Mathematical Methods for Computer Science

Computer Laboratory

Computer Science Tripos, Part IB

Michaelmas Term 2005

R. J. Gibbens

Problem sheet (last revised 27 Nov 2005) Part (b): Markov chains

> William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD

http://www.cl.cam.ac.uk/

Markov chains

- 1. Suppose that (X_n) is a Markov chain with *n*-step transition matrix, $P^{(n)}$, and let $\lambda_i^{(n)} = \mathbb{P}(X_n = i)$ be the elements of a row vector $\lambda^{(n)}$ (n = 0, 1, 2, ...). Show that
 - (a) $P^{(m+n)} = P^{(m)}P^{(n)}$ for m, n = 0, 1, 2, ...
 - (b) $\lambda^{(n)} = \lambda^{(0)} P^{(n)}$ for n = 0, 1, 2, ...
- 2. Suppose that (X_n) is a Markov chain with transition matrix P. Define the relations "state j is accessible from state i" and "states i and j communicate". Show that the second relation is an equivalence relation and define the communicating classes as the equivalence classes under this relation. What is meant by the terms closed class, absorbing class and irreducible?
- 3. Show that

$$P_{ij}(z) = \delta_{ij} + F_{ij}(z)P_{jj}(z)$$

where

$$P_{ij}(z) = \sum_{n=0}^{\infty} p_{ij}^{(n)} z^n, \qquad F_{ij}(z) = \sum_{n=0}^{\infty} f_{ij}^{(n)} z^n$$

and $\delta_{ij} = 1$ if i = j and 0 otherwise. [You should assume that $p_{ij}^{(n)}$ and $f_{ij}^{(n)}$ are as defined in lectures with $p_{ij}^{(0)} = \delta_{ij}$ and $f_{ij}^{(0)} = 0$ for all states i, j.] The original version of this question contained a typo in the first equation.

4. Suppose that (X_n) is a finite state Markov chain and that for some state *i* and for all states *j*

$$\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j$$

for some collection of numbers (π_i) . Show that $\pi = (\pi_i)$ is a stationary distribution.

5. Consider the Markov chain with transition matrix

$$P = \begin{pmatrix} 0.128 & 0.872\\ 0.663 & 0.337 \end{pmatrix}$$

for Markov's example of a chain on the two states {vowel, consonant} for consecutive letters in a passage of text. Find the stationary distribution for this Markov chain. What are the mean recurrence times for the two states?

- 6. Define what is meant by saying that (X_n) is a reversible Markov chain and write down the local balance conditions. Show that if a vector π is a distribution over the states of the Markov chain that satisfies the local balance conditions then it is a stationary distribution.
- 7. Consider the Erhenfest model for m balls moving between two containers with transition matrix

$$p_{i,i+1} = 1 - \frac{i}{m}, \qquad p_{i,i-1} = \frac{i}{m}$$

where $i \ (0 \le i \le m)$ is the number of balls in a given container. Show that the Markov chain is irreducible and periodic with period 2. Derive the stationary distribution.

8. Consider a random walk, (X_n) , on the states i = 0, 1, 2, ... with transition matrix

$$p_{i,i-1} = p$$
 $i = 1, 2, ...$
 $p_{i,i+1} = 1 - p$ $i = 0, 1, ...$
 $p_{0,0} = p$

where 0 . Show that the Markov chain is irreducible and aperiodic. Finda condition on <math>p to make the Markov chain positive recurrent and find the stationary distribution in this case.

9. Describe PageRank as a Markov chain model for the motion between nodes in a graph. Explain the main mathematical results that underpin PageRank's connection to a notion of web page "importance".