Logic and Proof

Computer Science Tripos Part IB Michaelmas Term

Lawrence C Paulson
Computer Laboratory
University of Cambridge

lp15@cam.ac.uk

Contents

1 Introduction 1
2 Propositional Logic 6
3 Gentzen's Logical Calculi 11
4 Binary Decision Diagrams 16
5 First-Order Logic 21
6 Formal Reasoning in First-Order Logic 26
7 Davis-Putnam \& Propositional Resolution 32
8 Skolem Functions and Herbrand's Theorem 38
9 Unification 43
10 Resolution and Prolog 49
11 Modal Logics 54
12 Tableaux-Based Methods 59

Introduction to Logic

Slide 101
Logic concerns statements in some language.
The language can be informal (say English) or formal.
Some statements are true, others false or meaningless.
Logic concerns relationships between statements: consistency, entailment, . . .

Logical proofs model human reasoning (supposedly).

Statements

Black is the colour of my true love's hair.
They are not greetings, questions or commands:
What is the colour of my true love's hair?
I wish my true love had hair.
Get a haircut!

Schematic Statements

The meta-variables $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \ldots$ range over 'real' objects
Black is the colour of X 's hair.
Black is the colour of Y .
Z is the colour of Y .
Schematic statements can express general statements, or questions:
What things are black?

Interpretations and Validity

Slide $104 \quad$ The interpretation $\mathrm{Y} \mapsto$ coal satisfies the statement
Black is the colour of Y .
but the interpretation $\mathrm{Y} \mapsto$ strawberries does not!
A statement A is valid if all interpretations satisfy A.

Consistency, or Satisfiability

Slide 105
Examples of inconsistent sets:
$\{X$ part of Y, Y part of Z, X NOT part of $Z\}$
$\{n$ is a positive integer, $n \neq 1, n \neq 2, \ldots\}$

Satisfiable means the same as consistent.
Unsatisfiable means the same as inconsistent.

Entailment, or Logical Consequence

Slide 106
A set S of statements is consistent if some interpretation satisfies all elements of S at the same time. Otherwise S is inconsistent.

A set S of statements entails A if every interpretation that satisfies all elements of S, also satisfies A. We write $S \models A$.

$$
\{X \text { part of } Y, Y \text { part of } Z\} \models X \text { part of } Z
$$

$\{n \neq 1, n \neq 2, \ldots\} \models n$ is NOT a positive integer
$S \models A$ if and only if $\{\neg A\} \cup S$ is inconsistent
$\models A$ if and only if A is valid, if and only if $\{\neg A\}$ is inconsistent.

Inference

Slide 107
We want to check A is valid.
Checking all interpretations can be effective - but what if there are infinitely many?

Let $\left\{A_{1}, \ldots, A_{n}\right\} \models B$. If A_{1}, \ldots, A_{n} are true then B must be true. Write this as the inference rule

We can use inference rules to construct finite proofs!

Schematic Inference Rules

$\frac{X \text { part of } Y \quad Y \text { part of } Z}{X \text { part of } Z}$
Slide 108
A valid inference:
$\underline{\text { spoke part of wheel wheel part of bike }}$
spoke part of bike

An inference may be valid even if the premises are false!

$$
\frac{\text { cow part of chair chair part of ant }}{\text { cow part of ant }}
$$

Survey of Formal Logics

Slide 109
propositional logic is traditional boolean algebra.
first-order logic can say for all and there exists.
higher-order logic reasons about sets and functions.
modal/temporal logics reason about what must, or may, happen.
type theories support constructive mathematics.
All have been used to prove correctness of computer systems.

Why Should the Language be Formal?

Slide 110
Consider this 'definition':
The least integer not definable using eight words
Greater than The number of atoms in the entire Universe
Also greater than The least integer not definable using eight words

- A formal language prevents AMBIGUITY.

Syntax of Propositional Logic

Slide 201

$$
\begin{array}{rl}
P, Q, R, \ldots & \text { propositional letter } \\
\mathbf{t} & \text { true } \\
\mathbf{f} & \text { false } \\
\neg A & \text { not } A \\
A \wedge B & A \text { and } B \\
A \vee B & A \text { or } B \\
A \rightarrow B & \text { if } A \text { then } B \\
A \leftrightarrow B & A \text { if and only if } B
\end{array}
$$

Semantics of Propositional Logic

Slide 202
$\neg, \wedge, \vee, \rightarrow$ and \leftrightarrow are truth-functional: functions of their operands.

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}
\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}
\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}
\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{t}

Interpretations of Propositional Logic

Slide 203
An interpretation is a function from the propositional letters to $\{\mathbf{t}, \mathbf{f}\}$.
Interpretation I satisfies a formula A if the formula evaluates to \mathbf{t}.

$$
\text { Write } \models_{\mathrm{I}} A
$$

A is valid (a tautology) if every interpretation satisfies A.

$$
\text { Write } \models A
$$

S is satisfiable if some interpretation satisfies every formula in S.

Implication, Entailment, Equivalence

Slide 204
$A \models \mathrm{~B}$ means if $\models_{\mathrm{I}} A$ then $\models_{\mathrm{I}} \mathrm{B}$ for every interpretation I.
$A \models B$ if and only if $\models A \rightarrow B$.

Equivalence

$A \simeq B$ means $A \models B$ and $B \models A$.
$A \simeq B$ if and only if $\models A \leftrightarrow B$.

Equivalences

Slide 205

$$
\begin{aligned}
A \wedge A & \simeq A \\
A \wedge B & \simeq B \wedge A \\
(A \wedge B) \wedge C & \simeq A \wedge(B \wedge C) \\
A \vee(B \wedge C) & \simeq(A \vee B) \wedge(A \vee C) \\
A \wedge \mathbf{f} & \simeq \mathbf{f} \\
A \wedge \mathbf{t} & \simeq A \\
A \wedge \neg A & \simeq \mathbf{f}
\end{aligned}
$$

Dual versions: exchange \wedge with \vee and \mathbf{t} with \mathbf{f} in any equivalence

Negation Normal Form

1. Get rid of \leftrightarrow and \rightarrow, leaving just \wedge, \vee, \neg :

$$
\begin{aligned}
& A \leftrightarrow B \simeq(A \rightarrow B) \wedge(B \rightarrow A) \\
& A \rightarrow B \simeq \neg A \vee B
\end{aligned}
$$

2. Push negations in, using de Morgan's laws:

$$
\begin{aligned}
\neg \neg A & \simeq A \\
\neg(A \wedge B) & \simeq \neg A \vee \neg B \\
\neg(A \vee B) & \simeq \neg A \wedge \neg B
\end{aligned}
$$

From NNF to Conjunctive Normal Form

3. Push disjunctions in, using distributive laws:

$$
\begin{aligned}
& A \vee(B \wedge C) \simeq(A \vee B) \wedge(A \vee C) \\
& (B \wedge C) \vee A \simeq(B \vee A) \wedge(C \vee A)
\end{aligned}
$$

4. Simplify:

- Delete any disjunction containing P and $\neg P$
- Delete any disjunction that includes another: for example, in $(P \vee Q) \wedge P$, delete $P \vee Q$.
- Replace $(P \vee A) \wedge(\neg P \vee A)$ by A

Converting a Non-Tautology to CNF

Slide 208

1. Elim $\rightarrow: \quad \neg(P \vee Q) \vee(Q \vee R)$
2. Push \neg in: $\quad(\neg \mathrm{P} \wedge \neg \mathrm{Q}) \vee(\mathrm{Q} \vee \mathrm{R})$
3. Push \vee in: $\quad(\neg P \vee Q \vee R) \wedge(\neg Q \vee Q \vee R)$
4. Simplify: $\quad \neg \mathrm{P} \vee \mathrm{Q} \vee \mathrm{R}$

Not a tautology: try $\mathrm{P} \mapsto \mathbf{t}, \mathrm{Q} \mapsto \mathbf{f}, \mathrm{R} \mapsto \mathbf{f}$

Tautology checking using CNF

$$
((P \rightarrow Q) \rightarrow P) \rightarrow P
$$

1. $\operatorname{Elim} \rightarrow: \quad \neg[\neg(\neg P \vee Q) \vee P] \vee P$
2. Push \neg in: $\quad[\neg \neg(\neg P \vee Q) \wedge \neg P] \vee P$
$[(\neg P \vee Q) \wedge \neg P] \vee P$
3. Push \vee in: $\quad(\neg P \vee Q \vee P) \wedge(\neg P \vee P)$
4. Simplify: $\quad \mathbf{t} \wedge \mathbf{t}$
t It's a tautology!

A Simple Proof System

Axiom Schemes

$\mathrm{K} \quad \mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{A})$
Slide 301
s $\quad(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$
DN $\quad \neg \neg A \rightarrow A$
Inference Rule: Modus Ponens

$$
\frac{A \rightarrow B \quad A}{B}
$$

A Simple (?) Proof of $A \rightarrow A$

Slide 302

$$
\begin{equation*}
(A \rightarrow((D \rightarrow A) \rightarrow A)) \rightarrow \tag{1}
\end{equation*}
$$

$$
((A \rightarrow(D \rightarrow A)) \rightarrow(A \rightarrow A)) \text { by } S
$$

$$
\begin{equation*}
A \rightarrow((D \rightarrow A) \rightarrow A) \quad \text { by } K \tag{2}
\end{equation*}
$$

$(A \rightarrow(D \rightarrow A)) \rightarrow(A \rightarrow A)$ by MP, (1), (2)
$A \rightarrow(D \rightarrow A)$ by K

$$
\begin{equation*}
A \rightarrow A \quad \text { by MP, (3), (4) } \tag{4}
\end{equation*}
$$

Some Facts about Deducibility

Slide 303
A is deducible from the set S if there is a finite proof of A starting from elements of S. Write $S \vdash A$.

Soundness Theorem. If $S \vdash A$ then $S \models A$.

Completeness Theorem. If $S \models A$ then $S \vdash A$.

Deduction Theorem. If $S \cup\{A\} \vdash B$ then $S \vdash A \rightarrow B$.

Gentzen's Natural Deduction Systems

The context of assumptions may vary.
Each logical connective is defined independently.
Slide $304 \quad$ The introduction rule for \wedge shows how to deduce $A \wedge B$:

$$
\frac{A \quad B}{A \wedge B}
$$

The elimination rules for \wedge shows what to deduce from $A \wedge B$:

$$
\frac{A \wedge B}{A} \quad \frac{A \wedge B}{B}
$$

The Sequent Calculus

Slide 305
Sequent $A_{1}, \ldots, A_{m} \Rightarrow B_{1}, \ldots, B_{n}$ means,

$$
\text { if } A_{1} \wedge \ldots \wedge A_{m} \text { then } B_{1} \vee \ldots \vee B_{n}
$$

A_{1}, \ldots, A_{m} are assumptions; B_{1}, \ldots, B_{n} are goals
Γ and Δ are sets in $\Gamma \Rightarrow \Delta$
The sequent $A, \Gamma \Rightarrow A, \Delta$ is trivially true (basic sequent).

Sequent Calculus Rules

$$
\frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}(\mathrm{cut})
$$

Slide 306

$$
\begin{aligned}
& \frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta}(\neg \mathrm{l}) \quad \frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg A}(\neg \mathrm{r}) \\
& \frac{A, \mathrm{~B}, \Gamma \Rightarrow \Delta}{\mathrm{~A} \wedge \mathrm{~B}, \Gamma \Rightarrow \Delta}(\wedge \mathrm{l}) \quad \frac{\Gamma \Rightarrow \Delta, A \quad \Gamma \Rightarrow \Delta, \mathrm{~B}}{\Gamma \Rightarrow \Delta, A \wedge \mathrm{~B}}(\wedge \mathrm{r})
\end{aligned}
$$

More Sequent Calculus Rules

Slide 307

$$
\begin{array}{ll}
\frac{A, \Gamma \Rightarrow \Delta}{A \vee B, \Gamma \Rightarrow \Delta}(\vee \mathrm{~B}) & \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A \vee B}(\vee r) \\
\frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \rightarrow B, \Gamma \Rightarrow \Delta}(\rightarrow \mathrm{l}) & \frac{A, \Gamma \Rightarrow \Delta, \mathrm{~B}}{\Gamma \Rightarrow \Delta, A \rightarrow B}(\rightarrow r)
\end{array}
$$

Easy Sequent Calculus Proofs

$$
\frac{\frac{\overline{A, B \Rightarrow A}}{A \wedge B \Rightarrow A}}{\Rightarrow(A \wedge B) \rightarrow A}(\rightarrow r)
$$

Slide 308

$$
\frac{\frac{\overline{A, B \Rightarrow B, A}}{A \Rightarrow B, B \rightarrow A}}{\frac{\Rightarrow A \rightarrow B, B \rightarrow A}{\Rightarrow(A \rightarrow B) \vee(B \rightarrow A)}}(\stackrel{(\rightarrow r)}{ }(\stackrel{r)}{ }(
$$

Part of a Distributive Law

Slide 309

$$
\begin{aligned}
& \frac{\overline{A \Rightarrow A, B} \quad \frac{B, C \Rightarrow A, B}{B \wedge C \Rightarrow A, B}}{(\wedge \imath)} \\
& \frac{A \vee(B \wedge C) \Rightarrow A, B}{A \vee(B \wedge C) \Rightarrow A \vee B}(\vee r) \quad \text { similar } \\
& \frac{A \vee(B \wedge C) \Rightarrow(A \vee B) \wedge(A \vee C)}{A}(\wedge r)
\end{aligned}
$$

Second subtree proves $A \vee(B \wedge C) \Rightarrow A \vee C$ similarly

$$
\begin{gathered}
\frac{\text { A Failed Proof }}{} \\
\frac{A \Rightarrow B, C \quad \overline{B \Rightarrow B, C}}{\frac{A \vee B \Rightarrow B, C}{A \vee B \Rightarrow B \vee C}}(\vee \imath) \\
\Rightarrow(A \vee B) \\
(\rightarrow r))
\end{gathered}
$$

$A \mapsto \mathbf{t}, \mathrm{~B} \mapsto \mathbf{f}, \mathrm{C} \mapsto \mathbf{f}$ falsifies unproved sequent!

BDDs: Binary Decision Diagrams

A canonical form for boolean expressions: decision trees with sharing.

- ordered propositional symbols ('variables')

Slide 401

- sharing of identical subtrees
- hashing and other optimisations

Detects if a formula is tautologous (t) or inconsistent (f).
Exhibits models if the formula is satisfiable.
Excellent for verifying digital circuits, with many other applications.

Slide 402

Converting a Decision Diagram to a BDD

Slide 403

No duplicates

Building BDDs Efficiently

Slide 404
Do not expand \rightarrow, \leftrightarrow, \oplus (exclusive OR) to other connectives.
Treat $\neg \mathbf{Z}$ as $Z \rightarrow \mathbf{f}$ or $Z \oplus \mathbf{t}$.
Recursively convert operands to BDDs.
Combine operand BDDs, respecting the ordering and sharing.
Delete redundant variable tests.

Canonical Form Algorithm

Slide 405
To convert $Z \wedge Z^{\prime}$, where Z and Z^{\prime} are already BDDs:
Trivial if either operand is \mathbf{t} or \mathbf{f}.
Let $Z=\mathbf{i f}(P, X, Y)$ and $Z^{\prime}=\mathbf{i f}\left(\mathrm{P}^{\prime}, \mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right)$

- If $P=P^{\prime}$ then recursively convert if $\left(P, X \wedge X^{\prime}, Y \wedge Y^{\prime}\right)$.
- If $\mathrm{P}<\mathrm{P}^{\prime}$ then recursively convert if $\left(\mathrm{P}, \mathrm{X} \wedge \mathrm{Z}^{\prime}, \mathrm{Y} \wedge \mathrm{Z}^{\prime}\right)$.
- If $P>P^{\prime}$ then recursively convert if $\left(P^{\prime}, Z \wedge X^{\prime}, Z \wedge Y^{\prime}\right)$.

Canonical Forms of Other Connectives

Slide 406

Some cases, like $Z \rightarrow \mathbf{t}$, reduce to negation.
Here is how to convert $\neg Z$, where Z is a BDD:

- If $Z=\mathbf{i f}(P, X, Y)$ then recursively convert $\mathbf{i f}(P, \neg X, \neg Y)$.
- if $Z=\mathbf{t}$ then return \mathbf{f}, and if $Z=\mathbf{f}$ then return \mathbf{t}.

In effect we copy the BDD but swap \mathbf{t} and \mathbf{f} at the leaves.

Slide 408

Optimisations Based On Hash Tables

Never build the same BDD twice, but share pointers. Advantages:

- If $X \leftrightarrow Y$, then the addresses of X and Y are equal.
- Can see if if (P, X, Y) is redundant by checking if $X=Y$.
- Can quickly simplify special cases like $X \wedge X$.

Never convert $\mathrm{X} \wedge \mathrm{Y}$ twice, but keep a table of known canonical forms.

Final Observations

The variable ordering is crucial. Consider this formula:

$$
\left(P_{1} \wedge Q_{1}\right) \vee \cdots \vee\left(P_{n} \wedge Q_{n}\right)
$$

A good ordering is $\mathrm{P}_{1}<\mathrm{Q}_{1}<\cdots<\mathrm{P}_{\mathrm{n}}<\mathrm{Q}_{\mathrm{n}}$: the BDD is

With $\mathrm{P}_{1}<\cdots<\mathrm{P}_{\mathrm{n}}<\mathrm{Q}_{1}<\cdots<\mathrm{Q}_{\mathrm{n}}$, the BDD is EXPONENTIAL.

Many digital circuits have small BDDs: adders, but not multipliers.
BDDs can solve problems in hundreds of variables.
The general case remains hard (it is NP-complete).

Outline of First-Order Logic

Reasons about functions and relations over a set of individuals:

$$
\frac{\text { father }(\text { father }(x))=\text { father }(\text { father }(y))}{\operatorname{cousin}(x, y)}
$$

Reasons about all and some individuals:

$$
\frac{\text { All men are mortal } \quad \text { Socrates is a man }}{\text { Socrates is mortal }}
$$

Cannot reason about all functions or all relations, etc.

Function Symbols; Terms

Slide 502

A variable ranges over all individuals.
A term is a variable, constant or a function application

$$
f\left(t_{1}, \ldots, t_{n}\right)
$$

where f is an n-place function symbol and t_{1}, \ldots, t_{n} are terms.
We choose the language, adopting any desired function symbols.

Relation Symbols; Formulae

Each relation symbol stands for an n-place relation.
Slide 503
Equality is the 2-place relation symbol $=$
An atomic formula has the form $R\left(t_{1}, \ldots, t_{n}\right)$ where R is an n-place relation symbol and t_{1}, \ldots, t_{n} are terms.

A formula is built up from atomic formulæ using \neg, \wedge, \vee, and so forth.
Later, we can add quantifiers.

The Power of Quantifier-Free FOL

It is surprisingly expressive, if we include strong induction rules.
It is easy to equivalence of mathematical functions:
Slide 504

$$
\begin{array}{rlrl}
p(z, 0) & =1 & \mathrm{q}(z, 1) & =z \\
\mathrm{p}(z, \mathfrak{n}+1) & =\mathrm{p}(z, \mathfrak{n}) \times z & \mathrm{q}(z, 2 \times \mathfrak{n}) & =\mathrm{q}(z \times z, \mathfrak{n}) \\
\mathrm{q}(z, 2 \times \mathfrak{n}+1) & =\mathrm{q}(z \times z, \mathfrak{n}) \times z
\end{array}
$$

The prover ACL2 uses this logic and has been used in major hardware proofs.

Universal and Existential Quantifiers

$\forall x A$ for all x, the formula A holds
$\exists x A$ there exists x such that A holds
Slide 505
Syntactic variations:

$$
\begin{array}{cl}
\forall x y z A & \text { abbreviates } \forall x \forall y \forall z A \\
\forall z \cdot A \wedge B & \text { is an alternative to } \forall z(A \wedge B)
\end{array}
$$

The variable x is bound in $\forall x A$; compare with $\int f(x) d x$

The Expressiveness of Quantifiers

Slide 506
All mothers are female:

$$
\forall x \text { female (mother }(x))
$$

There exists a unique x such that A, sometimes written $\exists!x A$

$$
\exists x[A(x) \wedge \forall y(A(y) \rightarrow y=x)]
$$

How do we interpret mortal(Socrates)?

Take an interpretation $\mathcal{I}=(\mathrm{D}, \mathrm{I})$ of our first-order language.
D is a non-empty set, called the domain or universe.
Slide 507
I maps symbols to 'real' elements, functions and relations:
c a constant symbol
$\mathrm{I}[\mathrm{c}] \in \mathrm{D}$
f an n-place function symbol $\quad I[f] \in D^{n} \rightarrow D$
P an n-place relation symbol $I[P] \subseteq D^{n}$

How do we interpret cousin(Charles, y)?

A valuation supplies the values of free variables.
It is a function V : variables $\rightarrow \mathrm{D}$.
Slide 508
$\mathcal{I}_{\mathrm{V}}[\mathrm{t}]$ extends V to a term t by the obvious recursion:

$$
\begin{gathered}
\mathcal{I}_{V}[x] \stackrel{\text { def }}{=} \mathrm{V}(\mathrm{x}) \quad \text { if } x \text { is a variable } \\
\mathcal{I}_{\mathrm{V}}[\mathrm{c}] \stackrel{\text { def }}{=} \mathrm{I}[\mathrm{c}] \\
\mathcal{I}_{\mathrm{V}}\left[\mathrm{f}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)\right] \stackrel{\text { def }}{=} \mathrm{I}[\mathrm{f}]\left(\mathcal{I}_{\mathrm{V}}\left[\mathrm{t}_{1}\right], \ldots, \mathcal{I}_{\mathrm{V}}\left[\mathrm{t}_{\mathrm{n}}\right]\right)
\end{gathered}
$$

The Meaning of Truth - in FOL

For interpretation \mathcal{I} and valuation V , define $\models_{\mathcal{I}, \mathrm{V}}$ by recursion.

$$
\begin{array}{ll}
\models_{\mathcal{I}, \mathrm{V}} \mathrm{P}(\mathrm{t}) & \text { if } \mathcal{I}_{\mathrm{V}}[\mathrm{t}] \in \mathrm{I}[\mathrm{P}] \text { holds } \\
\models_{\mathcal{I}, \mathrm{V}} \mathrm{t}=\mathrm{u} & \text { if } \mathcal{I}_{\mathrm{V}}[\mathrm{t}] \text { equals } \mathcal{I}_{\mathrm{V}}[\mathrm{u}] \\
\models_{\mathcal{I}, \mathrm{V}} A \wedge \mathrm{~B} & \text { if } \models_{\mathcal{I}, \mathrm{V}} A \text { and } \models_{\mathcal{I}, \mathrm{V}} \mathrm{~B} \\
\models_{\mathcal{I}, \mathrm{V}} \exists \times A & \text { if } \models_{\mathcal{I}, \mathrm{V}\{\mathrm{~m} / \mathrm{x}\}} A \text { holds for some } \mathrm{m} \in \mathrm{D}
\end{array}
$$

Finally, we define

$$
\models_{\mathcal{I}} A \quad \text { if } \models_{\mathcal{I}, \mathrm{V}} A \text { holds for all } \mathrm{V} \text {. }
$$

Formula A is satisfiable if $\models_{\mathcal{I}} A$ for some \mathcal{I}.

Free vs Bound Variables

All occurrences of x in $\forall x A$ and $\exists x A$ are bound
An occurrence of x is free if it is not bound:
Slide 601

$$
\forall \mathrm{y} \exists \mathrm{z}(\mathrm{y}, \mathrm{z}, \mathrm{f}(\mathrm{y}, \mathrm{x}))
$$

In this formula, y and z are bound while x is free.
May rename bound variables:

$$
\forall w \exists z^{\prime} \mathrm{R}\left(w, z^{\prime}, \mathrm{f}(w, x)\right)
$$

Substitution for Free Variables

Slide 602
$A[t / x]$ means substitute t for x in A :

$$
\begin{aligned}
(\mathrm{B} \wedge \mathrm{C})[\mathrm{t} / \mathrm{x}] & \text { is } \mathrm{B}[\mathrm{t} / \mathrm{x}] \wedge \mathrm{C}[\mathrm{t} / \mathrm{x}] \\
(\forall \mathrm{xB})[\mathrm{t} / \mathrm{x}] & \text { is } \forall \mathrm{xB} \\
(\forall \mathrm{y} B)[\mathrm{t} / \mathrm{x}] & \text { is } \forall \mathrm{yB}[\mathrm{t} / \mathrm{x}] \quad(\mathrm{x} \neq \mathrm{y}) \\
(\mathrm{P}(\mathrm{u}))[\mathrm{t} / \mathrm{x}] & \text { is } \mathrm{P}(\mathrm{u}[\mathrm{t} / \mathrm{x}])
\end{aligned}
$$

With $A[t / x]$, no variable of t may be bound in A !
$(\forall y(x=y))[y / x]$ IS NOT EQUIVALENT To $\forall y(y=y)$

Some Equivalences for Quantifiers

Slide 603

$$
\begin{aligned}
\neg(\forall x A) & \simeq \exists x \neg A \\
\forall x A & \simeq \forall x A \wedge A[t / x] \\
(\forall x A) \wedge(\forall x B) & \simeq \forall x(A \wedge B)
\end{aligned}
$$

But we do not have $(\forall x A) \vee(\forall x B) \simeq \forall x(A \vee B)$.
Dual versions: exchange \forall with \exists and \wedge with \vee

Further Quantifier Equivalences

These hold only if x is not free in B.
Slide 604

$$
\begin{aligned}
(\forall x A) \wedge B & \simeq \forall x(A \wedge B) \\
(\forall x A) \vee B & \simeq \forall x(A \vee B) \\
(\forall x A) \rightarrow B & \simeq \exists x(A \rightarrow B)
\end{aligned}
$$

These let us expand or contract a quantifier's scope.

Reasoning by Equivalences

Slide 605

$$
\begin{aligned}
\exists x(x=a \wedge P(x)) & \simeq \exists x(x=a \wedge P(a)) \\
& \simeq \exists x(x=a) \wedge P(a) \\
& \simeq P(a)
\end{aligned}
$$

$$
\begin{aligned}
\exists z(P(z) \rightarrow P(a) & \wedge P(b)) \\
& \simeq \forall z P(z) \rightarrow P(a) \wedge P(b) \\
& \simeq \forall z P(z) \wedge P(a) \wedge P(b) \rightarrow P(a) \wedge P(b) \\
& \simeq t
\end{aligned}
$$

Sequent Calculus Rules for \forall

$$
\frac{A[\mathrm{t} / \mathrm{x}], \Gamma \Rightarrow \Delta}{\forall x A, \Gamma \Rightarrow \Delta}(\forall \mathrm{l}) \quad \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \forall x A}(\forall r)
$$

Rule ($\forall \mathrm{l}$) can create many instances of $\forall x A$
Rule $(\forall r)$ holds provided x is not free in the conclusion!
Not allowed to prove

$$
\frac{\overline{\mathrm{P}(\mathrm{y}) \Rightarrow \mathrm{P}(\mathrm{y})}}{\mathrm{P}(\mathrm{y}) \Rightarrow \forall \mathrm{yP}(\mathrm{y})}
$$

A Simple Example of the \forall Rules

Slide 607

$$
\frac{\overline{\mathrm{P}(\mathrm{f}(\mathrm{y})) \Rightarrow \mathrm{P}(\mathrm{f}(\mathrm{y}))}}{\frac{\forall \mathrm{xP}(\mathrm{x}) \Rightarrow \mathrm{P}(\mathrm{f}(\mathrm{y}))}{\forall \mathrm{xP}(\mathrm{x}) \Rightarrow \forall \mathrm{y} \mathrm{P}(\mathrm{f}(\mathrm{y}))}}
$$

A Not-So-Simple Example of the \forall Rules

$$
\begin{aligned}
& \frac{\overline{P \Rightarrow Q(y), P} \quad \overline{P, Q(y) \Rightarrow Q(y)}}{\frac{P, P \rightarrow Q(y) \Rightarrow Q(y)}{P, \forall x(P \rightarrow Q(x)) \Rightarrow Q(y)}}(\rightarrow \mathrm{l}) \\
& \frac{(\forall r)}{P, \forall x(P \rightarrow Q(x)) \Rightarrow \forall y Q(y)} \\
& \forall x(P \rightarrow Q(x)) \Rightarrow P \rightarrow \forall y Q(y)
\end{aligned}(\rightarrow r)
$$

In $(\forall \mathrm{l})$, we must replace x by y.

Sequent Calculus Rules for \exists

$$
\frac{A, \Gamma \Rightarrow \Delta}{\exists x A, \Gamma \Rightarrow \Delta}(\exists \mathrm{l}) \quad \frac{\Gamma \Rightarrow \Delta, A[\mathrm{t} / \mathrm{x}]}{\Gamma \Rightarrow \Delta, \exists x A}
$$

Slide 609
Rule ($\exists \mathrm{l}$) holds provided x is not free in the conclusion!
Rule ($\exists \mathrm{r}$) can create many instances of $\exists \mathrm{x} A$
For example, to prove this counter-intuitive formula:

$$
\exists z(\mathrm{P}(z) \rightarrow \mathrm{P}(\mathrm{a}) \wedge \mathrm{P}(\mathrm{~b}))
$$

Part of the \exists Distributive Law

Slide 610 \square

$$
\begin{align*}
& \overline{P(x) \Rightarrow P(x), Q(x)} \\
& \frac{\frac{P(x) \Rightarrow P(x), Q(x)}{P(x) \Rightarrow P(x) \vee Q(x)}(\vee r)}{P(x) \Rightarrow \exists y(P(y) \vee Q(y))}
\end{align*}
$$

$$
\begin{align*}
& \exists x P(x) \vee \exists x Q(x) \Rightarrow \exists y(P(y) \vee Q(y)) \tag{Vl}
\end{align*}
$$

Second subtree proves $\exists x Q(x) \Rightarrow \exists y(P(y) \vee Q(y))$ similarly In $(\exists r)$, we must replace y by x.

A Failed Proof

We cannot use ($\exists l$) twice with the same variable
This attempt renames the x in $\exists x Q(x)$, to get $\exists y Q(y)$

Clause Form

Clause: a disjunction of literals

$$
\neg K_{1} \vee \cdots \vee \neg K_{m} \vee L_{1} \vee \cdots \vee L_{n}
$$

Slide 701
Set notation:

$$
\left\{\neg \mathrm{K}_{1}, \ldots, \neg \mathrm{~K}_{\mathrm{m}}, \mathrm{~L}_{1}, \ldots, \mathrm{~L}_{n}\right\}
$$

Kowalski notation: $\quad \mathrm{K}_{1}, \cdots, \mathrm{~K}_{\mathrm{m}} \rightarrow \mathrm{L}_{1}, \cdots, \mathrm{~L}_{\mathrm{n}}$
$\mathrm{L}_{1}, \cdots, \mathrm{~L}_{n} \leftarrow \mathrm{~K}_{1}, \cdots, \mathrm{~K}_{m}$
Empty clause:
Empty clause is equivalent to \mathbf{f}, meaning CONTRADICTION!

Outline of Clause Form Methods

Slide 702
2. This is the set of clauses A_{1}, \ldots, A_{m}
3. Transform the clause set, preserving consistency

Deducing the empty clause refutes $\neg A$.
An empty clause set (all clauses deleted) means $\neg A$ is satisfiable.
The basis for SAT solvers and RESOLUTION PROVERS.

The Davis-Putnam-Logeman-Loveland Method

1. Delete tautological clauses: $\{P, \neg P, \ldots\}$
2. For each unit clause $\{\mathrm{L}\}$,

- delete all clauses containing L
- delete $\neg \mathrm{L}$ from all clauses

3. Delete all clauses containing pure literals
4. Perform a case split on some literal

DPLL is a decision procedure: it finds a contradiction or a model.

Davis-Putnam on a Non-Tautology

Consider $\mathrm{P} \vee \mathrm{Q} \rightarrow \mathrm{Q} \vee \mathrm{R}$
Clauses are $\{\mathrm{P}, \mathrm{Q}\} \quad\{\neg \mathrm{Q}\} \quad\{\neg \mathrm{R}\}$
Slide 704
$\{\mathrm{P}, \mathrm{Q}\} \quad\{\neg \mathrm{Q}\} \quad\{\neg \mathrm{R}\} \quad$ initial clauses
$\{P\} \quad\{\neg R\}$ unit $\neg \mathrm{Q}$
$\{\neg R\} \quad$ unit $P \quad$ (also pure)
unit $\neg \mathrm{R}$ (also pure)
Clauses satisfiable by $\mathrm{P} \mapsto \mathbf{t}, \mathrm{Q} \mapsto \mathbf{f}, \mathrm{R} \mapsto \mathbf{f}$

Slide 705

SAT solvers in the Real World

Slide 706

- Progressed from joke to killer technology in 10 years.
- Princeton's zChaff has solved problems with more than one million variables and 10 million clauses.
- Applications include finding bugs in device drivers (Microsoft's SLAM project).
- Typical approach: approximate the problem with a finite model; encode it using Boolean logic; supply to a SAT solver.

The Resolution Rule

Slide 707
From $B \vee A$ and $\neg B \vee C$ infer $A \vee C$
In set notation,

$$
\frac{\left\{B, A_{1}, \ldots, A_{m}\right\} \quad\left\{\neg B, C_{1}, \ldots, C_{n}\right\}}{\left\{A_{1}, \ldots, A_{m}, C_{1}, \ldots, C_{n}\right\}}
$$

Some special cases:

$$
\frac{\{B\} \quad\left\{\neg B, C_{1}, \ldots, C_{n}\right\}}{\left\{C_{1}, \ldots, C_{n}\right\}}
$$

Simple Example: Proving $P \wedge Q \rightarrow Q \wedge P$

Hint: use $\neg(A \rightarrow B) \simeq A \wedge \neg B$

1. Negate!
$\neg[\mathrm{P} \wedge \mathrm{Q} \rightarrow \mathrm{Q} \wedge \mathrm{P}]$
2. Push \neg in: $\quad(P \wedge Q) \wedge \neg(Q \wedge P)$
$(P \wedge Q) \wedge(\neg Q \vee \neg P)$
Clauses: $\quad\{\mathrm{P}\} \quad\{\mathrm{Q}\} \quad\{\neg \mathrm{Q}, \neg \mathrm{P}\}$
Resolve $\{\mathrm{P}\}$ and $\{\neg \mathrm{Q}, \neg \mathrm{P}\}$ getting $\{\neg \mathrm{Q}\}$.
Resolve $\{\mathrm{Q}\}$ and $\{\neg \mathrm{Q}\}$ getting \square : we have refuted the negation.

Another Example

Refute $\neg[(P \vee Q) \wedge(P \vee R) \rightarrow P \vee(Q \wedge R)]$
From $(P \vee Q) \wedge(P \vee R)$, get clauses $\{P, Q\}$ and $\{P, R\}$.
From $\neg[P \vee(Q \wedge R)]$ get clauses $\{\neg P\}$ and $\{\neg Q, \neg R\}$.

Resolve $\{\neg P\}$ and $\{P, Q\}$ getting $\{Q\}$.
Resolve $\{\neg P\}$ and $\{P, R\}$ getting $\{R\}$.
Resolve $\{\mathrm{Q}\}$ and $\{\neg \mathrm{Q}, \neg \mathrm{R}\}$ getting $\{\neg \mathrm{R}\}$.
Resolve $\{R\}$ and $\{\neg R\}$ getting \square, contradiction.

The Saturation Algorithm

Slide 710

1. Transfer a clause (current) from passive to active.
2. Form all resolvents between current and an active clause.
3. Use new clauses to simplify both passive and active.
4. Put the new clauses into passive.

Repeat until CONTRADICTION found or passive becomes empty.

Refinements of Resolution

Refinements of Resolution
Subsumption: \quad deleting redundant clauses
Preprocessing: \quad removing tautologies, symmetries ...

Indexing:	elaborate data structures for speed
Ordered resolution: restrictions to focus the search	
Weighting:	giving priority to the smallest clauses
Set of Support: \quad working on the goal, not the axioms	

Reducing FOL to Propositional Logic

Prenex: Move quantifiers to the front
Skolemize: Remove quantifiers, preserving consistency
Herbrand models: Reduce the class of interpretations
Herbrand's Thm: Contradictions have finite, ground proofs
Unification: Automatically find the right instantiations
Finally, combine unification with resolution

Prenex Normal Form

$$
\begin{aligned}
& \neg(\forall x A) \simeq \exists x \neg A \\
& \neg(\exists x A) \simeq \forall x \neg A
\end{aligned}
$$

Move quantifiers to the front using (provided x is not free in B)

$$
\begin{aligned}
& (\forall x A) \wedge B \simeq \forall x(A \wedge B) \\
& (\forall x A) \vee B \simeq \forall x(A \vee B)
\end{aligned}
$$

and the similar rules for \exists

Skolemization, or Getting Rid of \exists

Start with a formula of the form
(Can have $\mathrm{k}=0$).

Slide 803

$$
\forall x_{1} \forall x_{2} \cdots \forall x_{k} \exists y A
$$

Choose a fresh k-place function symbol, say f
Delete $\exists \mathrm{y}$ and replace y by $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. We get

$$
\forall x_{1} \forall x_{2} \cdots \forall x_{k} A\left[f\left(x_{1}, x_{2}, \ldots, x_{k}\right) / y\right]
$$

Repeat until no \exists quantifiers remain

Example of Conversion to Clauses

For proving $\exists x[P(x) \rightarrow \forall y P(y)]$
$\neg[\exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \rightarrow \forall \mathrm{y} P(\mathrm{y})]] \quad$ negated goal
$\forall x[P(x) \wedge \exists \mathrm{y} \neg \mathrm{P}(\mathrm{y})] \quad$ conversion to NNF
$\forall \mathrm{x} \exists \mathrm{y}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{y})] \quad$ pulling \exists out
$\forall x[P(x) \wedge \neg P(f(x))] \quad$ Skolem term $f(x)$
$\{P(x)\} \quad\{\neg P(f(x))\} \quad$ Final clauses

Correctness of Skolemization

The formula $\forall x \exists y A$ is consistent
\Longleftrightarrow it holds in some interpretation $\mathcal{I}=(\mathrm{D}, \mathrm{I})$
Slide 805
\Longleftrightarrow for all $x \in D$ there is some $y \in D$ such that A holds
\Longleftrightarrow some function \hat{f} in $\mathrm{D} \rightarrow \mathrm{D}$ yields suitable values of y
$\Longleftrightarrow A[f(x) / y]$ holds in some \mathcal{I}^{\prime} extending \mathcal{I} so that f denotes \hat{f} \Longleftrightarrow the formula $\forall x \mathcal{A}[f(x) / y]$ is consistent.

Don't panic if you can't follow this reasoning!

The Herbrand Universe for a set of clauses S

Slide 806
$\mathrm{H}_{0} \stackrel{\text { def }}{=}$ the set of constants in S (must be non-empty) $H_{i+1} \stackrel{\text { def }}{=} H_{i} \cup\left\{f\left(t_{1}, \ldots, t_{n}\right) \mid t_{1}, \ldots, t_{n} \in H_{i}\right.$ and f is an n -place function symbol in S$\}$
$H \stackrel{\text { def }}{=} \bigcup_{i \geq 0} H_{i} \quad$ Herbrand Universe
H contains the terms expressible using the function symbols of S.
H_{i} contains just the terms with at most i nested function applications.

Herbrand Interpretations for a set of clauses S

$$
H B \stackrel{\text { def }}{=}\left\{P\left(t_{1}, \ldots, t_{n}\right) \mid t_{1}, \ldots, t_{n} \in H\right.
$$ and P is an n-place predicate symbol in $S\}$

Slide 807
HB contains all applications of predicates to elements of H .
Each subset of HB defines the cases where the predicates are true.
A Herbrand model will interpret the predicates by some subset of HB .
It will interpret function symbols by term-forming operations:
f denotes the function that puts f in front of the given arguments.

Example of an Herbrand Model

Slide 808

A Key Fact about Herbrand Interpretations

Let S be a set of clauses.
S is unsatisfiable \Longleftrightarrow no Herbrand interpretation satisfies S

- Holds because some Herbrand model mimicks every 'real' model
- We must consider only a small class of models
- Herbrand models are syntactic, easily processed by computer

Herbrand's Theorem

Let S be a set of clauses.
S is unsatisfiable \Longleftrightarrow there is a finite unsatisfiable set S^{\prime} of ground instances of clauses of S.
Slide 810

- Finite: we can compute it
- Instance: result of substituting for variables
- Ground: no variables remain-it's propositional!

Example: S could be $\{P(x)\} \quad\{\neg P(f(y))\}$, and S^{\prime} could be $\{P(f(a))\} \quad\{\neg P(f(a))\}$.

Unification

Finding a common instance of two terms. Lots of applications:

- Prolog and other logic programming languages
- Theorem proving: resolution and other procedures
- Tools for reasoning with equations
- Tools for satisfying multiple constraints
- Polymorphic type-checking (ML and other functional languages)

It's an intuitive generalization of pattern-matching.

Substitutions: A Mathematical Treatment

$$
\theta=\left[t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right]
$$

where x_{1}, \ldots, x_{k} are distinct variables and $t_{i} \neq x_{i}$.

$$
\begin{aligned}
\mathrm{f}(\mathrm{t}, \mathrm{u}) \theta & =\mathrm{f}(\mathrm{t} \theta, \mathrm{u} \theta) & & \text { (substitution in terms) } \\
\mathrm{P}(\mathrm{t}, \mathrm{u}) \theta & =\mathrm{P}(\mathrm{t} \theta, \mathrm{u} \theta) & & \text { (in literals) } \\
\left\{\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{m}}\right\} \theta & =\left\{\mathrm{L}_{1} \theta, \ldots, \mathrm{~L}_{\mathrm{m}} \theta\right\} & & \text { (in clauses) }
\end{aligned}
$$

Composing Substitutions

Composition of ϕ and θ, written $\phi \circ \theta$, satisfies for all terms t

$$
\mathrm{t}(\phi \circ \theta)=(\mathrm{t} \phi) \theta
$$

Slide 903
It is defined by (for all relevant χ)

$$
\phi \circ \theta \stackrel{\text { def }}{=}[(x \phi) \theta / x, \ldots]
$$

Consequences include $\theta \circ \square=\theta$, and associativity:

$$
(\phi \circ \theta) \circ \sigma=\phi \circ(\theta \circ \sigma)
$$

Most General Unifiers

θ is a unifier of terms t and u if $t \theta=u \theta$.
θ is more general than ϕ if $\phi=\theta \circ \sigma$ for some substitution σ.
θ is most general if it is more general than every other unifier.
If θ unifies t and u then so does $\theta \circ \sigma$:

$$
\mathfrak{t}(\theta \circ \sigma)=\mathfrak{t} \theta \sigma=u \theta \sigma=u(\theta \circ \sigma)
$$

A most general unifier of $f(a, x)$ and $f(y, g(z))$ is $[a / y, g(z) / x]$.
The common instance is $f(a, g(z))$.

The Unification Algorithm

Sketch of the Algorithm.
Constants do not unify with different Constants.
Constants do not unify with Pairs.
Variable x and term t : unifier is $[t / x]$, unless x occurs in t Cannot unify $f(x)$ with x !

The Unification Algorithm: The Case of Two Pairs

Slide 906
$\theta \circ \theta^{\prime}$ unifies $\left(t, t^{\prime}\right)$ with $\left(u, u^{\prime}\right)$
if θ unifies t with u and θ^{\prime} unifies $t^{\prime} \theta$ with $u^{\prime} \theta$.
We unify the left sides, then the right sides.
In an implementation, substitutions are formed by updating pointers.
Composition happens automatically as more pointers are updated.

Mathematical justification

Slide 907

$$
\begin{aligned}
\left(t, t^{\prime}\right)\left(\theta \circ \theta^{\prime}\right) & =\left(t, t^{\prime}\right) \theta \theta^{\prime} \\
& =\left(t \theta \theta^{\prime}, t^{\prime} \theta \theta^{\prime}\right) \\
& =\left(u \theta \theta^{\prime}, u^{\prime} \theta \theta^{\prime}\right) \\
& =\left(u, u^{\prime}\right) \theta \theta^{\prime} \\
& =\left(u, u^{\prime}\right)\left(\theta \circ \theta^{\prime}\right)
\end{aligned}
$$

$\theta \circ \theta^{\prime}$ is even a most general unifier, if θ and θ^{\prime} are!

Slide 908

Four Unification Examples

	Four Unification Examples		
$\begin{aligned} & f(x, b) \\ & f(a, y) \end{aligned}$	$\begin{aligned} & f(x, x) \\ & f(a, b) \end{aligned}$	$\begin{gathered} f(x, x) \\ f(y, g(y)) \end{gathered}$	$\begin{gathered} \mathfrak{j}(x, x, z) \\ \mathfrak{j}(w, a, h(w)) \end{gathered}$
$\begin{gathered} f(a, b) \\ {[a / x, b / y]} \end{gathered}$	None Fail	None Fail	$\begin{gathered} j(a, a, h(a)) \\ {[a / w, a / x, h(a) / z]} \end{gathered}$
Remember, the output is a substitution. The algorithm yields a most general unifier.			

Theorem-Proving Example 1

$(\exists y \forall x R(x, y)) \rightarrow(\forall x \exists y R(x, y))$
After negation, the clauses are $\{R(x, a)\}$ and $\{\neg R(b, y)\}$.
The literals $R(x, a)$ and $R(b, y)$ have unifier $[b / x, a / y]$.
We have the contradiction $R(b, a)$ and $\neg R(b, a)$.
THE THEOREM IS PROVED BY CONTRADICTION!

Theorem-Proving Example 2

$(\forall x \exists y \mathrm{R}(\mathrm{x}, \mathrm{y})) \rightarrow(\exists \mathrm{y} \forall \mathrm{x} \mathrm{R}(\mathrm{x}, \mathrm{y}))$
Slide 910
After negation, the clauses are $\{R(x, f(x))\}$ and $\{\neg R(g(y), y)\}$.
The literals $R(x, f(x))$ and $R(g(y), y)$ are not unifiable.
(They fail the occurs check.)
We can't get a contradiction. Formula is not a theorem!

Variations on Unification

Efficient unification algorithms: near-linear time
Indexing \& Discrimination networks: fast retrieval of a unifiable term
Slide 911 Associative/commutative unification

- Example: unify $a+(y+c)$ with $(c+x)+b$, get $[a / x, b / y]$
- Algorithm is very complicated
- The number of unifiers can be exponential

Unification in many other theories (often undecidable!)

The Binary Resolution Rule
 $\frac{\left\{B, A_{1}, \ldots, A_{m}\right\} \quad\left\{\neg D, C_{1}, \ldots, C_{n}\right\}}{\left\{A_{1}, \ldots, A_{m}, C_{1}, \ldots, C_{n}\right\} \sigma} \quad$ provided $B \sigma=D \sigma$

Slide 1001
First, rename variables apart in the clauses! For example, given

$$
\{\mathrm{P}(\mathrm{x})\} \text { and }\{\neg \mathrm{P}(\mathrm{~g}(\mathrm{x}))\}
$$

rename x in one of the clauses before attempting unification.

Always use a most general unifier (MGU).

The Factoring Rule

Slide 1002

$$
\frac{\left\{\mathrm{B}_{1}, \ldots, \mathrm{~B}_{k}, A_{1}, \ldots, A_{m}\right\}}{\left\{\mathrm{B}_{1}, A_{1}, \ldots, A_{m}\right\} \sigma} \quad \text { provided } \mathrm{B}_{1} \sigma=\cdots=B_{k} \sigma
$$

Example: Prove $\forall \mathrm{x} \exists \mathrm{y} \neg(\mathrm{P}(\mathrm{y}, \mathrm{x}) \leftrightarrow \neg \mathrm{P}(\mathrm{y}, \mathrm{y}))$
The clauses are

$$
\{\neg P(y, a), \neg P(y, y)\} \quad\{P(y, y), P(y, a)\}
$$

Factoring yields

$$
\{\neg \mathrm{P}(\mathrm{a}, \mathrm{a})\}
$$

$$
\{P(a, a)\}
$$

Resolution yields the empty clause!

A Non-Trivial Proof

Slide 1003
Resolve $\{\mathrm{P}, \neg \mathrm{Q}(\mathrm{b})\}$ with $\{\mathrm{P}, \underline{\mathrm{Q}(\mathrm{x})}\} \quad$ getting $\{\mathrm{P}, \mathrm{P}\}$
Factor $\{P, P\}$ getting $\{P\}$
Resolve $\{\neg \mathrm{P}, \neg \mathrm{Q}(\mathrm{x})\}$ with $\{\neg \mathrm{P}, \mathrm{Q}(\mathrm{a})\}$ getting $\{\neg \mathrm{P}, \neg \mathrm{P}\}$
Factor $\{\neg \mathrm{P}, \neg \mathrm{P}\} \quad$ getting $\{\neg \mathrm{P}\}$
Resolve $\{P\}$ with $\{\neg P\}$
getting \square

What About Equality?

In theory, it's enough to add the equality axioms:

- The reflexive, symmetric and transitive laws.
- Substitution laws like $\{x \neq \mathrm{y}, \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})\}$ for each f .
- Substitution laws like $\{x \neq y, \neg P(x), P(y)\}$ for each P.

In practice, we need something special: the paramodulation rule

$$
\left.\frac{\left\{B\left[\mathrm{t}^{\prime}\right], A_{1}, \ldots, A_{m}\right\} \quad\left\{\mathrm{t}=\mathrm{u}, \mathrm{C}_{1}, \ldots, C_{n}\right\}}{\left\{\mathrm{B}[\mathrm{u}], A_{1}, \ldots, A_{m}, C_{1}, \ldots, C_{n}\right\} \sigma} \quad \text { (if } \mathrm{t} \sigma=\mathrm{t}^{\prime} \sigma\right)
$$

Prolog Clauses

Prolog clauses have a restricted form, with at most one positive literal.
The definite clauses form the program. Procedure B with body
Slide $1005 \quad$ "commands" A_{1}, \ldots, A_{m} is

$$
B \leftarrow A_{1}, \ldots, A_{m}
$$

The single goal clause is like the "execution stack", with say m tasks left to be done.

$$
\leftarrow A_{1}, \ldots, A_{m}
$$

Prolog Execution

- The result becomes the new goal clause.

Try the program clauses in left-to-right order.
Solve the goal clause's literals in left-to-right order.
Use depth-first search. (Performs backtracking, using little space.)
Do unification without occurs check. (UNSOUND, but needed for speed)

A (Pure) Prolog Program

Slide 1007

```
parent(elizabeth,charles).
parent(elizabeth,andrew).
parent(charles,william).
parent(charles,henry).
parent(andrew,beatrice).
parent(andrew, eugenia).
grand(X,Z) :- parent(X,Y), parent(Y,Z).
cousin(X,Y) :- grand(Z,X), grand(Z,Y).
```


Prolog Execution

Another FOL Proof Procedure: Model Elimination

Slide 1009
A Prolog-like method to run on fast Prolog architectures.
Contrapositives: treat clause $\left\{A_{1}, \ldots, A_{m}\right\}$ like the m clauses

$$
\begin{aligned}
& A_{1} \leftarrow \neg A_{2}, \ldots, \neg A_{m} \\
& A_{2} \leftarrow \neg A_{3}, \ldots, \neg A_{m}, \neg A_{1}
\end{aligned}
$$

$$
A_{m} \leftarrow \neg A_{1}, \ldots, \neg A_{m-1}
$$

Extension rule: when proving goal P , assume $\neg \mathrm{P}$.

A Survey of Automatic Theorem Provers

Slide 1010
Higher-Order Logic: TPS, LEO
Model Elimination: Prolog Technology Theorem Prover, SETHEO
Parallel ME: PARTHENON, PARTHEO
Tableau (sequent) based: LeanTAP, 3TAP, ...

Modal Operators

W: set of possible worlds (machine states, future times, . . .)
R : accessibility relation between worlds
(W, R) is called a modal frame
$\square A$ means A is necessarily true
$\diamond A$ means A is possibly true
$\neg \diamond A \simeq \square \neg A$
A cannot be true \Longleftrightarrow A must be false

Semantics of Propositional Modal Logic

Slide 1102
$w \Vdash A$ means A is true in world w

$$
\begin{aligned}
& w \Vdash \mathrm{P} \quad \Longleftrightarrow w \in \mathrm{I}(\mathrm{P}) \\
& w \Vdash A \wedge B \Longleftrightarrow w \Vdash A \text { and } w \Vdash \mathrm{~B} \\
& w \Vdash \square A \quad \Longleftrightarrow v \Vdash A \text { for all } v \text { such that } \mathrm{R}(w, v) \\
& w \Vdash \diamond A \quad \Longleftrightarrow v \Vdash A \text { for some } v \text { such that } \mathrm{R}(w, v)
\end{aligned}
$$

Truth and Validity in Modal Logic

Slide 1103
For a particular frame (W, R), and interpretation I
$\mathcal{w} \Vdash A \quad$ means A is true in world \mathcal{w}
$\models_{W, R, I} A \quad$ means $\mathcal{W} \Vdash A$ for all \mathcal{w} in W
$\models_{W, R} \mathcal{A} \quad$ means $w \Vdash \mathcal{A}$ for all \mathcal{w} and all I
$\models A$ means $\models_{W, R} A$ for all frames; A is universally valid
. . . but typically we constrain R to be, say, transitive
All tautologies are universally valid

A Hilbert-Style Proof System for K

Extend your favourite propositional proof system with

$$
\text { Dist } \quad \square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)
$$

Inference Rule: Necessitation

$$
\frac{A}{\square A}
$$

Treat \diamond as a definition

$$
\diamond A \stackrel{\text { def }}{=} \neg \square \neg A
$$

Variant Modal Logics

Start with pure modal logic, which is called K
Add axioms to constrain the accessibility relation:
Slide 1105

T	$\square \mathrm{A} \rightarrow \mathrm{A}$	(reflexive)	logic T
4	$\square \mathrm{~A} \rightarrow \square \square \mathrm{~A}$	(transitive)	logic S 4
B	$\mathrm{~A} \rightarrow \square \diamond \mathrm{~A}$	(symmetric)	logic S 5

And countless others!
We shall mainly look at S 4

Extra Sequent Calculus Rules for S4

$$
\frac{A, \Gamma \Rightarrow \Delta}{\square A, \Gamma \Rightarrow \Delta} \text { (םl) } \quad \frac{\Gamma^{*} \Rightarrow \Delta^{*}, A}{\Gamma \Rightarrow \Delta, \square A}(\square r)
$$

Slide 1106

$$
\begin{array}{cl}
\frac{A, \Gamma^{*} \Rightarrow \Delta^{*}}{\diamond A, \Gamma \Rightarrow \Delta}(\diamond l) & \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \diamond A}(\diamond r) \\
\Gamma^{*} \stackrel{\text { def }}{=}\{\square B \mid \square B \in \Gamma\} & \text { Erase non- } \square \text { assumptions } \\
\Delta^{*} \stackrel{\text { def }}{=}\{\diamond B \mid \diamond B \in \Delta\} & \text { Erase non- } \diamond \text { goals! }
\end{array}
$$

A Proof of the Distribution Axiom

Slide 1107

$$
\begin{aligned}
& \frac{\overline{A \Rightarrow B, A} \quad \overline{B, A \Rightarrow B}}{A \rightarrow B, A \Rightarrow B} \\
& \frac{(\rightarrow l)}{A \rightarrow B, \square A \Rightarrow B} \\
& \frac{\square(\square)}{\square(\square), \square A \Rightarrow B} \\
& \square(\square \rightarrow B), \square A \Rightarrow \square B
\end{aligned}(\square r)
$$

And thus $\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$
Must apply ($\square \mathrm{r}$) first!

Part of an Operator String Equivalence

Slide 1108

$$
\frac{\overline{\diamond A \Rightarrow \diamond A}}{\frac{\square \diamond A \Rightarrow \diamond A}{(\square l)}} \begin{gathered}
\stackrel{\diamond \diamond A \Rightarrow \diamond A}{\square \diamond \square \diamond A \Rightarrow \diamond A} \\
\frac{\square \triangleright \square)}{\square \diamond \square \diamond A \Rightarrow \square \diamond A}
\end{gathered}(\square r)
$$

In fact, $\square \diamond \square \diamond A \simeq \square \diamond A \quad$ also $\square \square A \simeq \square A$

The S4 operator strings are
 \diamond $\square \diamond$ $\diamond \square$ $\square \diamond \square$ $\diamond \square \diamond$

Can extract a countermodel from the proof attempt

Simplifying the Sequent Calculus

7 connectives (or 9 for modal logic):
$\neg \wedge \vee \rightarrow \quad \forall \quad(\square \diamond)$
Slide 1201

Idea! Work in Negation Normal Form

Fewer connectives: $\wedge \vee \forall \exists \quad(\square \diamond)$
Sequents need one side only!

Simplified Calculus: Left-Only

$$
\overline{\neg A, A, \Gamma \Rightarrow} \text { (basic) } \frac{\neg A, \Gamma \Rightarrow \quad A, \Gamma \Rightarrow}{\Gamma \Rightarrow} \text { (cut) }
$$

$$
\begin{array}{cc}
\frac{A, B, \Gamma \Rightarrow}{A \wedge B, \Gamma \Rightarrow}(\wedge \mathrm{l}) & \frac{A, \Gamma \Rightarrow}{A \vee B, \Gamma \Rightarrow} \\
\frac{A[t / x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow}(\forall l) & \frac{A, \Gamma \Rightarrow}{\exists x A, \Gamma \Rightarrow}(\exists l)
\end{array}
$$

Rule ($\exists \mathrm{l}$) holds provided x is not free in the conclusion!

Left-Only Sequent Rules for S4

$$
\frac{A, \Gamma \Rightarrow}{\square A, \Gamma \Rightarrow}(\square \mathrm{l}) \quad \frac{A, \Gamma^{*} \Rightarrow}{\diamond A, \Gamma \Rightarrow}(\diamond \mathrm{l})
$$

$$
\Gamma^{*} \stackrel{\text { def }}{=}\{\square \mathrm{B} \mid \square \mathrm{B} \in \Gamma\} \quad \text { Erase non- } \square \text { assumptions }
$$

From 14 (or 18) rules to 4 (or 6)
Left-side only system uses proof by contradiction
Right-side only system is an exact dual

$$
\text { Proving } \forall x(\mathrm{P} \rightarrow \mathrm{Q}(\mathrm{x})) \Rightarrow \mathrm{P} \rightarrow \forall \mathrm{y} \mathrm{Q}(\mathrm{y})
$$

Move the right-side formula to the left and convert to NNF:
$\mathrm{P} \wedge \exists \mathrm{y} \neg \mathrm{Q}(\mathrm{y}), \forall \mathrm{x}(\neg \mathrm{P} \vee \mathrm{Q}(\mathrm{x})) \Rightarrow$

$$
\begin{gathered}
\frac{\mathrm{P}, \neg \mathrm{Q}(\mathrm{y}), \neg \mathrm{P} \Rightarrow}{\mathrm{P}, \neg \mathrm{Q}(\mathrm{y}), \neg \mathrm{P} \vee \mathrm{P}(\mathrm{Q}(\mathrm{y}) \Rightarrow}(\mathrm{P}, \neg \mathrm{P}(\mathrm{l}) \\
\frac{\mathrm{P}, \neg \mathrm{Q}(\mathrm{y}), \forall \mathrm{x}(\neg \mathrm{P} \vee \mathrm{Q}(\mathrm{x})) \Rightarrow}{(\forall \mathrm{l})}(\mathrm{l}) \\
\frac{\mathrm{P}, \exists \mathrm{y} \neg \mathrm{Q}(\mathrm{y}), \forall \mathrm{x}(\neg \mathrm{P} \vee \mathrm{Q}(\mathrm{x})) \Rightarrow}{\mathrm{P} \wedge \exists \mathrm{y} \neg \mathrm{Q}(\mathrm{y}), \forall \mathrm{x}(\neg \mathrm{P} \vee \mathrm{Q}(\mathrm{x})) \Rightarrow}(\wedge \mathrm{l})
\end{gathered}
$$

Adding Unification

Rule ($\forall \mathrm{l})$ now inserts a new free variable:

$$
\frac{A[z / x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow}(\forall l)
$$

Let unification instantiate any free variable
In $\neg A, B, \Gamma \Rightarrow$ try unifying A with B to make a basic sequent
Updating a variable affects entire proof tree
What about rule ($\exists \iota$)? Skolemize!

Skolemization from NNF

Don't pull quantifiers out! Skolemize

$$
[\forall y \exists z \mathrm{Q}(\mathrm{y}, \mathrm{z})] \wedge \exists x \mathrm{P}(\mathrm{x}) \text { to }[\forall y \mathrm{Q}(\mathrm{y}, \mathrm{f}(\mathrm{y}))] \wedge \mathrm{P}(\mathrm{a})
$$

Slide 1206
It's better to push quantifiers in (called miniscoping)
Example: proving $\exists \mathrm{x} \forall \mathrm{y}[\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{y})]$:
Negate; convert to NNF: $\quad \forall \mathrm{x} \exists \mathrm{y}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{y})]$
Push in the $\exists \mathrm{y}: \quad \forall x[\mathrm{P}(\mathrm{x}) \wedge \exists \mathrm{y} \neg \mathrm{P}(\mathrm{y})]$
Push in the $\forall x: \quad(\forall x P(x)) \wedge(\exists y \neg P(y))$
Skolemize: $\quad \forall x \mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{a})$

A Proof of $\exists x \forall y[P(x) \rightarrow P(y)]$

Slide 1207

$$
\begin{gathered}
\frac{\mathrm{y} \mapsto \mathrm{f}(\mathrm{z})}{\mathrm{P}(\mathrm{y}), \neg \mathrm{P}(\mathrm{f}(\mathrm{y})), \mathrm{P}(\mathrm{z}), \neg \mathrm{P}(\mathrm{f}(\mathrm{z})) \Rightarrow} \\
\frac{\mathrm{P}(\mathrm{y}), \neg \mathrm{P}(\mathrm{f}(\mathrm{y})), \mathrm{P}(\mathrm{z}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{z})) \Rightarrow}{(\wedge \mathrm{l})} \\
\frac{\mathrm{P}(\mathrm{y}), \neg \mathrm{P}(\mathrm{f}(\mathrm{y})), \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{x}))] \Rightarrow}{\mathrm{P}(\mathrm{y}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{y})), \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{x}))] \Rightarrow} \\
\forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{x}))] \Rightarrow
\end{gathered}(\wedge \mathrm{l})
$$

Unification chooses the term for $(\forall \mathrm{l})$

A Failed Proof

Try to prove $\forall x[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \Rightarrow \forall \mathrm{x}(\mathrm{x}) \vee \forall \mathrm{x} \mathrm{Q}(\mathrm{x})$
$N N F: \exists x \neg \mathrm{P}(\mathrm{x}) \wedge \exists \mathrm{x} \neg \mathrm{Q}(\mathrm{x}), \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \Rightarrow$
Skolemize: $\neg \mathrm{P}(\mathrm{a}) \wedge \neg \mathrm{Q}(\mathrm{b}), \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \Rightarrow$
Slide 1208

$$
\begin{gather*}
\frac{\mathrm{y} \mapsto \mathrm{a}}{\neg \mathrm{P}(\mathrm{a}), \neg \mathrm{Q}(\mathrm{~b}), \mathrm{P}(\mathrm{y}) \Rightarrow} \quad \frac{\mathrm{y} \mapsto \mathrm{~b} ? ? ?}{\neg \mathrm{P}(\mathrm{a}), \neg \mathrm{Q}(\mathrm{~b}), \mathrm{Q}(\mathrm{y}) \Rightarrow} \\
\frac{\neg \mathrm{P}(\mathrm{a}), \neg \mathrm{Q}(\mathrm{~b}), \mathrm{P}(\mathrm{y}) \vee \mathrm{Q}(\mathrm{y}) \Rightarrow}{\frac{\neg \mathrm{P}(\mathrm{a}), \neg \mathrm{Q}(\mathrm{~b}), \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \Rightarrow}{}(\forall \mathrm{l})}(\mathrm{\imath l})
\end{gather*}
$$

The World's Smallest Theorem Prover?

```
prove((A, B),UnExp,Lits,FreeV,VarLim) :- !,
        prove(A,[B|UnExp], Lits,FreeV,VarLim).
prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
        prove(A,UnExp, Lits,FreeV,VarLim),
        prove(B,UnExp,Lits,FreeV,VarLim).
prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !, forall
        \+ length(FreeV,VarLim),
        copy_term((X,Fml,FreeV), (X1,Fml1,FreeV)),
        append(UnExp,[all(X,Fml)],UnExp1),
        prove (Fml1,UnExp1, Lits, [X1|FreeV],VarLim).
prove(Lit,_,[L|Lits],_,_) :-
                                literals; negation
        (Lit = -Neg; -Lit = Neg) ->
        (unify(Neg,L); prove(Lit, [],Lits,_r_)).
prove(Lit, [Next|UnExp],Lits,FreeV,VarLim) :- next formula
        prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).
```

