. While this might sound wasteful,

there is a cheating involved. The log n derives from the fact that we

require log n operations (from any finite fixed set of operators) to

select from n different variables in scope. However, to have n different

variables in scope, a λ-term of n symbols needs n log n characters. So

the translation is linear after all in the true size of a program.
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Lazy Evaluation using Combinators

Lecture 7
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Combinator Terms as Graphs

Consider the ISWIM program

let sqr(n) = n × n in sqr(5)

Let us translate it to combinators:

(λT f.f 5)(λT n.multn n) ≡ C I 5 (S (λT n.multn)(λT n.n))

≡ C I 5 (S mult I )

We evaluate this by reducing it to normal form.
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Combinator Terms as Graphs (2)

Graph reduction works on the combinator term’s graph structure.

This resembles a binary tree with branching at each application. The

graph structure for C I 5 (S mult I ) is as follows:

C I

5

S mult

I

Repeated arguments cause sharing in the graph, ensuring that they

are never evaluated more than once.
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Combinator Terms as Graphs (2)

Graph reduction deals with terms that contain no variables. Each

term, and its subterms, denote constant values. Therefore we may

transform the graphs destructively—operands are never copied. The

graph is replaced by its normal form!

Note that replaced means destructively updating the node pointed to

(e.g. from an ‘apply’ node to a ‘number’ node or another ‘apply’

node). This type of replacement (‘graph reduction’) means that if

several pointers point to one node then evaluating what one of them

points to implies evaluating what they all point to.

See next slide. The sharing in the reduction for S is crucial, for it

avoids duplicating R in the rule SP Q R →w P R(Q R).
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Combinator Terms as Graphs (3)

I P
P

K P

Q
P

S P

Q

R

P Q

R

B P

Q

R

RQ

P

C P

Q

R

P

Q

R
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Combinator Terms as Graphs (4)

We also require graph reduction rules for the built-in functions, such

as mult . Because mult is a strict function, the graph for multP Q

can only be reduced after P and Q have been reduced to numeric

constants m and n. Then multm n is replaced by the constant

whose value is m× n. Graph reduction proceeds by walking down the

graph’s leftmost branch, seeking something to reduce. If the leftmost

symbol is a combinator like I , K , S , B , or C , with the requisite

number of operands, then it applies the corresponding

transformation. If the leftmost symbol is a strict combinator

like mult , then it recursively traverses the operands, attempting to

reduce them to numbers.

Note that “leftmost-outermost” means the combinator found first on

the leftmost spine of the graph.
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Lazy evaluation systems (réprise)

Combinator graph rewriting systems are interesting, and were very

promising for lazy evaluation systems. However, GHC (Glasgow

Haskell Compiler)—the de facto standard nowadays—uses a more

conventional approach.

Idea 3: values are still represented on the heap, but instead of an

(interpreter-style) reduction system wandering over a graph structure,

a lazy expression is represented as a structure containing code.

Branching to (i.e. an indirect subroutine call to) this code causes the

associated expression to be evaluated and also to overwrite the node

with the value of the expression (and the code pointer to be

overwritten with a short subroutine which merely reloads the result).

Advantage: no time is spent examining graph nodes for what to do

next.
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Continuations

Lecture 8
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Continuations

A continuation is a value which represents the “rest of the program”;

such values typically appear as function-like-things which never

return. In many treatments (such as call/cc in Scheme (a form of

Lisp)) they can seen as pretty much like exceptions.

For example, given ML

let f b n g = 1 + (if b then n+10 else g(n+100))

if k represents the continuation “abandon the current computation,

print the argument of k and return to top level” then f true 0 k

would give 11, and f false 0 (λx.x) would give 101, but f false 0 k

would give 100. (Formally we should be careful as to what ‘give’

means here.)

What’s this got to do with us?
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Continuations (2)

In the previous slide, continuations were mixed with ordinary code to

give behaviour outside our ideas of function call/return (admittedly

useful to explain exceptions).

Let’s us study how such non-standard control flow might be encoded

directly in the λ-calculus.

The main thing is to show that (rather surprisingly) function return

is rather redundant in λ-calculus. Indeed there is a Sussman and

Steele paper “Lambda: the Ultimate Goto”.

Then ideas of having multiple alternative continuations (rather than

just monolithic “return”) becomes more natural.,
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Continuations (3)

How can function return be ‘inessential’?

Consider an ML function f : A → B, and imagine an alternative

top-level loop which just evaluates expressions an ignores their result.

Now print(f(a)) does what ML normally does with f(a), assuming

print : B → unit

But what if we’re forbidden to use the result of f?

Define g k x with the effect of k(f x) and now write g print a.

Note that f : A → B, but g : (B → unit) → (A → unit).

Say “g is the continuation passing form of f”.

Can we always define such a g with all return types being unit?

[Yes].
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Continuation Passing Style

A function which never returns (hence its return type may as well be

unit were we to have types) but exits by calling another function (a

continuation) which does not return, is said to be in continuation

passing style (CPS).

The continuation it calls will typically be one of its parameter, but

you also can see Prolog ‘backtracking points’ as being continuations

stored away on a some form of stack. [Extended exercise.]
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CPS transformation

Write [[·]] for the following transformation (or translation or

compilation) on the λ-calculus.

[[x]] ≡ λk.kx

[[c]] ≡ λk.kc

[[λx.M ]] ≡ λk.k(λx.[[M ]])

[[M N ]] ≡ λk.[[M ]](λm.[[N ]](λn.(mn)k))

This is the call-by-value CPS transformation (there are variants for

call-by-name) etc.
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CPS transformation (2)

Note that the RHS can also be expressed using let using the standard

sugaring (let x = e in e′) ≡ (λx.e′)e:

[[M N ]] ≡ λk.[[M ]](λm.[[N ]](λn.(mn)k))

We can see continuation passing style also as “naming all

intermediate results”. Also, note that M and N are no longer quite

as symmetric...
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CPS encodes control

Note that the above translation says, given traditional (‘direct-style’)

application MN , then do

[[M N ]] ≡ λk.

[[M ]](λm.

[[N ]](λn.(mn)k))

I.e. evaluate M before N . We could have equivalently written

[[M N ]] ≡ λk.

[[N ]](λn.

[[M ]](λm.(mn)k))

i.e. evaluate N first.
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CPS encodes control (2)

Note that the CPS transformation produces a λ-expression which has

essentially ‘at most one reduction possible’—this then reduces to

another λ-expression which has at most one reduction possible etc.

(This glib statement needs some tightening—the CPS translation

introduces some spurious ‘administrative redexes’ which can be

eliminated instead of being done at run-time; note also the

programming language assumption that reductions are never done

inside a λ-abstraction.)

This is what we mean by “CPS encodes control”—the [[·]] translation

hard-encodes an evaluation strategy into a λ-term.
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CPS encodes control (3)

(Parenthetical slide)

We can take this further and give an alternative call-by-name CPS

transformation which takes a λ-term and hard-encodes the

call-by-name reduction strategy.

[[x]]n ≡ x

[[c]]n ≡ λk.kc

[[λx.M ]]n ≡ λk.k(λx.[[M ]]n)

[[M N ]]n ≡ λk.[[M ]]n(λm.(m[[N ]]n)k)

This is Plotkin’s original translation; correction: it also has the “only

one reduction possible” property. See [Danvy and Filinski 1992] for

more on this.
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Translating back?

Suppose [[M ]] ≡ N ; then how do we get the value of M from N?

For such N the answer is simple: use N(λx.x). This acts as a ‘do

nothing’ continuation. So writing [[N ]]fromCPS = N(λx.x) suffices.

But what about the M : A → B and N : (B → unit) → (A → unit)

view? It turns out that N : ∀α.(B → α) → (A → α) is a more

general (and valid) type than the one above. Hence to apply N to

(λx.x) we take α = B and get N(λx.x) : A → B as expected.

Note: this use of λx.x only works for λ-terms produced by [[·]]—it

does not necessarily work for continuations augmenting a

conventional language (exceptions, or call/cc).
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Didn’t we cheat?

I said “only tail calls and all returns are unit” but wrote (mn)k in

[[M N ]] ≡ λk.[[M ]](λm.[[N ]](λn.(mn)k))

and (mn) doesn’t return unit.

One slick answer: all our translations get two curried arguments and

use them both at once. Or...
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Did we cheat (2)

Use pairs for encoding of arguments to functions (but not arguments

to continuations):

[[x]] ≡ λk.kx

[[c]] ≡ λk.kc

[[λx.M ]] ≡ λk.k(λ(k′, x)([[M ]]k′)

[[M N ]] ≡ λk.[[M ]](λm.[[N ]](λn.m(k, n)))

Note that this curries [modulo also swapping the argument order]

(B → unit) → (A → unit) into ((B → unit) × A) → unit. Look at

this (typed assembly code) view: a function is just something you

branch to which takes two arguments in registers. One is the real

argument of type A and the other a ‘return address’ (type B → unit)

which is code to branch to which expects a B in a register.
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CPS in practice

Suppose fxy = g(h(x + 1))(jy), then what we need to do is to

capture the result of h, then the result of j and then pass the result

of g to the continuation k. This results in

f ′ x y k = h′ (x + 1) (λr1.

j′ y (λr2.

g′ r1 r2 k))

Note how this parallels a machine-level implementation—first call h,

then call j and finally call g. We have even had to decide whether to

call h or j first—it might not matter from the programmer’s point of

view, but a machine implementation has to choose.
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Side-effects and Monads

Lecture 9
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Side-effects in functional languages

Consider ML programs like:

val a = ref 1;

fun f(x,y) = (a := (!a)*2 + 1; x+y)

fun g(x) = (a := (!a)*3 + 1; x)

fun h(y) = (a := (!a)*5 + 1; y)

print f(g(1),h(2)) + !a;

The value printed depends critically on the order of evaluation of f, g

and h. In ML the language specification says the order g, h then f.

The problem is the use of implicit side-effects. This isn’t very

functional—and what about I/O?
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Side-effects—the ‘world’

How about (using t〈i〉 for temporary variables):

type world = int;

fun f(x,y) w = (x+y, w*2 + 1)

fun g(x) w = (x, w*3 + 1)

fun h(y) w = (y, w*5 + 1)

print (let val w0 = 1;

val (t1,w1) = g(1) w0

val (t2,w2) = h(2) w1

val (t3,w3) = f(t1,t2) w2

in t3 + w3 end);

Note that each world is used exactly once (‘linearly’).
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Side-effects—I/O

The side-effects (and interaction) of I/O can be encoded by returning

a value of a datatype, which the read-eval-print loop serialises:

(* Note "unit->" trick is only needed for ML (because eager). *)

datatype IO = TTwrite of char * (unit->IO)

| TTread of (char -> IO)

| Halt

TTwrite(’>’, fn () =>

TTread(fn c =>

TTwrite(c+1, fn() =>

Halt)));

Note the similarity to continuations. Note also that IO above is

distinct from Haskell syntax (see later).
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Side-effects and laziness

Note that the above encodings of side effects also work in lazy

languages. You may be happy with ML’s implicit treatment of

side-effects cemented by its carefully specified order-of-evalation, but

(from a programmer perspective) laziness gives fairly unpredictable

order of evaluation and so something else must be done.

Before we dig into the Haskell solution, might we note that an

overall-consistent view is that we can see most programming

language features (concurrency being a notable exception) as encoded

by λ-calculus:

Functions/procedures etc. are seen as taking two arguments: one is

the true argument, one is the continuation: special continuations

(like TTread above) encode “interact with the environment, possibly

continuing with another part of the program afterwards”.
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Side-effects and laziness (2)

Big question: can we have a convenient “functions-as-functions” pure

(and lazy) programming language in which side-effects code both

neatly and efficiently?

Yes: Haskell is a proof-by-example.
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Side-effects and Monads

Haskell encapsulates sequencing and I/O inside a monad. We will

just use the IO monad (to avoid discussing Haskell ‘typeclass’).

Monads have two operations (we use the Haskell convention of using

names like ‘a’ and ‘b’ for type variables, and ‘::’ for type constraint)

return :: a -> IO a

>>= :: IO a -> (a -> IO b) -> IO b

Note that IO a is the type of actions which when performed ‘return’

an a (but you need ‘>>=’ to get at its value). It might help to see

IO a is approximately the same as a->IO in ML earlier.

Note that

putChar :: Char -> IO () -- Haskell "()" is ML "unit"

getChar :: IO Char
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Side-effects and Monads (2)

So we can write the ‘prompting’ example earlier as

putChar ’>’ >>= \() ->

getChar >>= \c ->

putChar (intToDigit((digitToInt c)+1))

Understanding how this works is important: values requesting

actions return to top level where the evaluator acts on them and

continues the computation. Each segment of computation between

such top-level interaction is purely functional.

Why didn’t we use Halt from earlier? Answer: Haskell IO() values

are not simply constructors: both putChar ’a’ and return () have

type IO(). Think of a value of IO() as an action which when

performed does a sequence of zero or more IO operations before

returning ().
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Side-effects and Monads (3)

This can produces very readable code which has side-effects and does

IO (using ghci, the interactive top-level loop):

Prelude> :type putChar ’a’ -- ask for the type of ‘putchar’

putChar ’a’ :: IO ()

Prelude> let f(x) = if x then putChar ’$’ else return()

Prelude> f(True) -- prints a ’$’ (see start of next line)

$Prelude> f(False) -- does nothing

Prelude>
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Side-effects and Monads (4)

This notation is still awkward, so Haskell provides ‘do’ notation to

sugar it little.

do { putChar ’>’;

c <- getChar;

putChar (intToDigit((digitToInt c)+1));

return () --- optional

}

This desugars to the previous slide.

Note that in both cases changing return() to return 3 would make

the expression return IO Int instead of IO(); we just tended not to

use return in the ‘prompting’ example.
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Side-effects and Monads (5)

The above introduced only the IO monad—this is interpreted

specially by the Haskell top-level loop—and the builtin functions like

getChar mean that return seems less useful.

return essentially performs the role of an identity to ‘>>=’ the

following three forms are equivalent (they all give a value of type

IO() which causes ‘a’ to be printed):

putChar ’a’

return() >>= \()->putChar ’a’

putChar ’a’ >>= \()->return() -- [or putChar ’a’ >>= return]

However, monads in general code up the idea of:

• return injects a value into a monad (representing a computation)

• >>= sequences two computations, giving back a single

computation representing both
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Side-effects and Monads (6)

Values can be ‘extracted’ (or at least passed on to the next

computation) from a monad using the above ‘>>=λc.’ trick used in

CPS.

The critical point about the return and >>= operators in a monad is

that they encapsulate an object (e.g. state) and ensure it is threaded

through the program like the world values were linearly threaded

earlier.

The fact the the monad operators capture and manipulate a state in

a linear manner explains their apparent initial complexity—interested

readers should explore this more by writing some Haskell programs.

Foundations of Functional Programming 173 Lent 2007



UNIVERSITY OF

CAMBRIDGE

ML type system

Lecture 9.5
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Type Systems for Functional Languages

The core ML type checker uses unification. For the λ-calculus we just

• give all λ-bound variables (unknown) type variables (note all

variables are λ-bound as programs do not have free variables)

• give all constants their predeclared type

• propagate (equality) constraints imposed by application or use of

constants.

Write infer(e,Γ, t) for Γ ⊢ e : t (see Part II course ‘Types’).
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ML type checker in prolog

% Expressions:

% Expr ::= icon(int) | var(string) | lam(string, Expr)

% | app(Expr, Expr)

% Type Expressions:

% Type ::= tint | tarrow(Type,Type)

% Type Environments: list of (string,Type) pairs

% In ’lookup’ the use of cut (!) ensures that we only find the most

% recent (i.e. non-scope-shadowed) version of a variable when the

% names of lambda-bound variables are not distinct.

lookup(X, [(X,T)|TEnv], T) :- !.

lookup(X, [(_,_)|TEnv], T) :- lookup(X, TEnv, T).
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ML type checker in prolog

infer(var(X), TEnv, T) :- lookup(X,TEnv,T).

infer(icon(_), TEnv, tint).

infer(lam(X,E), TEnv, arrow(T1,T2)) :- infer(E, [(X,T1)|TEnv], T2).

infer(app(F,E), TEnv, T2) :- infer(F, TEnv, arrow(T1,T2)),

infer(E, TEnv, T1).

% two tests:

typeofScombinator(T) :-

infer(lam(f,lam(g,lam(x,

app(app(var(f),var(x)), app(var(g),var(x)))))),

[],

T).

bug(T) :-

infer(lam(x, app(var(x),var(x))), [], T).
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But ML has let

The key invention of Milner (over Hindley’s type checking encoded

above in Prolog) is to handle let better.

Note the standard sugaring (let x = e in e′) ≡ (λx.e′)e does not

respect ML type checking:

• let i = λz.z in i i type-checks in ML; and

• (λi.i i)(λz.z) fails to type-check in ML

but they are equivalent semantically!

The idea is that let has special-case type-checking which gives a type

more general than that of “apply-of-λ” (the former may have a type

even when the latter fails to type-check as above).
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Dealing with let

Variables bound by let are given polymorphic types; if the type of e is

(say) α → int then the type of x in let x = e is treated as generic, i.e.

∀α.α → int.

Such generic types are instantiated by replacing all ∀-qualified type

variables with a new (fresh) type variable at each use of x. (That’s

why the type-checking rules are more general than those those for λ

which uses the same type variables for each use of x.)

The exact details of which type-variables in a let-bound variable are

to be treated as generic is rather subtle—involving their use elsewhere

(e.g. how any free variables of e is bound in an outer scope). The

interesting corner case is the type of y in λx.let y = (x, λz.z) in e′.

See the “Types” Part II course.
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Foundations of Functional Programming

The End

(Final version of these slides are now on the course website)
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