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Topics Covered References^%*
1 Basics I: motivation, interference, qubits, measurement Mosca: 1.1, 1.2

Textbook: 1.1.1 – 1.3.4

2 Basics II: gates, circuits Textbook: 4.1-4.4

3 Cool Applications: Bell states, superdense coding, no-cloning 
theorem, teleportation

Textbook: 1.3.5 - 1.3.7, 2.3

4 Algorithms I:  models of computation, universality, relative 
phases, eigenvalue kick-back, Deutsch’s problem

Mosca: 2.1
Textbook: 3.1, 4.5, 4.6, 4.7, 5.1, 5.2

5 Algorithms II:  phase estimation, quantum Fourier transform 
(QFT), eigenvalue estimation, period-finding, order-finding

Mosca: 2.2, 2.3, 2.4, 2.5, 2.8.1, 2.9
Textbook: 5.1, 5.2, 5.4.1, 5.3

6 Cryptographic applications: factoring N=pq, breaking the RSA 
cryptosystem, discrete logarithm problem (El Gamal
cryptosystem), quantum key distribution

Mosca: A.5, 2.6
Textbook: A4.3, 5.3, 5.4.2, 12.6.1,    
12.6.3

7 Algorithms III:  quantum searching, counting Mosca: 2.7
Textbook: 6

8 Algorithms II*: review, Simon’s problem, hidden subgroup 
problem

quant-ph/9704027
Mosca: 2.8
Textbook: 5.4.3

% Mosca = Michele Mosca’s DPhil thesis, available at 
http://www.cacr.math.uwaterloo.ca/~mmosca/moscathesis.ps
* quant-ph/xxxxxx = www.arxiv.org/quant-ph/xxxxxx
^ Textbook = M. A. Nielsen and I. L. Chuang, “Quantum Computation and 
Information”, Cambridge University Press, 2000.



Motivation

Computation is a physical process
e.g. neurons firing in your brain
e.g. electrons flowing through NAND gates in a

computer’s circuits

Therefore, laws of physics govern computation

“Classical physics” includes
Newtonian mechanics (e.g. F=ma)
Einstein’s General Relativity
classical electrodynamics (Maxwell’s equations)

c. 1905 experiments showed some of these laws to break 
down for small-scale systems (e.g. individual photons and 
electrons)



Motivation

“Quantum physics” replaced “classical physics” as the more 
correct theory describing the laws of nature

The Turing Machine (i.e. standard computer) can be 
implemented by physical phenomena that can be described by 
the laws of “classical physics”

Feynman (1982):  But what if we build computers that use 
phenomena that can only be described by the laws of 
“quantum physics”?

Quantum computation was born...



Single-photon interferometer

Two paths through space, labelled “|0〉” and “|1〉”

|0〉

|1〉

Single-photon source, placed at start of |0〉 path

ph|0〉

(thick arrow represents trace of path taken by a photon)

|1〉



Single-photon interferometer (2)

Add in some full-deflection mirrors (not shown), a beam-
splitter* (        ), and some (photon) detectors (      )

ph|0〉 0
(reflected photon)

(transmitted photon)

|1〉 1

A detector clicks when a photon hits it (no “half-clicks” occur)

Experiment:  Have the photon-source emit one photon, and 
then record which detector clicks; repeat many times

Results: ~50% 0-clicks, ~50% 1-clicks

Reasonable conclusion: beam-splitter deflects photon with 
probability ½, and transmits photon with probability ½ 

*we will actually use Hadamard gates (introduced later), which are slightly different 
from beam-splitters; a beam-splitter can also be referred to as a “half-silvered mirror”



Single-photon interferometer (3)

Now add in some more full-deflection mirrors (not shown) 
and another beam-splitter

ph|0〉

|1〉

0

1

Repeat previous experiment

Surprising results: ~100% 0-clicks, ~0% 1-clicks

The previous conclusion is not complete, as we would have 
expected the same even distribution...



Single-photon interferometer (4)

Quantum-mechanical explanation of first experiment

ph|0〉

The state of the photon can exist in a superposition of the two 
paths 

When a photon in the |0〉 path impinges on the beam-splitter, 
it exits in the state 

〉+〉 1|
2

10|
2

1

The probabilities of detecting the photon in the respective 
paths are obtained by squaring the moduli of the coefficients, 
which are complex numbers in general

0

|1〉 1



Single-photon interferometer (5)

Quantum-mechanical explanation of second experiment

ph|0〉

When a photon in the |1〉 path impinges on the beam-splitter, 
it exits in the state 

〉−〉 1|
2

10|
2

1

|1〉

0

1

We say that the reflected beam picks up a phase of -1

The beam-splitter acts independently on each component in 
the superposition 

Thus, the state of the photon after the second beam-splitter is

〉=⎟
⎠
⎞

⎜
⎝
⎛ 〉−〉+⎟

⎠
⎞

⎜
⎝
⎛ 〉+〉 01

2
10

2
1

2
11

2
10

2
1

2
1



Single-photon interferometer (6)

Inspired by the previous experiment, now add in two phase-
shifters (      ), which may be pieces of glass of varying 
thickness characterised by real number ϕ

ϕ

|0〉

|1〉

ph 0

1

ϕ0

ϕ1

cos2((ϕ1- ϕ0)/2)

sin2((ϕ1- ϕ0)/2)

Run experiment again:

For b∈{0,1}, when a photon in the |b〉 path passes through a 
ϕ-phase-shifter, it exits as 

〉beiϕ

Exercise: verify the two probabilities shown in the diagram

Generally, by changing the relative phase (ϕ1- ϕ0) between the 
two paths, we can modify the statistics of the experiment



One Qubit

A (classical) bit is a two-level physical system
The two levels are usually labelled “0” and “1”
Let b be the state of the bit

“Classical physics” dictates that the bit may exist only in 
either the state 0 or 1:

b=0  or  b=1

A quantum bit (qubit) is also a two-level physical system
The two levels are usually labelled “|0〉” and “|1〉”
Let |ψ〉 be the (pure) state of the qubit

“Quantum physics” dictates that the qubit may exist in a 
complex superposition of |0〉 and |1〉:

|ψ〉 = α|0〉 + β|1〉 (superposition principle)

where α and β are complex numbers such that |α|2+|β|2=1



One Qubit

A qubit is thus modelled by a two-dimensional complex vector 
space, C2, with (standard) orthonormal basis {|0〉,|1〉}, called 
the computational basis

The state |ψ〉 of a qubit is modelled by a unit vector in this 
vector space

Physically, a qubit can be realised by

•the two degrees of freedom of two paths of a 
single photon (as we saw earlier)

•the two degrees of freedom of a spin-(1/2) 
particle: spin-up and spin-down)

•many other ways...



Don’t Freak Out: vector notation

In quantum mechanics, we use Dirac bra-ket notation to 
denote vectors

Standard notation Dirac notation

vr or v vvector

inner product vu rr
• vu

dual vector v v†

or u†v
standard basis

{ }Neee ,...,, 21
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{ }222 )1(,...,)1(,)0( −N
where (j)2 denotes the binary 
representation of j; i.e. labels are n-bit 
strings; when N=2n, each bit 
corresponds to a qubit 

N = 2n

of CN

(ket)

(bra)

(elementary basis) (computational basis)

(represented as 
column-vector)

(represented as 
row-vector)



Measurement

The state of one qubit can encode an arbitrarily large amount 
of information

e.g. let α be such that its binary expansion encodes the Bible
α = 0.01001............11.........................000...110

“In the beginning...”                    “...Amen”

Then the state |ψ〉 = α|0〉 + β|1〉 encodes many, many bits!

But we cannot access all the information directly!

The principle of quantum measurement dictates that 
measuring the qubit |ψ〉 = α|0〉 + β|1〉 with respect to the 
computational basis yields

outcome 0 with probability |α|2, and
outcome 1 with probability |β|2

and, immediately after the measurement, the state of the 
qubit is the basis element labelled by the outcome



Measurement (2)

Thus, like classical bits, the result of measuring a qubit is 
binary

Though, unlike classical bits, the result of measuring a qubit
is not deterministic and disturbs its state (e.g. leaves it in |0〉
or |1〉 if measuring w.r.t. computational basis)

|ψ〉 = α|0〉 + β|1〉

The numbers α and β are called (probability) amplitudes



Qubits

A two-qubit system is a system with 4 levels which 
correspond to the 4 combinations of the 2 levels in each qubit:

|0〉|0〉,  |0〉|1〉,  |1〉|0〉,  |1〉|1〉

Again, the principle of quantum superposition says that the 
state |ϕ〉 of the two-qubit system may be

|ϕ〉 = α0|0〉|0〉 + α1|0〉|1〉 + α2|1〉|0〉 + α3|1〉|1〉

where |α0|2+|α1|2 +|α2|2 +|α3|2 =1  (αi are complex numbers)

Similar to before, measuring the two-qubit system with 
respect to the computational basis gives outcome 

00 with probability |α0|2

01 with probability |α1|2

10 with probability |α2|2

11 with probability |α3|2



Qubits (2)

Mathematically, a two-qubit system is modelled by the 
tensor product (⊗) of two copies of the vector space that 
models a one-qubit system

E.g. let |ψ〉A= α|0〉A + β|1〉A and |ψ〉B = γ|0〉B + δ|1〉B be the 
states of two qubits; then the state |ψ〉AB of the joint 
two-qubit system (in the order A,B) is

|ψ〉AB = (α|0〉A + β|1〉A)⊗(γ|0〉B + δ|1〉B)
= αγ|0〉A⊗|0〉B + αδ|0〉A⊗|1〉B + βγ|1〉A⊗|0〉B + βδ|1〉A⊗|1〉B

which is usually just written

αγ|00〉 + αδ|01〉 + βγ|10〉 + βδ|11〉

and the order of systems A and B remembered

Note that the tensor product makes sense in light of the 
measurement principle and probability theory:  e.g. the 
probability of getting outcome |01〉 is the probability of 
getting |0〉 for qubit A and |1〉 for qubit B (assuming independence of events)



Qubits (3)

In general, an n-qubit system (register) is modelled by the 
tensor product (⊗) of n copies of C2

The state |ψ〉 of an n-qubit register is a complex unit vector in 
this tensor product space, often written in the computational 
basis as

|ψ〉 = ∑
−

=

〉
12

0
|

n

i
i iα

where the index is viewed in its n-bit binary 
representation when inside the “| 〉”, and

∑
−

=

=
12

0

2 1||
n

i
iα

Measuring the n-qubit register with respect to the 
computational basis gives outcome

with probability 〉i| 2|| iα



More Measurement

More generally, one can measure with respect to 
(orthonormal) basis B={|bi〉}

If B is a basis for the vector space containing |ψ〉 , then the 
state (expressed in the computational basis)

|ψ〉 = ∑
−

=

〉
12

0
|

n

i
i iα

|ψ〉 = ∑
−

=

〉
12

0
|

n

i
ii bβ

may also be written

Measurement of the qubit system with respect to basis B 
gives outcome

with probability 
ib 2|| iβ

and, immediately after the measurement, the state of the 
qubit system is the basis element labelled by the outcome



More Measurement (2)

E.g. for two-qubit systems, an interesting basis other than the 
computational (standard) basis is the Bell basis, consisting of 
the four Bell states:

|00〉 + |11〉
|00〉 - |11〉
|01〉 + |10〉
|01〉 - |10〉

where we have omitted the normalisation factor of        in 
each state. 2

1

We’ll return to these states later... they are very important 
for communication protocols and quantum cryptography!
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Quantum Gates

Recall the classical gates (for bits b, c, d):

1-b (one-bit) NOT gateb

c
(two-bit) NAND gate1 – cd

d

What should a quantum gate be like?

?|ψ〉 |ψ’〉

Since |ψ〉 and |ψ’〉 are quantum states, the gate should 
preserve vector norm.  Notice that a unitary operator has this 
property....  

(Recall: U is unitary means U-1=U†, where † denotes 
complex-conjugate transpose operation, i.e. complex 
conjugate of each matrix element followed by matrix 
transpose operation)



Quantum Gates

In general, quantum gates are unitary operators

U|ψ〉 |ψ’〉

Note that the number of input qubits always equals the 
number of output qubits

Since all unitary operators have an inverse, all quantum gates 
are reversible

|ψ〉|ψ〉 U U†

which means no heat need be dissipated during a 
computation (Landauer’s principle)

(Classical computing can also be made reversible)



Matrix Representations

When doing calculations, often it is useful to represent the 
state of a qubit-register and the operations (gates) applied to 
it by matrices with respect to the computional basis

Technically, we can use the notation “[...]” to distinguish the 
state or operator from its matrix representation:

⎥
⎦

⎤
⎢
⎣

⎡
β
α

e.g. |ψ〉 = α|0〉 + β|1〉 is represented as [|ψ〉] = 

e.g. the one-qubit gate U which maps

|0〉 → a|0〉 +b|1〉
|1〉 → c|0〉 +d|1〉

is represented as [U]=
⎥
⎦

⎤
⎢
⎣

⎡
db
ca

When the basis is understood to be the computational basis, 
we may drop the “[...]” notation (especially for states)

e.g. we may write U|ψ〉 = [U][|ψ〉]



Some Important One-qubit Gates

U|ψ〉 = [U]U⎥
⎦

⎤
⎢
⎣

⎡
β
α

⎢
⎣

⎡
β
α
⎥
⎦

⎤|ψ〉=

(input) (output)

Hadamard ⎥
⎦

⎤
⎢
⎣

⎡
−11
11

2
1

Pauli-X  (NOT) ⎥
⎦

⎤
⎢
⎣

⎡
01
10

Pauli-Y  ⎥
⎦

⎤
⎢
⎣

⎡ −
0

0
i

i

Pauli-Z  ⎥
⎦

⎤
⎢
⎣

⎡
−10
01

θ-phase ⎥
⎦

⎤
⎢
⎣

⎡
θie0

01

U [U] Gate symbol

H

Rθ

X

Y

Z



Two-Qubit Gates

U|ψ〉= U|ψ〉 = [U]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

α
α
α
α

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

α
α
α
α

Two one-qubit gates acting in parallel constitute a two-qubit
gate:

U1

U0

If U is the operator corresponding to this 2-qubit gate, how is 
U represented mathematically in terms of U0 and U1?

ANSWER: tensor product!
U = U0⊗U1

Matrix tensor product: the tensor product M⊗N of two 
matrices M and N is the block matrix:

[MijN]

where Mij is the element of M in the ith row and jth column



Controlled-Operations (two-qubit gates)

But, in general, a two-qubit gate is not the tensor product of 
two one-qubit gates!

Suppose U is a one-qubit operation U

We can define the operation on qubits A and B that maps

|0〉A|ψ〉B → |0〉A|ψ〉B
|1〉A|ψ〉B → |1〉AU|ψ〉B

Classically: “If qubit A is in state |1〉, then apply U to qubit B; 
otherwise do nothing”

This is the controlled-U gate, with control qubit A and target 
qubit B.

For general U, controlled-U cannot be written as a tensor 
product of two one-qubit gates

A

B U

Gate symbol:



Two Important Two-qubit Gates

U U|ψ〉 = [U]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

α
α
α
α

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

α
α
α
α

|ψ〉=

All matrices are with respect to the computational basis 
with the following qubit ordering

{|0〉A|0〉B , |0〉A|1〉B , |1〉A|0〉B , |1〉A|1〉B }

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0100
1000
0010
0001

Controlled-NOT 
(CNOTA,B)

U [U] Gate symbol

qubit A (control)

qubit B (target)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0010
0100
0001SWAPA,B

x

x

(maps |ψ〉A|ϕ〉B → |ϕ〉A|ψ〉B)



Quantum Networks

A quantum network (diagram) is a tool we use to describe a 
(complex) quantum operation usually as a sequence of 
(simpler) operations

It is a concatenation of gate symbols, read from left to right

Each horizontal line represents one qubit

To represent a particular computation, the initial (input) state
(of each qubit) may be written on the left of the diagram; the 
final (output) state may be written on the right.

E.g. (a three-qubit quantum network)

|0〉
|ψ’〉X|0〉

|0〉



Computing U and |ψ’〉

X

|0〉
|0〉
|0〉

|ψ’〉

U=U3U2U1

U1 U2 U3

Label the qubits from top to bottom: A, B, C

Fix a computational basis with the corresponding ordering:
{|0〉A|0〉B |0〉c , |0〉A|0〉B |1〉c ,..., |1〉A|1〉B |1〉c}

Reading from left to right, U is made up of three operations  
U1 (CNOTA,B), U2 (CNOTC,A), and U3 (NOTB):

|ψ’〉 = U3U2U1|000〉

Let’s calculate the matrix representations of each operation...



Computing U and |ψ’〉

Computing [U1] (CNOTA,B)

Let I be the identity operator (no action on qubit(s))
U1 = CNOTA,B ⊗ I

[U1] = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⊗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10
01

10
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10
01

10
01

10
01

0100
1000
0010
0001

(zeros elsewhere)



Computing U and |ψ’〉

Computing [U2] (CNOTC,A)

Either directly from mapping of computational basis:

|x〉A|x〉B|0〉C → |x〉A|x〉B|0〉C
|x〉A|x〉B|1〉C → |1-x〉A|x〉B|1〉C x∈{0,1}

or, notice that

CNOTC,A=(SWAPB,C)(CNOTB,A)(SWAPB,C)

[U2] = 

⎟
⎟
⎟
⎟
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⎥
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⎥
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⊗⎥
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⎤
⎢
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⎡

1
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1
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1
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1
1

1
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1
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(zeros elsewhere)



Computing U and |ψ’〉

Computing [U3] (NOTB)

U3 = I⊗X⊗I

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
10
01

01
10

10
01[U3] = 

Thus, [U]=[U3][U2][U1]

[|ψ’〉] =[U][|000〉] To compute [|ψ’〉] :

= [U3][U2][U1]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
0
0
0
0
0
0
1



Single-photon interferometer as a quantum network diagram

The interferometry experiment

ph|0〉 ϕ0

|1〉 ϕ1

is represented by 

H Rθ H|0〉

θ = ϕ1 - ϕ0



Properties of Tensor Product ⊗

A⊗B ≠ B⊗A

A⊗B⊗C = (A⊗B)⊗C = A⊗(B⊗C)

A⊗(B+C) = A⊗B + A⊗C

(A+B)⊗C = A⊗C +B⊗C

for scalar α:    α(A⊗B) = (αA)⊗B = A⊗(αB)

for operators U,V:  (U⊗V)(|ψ〉⊗|ϕ〉) = (U|ψ〉)⊗(V|ϕ〉)

for matrices M,N:   M⊗N = [MijN]  (in block form)
where Mij is the element of M in the ith row and jth column

we normally omit the symbol ⊗ when it is between states
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Entangled States

Let |ψ〉A= α|0〉A + β|1〉A and |ψ〉B = γ|0〉B + δ|1〉B be the 
states of two qubits; then the state |ψ〉AB of the joint 
two-qubit system is

|ψ〉AB = (α|0〉A + β|1〉A) ⊗ (γ|0〉B + δ|1〉B)

The state |ψ〉AB is a special kind of two-qubit state called a 
separable state, because it is the tensor-product of the states 
of the two constituent qubits

A two-qubit state which is not separable is called an 
entangled state

e.g. |00〉 + |11〉 (omitting normalisation factors)

Exercise: Prove that |00〉 + |11〉 is entangled, i.e. show that 
there do not exist α, β, γ, δ such that |00〉 + |11〉 equals 

(α|0〉 + β|1〉) ⊗ (γ|0〉 + δ|1〉)



Entangled States (2)

e- e-
(counter-intuitive correlations)

(possibly large distance)

We say that two qubits are entangled when their state is an 
entangled state

Intuitively, entangled qubits can be thought to be “linked” in 
some elusive, unintuitive way

Even if the two entangled qubits (e.g. two electrons) are 
physically separated (taken kilometers away from each 
other), they still remain “linked”

This elusive nonclassical (quantum) correlation between the 
two physically separated entangled qubits can be exploited to 
transfer information!



Bell States (EPR pairs)

|β00〉 =|00〉 + |11〉
|β01〉 =|01〉 + |10〉

Four special entangled two-qubit states are the Bell states or 
EPR pairs:

|β10〉 =|00〉 - |11〉
|β11〉 =|01〉 - |10〉

Note that the following quantum network maps |bc〉 to |βbc〉

H|b〉
|βbc〉

|c〉

Exercise: show how a similar network can be used to effect a 
measurement w.r.t. the Bell basis by actually measuring w.r.t. 
the computational basis



Superdense Coding

Superdense coding is a two-party protocol that utilises a 
shared EPR pair in order to communicate two classical bits 
from one party (Alice) to the other (Bob) while only 
communicating one of the shared qubits

Suppose Alice and Bob each have one qubit of the state
|β00〉 =|00〉 + |11〉

(Alice’s qubit is on the left, Bob’s on the right...)

Alice wishes to send two classical bits b,c to Bob

I⊗I |β00〉 = |β00〉
Y⊗I |β00〉 = |β01〉

By operating only on her qubit, Alice can transform |β00〉 into 
any of the four Bell states:

X⊗I |β00〉 = |β10〉
Z⊗I |β00〉 = |β11〉

Protocol: Alice transforms |β00〉 into |βbc〉, and then sends her 
qubit to Bob.  Bob measures the two qubits w.r.t. the Bell 
basis.



No-cloning Theorem

Suppose Alice would like to send a copy of her arbitrary qubit
to Bob

She cannot!

Suppose that some quantum operation O maps

|ψ〉 → |ψ〉|ψ〉
for all states |ψ〉

Then O must map |ψ〉 → |ψ〉|ψ〉
|ϕ〉 → |ϕ〉|ϕ〉

|ψ〉+|ϕ〉 → (|ψ〉 + |ϕ〉)(|ψ〉 + |ϕ〉)

But O is a quantum operation, so it must be linear and thus 
map |ψ〉+|ϕ〉 → |ψ〉|ψ〉 + |ϕ〉|ϕ〉

This is a contradiction, thus O cannot exist



Quantum Teleportation
(Quantum) Teleportation is a two-party protocol that utilises
a shared EPR pair in order to send one qubit from Alice to Bob 
while only communicating two classical bits

This does not violate the no-cloning theorem because Alice 
destroys the state of her qubit in the process

As in superdense coding, Alice and Bob share EPR pair |β00〉
(with Alice’s qubit on the left)

Suppose Alice wants to send the qubit |ψ〉 to Bob

Exercise:  verify  |ψ〉 ⊗|β00〉 = |β00〉 ⊗|ψ〉
+ |β01〉 ⊗X|ψ〉
+ |β10〉 ⊗Z|ψ〉
+ |β11〉 ⊗XZ|ψ〉

Protocol: Alice measures her two qubits w.r.t. the Bell basis 
getting outcome βbc, and then sends bits b,c to Bob.  Bob 
applies ZbXc to his qubit (note X2=Z2=I).



Quantum Network Diagram for Teleportation

H b

c

Bell Measurement

Xc Zb

double lines 
represent flow of 
classical 
information

|ψ〉

|ψ〉
|β00〉

This symbol represents measurement of a 
qubit with respect to the computational basis; 
the output of this “measurement gate” is 
classical (0 or 1)

Xc This symbol means “if c=0, 
do nothing, else apply X 
gate”; it is a classically-
controlled quantum gate

In the teleportation protocol, the upper two qubits belong to 
Alice and the bottom qubit belongs to Bob



Quantum Network Diagram for Teleportation (2)

b

c

Xc Zb

|ψ〉

|ψ〉
|β00〉

BELL

In this revised diagram, we have replaced the CNOT gate, 
Hadamard gate, and measurement with respect to the 
computational basis with a two-qubit “Bell measurement 
gate”

The physical motivation for this replacement is that, in some 
physical implementations, performing a measurement w.r.t. 
the Bell basis directly may be easier than performing a CNOT 
gate...



Teleportation: Not just a pretty face

...based on this assumption, teleportation can be used to fight 
against errors in the implementation of quantum gates.

It may be that a particular implementation of the CNOT gate 
is not perfect (fails with some probability)

If a CNOT gate fails midway through a complex computation, 
then the entire computation might be ruined

Normally, quantum error-correction codes are used to fight 
against errors

Alternatively, teleportation can be used to reduce the 
application of an imperfect CNOT gate to the preparation of a 
particular 4-qubit entangled state

|Ψ〉 = (|0000〉 + |0011〉 + |1110〉 + |1101〉)/2

Instead of a CNOT gate possibly failing, the preparation of |Ψ〉
may fail (but this failure does not ruin the computation)



Teleportation: Not just a pretty face (2)

The following sequence of equivalent network diagrams 
illustrates the method

α|0〉 + β|1〉

γ|0〉 + δ|1〉

Diagram 1



Teleportation: Not just a pretty face (3)

α|0〉 + β|1〉

γ|0〉 + δ|1〉

H

H

H

H

c

Xc Zb

b

Xe Zd

|0〉

|0〉

|0〉

|0〉

d

e

Diagram 2

Added four ancillary qubits in order to teleport the outer two 
qubits to the inner two qubits, and then apply the CNOT to the 
inner two qubits



Teleportation: Not just a pretty face (4)

α|0〉 + β|1〉

γ|0〉 + δ|1〉

H

H

H

H

c

Xc Zb

b

Xe Zd

d

e

|0〉

|0〉

|0〉

|0〉

Diagram 3

Added two CNOT gates on the inner two qubits



Teleportation: Not just a pretty face (5)

α|0〉 + β|1〉

H

H

c

Xc Zb

b

Xe Zd

d

e
γ|0〉 + δ|1〉

|0〉

|0〉

|0〉

|0〉

BELL

BELL

Diagram 4

Replaced two instances of CNOT, Hadamard, and 
measurement w.r.t. computational basis with “Bell 
measurement gate” (based on assumption that a direct Bell 
measurement may be easier to implement than a CNOT gate)



Teleportation: Not just a pretty face (6)

c

Xc Zb

b

Xe Zd

d

e

α|0〉 + β|1〉

γ|0〉 + δ|1〉

Diagram 5
Replaced dashed box on previous slide with a machine for 
producing the state 

BELL

BELL

|Ψ〉 = (|0000〉 + |0011〉 + |1110〉 + |1101〉)/2

black-boxed 
machine for 
creating |Ψ〉

Main idea is that failed attempts to produce |Ψ〉 occur “off 
line” (inside the black box) and hence do not affect the 
computation on the outer qubits 



Teleportation: Not just a pretty face (7)

α|0〉 + β|1〉

BELL

BELL

black-boxed 
machine for 
creating |Ψ〉

classical 
logic

Z

X

X

Z

γ|0〉 + δ|1〉

Diagram 6

Exercise:  Show that this final replacement is valid; i.e. show 
that the two CNOT gates in the dashed box on the previous 
slide can be removed as long as the classical logic controlling 
the X and Z gates is appropriately modified
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Models of Computation

Recall the polytime-equivalent classical models:

Turing Machine
•Idealised computer
•Two-way infinite tape, mobile read/write head, 
CPU (transfer function)

00 0 0 0 1 1 1

CPU

1 1

Reversible acyclic gate array (reversible circuit model)

input output



Model of Computation (2)

Although one can define a quantum Turing Machine, we will 
use the quantum analogue of the classical reversible circuit 
model, known as the quantum circuit model

More specifically, we restrict to uniform families of quantum 
networks (or quantum gate arrays, or quantum circuits):

For a given problem, there exists a classical 
Turing Machine that, given the input size, n, 
of an instance of the problem, generates a 
quantum network diagram to solve the 
instance in poly(n) steps

This ensures that the proposed quantum solution of the 
problem is (considered) efficient

Such a uniform family of quantum networks is an efficient 
algorithm



Universality

Recall that the gates AND, OR, and NOT (or just the NAND-
gate) are universal for classical (non-reversible) computation

For reversible classical computation, the three-bit Toffoli gate
(or controlled-controlled-NOT) is universal

aa
bb
c⊕(ab)c

Toffoli gate



Universality (2)

A fixed set G of quantum gates is universal for quantum 
computation if any unitary operator can be approximated to 
arbitrary accuracy by a quantum network using only gates 
from G

Some universal sets of gates for quantum computation:

G = {CNOT}∪{all one-qubit gates}

G = {CNOT}∪{H, S, T}

Hadamard ⎥
⎦

⎤
⎢
⎣

⎡
−11
11

2
1

⎥
⎦

⎤
⎢
⎣

⎡
4/0

01
πie

⎥
⎦

⎤
⎢
⎣

⎡
i0
01

U [U]

“phase”

“π-by-8”

Gate symbol

H

S

T



What’s so great about quantum algorithms

Efficient quantum algorithms exist for problems such as 
INTEGER FACTORING and DISCRETE LOGARITHM 

•INTEGER FACTORING:   Given integer N, 
such that N=pq for odd prime numbers p 
and q; find p

•DISCRETE LOGARITHM:   Given 
integers N, b, y; find integer x such that 
y = bx mod N (i.e. N divides bx with 
remainder y)

•Efficient classical algorithms are not 
known to exist for these problems which 
form the basis for computational secure 
cryptosystems like RSA and El Gamal

Quantum algorithms can efficiently simulate quantum physics 
(see 4.7 in textbook)



Problems as black box functions

Many computational problems can be expressed in terms of 
a black box function f

f: G → {0,1,...,N-1}

where the “answer” to the problem is some (hidden) property 
of f (G is some set)

We assume that we can query the black box, i.e. give it an 
input x and get out f(x) (reversibly) 

⊕f(x)

|x〉

|y⊕f(x)〉

|x〉

|y〉

here, “⊕” means bit-wise addition modulo 2



Problems as black box functions (2)

Some examples:

Searching problem: 

Given black box for f: {0,1}n → {0,1}

Find an x such that f(x)=1

({0,1}n is the “database”)

Period-finding problem: 

Given black box for f: {0,1,…} → {0,1,…,N-1}, where 
f is periodic, f(x+r)=f(x)

Find the period r

e.g. f(x)=ax mod N (related to INTEGER FACTORING)



Classical v. Quantum Computers
The state of a classical reversible computer is confined to 
being one of the computational basis states at any time 
(queries to the black box for f can only be made one at a 
time)

Quantum computers can branch out over exponentially many 
computational basis states, like 

∑
−

=

〉
12

0

|
2
1n

n
x

x

Using the black box for f only once, one can then evaluate f(x) 
for exponentially many x in superposition:

∑
−

=

〉〉
12

0
)(||

2
1n

n
x

xfx

Such states can be further processed (quantumly) to extract 
hidden properties of f



Randomised Classical v. Quantum Computers (1)

Recall that a deterministic computation can be regarded as a 
path through “configuration space” of all configurations of a 
Turing machine (each configuration corresponds to an 
element of the computational basis)

A randomised computation can be regarded as a tree

|001〉

|010〉

|000〉

|011〉

|101〉

|111〉

|110〉
p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

|000〉

where each branch has a probability pi associated with it



|000〉

|001〉

|010〉

|000〉

|011〉

|101〉

|111〉

|110〉
p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

Randomised Classical v. Quantum Computers (2)

The outcome |000〉 in this computation can be reached by two 
paths (red and green)

Probability of reaching |000〉 by the red path is |a00|2 =p0p3

Probability of reaching |000〉 by the green path is |a10|2 =p2p4

The total probability of reaching |000〉 is thus |a00|2 + |a10|2



Randomised Classical v. Quantum Computers (3)

In our interferometry experiment, recall that there are two 
“computational paths” that lead to the outcome 0 (red path 
and green path):

ph|0〉 0

1

ϕ0

ϕ1

cos2((ϕ1- ϕ0)/2)

|1〉

The probability amplitude of reaching 0 by the red path is         
a00 = exp(iϕ0)/2

The probability amplitude of reaching 0 by the green path is     
a10 = exp(iϕ1)/2

The total probability of reaching 0 is 

|a00 + a10|2= cos2((ϕ1- ϕ0)/2)



Randomised Classical v. Quantum Computers (4)

|0〉

|1〉

ph 0

1

ϕ0

ϕ1

a00 = exp(iϕ0)/2

a10 = exp(iϕ1)/2

The total probability of reaching 0 is |a00 + a10|2= cos2((ϕ1- ϕ0)/2)

The relative phase between the probability amplitudes of the 
two paths matters (no such concept in the classical case), and 
can result in constructive or destructive interference

e.g. destructive interference occurs when a00 = -a10, 

e.g. constructive interference occurs when a00 = a10

One goal of quantum algorithms is to induce constructive 
interference on good outcomes and destructive interference 
on bad outcomes



Quantum Algorithms as Interferometry

Most quantum algorithms can be viewed as big interferometry 
experiments

ph|0〉 0

1

ϕ0

ϕ1

cos2((ϕ1- ϕ0)/2)

sin2((ϕ1- ϕ0)/2)
|1〉

≡

H Rϕ H|0〉

ϕ = ϕ1 - ϕ0

Basic idea: the measurement can distinguish the two cases 
ϕ=0 and ϕ=π



Other ways to introduce a relative phase

H Rϕ H

|0〉 + eiϕ|1〉

|0〉

is equivalent to 

H H

⎥
⎦

⎤
⎢
⎣

⎡
ϕ

ϕ

i

i

e
e
0

0

|0〉 ⊗ |ψ〉 + |1〉 ⊗(eiϕ|ψ〉) = (|0〉+ eiϕ|1〉)⊗|ψ〉

|0〉

|ψ〉 |ψ〉

with respect to the top qubit;  bottom qubit was unchanged…



Other ways to introduce a relative phase (2)

… more generally, the bottom qubit will “kick back” a relative 
phase (eigenvalue) in the top qubit if the bottom qubit is in an 
eigenstate of U:

H H|0〉

|ψ〉 |ψ〉U

(|0〉+ eiϕ|1〉)⊗|ψ〉

where

U|ψ〉 = eiϕ|ψ〉

This so-called “eigenvalue kick-back” is a useful mechanism 
by which to analyse (though, not necessarily implement) 
quantum algorithms



Deutsch’s problem

Given a black box which computes the function

f: {0,1} → {0,1} such that

f(0)=f(1)

or

f(0)≠f(1)

distinguish the two cases i.e. compute f(0)⊕f(1) (with as few 
evaluations as possible of the black box)

If restricted to classical computation (classical black box), 
then the number of evaluations of the black box is 2; 
evaluating the black box only once can never solve the 
problem (this is easily verified)



Deutsch’s problem (2)

However, suppose one has a quantum gate that computes f:

⊕f(x)

|x〉

|y⊕f(x)〉

|x〉

|y〉

for x,y∈{0,1}

Then the following quantum network solves Deutsch’s 
problem with probability ½

⊕f(x)

H H|0〉

|0〉



Deutsch’s problem (3)

⊕f(x)

H H|0〉

|ψ1〉 |ψ2〉

|0〉

|ψ1〉 = |0〉|f(0)〉 + |1〉|f(1)〉

|ψ2〉 = (|0〉+|1〉)|f(0)〉 + (|0〉-|1〉)|f(1)〉

= |0〉(|f(0)〉+|f(1)〉) + |1〉(|f(0)〉-|f(1)〉)

If f(0)=f(1), then cannot measure outcome 1 in upper qubit

Thus, if one does get outcome 1, then one may conclude that 
f(0)≠f(1) (if one gets outcome 0, then either case may hold)

This solution to Deutsch’s problem is already better (on 
average) than any classical solution; but we can do better…



Deutsch’s problem (4)

⊕f(x)

H H|0〉

|ψ1〉 |ψ2〉

|0〉

Note |ψ1〉 = |0〉|f(0)〉 + |1〉|f(1)〉

= [|0〉+|1〉] (|0〉+|1〉) + [(-1)f(0)|0〉 + (-1)f(1)|1〉](|0〉-|1〉)

= [|0〉+|1〉] (|0〉+|1〉) + (-1)f(0) [|0〉 + (-1)f(0)+f(1)|1〉](|0〉-|1〉)

Now |ψ2〉 = |0〉(|0〉+|1〉) + (-1)f(0)|f(0)⊕f(1)〉(|0〉-|1〉)

The measurement now clearly gives the answer f(0)⊕f(1) with 
probability 50% (the other half of the time, the measurement 
gives 0, which is inconclusive)



Deutsch’s problem (5)

⊕f(x)

H H|0〉

|ψ1〉 |ψ2〉

|0〉

|ψ1〉 = |0〉|f(0)〉 + |1〉|f(1)〉

= [|0〉+|1〉] (|0〉+|1〉) + [(-1)f(0)|0〉 + (-1)f(1)|1〉](|0〉-|1〉)

|ψ2〉 = |0〉(|0〉+|1〉) + (-1)f(0)|f(0)⊕f(1)〉(|0〉-|1〉)

BIG IDEA: |x〉(|0〉+|1〉) and |x〉(|0〉-|1〉) are eigenvectors of the 
operation |x〉|b〉 → |x〉|b⊕f(x)〉, with eigenvalues 1 and (-1)f(x)

Thus the controlled-(⊕f(x)) gate actually induces a relative 
phase in the top qubit, via an eigenvalue kick-back

Since the |0〉-|1〉 eigenvector is the one that produces the 
desired relative phase in the top qubit…



Deutsch’s problem (6)

⊕f(x)

H H|0〉

|ψ1〉 |ψ2〉

|0〉-|1〉 |0〉-|1〉

|ψ1〉 = [(-1)f(0)|0〉 + (-1)f(1)|1〉](|0〉-|1〉)

|ψ2〉 = (-1)f(0)|f(0)⊕f(1)〉(|0〉-|1〉)

This revised algorithm succeeds with probability 1



Deutsch’s problem (7)

H H|0〉

⊕f(x)|0〉-|1〉 |0〉-|1〉

Deutsch’s problem seems to be special:  because of it’s 
simplicity, the operation |b〉 → |b⊕f(x)〉 can be analysed in a 
useful eigenbasis, namely {|0〉+|1〉, |0〉-|1〉}

But for more general problems, like period-finding (and the 
general hidden subgroup problem), we introduce the shift 
operation, Ush(f):

Ush(f):   |f(x)〉 → |f(x+1)〉

For general f, Ush(f) may not be implementable, because f is 
not necessarily one-to-one

However, Ush(f) is a powerful analysis tool…



Deutsch’s problem (8)

⊕f(x)

H H|0〉

|0〉-|1〉 |0〉-|1〉

Instead of the controlled-⊕f(x) gate (above), assume we have 
a controlled-Ush(f) gate which maps

|0〉|f(x)〉 → |0〉|f(x)〉
|1〉|f(x)〉 → |0〉|f(x+1)〉

Ush(f)

H H|0〉



Deutsch’s problem (9)

Ush(f)

H H|0〉

Note: f(0)=f(1) implies Ush(f) = I
f(0)≠f(1) implies Ush(f) = X

Both I and X have eigenvectors {|0〉+|1〉,|0〉-|1〉}, but I has 
eigenvalues {1,1} whereas X has eigenvalues {1,-1}

So, Ush(f) has eigenvectors {|0〉+|1〉,|0〉-|1〉} with eigenvalues

{1, (-1)f(0)⊕f(1)}

or, writing the eigenvalues another way,

{1, eiπf(0)⊕f(1)}



Deutsch’s problem (10)

Ush(f)

H H|0〉

Eigenvalues of Ush(f) are {1, eiπf(0)⊕f(1)}

Thus, the answer f(0)⊕f(1) is encoded in the “phase” of an 
eigenvalue of the shift operator!

We know that if we input the eigenvector |0〉-|1〉 in the 
bottom register, the controlled-shift gate will kick back this 
relative phase into the top qubit; the phase ϕ=πf(0)⊕f(1) is 
either 0 or π

From our interferometry experiment, we know we can 
distinguish the two cases ϕ=0 or ϕ=π…



Deutsch’s problem (11)

Ush(f)

H H|0〉

|0〉-|1〉 |0〉-|1〉

The above network thus solves Deutsch’s problem with 
probability 1



Controlled-⊕f(x) v. Controlled-Ush(f)

Ush(f)

H H|0〉

|0〉-|1〉 |0〉-|1〉

In most cases, the desired eigenvector is not known

However    |0〉 = (|0〉+|1〉) + (|0〉-|1〉)
|1〉 = (|0〉+|1〉) - (|0〉-|1〉)

It turns out we can always resort to inputting an equal 
superposition of eigenvectors of the shift operator, which will 
give the desired eigenvalue kick back in the top qubit with 
some reasonable probability (in this case ½)

(We actually already saw this effect in the controlled-⊕f(x) 
solution to Deutsch’s problem)



Controlled-⊕f(x) v. Controlled-Ush(f) (2)

Thus, the following network solves Deutsch’s problem with 
probability 1/2 

Ush(f)

H H|0〉

|1〉

Suppose we were given the state |f(0)〉 , which is a uniform 
superposition of the eigenvectors of Ush(f) (in general, as we’ll see later!)

Then, the following network solves Deutsch’s problem with 
probability 1/2

Ush(f)

H H|0〉

|f(0)〉



Controlled-⊕f(x) v. Controlled-Ush(f) (3)

Exercise: Compare the states produced by the following 
networks

Ush(f)

H|0〉

|f(0)〉

⊕f(x)

H|0〉

|0〉

The equivalence of these two states is the fundamental link 
between the shift operator (eigenvalue-estimation approach 
to quantum algorithms) and the controlled-⊕f(x) operator 
(standard approach)
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Phase Estimation

Ush(f)

H H

|0〉-|1〉

|ψ1〉

|0〉

|0〉-|1〉

|ψ1〉 = [|0〉 + (-1)f(0)+f(1)|1〉](|0〉-|1〉)

Let’s rewrite |ψ1〉 in a more standardised phase notation:

|ψ1〉 = [|0〉 + e2πiω|1〉](|0〉-|1〉)

where ω = f(0)⊕f(1)/2

Applying the Hadamard gate to  |0〉+e2πiω|1〉 gives us 
|f(0)⊕f(1)〉 which we will now think of as the most significant 
bit of the binary expansion of ω:

ω = 0.a1a2a3...  ≡ a1/2   +   a2/4  +   a3/8 + ...  (ai∈{0,1})

a1=f(0)⊕f(1),   a2=0,   a3=0, ...



Phase Estimation (2)
ω = 0.a1a2a3 ≡ a1/2   +   a2/4  +   a3/8    (ai∈{0,1}) 

This procedure can be generalised to the case where ω has 
lower-order (nonzero) bits

E.g. suppose ω=0.a1a2a3 i.e.  ω=j/8  for some integer j in [0,1,...,7]

Suppose we have prepared the tensor-product state

(|0〉 + e2πi(4ω)|1〉) (|0〉 + e2πi(2ω)|1〉) (|0〉 + e2πiω|1〉)

which, noting e2πi=1, we can also express as

(|0〉 + e2πi(0.a3)|1〉) (|0〉 + e2πi(0.a2a3)|1〉) (|0〉 + e2πi(0.a1a2a3)|1〉)

Our goal is to find a network that will map this state to
|a3〉 |a2〉 |a1〉

so that measuring the qubits w.r.t. the computational basis 
will determine ω



Phase Estimation (3)
ω = 0.a1a2a3 ≡ a1/2   +   a2/4  +   a3/8     (ai∈{0,1}) 

(|0〉 + e2πi(0.a
3
)|1〉) (|0〉 + e2πi(0.a

2
a

3
)|1〉) (|0〉 + e2πi(0.a

1
a

2
a

3
)|1〉) → |a3〉 |a2〉 |a1〉

(we’ll use the facts that H=H-1 and H maps
|b〉 → |0〉 + (-1)b|1〉 = |0〉 + e2πi(0.b)|1〉 )

We can map the first qubit to |a3〉 by just applying the
Hadamard gate, as we did in Deutsch’s problem, to get

|a3〉 (|0〉 + e2πi(0.a2a3)|1〉) (|0〉 + e2πi(0.a1a2a3)|1〉)

If the second qubit were in the state |0〉 + e2πi(0.a2)|1〉, then we 
could just apply the Hadamard gate

Note              e2πi(0.a2a3) = e2πi(0.0a3)e2πi(0.a2)

= e2πi(a3/4)e2πi(0.a2)

= ei(a3π/2)e2πi(0.a2)

If a3=0, then the second qubit is in the desired state; else, if 
a3=1, then applying a (-π/2)-phase gate R-π/2 to the second
qubit will give the desired state 



Phase Estimation (4)
ω = 0.a1a2a3 ≡ a1/2   +   a2/4  +   a3/8      (ai∈{0,1}) 

(|0〉 + e2πi(0.a
3
)|1〉) (|0〉 + e2πi(0.a

2
a

3
)|1〉) (|0〉 + e2πi(0.a

1
a

2
a

3
)|1〉) → |a3〉 |a2〉 |a1〉

(we use the facts that H=H-1 and H maps
|b〉 → |0〉 + (-1)b|1〉 = |0〉 + e2πi(0.b)|1〉 )

Because the first qubit is already in the state |a3〉, we can 
apply a controlled-R-π/2 gate, to effect the conditional phase-
change

Applying this gate and then the Hadamard gate gives

|a3〉 |a2〉 (|0〉 + e2πi(0.a1a2a3)|1〉)

Similarly (exercise), applying the controlled-R-π/2 gate (to get 
rid of the e2πi(0.0a20) ) and then the controlled-R-π/4 gate (to get 
rid of the e2πi(0.00a3) ) gives |a3〉 |a2〉 (|0〉 + e2πi(0.a1)|1〉), which 
after a final Hadamard gate gives

|a3〉 |a2〉 |a1〉



Phase Estimation (5)
ω = 0.a1a2a3...an ≡ a1/2   +   a2/4  +...+   an/2n (ai∈{0,1}) 

The complete network looks like this

|0〉 + e2πi(0.a
3
)|1〉

|0〉 + e2πi(0.a
2
a

3
)|1〉

|0〉 + e2πi(0.a
1
a

2
a

3
)|1〉

H

H

H

R-π/2

R-π/2 R-π/4

|a3〉

|a2〉

|a1〉

If ω = 0.a1a2a3 ...an, then the obvious generalisation of this 
network maps
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to

|an〉 |an-1〉... |a2〉 |a1〉



Phase Estimation (6)
(Definition of Quantum Fourier Transform)

ω = 0.a1a2a3...an ≡ a1/2   +   a2/4  +...+   an/2n (ai∈{0,1}) 
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For ω= 0.a1a2a3...an = j/2n, for some j in {0,1,...,2n-1}, the 
above state is an element of the Fourier basis

Apart from a final reversal of the order of the qubits, the 
network we described implements the inverse quantum 
Fourier transform (QFT-1)

For any integer M>1, the quantum Fourier transform, QFT(M), 
acts on the vector space generated by |0〉, |1〉, ..., |M-1〉, and 
maps
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Phase Estimation (7)

jxe
M

x

xi a∑
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=

1

0

2 ωπ
QFT-1: if ω=j/M for j in {0,1,...,M-1}

What about when ω is not  j/M for some integer j ?

It turns out that applying QFT-1 to 
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x

xi xe ωπ

and measuring w.r.t. the computational basis gives j such that
Prob(|j-Mω|≤1) ≥ 8/π2

That is, with high probability, QFT-1 gives the best estimator 
of ω

Note that increasing M increases the accuracy of the estimate



Eigenvalue Estimation
We can use eigenvalue kick-back and phase estimation (like we 
did in Deutsch’s problem) to estimate an eigenvalue of a unitary 
operator U (in Deutsch’s problem we estimated an eigenvalue of the shift 
operator)

Suppose U is such that

k
i

k
keU Ψ=Ψ ωπ2

H

Assume we are given |Ψk〉 and we can construct a    
controlled-Ux gate

Then the following network prepares the state ∑
−

=

12

0

2
n

k

x

xi xe ωπ

Ux|Ψk〉 |Ψk〉

|0〉
|0〉

|0〉

H

H

n
qubits

Applying QFT(2n)-1 to the upper n qubits and measuring w.r.t. 
the computational basis  (and dividing result by 2n) gives the 
best n-bit estimate of ωk with high probability



Eigenvalue Estimation (2)

Here is a way to effect the controlled-Ux gate, assuming we 
can construct the controlled-Us gate for s=2i for any i
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Recall

We can build this state one qubit at a time like this
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Eigenvalue Estimation (3)

H

Ux

|0〉
|0〉

|0〉

H

H
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Of course, if we input an equally-weighted superposition of r 
eigenvectors in the bottom register, then applying the 
inverse-QFT to the top n qubits and measuring will give an 
estimate of a particular ωk with probability 1/r

(Recall that we did this in Deutsch’s problem)



Period-Finding
We can use the QFT to find the period of a function f such that

f: Z {0,1,...,N-1}

f(x) = f(y)     ⇔ x-y ∈ rZ

if given the controlled-⊕f(x) gate

⊕f(x)

|x〉

|y⊕f(x)〉

|x〉

|y〉

Assume a bound on r:  M>2r2  (let M=2n, for convenience)

Period-finding algorithm (basic version):
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xfx1. Using controlled-⊕f(x) (or otherwise!) prepare

2. Apply QFT(2n)-1 to first register

3. Measure first register; result is j

4. (classical) Run continued-fractions algorithm on j/2n to 
get coprime integers k’ and r’ such that k’/r’ = k/r for some 
k in {0,1,...,r-1}; test if r’ is period of f; if not, repeat



Period-Finding (2)

There are at least two ways to analyse the algorithm: 
(1) phase-estimation capability of QFT-1 (due 
to Kitaev, Mosca et al.)

(2) “classic” properties of QFT (due to Shor)

We’ll cover (1) first, since phase-estimation is fresh in our 
minds

Consider the shift operator Ush(f) that (perhaps magically) maps

|f(x)〉 → |f(x+1)〉

Exercise: verify that
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for k=0,1,...,r-1



Period-Finding (3)
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for k=0,1,...,r-1

Estimating a random eigenvalue of Ush(f) allows us to find r:

once a sufficiently accurate estimation of k/r 
(for some k) is in hand, we give it to the 
continued-fractions algorithm (described later)

To estimate a k/r, we know that in principle we would need:
1. to know how to construct controlled-(Ush(f))x

2. an equally-weighted superposition of |Ψk〉

However, amazingly, ∑
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Ψ=
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0
)0(
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k
kf

So, if we could construct controlled-(Ush(f))x , then we could
use it and |f(0)〉 in our eigenvalue estimation procedure, in 
which we would produce the state

∑ ∑
−

=

−

=

Ψ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛1

0

12

0

2r

k
k

x

x
r
ki

n

xe
π

....



Period-Finding (4)
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But clearly, applying the controlled-(Ush(f))x  to
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Thus, we can make the “eigenvalue-estimation state”
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by just using the given controlled-⊕f(x) gate

Measuring the first register of the above state will give us an 
estimate x/2n of k/r



Period-Finding (5)
we have an estimate x/M of k/r, where M>2r2 and M= 2n 

Every real number y has a sequence of rationals, called
convergents, that approximate it

Lemma: Given the integers x and M, if

22
11
rMM

x
r
k

<≤−

then the fraction k/r is a convergent of x/M

With high probability, we know our x/M satisfies the first 
inequality; the second inequality is satisfied by assumption

The continued fractions algorithm (see next slide) is used to 
compute the convergents of x/M, and finds coprime integers 
k’ and r’ such that k’/r’=k/r; we test r’ to see if it is r

k and r are coprime with reasonably high probability, so the 
given period-finding algorithm terminates quickly (there are 
more sophisticated ways to increase success probability)



Period-Finding (6)

Define [ ]

L

L

a

a
a

aaa

1
1

1
1,,

2

1

00

+
+

+
+≡

O

K

where the       are positive integers (except      may be 0)ia 0a

Define the mth convergent (0≤m≤L) to this continued fraction 
to be [ ]maa ,,0 K

We give x/M to the continued fractions algorithm, and it 
computes the convergents of x/M

This is an efficient computation (terminates quickly)



Period-Finding (7)

Applying the continued fractions algorithm to 31/13

2
11

11

12

12

2
3
11

12

12

3
21

12

12

3
5
12

12

5
32

12

5
13
12

13
52

13
31

+
+

+
+=

+
+

+=

+
+

+=
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Notice the “split-and-invert” 
nature of the algorithm

(Example taken from Nielsen 
and Chuang)

STOP when you get a 1 in the 
numerator after splitting



Period-Finding (8) (a la Shor)

Let us briefly look at Shor’s original analysis of the period-
finding algorithm

First let’s modify the algorithm to be like Shor’s original 
algorithm, using QFT(2n) instead of QFT(2n)-1 :

Quantum part of period-finding algorithm (basic version):

1. Using controlled-⊕f(x) (or otherwise!) prepare

2. Apply QFT(2n) to first register
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3. Measure first register; result is j

So as not to panic, note that QFT=QFT-1QFT2, so we can think 
of this revised period-finding algorithm as the previous one, 
but with an extra QFT2 after the QFT-1

Exercise: show that QFT(M)2 is a fairly benign operation 
mapping |j〉 |M-j mod M〉



Period-Finding (9) (a la Shor)

The Fourier transform is well known in mathematics and 
physics to pick out the frequency of a periodic function

Similarly, the QFT would map a periodic superposition of 
computational basis states to a state that had most 
probability amplitude in basis states corresponding to the 
period

For convenience, assume 2n = tr for some integer t (obviously 
this would rarely be the case; when it’s not, as long as 2n/r is sufficiently big, 
the end result will be approximately the same...)
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periodic superposition!



Period-Finding (10) (a la Shor)
For convenience, assume 2n = tr for some integer t

To simplify notation, assume we’ve measured the second 
register, thus leaving the first register in the state
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(note this measurement is optional; it does not change the algorithm)
Applying QFT(2n) now gives
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When x/2n = k/r, the sum inside the brackets is equal to t; 
otherwise, the sum is 0 (if 2n ≠ tr, the sums are approximately t and 0)

Thus measuring this state w.r.t. the computational basis gives 
an estimate of k/r for some k (just like the eigenvalue-estimation 
analysis did)



Order-Finding

For positive coprime integers N and y, the order of y modulo N 
is defined to be the least positive integer r such that 

yr≡1 (mod N)

The INTEGER FACTORING problem reduces to the order-
finding problem

We can use the period-finding algorithm to solve the order-
finding problem, noting that the order of y is the period of 
the function

f(x)=yx

Note that for this particular f(x) we do know how to 
implement the shift operator: just multiply f(x) by y to get 
f(x+1)
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Reduction of Factoring to Order-Finding

The (probabilistic) reduction-algorithm is as follows:

FindFactor(N)

1. If N is even, return factor 2

2. Determine if N=cb; if so, return factor c

3. Randomly choose y from ZN*; if gcd(y,N)>1, return 
factor gcd(y,N)

4. Find the order r of y  modulo N

5. If r is even, compute d=gcd(yr/2-1,N), return d if d≠1; 
else go to step 3



Reduction of Factoring to Order-Finding (2)
FindFactor(N)
3. Randomly choose y from ZN*; if gcd(y,N)>1, return factor gcd(y,N)
4. Find the order r of y  modulo N
5. If r is even, compute d=gcd(yr/2-1,N), return d if d≠1; else go to step 3

We give a proof for when N=pq, for p and q prime:

Let y1 and y2 be generators of Zp* and Zq* respectively

Note that randomly choosing y from ZN* is equivalent to 
randomly choosing x1 from Zp* and x2 from Zq*, and then 
computing y as the (unique) solution to the congruence 
system y ≡ y1

x1 (mod p)
y ≡ y2

x2 (mod q)
(using the Chinese Remainder Theorem)

The order of y modulo p is r1 = (p-1)/gcd(x1,p-1)
The order of y modulo q is r2 = (q-1)/gcd(x2,q-1)
The order of y modulo N is r = lcm(r1,r2) = r1r2/gcd(r1,r2)



Reduction of Factoring to Order-Finding (3)
d=gcd(yr/2-1,N),   r even,   r=order of y mod N

yr/2≠1 (mod N) (or else r is not the order of y)

Then either yr/2=-1 (mod N)   or d is a nontrivial factor of N
But since yr=1 (mod N)  ⇔ (yr/2-1 )(yr/2+1 )=0 (mod N)

Let          r1=2c1(odd1)
r2=2c2(odd2)

If c1 ≠ c2, then r = lcm(r1,r2) = r1r2/gcd(r1,r2)  

= 2r2(int)   if c1>c2
2r1(int)   if c1<c2

⇒ d=p
d=q

If c1 = c2, then r = r1(odd1) = r2(odd2) 

⇒ yr/2=-1 (mod p) and yr/2=-1 (mod q) 
⇒ yr/2=-1 (mod N)



Reduction of Factoring to Order-Finding (4)

r1=2c1(odd1)
r2=2c2(odd2)

y1 and y2 are generators of Zp* and Zq* respectively

Thus c1 ≠ c2 is success and c1 = c2 is failure

What’s the probability that c1 ≠ c2 ?

Suppose p-1=2k1s1 and q-1=2k2s2

We only explain the worst case k1=k2=1 (y1, y2 have order 2s):

The even powers yi
xi of yi have odd order ri

Whereas the odd powers have order 2(oddi)

Thus if xi are chosen randomly, Prob(c1 ≠ c2) =1/2 (because 
there are just as many even xi as there are odd xi) 



Breaking the RSA Cryptosystem
Old-school cryptosystems used a symmetric or secret key

Two parties (Alice and Bob) wishing to communicate secretly 
would first (somehow) decide on a random binary string (the 
secret key)

Before quantum key distribution, this was very impractical

In the 1970s, people had the idea of using complexity-
theoretic assumptions to build computationally-secure
cryptosystems (like the RSA cryptosystem)

These cryptosystems use a public key (chosen by Alice), 
allowing anyone to send Alice a secret message without ever 
sharing a secret in the first place – the public key is good for 
many messages

Of course, given enough time, the public key can be used to 
break the cryptosystem

The assumption of the RSA cryptosystem is that the integer-
factorisation problem is very difficult (not in BPP)



Breaking the RSA Cryptosystem (2)
The RSA cryptosystem (for anyone to send secret messages to 
Alice):

Alice

Chooses two large primes p,q

Computes N=pq

Chooses small odd integer e, where 
gcd(e,ϕ(N))=1, ϕ(N)=(p-1)(q-1)

Computes d ≡ e-1 mod ϕ(N)

Publishes: Public Key = (N,e)

Keeps secret:  Private Key = (N,d)

EvaBob DougCharlie

Clearly, knowing the factors p,q of N allows anyone to 
compute the private key d



Breaking the RSA Cryptosystem (3)

For completeness, we give the encryption and decryption 
algorithms:

To encrypt and send a message m ∈ {0,1,...,N-1}, Bob 
computes and sends the number c=me (mod N)

To decrypt the received ciphertext c, Alice computes
cd mod N = med mod N

= m1+kϕ(N) mod N

If gcd(m,N)=1, then Euler’s generalisation of Fermat’s Little 
Theorem gives mkϕ(N) mod N = 1, and thus the decryption is 
successful

Exercise: When m and N=pq have a common factor, then cd

mod N still equals m (use the Chinese Remainder Theorem)

Exercise: Show how to compute m from c using an order-
finding algorithm without factoring N



Discrete Logarithm Problem
Not all public-key cryptosystems are based on the classical 
difficulty of factoring

The El Gamal public-key cryptosystem is based on the 
classical difficulty of the discrete logarithm problem (DLP):

Let p be a prime, α∈Zp* a generator, and β∈Zp*. 

Find unique integer s such that  β ≡ αs (mod p)

Classically, this problem is thought to be hard for well-chosen 
p (p should have at least 150 digits and p-1 should have at least one large 
prime)

To set up the El Gamal cryptosystem, Alice chooses well the 
above parameters, publishes the public key (p, α, β) but keeps 
the private key s secret

If Bob wants to send a message m, he chooses a random         
k ∈Zp-1 , and sends to Alice (y1, y2) = (αk mod p, mβk mod p)

To decrypt, Alice computes m= y2(y1
s)-1 mod p (Exercise: verify)



Discrete Logarithm Problem (2)

We can define the DLP more generally, in any group:

Given elements α and β=αs, s∈{0,1,...,r-1} 
(r is the order of α), from the group H, 
find s

Note that we can reduce the DLP to period-finding:

The function
f(x1, x2) = αsx1+x2 = αx2 βx1

is periodic, with period (1, -s)

From the period, we can calculate the discrete logarithm s, 
and thus we can break the El Gamal cryptosystem with a 
quantum computer

To do this, we use a straightforward modification of the 
period-finding algorithm, noting that the domain of f is now 2-
dimensional...



Discrete Logarithm Problem (3)
Let p be a prime, α∈Zp* a generator, and β∈Zp*. 

Find unique integer s such that  β ≡ αs (mod p)

The algorithm can be thought of as estimating eigenvalues
e2πik/r and e2πiks/r of the “shift” operators Uα: |y〉 |αy〉 and     
Uβ : |y〉 |βy〉, where r is the order modulo p of α (which we 
can compute using the order-finding algorithm)

Since we know r, we just need to estimate the eigenvalues
with an error of at most 1/2r to find the numerators k and ks
(we don’t need the continued-fractions algorithm)

Finally, from k and ks, s is calculated as s = k-1(ks) mod r

Uα
x

|0〉

|0〉 H⊗n

H⊗n

Uβ
x

QFT-1

QFT-1

(2n>2r)
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Quantum Cryptography

We’ve seen that explioting quantum mechanics allows us to 
crack some (but not all!) classical public-key cryptosystems

But it also allows us to build new, unconditionally-secure
cryptographic protocols



Information-disturbance tradeoff

Suppose eavesdropper Eve is trying to distinguish the two 
non-orthogonal states |ϕ0〉 and |ϕ1〉

Without loss of generality, Eve uses a unitary operator U 
acting on the state |ψ〉 and an ancillary system prepared in a 
standard state |0〉

Alice Bob

Eve

|ψ〉

sends either 
|ϕ0〉 or |ϕ1〉 to 
Bob

interferes and tries to figure out 
whether |ψ〉 =|ϕ0〉 or |ψ〉 =|ϕ1〉

By way of contradiction, assume Eve’s actions do not disturb 
the state (sent by Alice):

U: |ϕ0〉|0〉 → |ϕ0〉|v〉

|ϕ1〉|0〉 → |ϕ1〉|v’〉



Information-disturbance tradeoff (2)

Eve would like to measure the second register, in order to 
identify (or at least get some information about) the state in 
the first register

Thus she needs |v〉 and |v’〉 to be different

But the unitarity of U (along with the non-orthogonality of |ϕ0〉
and |ϕ1〉) implies that |v〉 and |v’〉 are identical

Thus Eve can’t distinguish the states, unless she disturbs at 
least one of them

Alice Bob
sends either 
|ϕ0〉 or |ϕ1〉 to 
Bob Eve

|ψ〉

interferes and tries to figure out 
whether |ψ〉 =|ϕ0〉 or |ψ〉 =|ϕ1〉

U: |ϕ0〉|0〉 → |ϕ0〉|v〉
|ϕ1〉|0〉 → |ϕ1〉|v’〉



Information-disturbance tradeoff (3)

Proposition [12.18 in textbook]: In any attempt to distinguish between two 
non-orthogonal quantum states, information gain is only possible at the 
expense of introducing disturbance to the signal

The above theorem is at the heart of quantum key distribution 
(QKD)

Alice can send quantum states to Bob, and an eavesdropper 
will not learn much about the states unless she disturbs them 
– in which case (one can show that) Alice and Bob could 
detect Eve’s meddling



Quantum Key Distribution (QKD)

Alice Bob
|ψ〉

Eve

sends either 
|ϕ0〉 or |ϕ1〉 to 
Bob

H|0〉

|0〉

|1〉

H|1〉

Define |ϕ0〉 := |0〉
|ϕ1〉 := (|0〉+|1〉)/√2 = H|0〉

For each secret bit, a∈{0,1}, chosen by Alice: 

1. Alice sends |ψ〉=|ϕa〉 to Bob

2. Bob chooses random bit, a’∈{0,1}, and measures |ψ〉 w.r.t. 
{Ha’|0〉, Ha’|1〉}, obtaining result b∈{0,1} (w.r.t. basis ordering)

3. Bob publicly announces b, but keeps a’ secret; Alice and 
Bob keep a and a’ only if b=1 (else discard this a and a’)
Note: If a=a’, then b=0; else if a=1-a’, then b is randomly 0 or 1.  Thus about ¾ of the {a,a’} are 
discarded

4. The final shared key bit is: a (for Alice) and 1-a’ (for Bob)

Alice and Bob then (publicly) choose a sufficiently large 
proportion of the bits to check to see if they are the same; 
they abort if too many bits are different.



Quantum Key Distribution (2)

H|0〉

|0〉

|1〉

H|1〉

Alice

Bob

a=0

a=1

a’=0

a’=1

a’=1

a’=0

Measurement 
result

0 
(a=a’)

0 or 1 
randomly 
(a=1-a’)

0 or 1 
randomly 
(a=1-a’)

0 
(a=a’)



Quantum Key Distribution (3)

The protocol based on the previous two slides is known as 
B92, after Bennett, who discovered this streamlining of his 
original protocol known as BB84 (after Bennett and Brassard)

Note we have not shown that the protocol is secure (or even 
described the whole protocol), but it should be clear that Eve 
learns nothing useful from the public discussion alone.  A 
security proof would involve showing that if Eve did try to 
measure the states |ψ〉=|ϕa〉, she would disturb them such that 
Alice’s and Bob’s final shared key would fail the check at the 
end

There is another, fundamentally different type of protocol, 
called E91, discovered by Ekert; it uses EPR pairs

|β00〉 =|00〉 + |11〉



Quantum Key Distribution (4)

Define |+〉 = H|0〉
|-〉 = H|1〉

Note (ignoring normalisation factors)

|0〉|0〉 + |1〉|1〉 = |+〉|+〉 + |-〉|-〉

If Alice and Bob share this state (Alice has the left qubit and 
Bob has the right qubit), and they both measure their qubits 
with respect to the same basis, either {|0〉, |1〉} or {|+〉, |-〉}, 
then they must get the same result (0 or 1 as in the B92 
protocol description)

Exercise: Derive the E91 protocol (to the same level of detail that we described 
B92; assuming the “shared EPR pairs” are perfect and perfectly shared, you don’t need to have a test of 
the shared key bits at the end; in the full E91 protocol, Alice and Bob can test (using the public channel) 
the fidelity of their EPR pairs at the beginning of the protocol to ensure they are sharing actual EPR 
pairs to a sufficiently high fidelity)

Note that all the QKD protocols rely on the existence of an 
authenticated public channel
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Unordered-Search Problem

Given black box for f: {0,1}n → {0,1}

Find an x such that f(x)=1 (we are promised such x exists)

(think of {0,1}n as a “database”, perhaps...)

The best classical algorithm for unordered search requires 
roughly N=2n queries of f

The best quantum algorithm (due to Lov Grover) for 
unordered search requires roughly N1/2=2n/2 queries of f (we 
won’t show optimality today)

We assume we are given a quantum black box

(n qubits)

⊕f(x)

|x〉

|y⊕f(x)〉

|x〉

|y〉(1 qubit)



Unordered-Search Problem (2)

⊕f(x)

|x〉

|y⊕f(x)〉

|x〉

|y〉

What shall we do with this black box?

Inspired by Deutsch’s algorithm, we notice that

⊕f(x)

|x〉 (-1)f(x)|x〉

|0〉 -|1〉 |0〉 -|1〉

|ψ1〉

|ψ1〉 =     |x〉 ⊗ (|f(x)〉 -|1 ⊕f(x)〉) 

=
|x〉 ⊗ (|0〉 -|1〉) if f(x)=0
|x〉 ⊗ (|1〉 -|0〉) if f(x)=1

= (-1)f(x)|x〉 ⊗ (|0〉 -|1〉) 



Unordered-Search Problem (3)

⊕f(x)

|x〉 (-1)f(x)|x〉

|0〉 -|1〉 |0〉 -|1〉 (ancillary qubit)

So we use the black box to implement an operator Uf mapping

Uf : |x〉 (-1)f(x)|x〉

Recall we can use the n-qubit Hadamard gate, H⊗n, to make 
the equally-weighted superposition of all computational basis 
states: H

( ) ∑
∈

⊗ =+
nx

n x
}1,0{

10
|0〉
|0〉

|0〉

H

H

n
qubits

|0〉+|1〉

|0〉+|1〉

|0〉+|1〉

Let |Y〉 be this state:

∑∑
−

=∈

⊗ ≡=≡Υ
12

0}1,0{

0
n

n ix

n ixH Recall there are two summation 
conventions: we can label the 
computational basis states by 
binary strings (x) or the 
corresponding integers (i)



Unordered-Search Problem (4)

∑
−

=

⊗ =≡Υ
12

0
0

n

i

n iH

Note |Y〉 is just a basis state of another basis called the
Hadamard basis which is

{H⊗n|x〉 :    x∈{0,1}n}

(i.e. the Hadamard basis is the basis derived from applying the Hadamard
gate to the elements of the computational basis) 

Let   |x*〉 ≡ H⊗n|x〉 for x∈{0,1}n denote an element in the
Hadamard basis (similarly |i*〉 ≡ H⊗n|i〉 for i∈{0,1,...,2n-1})

Computational basis = {|x〉 :    x∈{0,1}n} 

Hadamard basis        = {|x*〉 :   x∈{0,1}n} 

Note |Y〉 = |0*〉



Unordered-Search Problem (5)

*00
12

0
==≡Υ ∑

−

=

⊗
n

i

n iH

Computational basis = {|x〉 :    x∈{0,1}n}  = {|i〉 : i=0,1,...,2n-1}
Hadamard basis        = {|x*〉 :   x∈{0,1}n}  = {|i*〉 : i=0,1,...,2n-1}  

Introduce the operator U0 that maps

U0: |0〉 -|0〉

|i〉 |i〉 for i ≠ 0

Consider the operator UY ≡ H⊗nU0H⊗n, which does the analogous 
operation in the Hadamard basis:

UY|Y〉 = - |Y〉

UY|i*〉 =   |i*〉 for i ≠ 0

since    UY|i*〉 = H⊗nU0H⊗n H⊗n|i〉

= H⊗nU0|i〉,      because H⊗n is its own inverse



Unordered-Search Problem (6)
But what does the operator   UY ≡ H⊗nU0H⊗n do in the 
computational basis?

Recall that the (vector) projection of a unit-vector |v〉 onto a 
unit-vector |u〉 is given by 

(|u〉,|v〉)|u〉

where (|u〉,|v〉) is the inner product of the two vectors (like dot-
product in a Euclidean space)

We will write (|u〉,|v〉) as 〈u|v〉 (this is actually quantum-mechanical shorthand for 

the product 〈u||v〉 where 〈u| is the dual-vector of |u〉)

Let P|u〉 be the (linear) projection operator, projecting onto |u〉

P|u〉 |v〉 = 〈u|v〉 |u〉



Unordered-Search Problem (7)
Action of   UY ≡ H⊗nU0H⊗n in the computational basis

P|u〉 |v〉 = 〈u|v〉 |u〉
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Unordered-Search Problem (8)
Action of   UY ≡ H⊗nU0H⊗n in the computational basis

N=2nP|u〉 |v〉 = 〈u|v〉 |u〉

Thus    -UY  = 2P|Y〉 -I

Consider an arbitrary state of an n-qubit register∑
−

=

1

0

N

k
k kα

where N=2n
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where 〈α〉 is the mean average of all the αk



Unordered-Search Problem (9)
Action of   UY ≡ H⊗nU0H⊗n in the computational basis

N=2nP|u〉 |v〉 = 〈u|v〉 |u〉

Thus    -UY  = 2P|Y〉 -I   maps the arbitrary state

∑
−

=

1

0

N

k
k kα

to

[ ]∑
−

=

+−
1

0
2

N

k
k kαα

-UY  is sometimes referred to as the inversion about the mean:

∑
−

=

=
1

0

1 N

k
kN

αα (the mean average)



Unordered-Search Problem (10)

Uf : |x〉 (-1)f(x)|x〉

∑
−

=

1

0

N

k
k kα [ ]∑

−

=

+−
1

0
2

N

k
k kαα-UY:

The quantum searching algorithm is

1. Prepare an n-qubit register in the state |Y〉=∑
−

=

12

0

n

i
i

2. Apply the operator G ≡ -UY Uf roughly N1/2 times

3. Measure the register; output is x such that 
f(x)=1 with high probability

We’ll give a high-level analysis first, using the inversion-
about-the-mean interpretation, then we’ll give a more 
rigorous analysis using analysis



Unordered-Search Problem (11)

Uf : |x〉 (-1)f(x)|x〉 ∑
−

=

1

0

N

k
k kα [ ]∑

−

=

+−
1

0
2

N

k
k kαα-UY:

G ≡ -UY Uf

Suppose, for simplicity, f(x)=1 for only one element x

It suffices to see what the effect of G is on the starting state
(it’s clear that continuing to apply G will produce the desired 
effect): 

∑

∑∑

∈

∈
Υ

∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−≈

−
−=

n

nn

x

xf

x

xf

x

x
NN

x
N

Ux
N

G

}1,0{

)(

}1,0{

)(

}1,0{

12)1(

)1(1

approx. mean avg.

Thus the amplitude of the solution state increased to roughly 
3/N1/2, whereas the amplitude of the other states slightly 
decreased



Unordered-Search Problem (12)

Uf : |x〉 (-1)f(x)|x〉 G ≡ -UY Uf

Let’s proceed with a more rigorous analysis of the algorithm

We can assume that f(x)=1 has more than one solution

Let X1 be the set of solutions to f(x)=1 (the good x’s)
Let X0 be the set of solutions to f(x)=0 (the bad x’s)

Define the equally-weighted superpositions of the “good” and 
“bad” states:

∑

∑

∈

∈

=

=

0

1

0
0

1
1

1
Xx

Xx

x
X

X

x
X

X 1



Unordered-Search Problem (13)

∑
∈

=
11

1
1

Xx
x

X
X ∑

∈

=
00

0
1

Xx
x

X
XUf : |x〉 (-1)f(x)|x〉

G ≡ -UY Uf

Write |Y〉 as a linear combination of |X0〉 and |X1〉:

11001
1

0
0 XpXpX

N
X

X
N
X

+≡+=Υ

Let ω∈(0,1/2) be the real number such that

p1=sin2(πω)     and    p0=cos2(πω)

Thus         |Y〉 =  cos(πω)|X0〉 +   sin(πω)|X1〉

Let            |Y’〉 = sin(πω)|X0〉 - cos(πω)|X1〉



Unordered-Search Problem (14)

Uf : |x〉 (-1)f(x)|x〉 |Y〉 = cos(πω)|X0〉 +   sin(πω)|X1〉
|Y’〉 = sin(πω)|X0〉 - cos(πω)|X1〉G ≡ -UY Uf

We now have two (orthonormal) bases for the same 2-
dimensional subspace:

{|X0〉, |X1〉}    and   {|Y〉, |Y’〉}
(Note Uf and –UY are reflections in this plane, changing the sign of one coordinate)

We analyse the action of G=-UYUf using these two bases

Let |Ψ〉 = cos(ϕ)|X0〉 + sin(ϕ)|X1〉 be any state

Uf|Ψ〉 = cos(ϕ)|X0〉 - sin(ϕ)|X1〉
= cos(ϕ+πω)|Y〉 + sin(ϕ+πω)|Y’〉 (switch to basis {|Y〉, |Y’〉} 

to apply -UY)
G|Ψ〉 = cos(ϕ+πω)|Y〉 - sin(ϕ+πω)|Y’〉

= cos(ϕ+2πω)|X0〉 + sin(ϕ+2πω)|X1〉

Thus G (the product of two reflections) gives us a rotation of 2πω in the 
plane spanned by |X0〉 and |X1〉



Unordered-Search Problem (15)
G: cos(ϕ)|X0〉 + sin(ϕ)|X1〉 cos(ϕ+2πω)|X0〉 - sin(ϕ+2πω)|X1〉

Since the search algorithm starts in the state with ϕ=πω, we 
see that after k applications of G, the state of the n-qubit
register is 

cos((2k+1)πω)|X0〉 + sin((2k+1)πω)|X1〉

To measure a good state, we want    sin((2k+1)πω) ~ 1

This is true when   k   ~  1/(4ω)   - 1/2

~   π/[4(p1)1/2]

=   π/[4(|X1|/N)1/2]

=   πN1/2/[4(|X1|)1/2]

Thus applying G πN1/2/[4(|X1|)1/2] times gives a state with 
large probability amplitude in the state |X1〉



Unordered-Search Problem (16)
The operator G, also called the Grover iterate, has 
eigenvectors in the 2-dimensional space 

10 22
1 XiX +=Ψ+

10 22
1 XiX −=Ψ−

with respective eigenvalues e2πiω and e-2πiω

The initial state |Y〉 =  cos(πω)|X0〉 +   sin(πω)|X1〉 is 
expressed in this eigenbasis as

−

−

+ Ψ+Ψ
22

ωπωπ ii ee

Thus applying Gk to this state gives

−

+−

+

+

Ψ+Ψ
22

)12()12( ωπωπ kiki ee

This gives an alternative derivation of the number k of 
required applications of G in the search algorithm



Counting
G = -UY Uf has eigenvalues e2πiω and  e-2πiω

Suppose we want to count the number of solutions to f(x)=1

This number is just |X1|=Np1,   where   p1= sin2(πω) 

Thus estimating ω using the eigenvalue estimation algorithm 
will give us an estimate of |X1|

(Also works when |X1|=0 or |X1|=N)
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Review of n-qubit Hadamard Gate, H⊗n

Recall the one-qubit Hadamard gate, H, maps 

⎥
⎦

⎤
⎢
⎣

⎡
−11
11

2
1

H:    |0〉 (|0〉 + |1〉)/21/2

|1〉 (|0〉 - |1〉)/21/2 the matrix-
representation, with 
respect to the 
computational basis, 
of the Hadamard gate

Alternatively

H:    |b〉 (|0〉 + (-1)b|1〉)/21/2,    for b∈{0,1}

which can also be written

H:    |b〉 (Σx(-1)b⋅x|x〉)/21/2,    for  b,x∈{0,1}

Exercise: show that the n-qubit Hadamard gate, H⊗n, maps

∑
∈

•⊗ −
nx

yxn x
N

yH
}1,0{

)1(1: a

where x•y = Σi xiyi, where x=xn-1xn-2...x1x0∈{0,1}n and 
similarly for y



Measurement as a vector-projection

Recall P|u〉 is the (linear) projection operator, projecting onto 
the vector |u〉:

P|u〉 |v〉 = 〈u|v〉 |u〉

inner product of vector 
|u〉 and vector |v〉

A measurement of the n-qubit state

with respect to the computational basis can be thought of as 
applying (to |ψ〉) the projection operator P|x〉 with probability 
αx (and then renormalising P|x〉|ψ〉 so it’s a unit-vector still)

∑
∈

=
nx

x x
}1,0{

αψ

|ψ〉

is equivalent to

|ψ〉
P|x〉
w.p. 
|αx|2

|x〉 w.p. |αx|2

|x〉

(Note “w.p.” is shorthand for “with probability”)



Measurement as a vector-projection (2)

What if we have two registers, an n-qubit register and an m-
qubit register, and we measure just the m qubit register?

|ψ〉

n qubits

m qubits

|ψy〉 w.p. |αy|2

Suppose |ψ〉 is of the form

∑
⊆∈

=
mXy

yy y
}1,0{

ψαψ

Then measuring the second (bottom) register is equivalent to 
applying (to |ψ〉) the projector I⊗P|y〉 w.p. |αy|2



Measurement as a vector-projection (3)

n qubits

m qubits

∑
⊆∈

=
mXy

yy y
}1,0{

ψαψ

|ψy〉 w.p. |αy|2

(this is actually known as a 
mixed state – a probabilistic 
distribution of pure states)

Note that if we did not actually do the measurement, but just 
ignored (or threw away, or traced out) the second (bottom) 
register, then we can just think of the first (upper) register as 
in the state |ψy〉 w.p. |αy|2

Sometimes, to make notation simpler, we ignore the bottom 
register after some point in the computation or (equivalently) 
assume that we have measured it



Simon’s problem

Given a black box which computes the function

f(x)=f(x⊕s),   for some s ∈ {0,1}n

f: {0,1}n → {0,1}n such that

Find the “period” s

Example (taken from Artur Ekert’s course notes): 

x   f(x)

000   111
001   010
010   100
011   110
100   100
101   110
110   111
111   010

s=110 is the period (in the additive group (Z2)3)

f(x ⊕ 110) = f(x)

f(000) = f(000 ⊕ 110) = f(110) =111
f(001) = f(001 ⊕ 110) = f(111) =010
f(010) = f(010 ⊕ 110) = f(100) =100
f(011) = f(011 ⊕ 110) = f(101) =110



Simon’s problem (2)
Given a black box which computes the function

f: {0,1}n → {0,1}n such that
f(x)=f(x⊕s),   for some s ∈ {0,1}n

Find the “period” s

⊕f(x)

H⊗n H⊗nn qubits

n qubits

|0〉

|0〉

|ψ1〉 |ψ2〉
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Simon’s problem (3)
Given a black box which computes the function

f: {0,1}n → {0,1}n such that
f(x)=f(x⊕s),   for some s ∈ {0,1}n

Find the “period” s

⊕f(x)

H⊗n H⊗n|0〉n qubits |y〉
such that 
s•y=0

|0〉n qubits

Thus we effectively end up measuring the state

∑ •• −+−
y

ysxy y])1(1[)1( 0

Note that the probabililty amplitude of |y〉 such that s•y=1 is 0

Thus the result of the measurement is a particular y such that 
s•y=0, with probability 2/2n



Simon’s problem (4)
Given a black box which computes the function

f: {0,1}n → {0,1}n such that
f(x)=f(x⊕s),   for some s ∈ {0,1}n

Find the “period” s

Simon’s algorithm is to repeat the previous experiment 
roughly n times to get a linearly independent set y(1), y(2), ..., 
y(n) such that y(i)•s=0 (the probability of failing to produce a linearly independent set is 

less than 0.75)

Then we can solve for s by solving the system of n linear 
equations:

y(1)•s=0
y(2)•s=0

y(n)•s=0

•••

It may help to think of each equation y(i)•s=0 as

01
)(
11

)(
10

)(
0 =+++ −− n

i
n

ii sysysy L
where the si are the n “unknowns”



Hidden Subgroup Problem (HSP)

The problems studied so far are special cases of the more 
general hidden subgroup problem:

Let f be a function from a finitely generated group 
G to a finite set X, such that 

(i) f is constant on cosets of a subgroup K 
and 

(ii) f is distinct on each coset.

Given the controlled-⊕f(x) gate, find a generating 
set for K

The idea is that the function f is “hiding” the subgroup K



HSP (2)

We need the group to be Abelian (so that it is a product of 
cyclic groups)

K

g1+K

g2+K

g3+K

f(0)

f(1)

f(2)

f(3)

gi+K denotes a coset of K



HSP (3)

Here are the problems we have studied, a la HSP:

Deutch’s problem:
f: {0,1} {0,1}

f(x)=f(y)  iff  x-y∈K, where either
K={0}  or   K={0,1}

Period-Finding:
f: Z any finite set

f(x)=f(y)  iff  x-y∈K, where

K=rZ

Discrete Logarithm Problem:
f: Zr×Zr H, where H is a group (in which we define the DLP)
f(x1,x2)=f(y1,y2)   iff   (x1,x2)-(y1,y2)∈K, where
K = 〈(1,-s)〉 = {(k,-ks), k=0,1,...,r-1}

(Recall  f(x1,x2):= αsx1+x2 = αx2 βx1, α has order r in H)



HSP (4): Simon’s problem as HSP
Given a black box which computes the function

f: {0,1}n → {0,1}n such that
f(x)=f(x⊕s),   for some s ∈ {0,1}n

Find the “period” s

⊕f(x)

H⊗n H⊗n|0〉n qubits

|0〉n qubits

|ψ1〉 |ψ2〉

( ) )( 0
)()(

001
0

xfsxx
fRangexf

∑
∈

⊕+=ψ

( ) ∑ ••⊗ −+−=⊕+=
y

ysxyn ysxxH ])1(1[)1( 0
002ψ

sum over elements of 
a coset of K={0,s}

information about which 
particular coset ends up in the 
phase

|y〉
such that 
s•y=0

output an 
element 
orthogonal
to the 
subgroup 
K={0,s}



HSP (5)
It turns out that we can reduce the case of finitely-generated 
(Abelian) G to finite G, by using the period-finding algorithm 
to find the period of f on each of the generators (e.g. Z Zr)

As well, the HSP algorithm itself can be used to explicitly 
decompose finite G into a product of cyclic subgroups      
G=ZN(1) × ZN(2) × ZN(3) ×...× ZN(m)

Further, with the factoring algorithm, we can factor each N(j)

into its prime factors, and then efficiently find the 
isomorphism between ZN(j) and the product of cyclic groups of 
prime-power order; thus we can assume N(j) are prime powers

(If G is a group of order pkm where gcd(pk,m)=1, let Gp
denote the Sylow p-subgroup of G, |Gp|=pk)
Finally, any subgroup K of an Abelian G=Gp(1) × Gp(2) ×... × Gp(k) is 
of the form Kp(1) × Kp(2) ×... × Kp(k) where Kp(j) is a subgroup of
Gp(j).  Thus K can be found piecewise: For j=1,...,k, find the 
hidden subgroup Kp(j) of the function fp(j): Gp(j) X, where
fp(j)(x)=f(0,...,0,x,0,...,0) (x appears in the jth entry)



HSP (6)

If G is a group of order ptm where gcd(pt,m)=1, let Gp denote 
the Sylow p-subgroup of G, |Gp|=pt

Therefore, we can restrict attention to finite groups G=Gp

G=Gp ≈ Zpa1 × Zpa2 × Zpa3 ×...× Zpat

for some prime p and positive integers aj

Let a=max{aj}

We’ll explain the hidden subgroup algorithm by analogy to the 
period-finding algorithm, using eigenvalue-estimation 
analysis…



HSP (7)
G≈ Zpa1 × Zpa2 × Zpa3 ×...× Zpat

Let a=max{aj}

Recall the eigenvectors and eigenvalues of the shift operator 
in the period-finding problem

k
r
ki

kfsh eU Ψ=Ψ
π2

)( ∑
−

=

−
=Ψ

1

0

2
)(

r

j

r
kij

k jfe
π

for k=0,1,...,r-1

and recall that the hidden subgroup was rZ={0,r,2r,...}

Rewrite the eigenvectors more group-theoretically
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where the sum is over a set of coset representatives (recall 
G/K is the family of all cosets of K in G)

There is an eigenvector corresponding to each k that satisfies

02 ≡
r
khn (mod 2n), for all h∈rZ



HSP (8)
G≈ Zpa1 × Zpa2 × Zpa3 ×...× Zpat

Let a=max{aj}

Analogously, define the eigenstates (of the shift operator) for 
every k=(k1,...,kt) ∈ Zpa1 × Zpa2 × Zpa3 ×...× Zpat satisfying
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HSP (9)

The following algorithm determines a uniformly random k∈T, 
and by the above equation we can use enough random k to 
determine the subgroup K using linear algebra (like in Simon’s 
algorithm)
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hp (mod pa), for all h=(h1,…,ht)∈K

Let T be the set of all k=(k1,...,kt) that satisfy

HSP Algorithm:

1. Using QFT(paj) for j=1,...,t, and the black box for f, 
create the state
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2. Apply QFT(pa1)-1⊗...⊗QFT(pat)-1⊗I to get

kt
Tk

kk Ψ∑
∈

L1

3. Measure the control registers, output k1,...,kt
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