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Performance Metrics

Measuring and quantifying computer 
systems performance

Samuel Kounev

“Time is a great teacher, but unfortunately it kills all its pupils.”
-- Hector Berlioz

2

References� „Measuring Computer Performance – A Practitioner's Guide“
by David J. Lilja, Cambridge University Press, New York, NY, 
2000, ISBN 0-521-64105-5� The supplemental teaching materials provided at 
http://www.arctic.umn.edu/perf-book/ by David J. Lilja� Chapter 4 in „Performance Evaluation and Benchmarking“ –
by Lizy Kurian John, ISBN 0-8493-3622-8
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� Performance metrics� Characteristics of good performance metrics� Summarizing performance with a single value� Quantifying variability� Aggregating metrics from multiple benchmarks� Errors in experimental measurements� Accuracy, precision, resolution� Confidence intervals for means� Confidence intervals for proportions

Roadmap
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� Values derived from some fundamental measurements� Count of how many times an event occurs� Duration of a time interval� Size of some parameter� Some basic metrics include� Response time� Elapsed time from request to response� Throughput� Jobs or operations completed per unit of time� Bandwidth� Bits per second� Resource utilization� Fraction of time the resource is used� Standard benchmark metrics� For example, SPEC and TPC benchmark metrics

Performance Metrics
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� Linear� proportional to the actual system performance� Reliable� Larger value � better performance� Repeatable� Deterministic when measured� Consistent� Units and definition constant across systems� Independent� Independent from influence of vendors� Easy to measure

Characteristics of Good Metrics 
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� Clock rate� Easy-to-measure, Repeatable, Consistent, Independent,
Non-Linear, Unreliable� MIPS� Easy-to-measure, Repeatable, Independent, Non-Linear, 
Unreliable, Inconsistent� MFLOPS, GFLOPS, TFLOPS, PFLOPS, …� Easy-to-measure, Repeatable, Non-Linear, Unreliable,
Inconsistent, Dependent� SPEC metrics (www.spec.org)� SPECcpu, SPECweb, SPECjbb, SPECjAppServer, etc.� TPC metrics (www.tpc.org)� TPC-C, TPC-H, TPC-App

Some Examples of Standard Metrics 
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� “Speed” refers to any rate metric � Ri = Di / Ti� Di ~ “distance traveled” by system i� Ti = measurement interval� Speedup of system 2 w.r.t system 1� S2,1 such that:  R2 = S2,1 R1� Relative change

1

12
1,2 R

RR −=∆

1 system nslower tha is 2 System0

1 system nfaster tha is 2 System0
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Speedup and Relative Change
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� Two common scenarios� Summarize multiple measurements of a given metric � Aggregate metrics from multiple benchmarks� Desire to reduce system performance to a single number� Indices of central tendency used� Arithmetic mean, median, mode, harmonic mean, geometric mean� Problem� Performance is multidimensional, e.g. response time, throughput,
resource utilization, efficiency, etc.� Systems are often specialized � perform great for some applications, 
bad for others

Summarizing System Performance
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� Look at measured values (x1,…,xn) as a random sample from 
a population, i.e. measured values are values of a random 
variable X with an unknown distribution.� The most common index of central tendency of X is its mean
E[X] (also called expected value of X)� If X is discrete and px = Pr(X = x) = Pr(“we measure x”)

� The sample mean (arithmetic mean) is an estimate of E[X]
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Expected Value and Sample Mean
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� Sample Mean� Use when the sum of all values is meaningful� Incorporates all available information� Median� the “middle” value (such that ½ of the values are above, ½ below)� Sort n values (measurements)� If n is odd, median = middle value� Else, median = mean of two middle values� Less influenced by outliers� Mode� The value that occurs most often� Not unique if multiple values occur with same frequency� Use when values represent categories, i.e. data can be grouped into 
distinct types/categories (categorical data)

Common Indices of Central Tendency
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� Sample mean gives equal weight to all measurements� Outliers can have a large influence on the computed mean value� Distorts our intuition about the central tendency

Mean

Mean

Median

Median

Sample Mean and Outliers
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� Arithmetic Mean (Sample Mean)� When sum of raw values has physical meaning� Typically used to summarize times� Harmonic Mean� Typically used to summarize rates� Geometric Mean� Used when product of raw values has physical meaning
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� Maintains consistent relationships when comparing 
normalized values� Provides consistent rankings� Independent of basis for normalization� Meaningful only when the product of raw values has 
physical meaning� Example� If improvements in CPI and clock periods are given, the 

mean improvement for these two design changes can be 
found by the geometric mean.

Geometric Mean
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1� Standard definitions of means 
assume all measurements are 
equally important� If that’s not the case, one can use 
weights to represent the relative 
importance of measurements� E.g. if application 1 is run more 
often than application 2 it should 
have a higher weight

Weighted Means
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� Means hide information about variability� How “spread out” are the values?� How much spread relative to the mean?� What is the shape of the distribution of values?
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Quantifying Variability
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� Used to quantify variability� Range = (max value) – (min value)� Maximum distance from the mean = Max of | xi – mean |� Neither efficiently incorporates all available information� Most commonly the sample variance is used

� Referred to as having “(n-1) degrees of freedom”� Second form good for calculating “on-the-fly”� One pass through data
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� Sample Variance � In “units-squared” compared to mean� Hard to compare to mean� Standard Deviation s� s = square root of variance� Has units same as the mean� Coefficient of Variation (COV)� Dimensionless� Compares relative size of variation to mean value

x

s
COV =

Most Common Indices of Dispersion
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Aggregating Performance Metrics 
From Multiple Benchmarks� Problem: How should metrics obtained from component 

benchmarks of a benchmark suite be aggregated to present 
a summary of the performance over the entire suite?� What central tendency measures are valid over the whole 
benchmark suite for speedup, CPI, IPC, MIPS, MFLOPS, 
cache miss rates, cache hit rates, branch misprediction 
rates, and other measurements?� What would be the appropriate measure to summarize 
speedups from individual benchmarks?
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� Assume that the benchmark suite is composed of n
benchmarks, and their individual MIPS are known:
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MIPS as an Example

20

� The overall MIPS of the suite can be obtained by 
computing: � a weighted harmonic mean (WHM) of the MIPS of the 

individual benchmarks weighted according to the 
instruction counts

OR� a weighted arithmetic mean (WAM) of the individual 
MIPS with weights corresponding to the execution times 
spent in each benchmark in the suite.

MIPS as an Example (2)
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MIPS as an Example (3)
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Copyright 2007 Samuel Kounev 12

23

25012505

200510004

20012003

501502

25025001

Individual 

MIPS

Time (sec)Instruction Count

(in millions)

Benchmark

Example

24

� Weights of the benchmarks with respect to instruction 
counts: 

{500/2000, 50/2000, 200/2000, 1000/2000, 250/2000} = 

{0.25, 0.025, 0.1, 0.5, 0.125}� Weights of the benchmarks with respect to time: 

{0.2, 0.1, 0.1, 0.5, 0.1}� WHM of individual MIPS (weighted with I-counts) = 

1 / (0.25/250 + 0.025/50 + 0.1/200 + 0.5/200 + 0.125/250) = 200� WAM of individual MIPS (weighted with time) =

250*0.2 + 50*0.1 + 200*0.1 + 200*0.5 + 250*0.1 = 200

Example (cont.)
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� WHM of individual MIPS (weighted with I-counts) = 200� WAM of individual MIPS (weighted with time) = 200� Unweighted arithmetic mean of individual MIPS = 190� Unweighted harmonic mean of individual MIPS = 131.58� Neither of the unweighted means is indicative of the overall 
MIPS!
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Example (cont.)
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� If a metric is obtained by dividing A by B, either harmonic 
mean with weights corresponding to the measure in the 
numerator or arithmetic mean with weights corresponding 
to the measure in the denominator is valid when trying to 
find the aggregate measure from the values of the 
measures in the individual benchmarks.� If A is weighted equally among the benchmarks, simple 
(unweighted) harmonic mean can be used.� If B is weighted equally among the benchmarks, simple 
(unweighted) arithmetic mean can be used. 

Arithmetic vs. Harmonic Mean
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WHM weighted with AsWAM weighted with BsA/B

WHM weighted with number of 
cache hits

WAM weighted with number 
of references to cache

Cache hit rate

WHM weighted with FLOP countWAM weighted with timeMFLOPS

WHM weighted with I-countWAM weighted with timeMIPS

WHM weighted with cyclesWAM weighted with I-countCPI

WHM weighted with I-countWAM weighted with cyclesIPC

Valid Central Tendency for Summarized Measure Over a 
Benchmark Suite

Measure

Aggregating Metrics

28

WHM weighted with proportion 
of transactions for each 
benchmark

WAM weighted with exec 
times

Transactions per 
minute

WHM weighted with execution 
times in the system being 
evaluated

WAM weighted with 
execution times in system 
considered as base

Normalized 
execution time

WHM weighted with number of 
mispredictions

WAM weighted with branch 
counts

Branch 
misprediction 
rate per branch

WHM weighted with number of 
misses

WAM weighted with I-countCache misses 
per instruction

Valid Central Tendency for Summarized Measure Over a 
Benchmark Suite

Measure

Aggregating Metrics (cont.)
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� A benchmark consists of two parts: part 1 runs image 
processing for 1 hour, and part 2 runs compression for 
1 hour.� Assume that benchmark is run on a system and part 1 
achieves MIPS1, part 2 achieves MIPS2� How can these two results be summarized to derive 
an overall MIPS of the system?

Exercise

30

� What would be the appropriate measure to summarize 
speedups from individual benchmarks of a suite?� WHM of the individual speedups with weights corresponding to 

the execution times in the baseline system� WAM of the individual speedups with weights corresponding to 
the execution times in the enhanced system

Speedup
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1.252002505

0.8125010004

4502003

150502

22505001

Individual 
Speedup

Time on 
Enhanced 
System

Time on Baseline 
System

Benchmark

Example

� Total time on baseline system = 2000 sec� Total time on enhanced system = 1800 sec� Overall speedup = 2000/1800 = 1.111

32

� Weights corresponding to execution times on baseline 
system:� {500/2000, 50/2000, 200/2000, 1000/2000, 250/2000}� Weights corresponding to execution times on enhanced 
system:� {250/1800, 50/1800, 50/1800, 1250/1800, 200/1800}� WHM of individual speedups =� 1 / (500/(2000*2) + 50/(2000*1) + 200/(2000*4) + 1000/(2000*0.8) + 

250/(2000*1.25)) = … = 1.111� WAM of individual speedups =� 2*250/1800 + 1*50/1800 + 4*50/1800 + 0.8*1250/1800 + 
1.25*200/1800 = … = 1.111

Example (cont.)
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If equal execution times in each 
benchmark in the baseline 
system

If equal execution times in each 
benchmark in the improved 
system

Speedup

Simple harmonic mean valid?Simple arithmetic mean valid?

If As are equalIf Bs are equalA/B

If equal FLOPS in each 
benchmark

If equal times in each 
benchmark

MFLOPS

If equal I-count in each 
benchmark

If equal times in each 
benchmark

MIPS

If equal cycles in each 
benchmark

If equal I-count in each 
benchmark

CPI

If equal I-count in each 
benchmark

If equal cycles in each 
benchmark

IPC

To Summarize Measure over a Benchmark SuiteMeasure

Use of Simple (Unweighted) Means

34

If equal number of cache hits 
in each benchmark

If equal number of references 
to cache for each benchmark

Cache hit rate

Simple harmonic mean valid?

To Summarize Measure over a Benchmark SuiteMeasure

Simple arithmetic mean valid?

If equal number of transactions 
in each benchmark

If equal times in each 
benchmark

Transactions per 
minute

If equal execution times in 
each benchmark in the system 
evaluated

If equal execution times in 
each benchmark in the 
system considered as base

Normalized 
execution time

If equal number of 
mispredictions in each 
benchmark

If equal number of branches in 
each benchmark

Branch 
misprediction 
rate per branch

If equal number of misses in 
each benchmark

If equal I-count in each 
benchmark

Cache misses 
per instruction

Use of Simple (Unweighted) Means (2)
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� Ideally, when aggregating metrics each benchmark should 
be weighted for whatever fraction of time it will run in the 
user’s target workload.� For example if benchmark 1 is a compiler, benchmark 2 is 
a digital simulation, and benchmark 3 is compression, for a 
user whose actual workload is digital simulation for 90% of 
the day, and 5% compilation and 5% compression, WAM 
with weights 0.05, 0.9, and 0.05 will yield a valid overall 
MIPS on the target workload.� If each benchmark is expected to run for an equal period of 
time, finding a simple (unweighted) arithmetic mean of the 
MIPS is not an invalid approach.

Weighting Based on Target Workload

36

� Performance metrics� Characteristics of good performance metrics� Summarizing performance with a single value� Quantifying variability� Aggregating metrics from multiple benchmarks� Errors in experimental measurements� Accuracy, precision, resolution� Confidence intervals for means� Confidence intervals for proportions

Roadmap
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� Errors → noise in measured values� Systematic errors� Result of an experimental “mistake”� Typically produce constant or slowly varying bias� Controlled through skill of experimenter� Example: forget to clear cache before timing run� Random errors� Unpredictable, non-deterministic, unbiased� Result of� Limitations of measuring tool� Random processes within system� Typically cannot be controlled� Use statistical tools to characterize and quantify

Experimental Errors

38

Event

Clock

(b)  Interval timer reports event duration of n = 14 clock ticks.

(a)  Interval timer reports event duration of n = 13 clock ticks.

Event

Clock

Timer resolution → quantization error
Repeated measurements X ± ∆ (completely unpredictable)

Example: Quantization
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¼x – 2E-E-E

¼x + 2E+E+E

¼x-E+E

¼x+E-E

ProbabilityMeasured 
value

Error 2Error 1

A Model of Errors

½x + E+E

½x – E-E

ProbabilityMeasured 
value

Error

1 error source�
2 error sources�

40

Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

x-E x x+E

Measured value

A Model of Errors (2)
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x-nE x+nE

x

x-2E x+2E

x

x-E

n error sources

2E

Final possible measurements

x+E

Probability of obtaining a specific measured value

A Model of Errors (3)
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� Look at the measured value as a random variable X� Pr(X=xi) = Pr(measure xi) is proportional to the 
number of paths from real value to xi� Pr(X=xi) ~ binomial distribution� As number of error sources becomes large� n → ∞,� Binomial → Gaussian (Normal)� Thus, the bell curve

A Model of Errors (4)
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Mean of measured values

True value
Resolution

Precision

Accuracy

µ

Frequency of Measuring Specific 
Values

44

� Accuracy� How close mean of measured values is to true value?� Systematic errors cause inaccuracy� Precision� Random errors cause imprecision� Quantify amount of imprecision using statistical tools� Resolution� Smallest increment between measured values� Dependent on measurement tools used

Accuracy, Precision and Resolution
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� Assume errors are normally distributed , i.e. measurements 
are samples from a normally distributed population� Will now show how to quantify the precision of 
measurements using confidence intervals� Assume n measurements x1,…,xn are taken� Measurements form a set of IID random variables

 ) ,( N  x 2
i σµ∈

µ

Confidence Interval for the Mean µ

46

αµ −=≤≤ 1]Pr[ 21 cc

2
]cPr[]cPr[ 21

αµµ =>=<

� Looking for an interval [c1,c2] such that� Typically, a symmetric interval is used so that

� The interval [c1,c2] is called confidence interval for 
the mean µ� α is called the significance level and (1-α)x100 is
called the confidence level .

Confidence Interval for the Mean µ (2)
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Case 1: Number of Measurements >= 30
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Case 1: Number of Measurements >= 30
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nszxc

nszxc
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� We found an interval [c1,c2] such that

αµ −=≤≤ 1]Pr[ 21 cc

� The interval [c1,c2] is an approximate 100(1-α)% 
confidence interval (CI) for the mean µ (an interval 
estimate of µ)� The larger n is, the better the estimate.

Case 1: Number of Measurements >= 30
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� Problem: Cannot assume that the sample variance 
provides a good estimate of the population variance. 

� An exact 100(1-α) CI for µ is then given by
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Case 1: Number of Measurements < 30

52

� The t distribution is similar to the Normal distribution� They are both bell-shaped and symmetric around the mean� The t distribution tends to be more “spread out” (has greater 
variance)� The t distribution becomes the same as the standard normal 
distribution as n tends to infinity 

c1 c2

1-α
α/2 α/2

The Student t distribution
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8.5 s8

5.2 s7

11.3 s6

9.5 s5

9.0 s4

5.0 s3

7.0 s2

8.0 s1

Measured valueExperiment

14.2deviation standard sample

94.71
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==∑ =

s
n

x
x

n

i i

Example

� 90% CI → 90% chance actual value in interval� 90% CI → α = 0.10� 1 – (α / 2) = 0.95� n = 8 → 7 degrees of freedom

c1 c2

1-α
α/2 α/2
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1.9601.6451.282∞ …………
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Example (cont.)
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2.4471.9431.4406

2.5712.0151.4765

…………

0.9750.950.90n

90 % Confidence Interval                    95 % Co nfidence Interval 



Copyright 2007 Samuel Kounev 28

55

� 90% CI = [6.5, 9.4]� 90% chance mean value is between 6.5, 9.4� 95% CI = [6.1, 9.7]� 95% chance mean value is between 6.1, 9.7� Why is interval wider when we are more confident?

6.1 9.7

95%

6.5 9.4

90%

What Does it Mean?

56

� Can use the Central Limit Theorem (CLT)Sum of a “large number” of values from any distribution will be Normally (Gaussian) distributed.� “Large number” typically assumed to be >≈ 6 or 7.� If n >= 30 the approximate CI based on the normal distribution remains 
valid and can be used.� If n < 30, we can normalize the measurements by grouping them info 
groups of 6 or more and using their averages as input data.� We can now use the CI based on the t-distribution:

What If Errors Not Normally Distributed?

]/ , /[ 2
2/1

2
2/1 nszxnszx αα −− +−

]/,/[ 2
1;2/1

2
1;2/1 nstxnstx nn −−−− +− αα
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� What if impossible to measure the event of interest directly, e.g. 
duration of the event too short.� Measure the duration of several repetitions of the event and calculate 
the average time for one occurrence.

n

jjjjj

xxx

mTmTx

,...,,

 timesevent repeat   torequired  time theis                  /

21

=� Now apply the CI formula to the n mean values.� The normalization has a penalty!� Number of measurement reduced � loss of information� Provides CI for mean value of the aggregated events, not the 
individual events themselves!� Tends to smooth out the variance

What If Errors Not Normally Distributed? (2)
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� Width of interval inversely proportional to √n� Want to find how many measurements needed to obtain a CI 
with a given width

How Many Measurements?
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� But n depends on knowing mean and standard deviation� Estimate x and s with small number of measurements� Use the estimates to find n needed for desired interval width
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� Assume that based on 30 measurements we found:� Mean = 7.94 s� Standard deviation = 2.14 s� Want 90% confidence true mean is within 3.5% of measured mean?� α = 0.90� (1-α/2) = 0.95� Error = ± 3.5%� e = 0.035

� 213 measurements→ 90% chance true mean is within ± 3.5% interval

Example

9.212
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� Assume we are counting the number of times several events 
occur and want to estimate the fraction of time each event occurs?� Can model this using a binomial distribution� p = Pr(success) in n trials of binomial experiment� Need a confidence interval for p� Let m be the number of successes� m has a binomial distribution with parameters p and n

Confidence Intervals for Proportions
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Confidence Intervals for Proportions (2)
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� How much time does processor spend in OS?� Interrupt every 10 ms and increment counters� n = number of interrupts� m = number of interrupts when PC within OS� Run for 1 minute� n = 6000, m = 658

Example
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6000
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� Can claim with 95% confidence that the processor 
spends 10.2-11.8% of its time in OS



Copyright 2007 Samuel Kounev 32

63

2

2
2/1

2/12/1

)(

)1(
    

)1(
      

)1(
)1(

pe

ppz
n

n

pp
zpe

n

pp
zppe

−=⇒ −=⇒−−=−

−

−−

α

αα

How Many Measurements?

� Example: How long to run OS experiment?� Want 95% confidence interval with ± 0.5% width

[ ] 102,247,1
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� 10 ms interrupts → 3.46 hours

64

� R. K. Jain, “The Art of Computer Systems Performance Analysis : 
Techniques for Experimental Design, Measurement, Simulation, and
Modeling”, Wiley (April 1991), ISBN: 0471503363, 1991� Kishor Trivedi, “Probability and Statistics with Reliability, Queuing, 
and Computer Science Applications”, John Wiley and Sons,                 
ISBN 0-471-33341-7, New York, 2001� Electronic Statistics Textbook
http://www.statsoft.com/textbook/stathome.html� See http://www.arctic.umn.edu/perf-book/bookshelf.shtml� N.C. Barford, “Experimental Measurements: Precision, Error, and 
Truth” (Second Edition), John Wiley and Sons, New York, 1985� John Mandel, “The Statistical Analysis of Experimental Data”,
Interscience Publishers, a division of John Wiley and Sons, New 
York, 1964.

Further Reading
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Further Reading (cont.)
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� Many compilers have several different levels of optimization that 
can be selected to improve performance. Using some appropriate 
benchmark program, determine whether these different 
optimization levels actually make a statistically significant 
difference in the overall execution time of this program. Run the 
program 4 times for each of the different optimizations. Use a 90% 
and a 99% confidence interval to determine whether each of the 
optimizations actually improves the performance. Explain your 
results.

Exercise 1


