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Comparing Alternatives

Samuel Kounev
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References� „Measuring Computer Performance – A Practitioner's Guide“
by David J. Lilja, Cambridge University Press, New York, NY, 
2000, ISBN 0-521-64105-5� The supplemental teaching materials provided at 
http://www.arctic.umn.edu/perf-book/ by David J. Lilja
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� Comparing two alternatives� Before-and-after comparisons � Non-corresponding measurements� Comparing proportions� Comparing more than two alternatives � One-Factor analysis of variance (ANOVA) 

Roadmap

4

1. Before-and-after comparisons
(paired observations)

2. Non-corresponding measurements
(unpaired observations)

Comparing Two Alternatives� Did a change to the system have a 
statistically significant impact on 
performance?� Is there a statistically significant 
difference between two different 
systems?
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� Before-and-after measurements are not independent� They form corresponding pairs� Measurements within the 2 sets (before and after) need not be 
identically distributed

Procedure
• Compute mean and standard deviation of the differences

• Find confidence interval for the mean of differences

• No statistically significant difference between systems if 
interval includes 0

Before-and-After Comparisons
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� From mean of differences, appears that change reduced 
performance. However, standard deviation is large!� 95% Confidence Interval for the mean of differences:

15.4 deviation Std.        1sdifference of Mean ==−== dsd

Ex: Before-and-After Comparisons (2)
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� Interval includes 0→With 95% confidence, there is no statistically significant 
difference between the two systems.
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� No direct correspondence between pairs of 
measurements � Unpaired observations� n1 measurements of system 1� n2 measurements of system 2� Measurements within each set are IID 
random variables

Non-Corresponding Measurements

Procedure
1. Compute means
2. Compute difference of means
3. Compute standard deviation of difference of means
4. Find confidence interval for this difference
5. No statistically significant difference between systems if 

interval includes 0

This procedure is known as t-test
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� If only a few measurements available (i.e. n1 < 30 or n2 < 30), 
but it is known that� Errors are normally distributed and (σ1 = σ2 or n1 = n2)� Then special case applies…

Special Case
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� Typically produces tighter confidence interval� Sometimes useful after obtaining additional measurements 
to tease out small differences
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Comparing Proportions

� The number of events of interest mi follows a binomial distribution 
with parameters pi and ni� If mi >= 10 we can approximate the binomial distributions using 
normal distributions:
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Comparing Proportions (2)
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� Initial operating system (OS)� n1 = 1,300,203 interrupts (3.5 hours)� m1 = 142,892 interrupts occurred in OS code� p1 = 0.1099, or 11% of time executing in OS� Upgraded OS� n2 = 999,382� m2 = 84,876� p2 = 0.0849, or 8.5% of time executing in OS� Statistically significant improvement?� p = p1 – p2 = 0.0250� sp = 0.0003911� 90% confidence interval� (0.0242, 0.0257)� Statistically significant difference?

Example
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� Comparing two alternatives� Before-and-after comparisons � Non-corresponding measurements� Comparing proportions� Comparing more than two alternatives � One-Factor analysis of variance (ANOVA) 

Roadmap

20

� Want to find out if there is statistically significant 
difference between the alternatives� Naïve approach� Compare systems two-by-two using previous techniques

Comparing More Than Two Alternatives
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One-Factor Analysis of Variance� Very general technique, also called� One-factor ANOVA� One-factor experimental design� One-way classification� Separates total variation observed in a set of measurements 
into:
1. Variation within individual systems� Due to random measurement errors
2. Variation between systems� Due to real differences + random errors� Aim is to determine if (2) is statistically greater than (1)?

22

� Make n measurements of k alternatives� yij = ith measurement on jth alternative� Assumes measurements (errors) for the 
different alternatives are:� Independent� Gaussian (normally) distributed

One-Factor Analysis of Variance (2)
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� Column means are average values of all 
measurements within a single alternative� Average performance of one alternative

� Each measurements can be represented as 
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� Average of all measurements made of all alternatives

� Column means can be represented as
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� Effect is distance from overall mean� Horizontally across alternatives� Error is distance from column mean� Vertically within one alternative� Error across alternatives, too� Individual measurements are then

ijjij eyy ++= α..

Effects and Errors
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SSE characterizes the variation due to errors

Sum of Squares of Differences:  SSE
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SSA characterizes the variation due to the effects

Sum of Squares of Differences:  SSA
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Sum of Squares of Differences:  SST
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34

� Separates variation in measured values into:
1. Variation due to effects of alternatives

• SSA – variation across columns

2. Variation due to errors
• SSE – variation within a single column� If differences among alternatives are due to 

real differences,
• SSA should be statistically > SSE

ANOVA – Fundamental Idea
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� Simple approach� SSA / SST = fraction of total variation explained 
by differences among alternatives� SSE / SST = fraction of total variation due to 
experimental error� But is it statistically significant?

Comparing SSE and SSA
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� Use F-test to compare ratio of variances

� If Fcomputed > Ftable

we have (1 – α) * 100% confidence that the variation due to 
actual differences in alternatives, SSA, is statistically greater 
than the variation due to errors, SSE.
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ANOVA Example
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ANOVA Example (cont.)
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� SSA/SST = 0.7585/0.8270 = 0.917
→ 91.7% of total variation in measurements is due 

to differences among alternatives� SSE/SST = 0.0685/0.8270 = 0.083
→ 8.3% of total variation in measurements is due to 

noise in measurements� Computed F statistic > tabulated F statistic
→ 95% confidence that differences among 

alternatives are statistically significant.

ANOVA Example (cont.)
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� ANOVA tells us that there is a statistically 
significant difference among alternatives� But it does not tell us where the difference is� Use method of contrasts to compare subsets 
of alternatives� A vs B� {A, B} vs {C}� Etc.

The Method of Contrasts

46

� Contrast = linear combination of effects of alternatives

� Contrasts are used to compare effects of a subset of 
the alternatives� E.g. Compare effect of system 1 to effect of system 2
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� Need � Estimate of variance of contrast� Appropriate value from Student t table� Compute confidence interval as before� If interval includes 0� Then no statistically significant difference exists 
between the alternatives included in the contrast

Confidence Interval For Contrasts

48
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� 90% confidence interval for contrast of [Sys1-Sys2]
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Example

� With 90% confidence, the difference between 
system 1 and system 2 is statistically insignificant
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� Comparing two alternatives� Use confidence intervals to determine if there 
are statistically significant differences� Before-and-after comparisons� Find interval for mean of differences� Non-corresponding measurements� Find interval for difference of means� If interval includes zero
→ No statistically significant difference� Comparing proportions

Summary
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� Comparing more than two alternatives� Use one-factor ANOVA to separate total variation 
into:
– Variation within individual systems� Due to random errors

– Variation between systems� Due to real differences (+ random error)� Is the variation due to real differences statistically
greater than the variation due to errors?� Use contrasts to compare effects of subsets of 
alternatives

Summary (cont.)
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� “The Art of Computer Systems Performance Analysis: Techniques 
for Experimental Design, Measurement, Simulation, and 
Modeling” by R. K. Jain, Wiley (April 1991), ISBN: 0471503363, 
1991� “Performance Evaluation and Benchmarking“, edited by Lizy
Kurian John, Lieven Eeckhout, CRC Press Inc., ISBN: 
0849336228, 2005� “Probability and Statistics for Engineers and Scientists (7th 
Edition)” by Ronald E. Walpole, Raymond H. Myers, Sharon L. 
Myers, Keying Ye, Keying Yee, Prentice Hall, 7 edition (January 
2002, ISBN-10: 0130415294, ISBN-13: 978-0130415295

Further Reading
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� Using the “before-and-after” comparison technique with both a 90% and a 
99% confidence level, determine whether turning a specific compiler 
optimization on makes a statistically significant difference. Repeat your 
analysis using ANOVA test with k=2 alternatives. Explain your results.� Use the ANOVA test to compare the performances of three different, but 
roughly comparable, computer systems measured in terms of execution 
time of an appropriate benchmark program. The ANOVA test shows only 
whether there is a statistically significant difference among the systems, not 
how large the difference really is. Use appropriate contrasts to compare the 
differences between all possible pairs of the systems. Explain and interpret 
your results.

Exercises


