

References

- "Measuring Computer Performance A Practitioner's Guide" by David J. Lilja, Cambridge University Press, New York, NY, 2000, ISBN 0-521-64105-5
- The supplemental teaching materials provided at http://www.arctic.umn.edu/perf-book/ by David J. Lilja
- Chapter 4 in "Performance Evaluation and Benchmarking" by Lizy Kurian John, ISBN 0-8493-3622-8

Roadmap

- Performance metrics
 - Characteristics of good performance metrics
 - Summarizing performance with a single value
 - Quantifying variability
 - Aggregating metrics from multiple benchmarks
- Errors in experimental measurements
 - Accuracy, precision, resolution
 - Confidence intervals for means
 - Confidence intervals for proportions

Performance Metrics

- Values derived from some fundamental measurements
 - Count of how many times an event occurs
 - Duration of a time interval
 - Size of some parameter
- Some basic metrics include
 - Response time
 - Elapsed time from request to response
 - Throughput
 - Jobs or operations completed per unit of time
 - Bandwidth
 - Bits per second
 - Resource utilization
 - Fraction of time the resource is used
- Standard benchmark metrics
 - For example, SPEC and TPC benchmark metrics

Characteristics of Good Metrics

- Linear
 - proportional to the actual system performance
- Reliable
 - Larger value → better performance
- Repeatable
 - Deterministic when measured
- Consistent
 - Units and definition constant across systems
- Independent
 - Independent from influence of vendors
- Easy to measure

Some Examples of Standard Metrics Clock rate Easy-to-measure, Repeatable, Consistent, Independent, Non-Linear, Unreliable MIPS Easy-to-measure, Repeatable, Independent, Non-Linear, Unreliable, Inconsistent MFLOPS, GFLOPS, TFLOPS, PFLOPS, ... Easy-to-measure, Repeatable, Non-Linear, Unreliable, Inconsistent SPEC metrics (www.spec.org) SPECcpu, SPECweb, SPECjbb, SPECjAppServer, etc. TPC metrics (www.tpc.org) TPC-C, TPC-H, TPC-App

Summarizing System Performance

- Two common scenarios
 - Summarize multiple measurements of a given metric
 - Aggregate metrics from multiple benchmarks
- Desire to reduce system performance to a single number
- Indices of central tendency used
 - Arithmetic mean, median, mode, harmonic mean, geometric mean
- Problem
 - Performance is multidimensional, e.g. response time, throughput, resource utilization, efficiency, etc.
 - Systems are often specialized → perform great for some applications, bad for others

Expected Value and Sample Mean

- Look at measured values (x₁,...,x_n) as a random sample from a population, i.e. measured values are values of a random variable X with an unknown distribution.
- The most common index of central tendency of X is its mean E[X] (also called expected value of X)
 - If X is discrete and $p_x = Pr(X = x) = Pr("we measure x")$

$$E[X] = \sum_{x} x \cdot \Pr(X = x) = \sum_{x} x \cdot p_{x}$$

• The sample mean (arithmetic mean) is an estimate of E[X]

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Common Indices of Central Tendency

Sample Mean

- Use when the sum of all values is meaningful
- Incorporates all available information
- Median
 - the "middle" value (such that ½ of the values are above, ½ below)
 - Sort *n* values (measurements)
 - If n is odd, median = middle value
 - Else, median = mean of two middle values
 - Less influenced by outliers

Mode

- The value that occurs most often
- Not unique if multiple values occur with same frequency
- Use when values represent categories, i.e. data can be grouped into distinct types/categories (categorical data)

Geometric Mean

- Maintains consistent relationships when comparing normalized values
 - Provides consistent rankings
 - Independent of basis for normalization
- Meaningful only when the product of raw values has physical meaning
- Example
 - If improvements in CPI and clock periods are given, the mean improvement for these two design changes can be found by the geometric mean.

Quantifying Variability

- Means hide information about variability
- How "spread out" are the values?
- How much spread relative to the mean?
- What is the shape of the distribution of values?

Indices of Dispersion • Used to quantify variability • Range = (max value) – (min value) • Maximum distance from the mean = Max of | x_i – mean | • Neither efficiently incorporates all available information • Most commonly the **sample variance** is used $s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{n(n-1)}$ • Referred to as having "(n-1) degrees of freedom" • Second form good for calculating "on-the-fly" • One pass through data

Aggregating Performance Metrics From Multiple Benchmarks

- Problem: How should metrics obtained from component benchmarks of a benchmark suite be aggregated to present a summary of the performance over the entire suite?
- What central tendency measures are valid over the whole benchmark suite for speedup, CPI, IPC, MIPS, MFLOPS, cache miss rates, cache hit rates, branch misprediction rates, and other measurements?
- What would be the appropriate measure to summarize speedups from individual benchmarks?

MIPS as an Example

- Assume that the benchmark suite is composed of *n* benchmarks, and their individual MIPS are known:
 - I_i is the instruction count of i^{th} benchmark (in millions)
 - t_i is the execution time of i^{th} benchmark
 - MIPS_i is the MIPS rating of the i^{th} benchmark
 - The overall MIPS is the MIPS when the *n* benchmarks are considered as part of a big application :

$$Overall MIPS = \frac{\sum_{i=1}^{n} I_i}{\sum_{i=1}^{n} t_i}$$

MIPS as an Example (2)

- The overall MIPS of the suite can be obtained by computing:
 - a weighted harmonic mean (WHM) of the MIPS of the individual benchmarks weighted according to the instruction counts
 OR
 - a *weighted arithmetic mean (WAM)* of the individual MIPS with weights corresponding to the execution times spent in each benchmark in the suite.

19

MIPS as an Example (3)

$$w_{i}^{ic} = \frac{I_{i}}{\sum_{k=1}^{n} I_{k}} \text{ is the weight of } i^{th} \text{ benchmark according to instruction count}$$

$$WHM \text{ with weights corresponding to instruction counts} = \frac{1}{\sum_{i=1}^{n} \frac{W_{i}^{ic}}{MIPS_{i}}} = \frac{1}{\sum_{i=1}^{n} \frac{W_{i}^{ic}}{MIPS_{i}}} = \frac{1}{\sum_{i=1}^{n} \frac{1}{MIPS_{i}}} = \frac{\sum_{i=1}^{n} I_{k}}{\sum_{i=1}^{n} \frac{I_{i}}{MIPS_{i}}} = \frac{\sum_{i=1}^{n} I_{k}}{\sum_{i=1}^{n} \frac{I_{i}}{I_{i}}} = \frac{\sum_{i=1}^{n} I_{k}}{\sum_{i=1}^{n} \frac{I_{i}}{MIPS_{i}}} = Overall MIPS$$

BIPS as an Example (4) $w_{i}^{e} = \frac{t_{i}}{\sum_{k=1}^{n} t_{k}} \text{ is the weight of } i^{th} \text{ benchmark according to execution time}$ $\textbf{VAM with weights corresponding to execution time} = \sum_{i=1}^{n} w_{i}^{et} \mathcal{MPS}_{i} =$ $= \frac{1}{\sum_{k=1}^{n} t_{k}} \left(\sum_{i=1}^{n} t_{i} \mathcal{MIPS}_{i} \right) = \frac{1}{\sum_{k=1}^{n} t_{k}} \left(\sum_{i=1}^{n} t_{i} \frac{t_{i}}{t_{i}} \right) = \sum_{k=1}^{n} t_{k}$ $= Overall \mathcal{MPS}$

Example			
Benchmark	Instruction Count (in millions)	Time (sec)	Individual MIPS
1	500	2	250
2	50	1	50
3	200	1	200
4	1000	5	200
5	250	1	250
	1	1	1

Example (cont.)

• Weights of the benchmarks with respect to instruction counts:

 $\{500/2000, 50/2000, 200/2000, 1000/2000, 250/2000\} = \\ \{0.25, 0.025, 0.1, 0.5, 0.125\}$

- Weights of the benchmarks with respect to time: {0.2, 0.1, 0.1, 0.5, 0.1}
- WHM of individual MIPS (weighted with *l*-counts) = 1 / (0.25/250 + 0.025/50 + 0.1/200 + 0.5/200 + 0.125/250) = 200
- WAM of individual MIPS (weighted with time) = 250*0.2 + 50*0.1 + 200*0.1 + 200*0.5 + 250*0.1 = 200

Arithmetic vs. Harmonic Mean

- If a metric is obtained by dividing A by B, either *harmonic mean* with weights corresponding to the measure in the numerator or *arithmetic mean* with weights corresponding to the measure in the denominator is valid when trying to find the aggregate measure from the values of the measures in the individual benchmarks.
- If A is weighted equally among the benchmarks, simple (unweighted) harmonic mean can be used.
- If B is weighted equally among the benchmarks, simple (unweighted) arithmetic mean can be used.

Aggregating Metrics					
Measure	Valid Central Tendency for S Benchmark Suite	Summarized Measure Over a			
A/B	WAM weighted with Bs	WHM weighted with As			
IPC	WAM weighted with cycles	WHM weighted with <i>I</i> -count			
CPI	WAM weighted with I-count	WHM weighted with cycles			
MIPS	WAM weighted with time	WHM weighted with <i>I</i> -count			
MFLOPS	WAM weighted with time	WHM weighted with FLOP count			
Cache hit rate	WAM weighted with number of references to cache	WHM weighted with number of cache hits			

Aggregating Metrics (cont.)					
Measure	Valid Central Tendency for Benchmark Suite	Summarized Measure Over a			
Cache misses per instruction	WAM weighted with I-count	WHM weighted with number of misses			
Branch misprediction rate per branch	WAM weighted with branch counts	WHM weighted with number of mispredictions			
Normalized execution time	WAM weighted with execution times in system considered as base	WHM weighted with execution times in the system being evaluated			
Transactions per minute	WAM weighted with exec times	WHM weighted with proportion of transactions for each benchmark			

Exercise

- A benchmark consists of two parts: part 1 runs image processing for 1 hour, and part 2 runs compression for 1 hour.
- Assume that benchmark is run on a system and part 1 achieves MIPS1, part 2 achieves MIPS2
- How can these two results be summarized to derive an overall MIPS of the system?

29

Speedup

- What would be the appropriate measure to summarize *speedups* from individual benchmarks of a suite?
 - WHM of the individual speedups with weights corresponding to the execution times in the *baseline system*
 - WAM of the individual speedups with weights corresponding to the execution times in the *enhanced system*

Example			
Benchmark	Time on Baseline	Time on	Individual
	System	Enhanced System	Speedup
1	500	250	2
2	50	50	1
3	200	50	4
4	1000	1250	0.8
5	250	200	1.25

• Total time on baseline system = 2000 sec

- Total time on enhanced system = 1800 sec
- Overall speedup = 2000/1800 = 1.111

- WHM of individual speedups =
 - 1 / (500/(2000*2) + 50/(2000*1) + 200/(2000*4) + 1000/(2000*0.8) + 250/(2000*1.25)) = ... = 1.111
- WAM of individual speedups =
 - 2*250/1800 + 1*50/1800 + 4*50/1800 + 0.8*1250/1800 + 1.25*200/1800 = ... = 1.111
 -

32

Measure	To Summarize Measure	over a Benchmark Suite
	Simple arithmetic mean valid?	Simple harmonic mean valid?
A/B	If Bs are equal	If As are equal
Speedup	If equal execution times in each benchmark in the improved system	If equal execution times in each benchmark in the baseline system
IPC	If equal cycles in each benchmark	If equal <i>I</i> -count in each benchmark
CPI	If equal <i>I</i> -count in each benchmark	If equal cycles in each benchmark
MIPS	If equal times in each benchmark	If equal <i>I</i> -count in each benchmark
MFLOPS	If equal times in each benchmark	If equal FLOPS in each benchmark

Use of Simple (Unweighted) Means (2)					
Measure To Summarize Measure over a Benchmark Suit					
	Simple arithmetic mean valid?	Simple harmonic mean valid?			
Cache hit rate	If equal number of references to cache for each benchmark	If equal number of cache hits in each benchmark			
Cache misses per instruction	If equal <i>I</i> -count in each benchmark	If equal number of misses in each benchmark			
Branch misprediction rate per branch	If equal number of branches in each benchmark	If equal number of mispredictions in each benchmark			
Normalized execution time	If equal execution times in each benchmark in the system considered as base	If equal execution times in each benchmark in the system evaluated			
Transactions per minute	If equal times in each benchmark	If equal number of transactions in each benchmark			

Weighting Based on Target Workload

- Ideally, when aggregating metrics each benchmark should be weighted for whatever fraction of time it will run in the user's target workload.
- For example if benchmark 1 is a compiler, benchmark 2 is a digital simulation, and benchmark 3 is compression, for a user whose actual workload is digital simulation for 90% of the day, and 5% compilation and 5% compression, WAM with weights 0.05, 0.9, and 0.05 will yield a valid overall MIPS on the target workload.
- If each benchmark is expected to run for an equal period of time, finding a simple (unweighted) arithmetic mean of the MIPS is not an invalid approach.

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Experimental Errors

- Errors \rightarrow *noise* in measured values
- Systematic errors
 - Result of an experimental "mistake"
 - Typically produce constant or slowly varying bias
 - Controlled through skill of experimenter
 - Example: forget to clear cache before timing run
- Random errors
 - Unpredictable, non-deterministic, unbiased
 - Result of
 - Limitations of measuring tool
 - Random processes within system
 - Typically cannot be controlled
 - Use statistical tools to characterize and quantify

A Model of Errors							
	Error	Measured value		Probabili	ѓУ		
	-E	x – E		1/2			
	+E	<i>x</i> + E	1/2				
	Error 1	Error 2	N	leasured value	Probability		
	-E	-E		x-2E	1⁄4		
2 error sources \rightarrow	-E	+E	x		1⁄4		
	+E	-E	x		1⁄4		
	+E	+E	x + 2E		1⁄4		
					39		

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header><list-item><list-item><list-item><list-item><list-item>

• Looking for an interval $[c_1, c_2]$ such that $Pr[c_1 \le \mu \le c_2] = 1 - \alpha$ • Typically, a symmetric interval is used so that $Pr[\mu < c_1] = Pr[\mu > c_2] = \frac{\alpha}{2}$

- The interval $[c_1,c_2]$ is called $\mbox{confidence interval}$ for the mean μ
- α is called the **significance level** and (1-α)x100 is called the **confidence level**.

Copyright 2007 Samuel Kounev

Case 1: Number of Measurements >= 30

$$\Pr\left(\overline{x} - z_{1-\alpha/2}\sqrt{\sigma^{2}/n} \le \mu \le \overline{x} + z_{1-\alpha/2}\sqrt{\sigma^{2}/n}\right) = 1 - \alpha$$
Since $n \ge 30$, we can approximate the varience σ^{2} with the sample varience s^{2}

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$\Pr\left(\overline{x} - z_{1-\alpha/2}\sqrt{s^{2}/n} \le \mu \le \overline{x} + z_{1-\alpha/2}\sqrt{s^{2}/n}\right) = 1 - \alpha$$

$$c_{1} = \overline{x} - z_{1-\alpha/2}\sqrt{s^{2}/n}$$

$$c_{2} = \overline{x} + z_{1-\alpha/2}\sqrt{s^{2}/n}$$

Case 1: Number of Measurements >= 30 • We found an interval $[c_1,c_2]$ such that $c_1 = \overline{x} - z_{1-\alpha/2}\sqrt{s^2/n}$ $\Pr[c_1 \le \mu \le c_2] = 1 - \alpha$ $c_2 = \overline{x} + z_{1-\alpha/2}\sqrt{s^2/n}$ • The interval $[c_1,c_2]$ is an *approximate* 100(1- α)% confidence interval (CI) for the mean μ (an interval estimate of μ) • The larger *n* is, the better the estimate.

Case 1: Number of Measurements < 30

• Problem: Cannot assume that the sample variance provides a good estimate of the population variance.

However, since $x_i \in N(\mu, \sigma^2)$ it can be shown that

$$z = \frac{x - \mu}{\sqrt{s^2 / n}}$$
 has a Student *t* distribution with (n-1) d.f.

• An *exact* $100(1-\alpha)$ CI for μ is then given by

$$c_{1} = \overline{x} - t_{1-\alpha/2;n-1} \sqrt{s^{2}/n} \qquad t_{1-\alpha/2;n-1} \text{ is the upper}\left(1 - \frac{\alpha}{2}\right) \text{ critical point}$$

$$c_{2} = \overline{x} + t_{1-\alpha/2;n-1} \sqrt{s^{2}/n} \qquad \text{of the t distr. with } n-1 \text{ d.f. (tabulated)}$$

Example (cont.)								
90 % Confidence Interval				95 % Confidence Interval				
$a = 1 - \alpha / 2 = 1 - 0.10 / 2 = 0.95$				$a = 1 - \alpha/2 = 1 - 0.10/2 = 0.975$				
$t_{a;n-1} = t_{0.95;7} = 1.895$				$t_{a;n-1} = t_{0.975;7} = 2.365$				
$c_1 = 7.94 - \frac{1.895(2.14)}{\sqrt{8}} = 6.5$				$c_1 = 7.94 - \frac{2.365(2.14)}{\sqrt{8}} = 6.1$				
$c_2 = 7.94 + \frac{1.895(2.14)}{\sqrt{8}} = 9.4$				$c_2 = 7.94 + \frac{2.365(2.14)}{\sqrt{8}} = 9.7$				
	а						а	
n	0.90	0.95	0.975		n	0.90	0.95	0.975
5	1.476	2.015	2.571		5	1.476	2.015	2.571
6	1.440	1.943	2.447		6	1.440	1.943	2.447
7	1.415	1.895	2.365		7	1.415	1.895	2.365
œ	1.282	1.645	1.960		x	1.282	1.645	1.960

What If Errors Not Normally Distributed?

• Can use the Central Limit Theorem (CLT)

Sum of a "large number" of values from **any** distribution will be Normally (Gaussian) distributed.

- "Large number" typically assumed to be $>\approx$ 6 or 7.
- If n >= 30 the approximate CI based on the normal distribution remains valid and can be used.

$$[\overline{x} - z_{1-\alpha/2}\sqrt{s^2/n}, \overline{x} + z_{1-\alpha/2}\sqrt{s^2/n}]$$

- If n < 30, we can normalize the measurements by grouping them info groups of 6 or more and using their averages as input data.
- We can now use the CI based on the *t*-distribution:

$$[\overline{x} - t_{1-\alpha/2;n-1}\sqrt{s^2/n}, \overline{x} + t_{1-\alpha/2;n-1}\sqrt{s^2/n}]$$

Example

- Assume that based on 30 measurements we found:
 - Mean = 7.94 s
 - Standard deviation = 2.14 s
- Want 90% confidence true mean is within 3.5% of measured mean?

•
$$\alpha = 0.90$$

- $(1-\alpha/2) = 0.95$
- *Error* = $\pm 3.5\%$
- e = 0.035

$$n = \left(\frac{z_{1-\alpha/2}s}{\bar{x}e}\right)^2 = \left(\frac{1.895(2.14)}{0.035(7.94)}\right) = 212.9$$

• 213 measurements

 \rightarrow 90% chance true mean is within ± 3.5% interval

Confidence Intervals for Proportions

- Assume we are counting the number of times several events occur and want to estimate the fraction of time each event occurs?
- Can model this using a binomial distribution
 - *p* = Pr(success) in *n* trials of binomial experiment
 - Need a confidence interval for p
- Let *m* be the number of successes
- *m* has a binomial distribution with parameters *p* and *n*

$$E[m] = pn \qquad \sigma^2[m] = p(1-p)n$$

Can estimate *p* using the sample proportion $\overline{p} = m/n$

If $pn \ge 10$, can approximate the binomial distribution

with Gaussian $N(pn,p(1-p)n) \implies m \approx N(pn,\overline{p}(1-\overline{p})n)$

60

$$\begin{aligned} & \text{Confidence Intervals for Proportions (2)} \\ & m \approx N(pn,\overline{p}(1-\overline{p})n) \\ & \Pr\left(-z_{1-\alpha/2} \leq \frac{m-pn}{\sqrt{\overline{p}(1-\overline{p})n}} \leq z_{1-\alpha/2}\right) \approx 1-\alpha \\ & \Pr\left(m-z_{1-\alpha/2}\sqrt{\overline{p}(1-\overline{p})n} \leq pn \leq m+z_{1-\alpha/2}\sqrt{\overline{p}(1-\overline{p})n}\right) \approx 1-\alpha \\ & \Pr\left(\overline{p}-z_{1-\alpha/2}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \leq p \leq \overline{p}+z_{1-\alpha/2}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}\right) \approx 1-\alpha \\ & \Rightarrow c_1 = \overline{p}-z_{1-\alpha/2}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \qquad c_2 = \overline{p}+z_{1-\alpha/2}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \end{aligned}$$

Example
• How much time does processor spend in OS?
• Interrupt every 10 ms and increment counters
• n = number of interrupts
• n = number of interrupts when PC within OS
• Run for 1 minute
• n = 6000, m = 658

$$f_{1,c_{2}} = \overline{p} \mp z_{1-\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} = (0.1018, 0.1176)$$
• Can claim with 95% confidence that the processor spends 10.2-11.8% of its time in OS

Further Reading

- R. K. Jain, "The Art of Computer Systems Performance Analysis : Techniques for Experimental Design, Measurement, Simulation, and Modeling", Wiley (April 1991), ISBN: 0471503363, 1991
- Kishor Trivedi, "Probability and Statistics with Reliability, Queuing, and Computer Science Applications", John Wiley and Sons, ISBN 0-471-33341-7, New York, 2001
- Electronic Statistics Textbook
 http://www.statsoft.com/textbook/stathome.html
- See http://www.arctic.umn.edu/perf-book/bookshelf.shtml
- N.C. Barford, "*Experimental Measurements: Precision, Error, and Truth*" (Second Edition), John Wiley and Sons, New York, 1985
- John Mandel, "The Statistical Analysis of Experimental Data", Interscience Publishers, a division of John Wiley and Sons, New York, 1964.

Further Reading (cont.)

- P.J.Fleming and J.J.Wallace, *"How Not To Lie With Statistics: The Correct Way To Summarize Benchmark Results"*, Communications of the ACM, Vol.29, No.3, March 1986, pp. 218-221
- James Smith, *"Characterizing Computer Performance with a Single Number"*, Communications of the ACM, October 1988, pp.1202-1206
- Patterson and Hennessy, Computer Architecture: The Hardware/Software Approach, Morgan Kaufman Publishers, San Francisco, CA.
- Cragon, H., Computer Architecture and Implementation, Cambridge University Press, Cambridge, UK.
- Mashey, J.R., *War of the benchmark menas: Time for a truce,* Computer Architecture News, 32 (1), 4, 2004.
- John, L.K., More on finding a single number to indicate overall performance of a benchmark suite, Computer Architecture News, 32 (1) 3, 2004.

Exercise 1

• Many compilers have several different levels of optimization that can be selected to improve performance. Using some appropriate benchmark program, determine whether these different optimization levels actually make a statistically significant difference in the overall execution time of this program. Run the program 4 times for each of the different optimizations. Use a 90% and a 99% confidence interval to determine whether each of the optimizations actually improves the performance. Explain your results.

Copyright 2007 Samuel Kounev

65