Information Retrieval

Lecture 3: Evaluation methodology

Computer Science Tripos Part II Lent Term 2004

Simone Teufel

Natural Language and Information Processing (NLIP) Group

sht250cl.cam.ac.uk

- 1. General concepts in IR evaluation
- 2. The TREC competitions
- 3. IR evaluation metrics

Evaluation: difficulties

- IR system
 - in: a query
 - out: relevant documents
- Evaluation of IR systems
- Goal: predict future from past experience
- Reasons why IR evaluation is hard:
 - Large variation in human information needs and queries
 - The precise contributions of each component are hard to entangle:
 - * Collection coverage
 - * Document indexing
 - * Query formulation
 - * Matching algorithm

- Test only "system parameters"
 - Index language devices for description and search
 - Methods of term choice for documents
 - Matching algorithm
 - Type of user interface
- Ignore environment variables
 - Properties of documents \rightarrow use many documents
 - Properties of users \rightarrow use many queries

What counts as acceptable test data?

- In 60s and 70s, very small test collections, arbitrarily different, one per project
 - in 60s: 35 queries on 82 documents
 - in 1990: still only 35 queries on 2000 documents
- not always kept test and training apart as so many environment factors were tested
- TREC-3: 742,000 documents
- Large test collections are needed
 - to capture user variation
 - to support claims of statistical significance in results
 - to demonstrate that performance levels and differences hold as document file sizes grow \rightarrow commercial credibility
- Practical difficulties in obtaining data; non-balanced nature of the collection

A test collection consists of:

- Document set:
 - Large, in order to reflect diversity of subject matter, literary style, noise such as spelling errors
- Queries/Topics
 - short description of information need
 - TREC "topics": longer description detailing relevance criteria
 - "frozen' \rightarrow reusable
- Relevance judgements
 - binary
 - done by same person who created the query

Relevance Judgements

- Relevance is inherently subjective, so we need humans to do them
- Problem: relevance is situational
 - Information needs are unique to a particular person at a particular time
 - Judgements will differ across judges and for the same judge at different times

 \rightarrow need extensive sampling to counteract natural variation: large populations of users and information needs

- Guidelines given to assessors, in order to define relevance as a reasonably objective property of the document–query pair
 - not fulfillment of information need, not novel information
 - Relevance is defined to be irrespective of information contained in other documents (redundancy)
- These guidelines ensure that each relevance decision can be taken independently

- Text REtrieval Conference
- Run by NIST (US National Institute of Standards and Technology)
- Marks a new phase in retrieval evaluation
 - common task and data set
 - many participants
 - continuity
- Large test collection: text, queries, relevance judgements
- 2003 was 12th year
- 87 commercial and research groups participated in 2002

<num> Number: 508 <title> hair loss is a symptom of what diseases

<desc> Description: Find diseases for which hair loss is a symptom.

<narr> Narrative:

A document is relevant if it positively connects the loss of head hair in humans with a specific disease. In this context, "thinning hair" and "hair loss" are synonymous. Loss of body and/or facial hair is irrelevant, as is hair loss caused by drug therapy.

- Queries devised and judged by information specialist (same person)
- Relevance judgements done only for up to 1000 documents/query
- Annotators don't agree on relevance judgements
- Nevertheless the relative ordering of systems is stable:

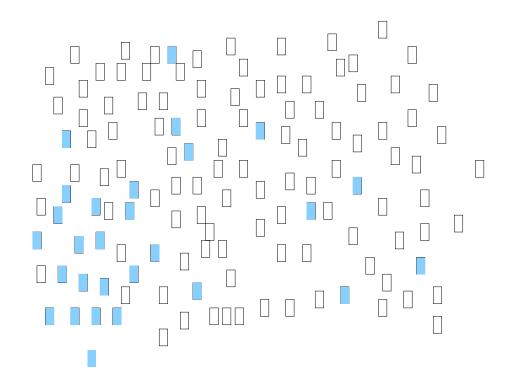
"The comparative effectiveness of different retrieval methods is stable in the face of changes to the relevance judgements" (Vorhees, 2000)

	Relevant	Non-relevant	Total
Retrieved	A	В	A+B
Not retrieved	С	D	C+D
Total	A+C	B+D	A+B+C+D

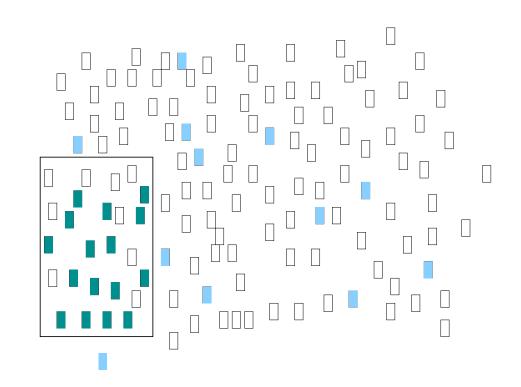
Recall: proportion of retrieved items amongst the relevant items $(\frac{A}{A+C})$ Precision: proportion of relevant items amongst retrieved items $(\frac{A}{A+B})$ Accuracy: proportion of correctly classified items as relevant/irrelevant $(\frac{A+D}{A+B+C+D})$ Recall: [0..1]; Precision: [0..1]; Accuracy: [0..1]

Accuracy is not a good measure for IR, as it conflates performance on relevant items (A) with performance on irrelevant items (D) (which we are not interested in)

- All documents: A+B+C+D = 130
- Relevant documents for a given query: A+C = 28



- System 1 retrieves 25 items: (A+B)₁ = 25
- Relevant and retrieved items: A₁ = 16

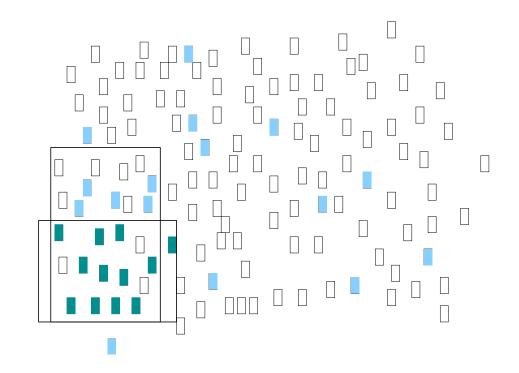


$$R_{1} = \frac{A_{1}}{A+C} = \frac{16}{28} = .57$$

$$P_{1} = \frac{A_{1}}{(A+B)_{1}} = \frac{16}{25} = .64$$

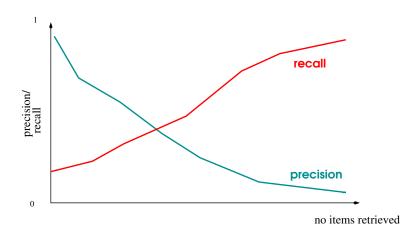
$$A_{1} = \frac{A_{1}+D_{1}}{A+B+C+D} = \frac{16+93}{130} = .84$$

- System B retrieves set (A+B)₂ = 15 items
- A₂ = 12

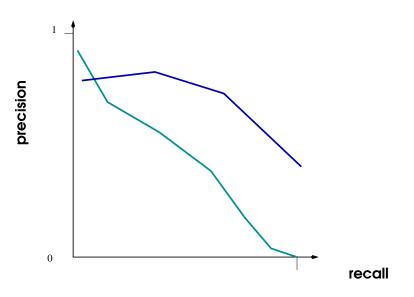


$$R_2 = \frac{12}{28} = .43$$
$$P_2 = \frac{12}{15} = .8$$
$$A_2 = \frac{12+99}{130} = .85$$

Recall-precision curve



- Plotting precision and recall (versus no. of documents retrieved) shows inverse relationship between precison and recall
- Precision/recall cross-over can be used as conflated evaluation measure



- Plotting precision versus recall gives recall-precision curve
- Area under normalised recall-precision curve can be used as evaluation measure

- Inverse relationship between precision and recall forces general systems to go for compromise between them
- But some tasks particularly need good precision whereas others need good recall:

Precision-critical task	Recall-critical task	
Little time available	Time matters less	
A small set of relevant docu-	One cannot afford to miss a	
ments answers the information	single document	
need		
Potentially many documents	Need to see each relevant doc-	
might fill the information need	ument	
(redundantly)		
Example: web search for fac-	Example: patent search	
tual information		

- Recall problem: for a collection of non-trivial size, it becomes impossible to inspect each document
- It would take 6500 hours to judge 800,000 documents for one query (30 sec/document)
- Pooling addresses this problem

Pooling (Sparck Jones and van Rijsbergen, 1975)

- Pool is constructed by putting together top N retrieval results from a set of n systems (TREC: N = 100)
- Humans judge every document in this pool
- Documents outside the pool are automatically considered to be irrelevant
- There is overlap in returned documents: pool is smaller than theoretical maximum of $N \cdot n$ systems (around $\frac{1}{3}$ the maximum size)
- Pooling works best if the approaches used are very different
- Large increase in pool quality by manual runs which are recalloriented, in order to supplement pools

F-measure

• Rijsbergen (1979)

$$F_{\alpha} = \frac{PR}{(1-\alpha)P + \alpha R}$$

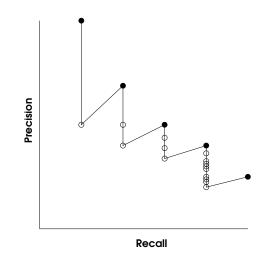
- High α : Recall is more important
- Low α : Precision is more important
- Most commonly used with α =0.5 \rightarrow Weighted harmonic mean of P and R

$$F_{0.5} = \frac{2PR}{P+R}$$

- Maximum value of F_{0.5}-measure (or F-measure for short) is a good indication of best P/R compromise
- F-measure is an approximation of cross-over point of precision and recall

Precision and recall in ranked IR engines

- With ranked list of return documents there are many P/R data points
- Sensible P/R data points are those after each new relevant document has been seen (black points)

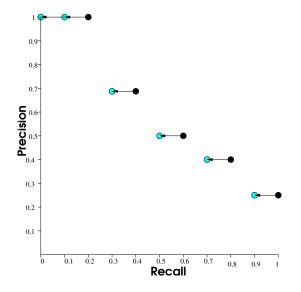


Query 1					
Rank	Relev.	R	Р		
1	Х	0.20	1.00		
2		"	0.50		
3	Х	0.40	0.67		
4		"	0.50		
5		"	0.40		
6	Х	0.60	0.50		
7		"	0.43		
8		"	0.38		
9		"	0.33		
10	Х	0.80	0.40		
11		"	0.36		
12		"	0.33		
13		"	0.31		
14		"	0.29		
15		"	0.27		
16		"	0.25		
17		"	0.24		
18		"	0.22		
19		"	0.21		
20	Х	1.00	0.25		

- Precision at a certain rank: P(100)
- Precision at a certain recall value: P(R=.2)
- Precision at last relevant document: P(last_relev)
- Recall at a fixed rank: R(100)
- Recall at a certain precison value: R(P=.1)

- Want to average over queries
- Problem: queries have differing number of relevant documents
- Cannot use one single cut-off level for all queries
 - This would not allow systems to achieve the theoretically possible maximal values in all conditions
 - Example: if a query has 10 relevant documents
 - * If cutoff > 10, P < 1 for all systems
 - * If cutoff < 10, R < 1 for all systems
- Therefore, more complicated joint measures are required

- P(R = n) is precision at that point where recall has first reached n
- Define 11 standard recall points $P(r_0)$, $P(r_1)$, ... $P(r_{10})$
- $P(r_n) = P(R = \frac{n}{10})$
- $P(r_2)$ measures precision at the point where R=0.2
- This might not coincide with a data point, in which case interpolation is necessary:



$$P_{ip}(r_i) = max(r_i < r \le r_{i+1})P(r)$$

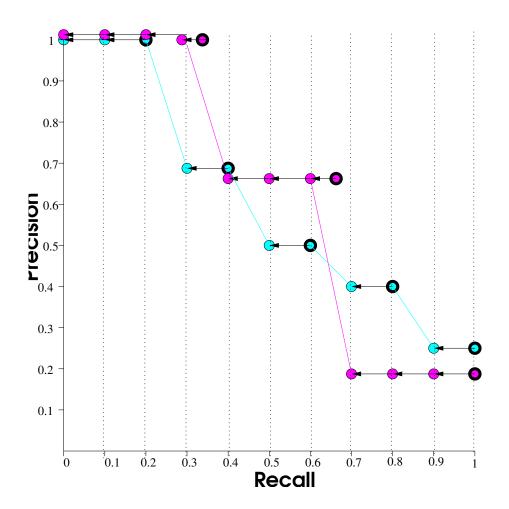
			$P_1(r_i)$	$\mathbf{P}_2(\mathbf{r}_i)$			
	luer	•	$P_{ip,1}(r_0) = 1.00$	$P_{ip,2}(r_0) = 1.00$			
#		R	$P_{ip,1}(r_1) = 1.00$	$P_{ip,2}(r_1) = 1.00$			
1	Х	0.20	1 (2)	$P_{ip,2}(r_2) = 1.00$		ery	
2			$P_{ip,1}(r_3) = 0.67$	$P_{ip,2}(r_3) = 1.00$	R	.,,	#
3	Х	0.40	$P_1(r_4) = 0.67$		0.33	Х	1
4				$P_{ip,2}(r_4) = 0.67$			2
5			$P_{ip,1}(r_5) = 0.50$	$P_{ip,2}(r_5) = 0.67$	0.67	Х	3
6	Х	0.60	$P_1(r_6) = 0.50$	$P_{ip,2}(r_6) = 0.67$			4
7							5
8							6
9			$P_{ip,1}(r_7) = 0.40$	$P_{ip,2}(r_7) = 0.20$			7
10	Х	0.80	$P_1(r_8) = 0.40$	$P_{ip,2}(r_8) = 0.20$			8
11			- (0)				9
12							10
13							11
14			$P_{ip,1}(r_9) = 0.25$	$P_{ip,2}(r_9) = 0.20$			12
15			<i>ip</i> , <i>i</i> (<i>i</i> , <i>y</i>) cilc	<i>ip</i> ,2(<i>i</i> ,9) 0120			13
16							14
17				$P_2(r_{10}) = 0.20$	1.00	Х	15
18				12(110) = 0.20	1.00	Λ	10
19							
	v	1 00					
20	Х	1.00	$P_1(r_{10}) = 0.25$				

 $P_{ipol}(r_i)$ values (blue) have been interpolated, $P(r_i)$ values(black) have been exactly measured

$$P_{11_pt} = \frac{1}{11} \sum_{j=0}^{10} \frac{1}{N} \sum_{i=1}^{N} P_{ip,i}(r_j)$$

with $P_{ip,i}(r_j)$ the *j*th interpolated recall point in the *i*th query (out of *N* queries) In our example:

	Query 1	Query 2	Avg. (Queries)
$P_i(r_0)$	1.00	1.00	1.00
$P_i(r_1)$	1.00	1.00	1.00
$P_i(r_2)$	1.00	1.00	1.00
$P_i(r_3)$	0.67	1.00	0.84
$P_i(r_4)$	0.67	0.67	0.67
$P_i(r_5)$	0.50	0.67	0.59
$P_i(r_6)$	0.50	0.67	0.59
$P_i(r_7)$	0.40	0.20	0.30
$P_i(r_8)$	0.40	0.20	0.30
$P_i(r_9)$	0.25	0.20	0.23
$P_i(r_{10})$	0.25	0.20	0.23
			P _{11_pt} :0.61



- Blue for Query 1
- Red for Query 2
- Bold Circles measured
- Thin circles interpolated

- Also called "mean average precision"
- Determine precision at each point when a new relevant document gets retrieved
- Use P=0 for each relevant document that was not retrieved
- Determine average for each query, then average over queries

$$P_{srd} = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{Q_j} \sum_{i=1}^{Q_j} P(rel = i)$$

with:

 $egin{aligned} Q_j & \text{number of relevant documents for query } j \ N & \text{number of queries} \ P(rel=i) & \text{precision at } i\text{th relevant document} \end{aligned}$

Mean precision at seen relevant documents: example 28

Query 1				
Rank	Relev.	Р		
1	Х	1.00		
2 3				
3	Х	0.67		
4				
5	Х	0 50		
4 5 6 7	X	0.50		
, 8				
8 9				
10	Х	0.40		
11				
12				
13				
14				
15				
16				
17				
18 19				
20	х	0.25		
	AVG:			

Query 2			
Rank	Relev.	Р	
1	Х	1.00	
2 3			
3	Х	0.67	
4			
5			
6 7 8 9			
7			
8			
10			
11			
12			
13			
14			
15	Х	0.2	
AV	′G:	0.623	

- Mean precision at seen relevant documents favours systems which return relevant documents fast
- Precision-biased

 $P_{srd} = \frac{0.564 + 0.623}{2} = 0.594$

- Fully automatic searches in TREC-7 and 8: P(30) between .40 and .45, using long queries and narratives (one team even for short queries) → Systems optimised for long queries
- Manual searches: best results between .55 and .60.
- Several systems achieved almost 50% P(10) even with very short queries; several exceed 50% with medium length queries. (Manual searching can lead to 70%)
- TREC-3: best results in .55 to .60 range (but only for long queries)
- \bullet TREC-4, 5, and 6: less favourable data conditions (less relevant documents available, less information on topics given) \rightarrow results declined
- Better performance in TREC-7 and 8 must be due to better systems, as the manual performance remained on a plateau
- \bullet The best systems are statistically not significantly different \rightarrow plateau reached

- IR evaluation as currently performed (TREC) only covers one small part of the spectrum:
 - System performance in batch mode
 - Laboratory conditions; not directly involving real users
 - Precision and recall measured from large, fixed test collections
- However, this methodology is very stable and mature
 - Relevance problem solvable (in principle) by extensive sampling
 - Recall problem solvable (in practice) by pooling methods
 - Provable that these methods produce stable evaluation results
 - Host of elaborate performance metrics available
 - * 11 point average precision
 - * Mean precision at seen relevant documents

• Teufel (2005, To Appear): Chapter *IR and QA evaluation*. In: Evaluation Methods in Speech and NLP. Kluwer.