10 Quantized Degrees-of-Freedom in a Continuous Signal

We have now encountered several theorems expressing the idea that even though a signal
is continuous and dense in time (i.e. the value of the signal is defined at each real-valued
moment in time), nevertheless a finite and countable set of discrete numbers suffices to
describe it completely, and thus to reconstruct it, provided that its frequency bandwidth is
limited.

Such theorems may seem counter-intuitive at first: How could a finite sequence of num-
bers, at discrete intervals, capture exhaustively the continuous and uncountable stream of
numbers that represent all the values taken by a signal over some interval of time?

In general terms, the reason is that bandlimited continuous functions are not as free to
vary as they might at first seem. Consequently, specifying their values at only certain
points, suffices to determine their values at all other points.

Three examples that we have already seen are:

e Nyquist’s Sampling Theorem: If a signal f(x) is strictly bandlimited so that it
contains no frequency components higher than W, i.e. its Fourier Transform F(k)
satisfies the condition

F(k)=0 for |[k| > W (1)

then f(z) is completely determined just by sampling its values at a rate of at least
2W. The signal f(z) can be exactly recovered by using each sampled value to fix the
amplitude of a sinc(z) function,

sin(ma)

sinc(z) = — (2)

whose width is scaled by the bandwidth parameter W and whose location corresponds
to each of the sample points. The continuous signal f(z) can be perfectly recovered
from its discrete samples f,(§F) just by adding all of those displaced sinc(z) functions
together, with their amplitudes equal to the samples taken:

10 =0 () ey ®)

Thus we see that any signal that is limited in its bandwidth to W, during some
duration T has at most 2WT degrees-of-freedom. It can be completely specified by
just 2WT real numbers (Nyquist, 1911; R V Hartley, 1928).

e Logan’s Theorem: If a signal f(z) is strictly bandlimited to one octave or less, so

that the highest frequency component it contains is no greater than twice the lowest
frequency component it contains

kmax S kazn (4)
i.e. F(k) the Fourier Transform of f(z) obeys
F(lkl > kmaz = kain) =0 (5)

and

F(|k| < Epin) = 0 (6)

and if it is also true that the signal f(z) contains no complex zeroes in common with
its Hilbert Transform (too complicated to explain here, but this constraint serves to
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exclude families of signals which are merely amplitude-modulated versions of each
other), then the original signal f(z) can be perfectly recovered (up to an amplitude
scale constant) merely from knowledge of the set {z;} of zero-crossings of f(z) alone:

{z;} such that f(z;) =0 (7)

Comments:
(1) This is a very complicated, surprising, and recent result (W F Logan, 1977).

(2) Only an existence theorem has been proven. There is so far no stable constructive
algorithm for actually making this work — i.e. no known procedure that can actually
recover f(z) in all cases, within a scale factor, from the mere knowledge of its zero-
crossings f(z) = 0; only the existence of such algorithms is proven.

(3) The “Hilbert Transform” constraint (where the Hilbert Transform of a signal

is obtained by convolving it with a hyperbola, h(z) = 1/z, or equivalently by shifting

the phase of the positive frequency components of the signal f(z) by +7/2 and shifting

the phase of its negative frequency components by —n/2), serves to exclude ensem-

bles of signals such as a(z) sin(wz) where a(z) is a purely positive function a(z) > 0.

Clearly a(z) modulates the amplitudes of such signals, but it could not change any
m 2m 37

of their zero-crossings, which would always still occur at z = 0, F, 2%, 2% .. and so

such signals could not be uniquely represented by their zero-crossings.

(4) Tt is very difficult to see how to generalize Logan’s Theorem to two-dimensional
signals (such as images). In part this is because the zero-crossings of two-dimensional
functions are non-denumerable (uncountable): they form continuous “snakes,” rather
than a discrete and countable set of points. Also, it is not clear whether the one-octave
bandlimiting constraint should be isotropic (the same in all directions), in which case
the projection of the signal’s spectrum onto either frequency axis is really low-pass
rather than bandpass; or anisotropic, in which case the projection onto both frequency
axes may be strictly bandpass but the different directions are treated differently.

(5) Logan’s Theorem has been proposed as a significant part of a “brain theory”
by David Marr and Tomaso Poggio, for how the brain’s visual cortex processes and
interprets retinal image information. The zero-crossings of bandpass-filtered retinal
images constitute edge information within the image.

The Information Diagram: The Similarity Theorem of Fourier Analysis asserts
that if a function becomes narrower in one domain by a factor «, it necessarily becomes
broader by the same factor ¢ in the other domain:

f(z) — F(k) (8)

flaz) — |25 9

The Hungarian Nobel-Laureate Dennis Gabor took this principle further with great
insight and with implications that are still revolutionizing the field of signal processing
(based upon wavelets), by noting that an Information Diagram representation of sig-
nals in a plane defined by the axes of time and frequency is fundamentally quantized.
There is an irreducible, minimal, area that any signal can possibly occupy in this
plane. Its uncertainty (or spread) in frequency, times its uncertainty (or duration) in
time, has an inescapable lower bound.
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11 Gabor-Heisenberg-Weyl Uncertainty Relation. “Logons.

11.1 The Uncertainty Principle

If we define the “effective support” of a function f(z) by its normalized variance, or the
normalized second-moment:

[ @ e - wte
(A0t = £ (10

[ @)@y

— 00

where p is the mean value, or normalized first-moment, of the function:

+0oo
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and if we similarly define the effective support of the Fourier Transform F(k) of the function
by its normalized variance in the Fourier domain:

/ T PR () (k — ko) 2dk
=0 (12)
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— 00
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where kg is the mean value, or normalized first-moment, of the Fourier transform F(k):

/ B P (k) i
ko = =22 (13)
/ F(k)F* (k)dk

— 00

then it can be proven (by Schwartz Inequality arguments) that there exists a fundamental
lower bound on the product of these two “spreads,” regardless of the function f(xz):

(Az)(Ak) > (14)

1
4T

This is the famous Gabor-Heisenberg-Weyl Uncertainty Principle. Mathematically it is
exactly identical to the uncertainty relation in quantum physics, where (Az) would be
interpreted as the position of an electron or other particle, and (Ak) would be interpreted
as its momentum or deBroglie wavelength. We see that this is not just a property of nature,
but more abstractly a property of all functions and their Fourier Transforms. It is thus a
still further respect in which the information in continuous signals is quantized, since the
minimal area they can occupy in the Information Diagram has an irreducible lower bound.

11.2 Gabor “Logons”

Dennis Gabor named such minimal areas “logons” from the Greek word for information, or
order: logos. He thus established that the Information Diagram for any continuous signal
can only contain a fixed number of information “quanta.” Each such quantum constitutes
an independent datum, and their total number within a region of the Information Diagram
represents the number of independent degrees-of-freedom enjoyed by the signal.
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The unique family of signals that actually achieve the lower bound in the Gabor-Heisenberg-
Weyl Uncertainty Relation are the complex exponentials multiplied by Gaussians. These
are sometimes referred to as “Gabor wavelets:”

f(l?) — e—(r—x0)2/a2€—ik0(x—ro) (15)

localized at “epoch” zg, modulated by frequency kg, and with size or spread constant a.
It is noteworthy that such wavelets have Fourier Transforms F(k) with exactly the same
functional form, but with their parameters merely interchanged or inverted:

F(k‘) — e—(k—k0)2a2eix0(k—ko) (16)

Note that in the case of a wavelet (or wave-packet) centered on zg = 0, its Fourier Trans-
form is simply a Gaussian centered at the modulation frequency kg, and whose size is 1/a,
the reciprocal of the wavelet’s space constant.

Because of the optimality of such wavelets under the Uncertainty Principle, Gabor (1946)
proposed using them as an expansion basis to represent signals. In particular, he wanted
them to be used in broadcast telecommunications for encoding continuous-time informa-
tion. He called them the “elementary functions” for a signal. Unfortunately, because such
functions are mutually non-orthogonal, it is very difficult to obtain the actual coefficients

needed as weights on the elementary functions in order to expand a given signal in this
basis. The first constructive method for finding such “Gabor coefficients” was developed
in 1981 by the Dutch physicist Martin Bastiaans, using a dual basis and a complicated
non-local infinite series.

The following diagrams show the behaviour of Gabor elementary functions both as complex
wavelets, their separate real and imaginary parts, and their Fourier transforms. When a
family of such functions are parameterized to be self-similar, i.e. they are dilates and trans-
lates of each other so that they all have a common template (“mother” and “daughter”),
then they constitute a (non-orthogonal) wavelet basis. Today it is known that an infinite
class of wavelets exist which can be used as the expansion basis for signals. Because of
the self-similarity property, this amounts to representing or analyzing a signal at different
scales. This general field of investigation is called multi-resolution analysis.
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2D Gabor Wavelet: Real Part 2D Fourier Transform
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Figure 1: The real part of a 2-D Gabor wavelet, and its 2-D Fourier transform.

11.3 Generalization to Two Dimensional Signals

An effective strategy for extracting both coherent and incoherent image structure is the
computation of two-dimensional Gabor coefficients for the image. This family of 2-D filters
were originally proposed as a framework for understanding the orientation-selective and
spatial-frequency-selective receptive field properties of neurons in the brain’s visual cortex,
and as useful operators for practical image analysis problems. These 2-D filters are con-
jointly optimal in providing the maximum possible resolution both for information about
the spatial frequency and orientation of image structure (in a sense “what”), simultane-
ously with information about 2-D position (“where”). The 2-D Gabor filter family uniquely
achieves the theoretical lower bound for joint uncertainty over these four variables, as dic-
tated by the inescapable Uncertainty Principle when generalized to four-dimensional space.

These properties are particularly useful for texture analysis because of the 2-D spectral
specificity of texture as well as its variation with 2-D spatial position. A rapid method
for obtaining the required coefficients on these elementary expansion functions for the pur-
pose of representing any image completely by its “2-D Gabor Transform,” despite the non-
orthogonality of the expansion basis, is possible through the use of a relaxation neural net-
work. A large and growing literature now exists on the efficient use of this non-orthogonal
expansion basis and its applications.

Two-dimensional Gabor filters over the image domain (z,y) have the functional form
fla,y) = e—[(x—xo)z/a2+(y—yo)2/»32]e—i[uo(x—zo)+vo(y—yo)] (17)

where (zg, yo) specify position in the image, (o, 8) specify effective width and length, and

(g, vo) specify modulation, which has spatial frequency wo = y/u2 + v¢ and direction 6y =
arctan(vg/ug). (A further degree-of-freedom not included above is the relative orientation of
the elliptic Gaussian envelope, which creates cross-terms in zy.) The 2-D Fourier transform



F(u,v) of a 2-D Gabor filter has exactly the same functional form, with parameters just
interchanged or inverted:

F(u, 'v) — [(u—uo )2a2+(u—v0)262] eilzo(u—1o)+yo(v—2o)] (18)

The real part of one member of the 2-D Gabor filter family, centered at the origin (zo, yo) =
(0,0) and with unity aspect ratio /o = 1 is shown in the figure, together with its 2-D
Fourier transform F(u,v).

2-D Gabor functions can form a complete self-similar 2-D wavelet expansion basis, with
the requirements of orthogonality and strictly compact support relaxed, by appropriate
parameterization for dilation, rotation, and translation. If we take ¥(z,y) to be a chosen
generic 2-D Gabor wavelet, then we can generate from this one member a complete self-
similar family of 2-D wavelets through the generating function:

Uypgs (2,y) = 277U (', y') (19)

where the substituted variables (2',y’) incorporate dilations in size by 277, translations in
position (p, ¢), and rotations through orientation 6:

z' =27 [z cos(#) + ysin()] — p (20)

y' =27 [~z sin(f) + ycos(#)] — ¢ (21)
It is noteworthy that as consequences of the similarity theorem, shift theorem, and modu-
lation theorem of 2-D Fourier analysis, together with the rotation isomorphism of the 2-D
Fourier transform, all of these effects of the generating function applied to a 2-D Gabor
mother wavelet U(z,y) = f(z,y) have corresponding identical or reciprocal effects on its
2-D Fourier transform F(u,v). These properties of self-similarity can be exploited when
constructing efficient, compact, multi-scale codes for image structure.

11.4 Grand Unification of Domains: an FEntente Cordiale

Until now we have viewed “the space domain” and “the Fourier domain” as somehow oppo-
site, and incompatible, domains of representation. (Their variables are reciprocals; and the
Uncertainty Principle declares that improving the resolution in either domain must reduce
it in the other.) But we now can see that the “Gabor domain” of representation actually
embraces and unifies both of these other two domains! To compute the representation of
a signal or of data in the Gabor domain, we find its expansion in terms of elementary
functions having the form
f(.f) — e—ikoxe—(x—xo)g/a2 (22)
The single parameter a (the space-constant in the Gaussian term) actually builds a con-
tinuous bridge between the two domains: if the parameter ¢ is made very large, then the
second exponential above approaches 1.0, and so in the limit our expansion basis becomes
. —tkox DX
algg) flz) =€ (23)
the ordinary Fourier basis! If the frequency parameter kg and the size parameter a are
instead made very small, the Gaussian term becomes the approximation to a delta function
at location z,, and so our expansion basis implements pure space-domain sampling:

kol,i(fr—lm flz) =0(x — x0) (24)

Hence the Gabor expansion basis “contains” both domains at once. It allows us to make
a continuous deformation that selects a representation lying anywhere on a one-parameter
continuum between two domains that were hitherto distinct and mutually unapproachable.
A new FEntente Cordiale, indeed.



Reconstruction of Lena: 25, 100, 500, and 10,000 Two-Dimensional Gabor Wavelets



Pixel histogram of original Lena image: entropy = 7.57 bits/pixel



2D Recepiive Field Profiles

Fitted 213 Gabor Phasors
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Empirical 2D receptive field profiles of neurones in the brain's visual cortex

(top row), resembling 2D Gabor wavelets (middle row)



Complete 2D Gabor Transform of the original Lena image
(Gabor coefficients represented as grey value)



Histogram of coefficients in the complete 2D Gabor Transform of Lena:
entropy = 2.55 bits/pixel



Reconstruction of Lena from her complete 2D Gabor Transform



12 Kolmogorov Complexity and Minimal Description Length

An idea of fundamental importance is the measure known as Kolmogorov complexity: the
complexity of a string of data is defined as the length of the shortest binary program for
computing the string. Thus the complexity is the data’s “minimal description length.”

It is an amazing fact that the Kolmogorov complexity K of a string is approximately
equal to the entropy H of the distribution from which the string is a randomly drawn
sequence. Thus Kolmogorov descriptive complexity is intimately connected with informa-
tion theory, and indeed K defines the ultimate data compression. Reducing the data to a
program that generates it exactly is obviously a way of compressing it; and running that
program is a way of decompressing it. Any set of data can be generated by a computer
program, even if (in the worst case) that program simply consists of data statements. The
length of such a program defines its algorithmic complexity.

It is important to draw a clear distinction between the notions of computational com-
plezity (measured by program execution time), and algorithmic complezily (measured by
program length). Kolmogorov complexity is concerned with finding descriptions which
minimize the latter. Little is known about how (in analogy with the optimal properties
of Gabor’s elementary logons in the 2D Information Plane) one might try to minimize
simultaneously along both of these orthogonal axes that form a “Complexity Plane.”

Most sequences of length n (where “most” considers all possible permutations of n
bits) have Kolmogorov complexity K close to n. The complexity of a truly random binary
sequence is as long as the sequence itself. However, it is not clear how to be certain of
discovering that a given string has a much lower complexity than its length. It might be
clear that the string

0101010101010101010101010101010101010101010101010101010101010101

has a complexity much less than 32 bits; indeed, its complexity is the length of the program:
Print 32 "01"s. But consider the string

0110101000001001111001100110011111110011101111001100100100001000

which looks random and passes most tests for randomness. How could you discover that
this sequence is in fact just the binary expansion for the irrational number v/2—1, and that
therefore it can be specified extremely concisely?

Fractals are examples of entities that look very complex but in fact are generated by
very simple programs (i.e. iterations of a mapping). Therefore, the Kolmogorov complexity
of fractals is nearly zero.

A sequence 1, xg, x3,..., &, of length n is said to be algorithmically random if its Kol-
mogorov complexity is at least n (i.e. the shortest possible program that can generate the
sequence is a listing of the sequence itself):

K(zy2925...2,|0) > n (25)

An infinite string is defined to be incompressible if its Kolmogorov complexity, in the limit
as the string gets arbitrarily long, approaches the length n of the string itself:

K(z1z23...2,|n0)

lim
n—00 n

=1 (26)

An interesting theorem, called the Strong Law of Large Numbers for Incompressible Se-
quences, asserts that the proportions of 0’s and 1’s in any incompressible string must be
nearly equal! Moreover, any incompressible sequence must satisfy all computable statistical



tests for randomness. (Otherwise, identifying the statistical test for randomness that the
string failed would reduce the descriptive complexity of the string, which contradicts its
incompressibility.) Therefore the algorithmic test for randomness is the ultimate test, since
it includes within it all other computable tests for randomness.
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