Information Retrieval

Lecture 2: Retrieval models

Computer Science Tripos Part II

Simone Teufel

Natural Language and Information Processing (NLIP) Group

sht25@cl.cam.ac.uk

- Definition of the information retrieval problem
- Query languages and retrieval models
 - Boolean model
 - Vector space model
- Logical model of a document/a term
 - Term weighting
 - Term stemming

Problem: given a query, find documents that are "relevant" to the query

- Given: a large, static document collection
- Given: an information need (reformulated as a keyword-based query)
- Task: find all and only documents that are relevant to this query

Issues in IR:

- How can I formulate the query? (Query type, query constructs)
- How does the system find the best-matching document? (Retrieval model)
- How are the results presented to me (unsorted list, ranked list, clusters)?

- Indexing: the task of finding terms that describe documents well
- Manual indexing by cataloguers, using fixed vocabularies ("thesauri")
 - labour and training intensive
- Automatic indexing
 - Term manipulation (certain words count as the same term)
 - Term weighting (certain terms are more important than others)
 - Index terms can only be those words or phrases that occur in the text

- Large vocabularies (several thousand items)
- Examples: ACM subfields of CS; Library of Congress Subject Headings
- Problems:
 - High effort in training in order to achieve consistency
 - Subject matters emerge → schemes change constantly
- Advantages:
 - High precision searches
 - Works well for valuable, closed collections like books in a library

Medical Subject Headings (MeSH)			
Eye Diseases	C11		
Asthenopia	C11.93		
Conjunctival Diseases	C11.187		
Conjunctival Neoplasms	C11.187.169		
Conjunctivitis	C11.187.183		
Conjunctivitis, Allergic	C11.187.183.200		
Conjunctivitis, Bacterial	C11.187.183.220		
Conjunctivitis, Inclusion	C11.187.183.220.250		
Ophthalmia Neonatorum	C11.187.183.220.538		
Trachoma	C11.187.183.220.889		
Conjunctivitis, Viral	C11.187.183.240		
Conjunctivitis, Acute Hemorrhagic	C11.187.183.240.216		
Keratoconjunctivitis	C11.187.183.394		
Keratoconjunctivitis, Infectious	C11.187.183.394.520		
Keratoconjunctivitis Sicca	C11.187.183.394.550		
Reiter's Disease	C11.187.183.749		
Pterygium	C11.187.781		
Xerophthalmia	C11.187.810		

ACM	Computing Classification System (1998)
В	Hardware
B.3	Memory structures
B.3.0	General
B.3.1	Semiconductor Memories (NEW) (was B.7.1)
	Dynamic memory (DRAM) (NEW)
	Read-only memory (ROM) (NEW)
	Static memory (SRAM) (NEW)
B.3.2	Design Styles (was D.4.2)
	Associative memories
	Cache memories
	Interleaved memories
	Mass storage (e.g., magnetic, optical, RAID)
	Primary memory
	Sequential-access memory
	Shared memory
	Virtual memory
B.3.3	Performance Analysis and Design Aids
	Formal models
	Simulation
	Worst-case analysis
B.3.4	Reliability, Testing, and Fault-Tolerance
	Diagnostics
	Error-checking
	Redundant design
	Test generation

- No predefined set of index terms
- Instead: use natural language as indexing language
- Mappings words → meanings is not 1:1
 - Synonymy (n words : 1 meaning)sofa couch
 - Polysemy (1 word : n meanings)bank bank
- Do the terms get manipulated?
 - De-capitalised?
 Turkey turkey
 - Stemmed? advice advised
 - Stemmed and POS-tagged? can can
- Use important phrases, instead of single words cheque book (rather than cheque and book)

Implementation of indexes: inverted files

Inverted files

Doc 1	1		
Exce	pt	Rι	ıssia
and	Me	xico	no
count	try	had	had
the		dece	ency
to co	ome	to	the
rescu	ıe	of	the
gover	nme	ent.	

Do	c 2			
lt	was	а	dark	
and	d stor	my	night	
in	the	CC	ountry	
ma	nor.		The	
tim	e w	as	past	
midnight.				

Term	Doc no	Freq	Offset
а	2	1	2
and	1 2 1	1	2 4
and	2	1	
come	1	1	11
country	1	1	5
country	1 2 2 1	1	9
dark	2	1	3 9
decency		1	
except	1	1	0
government	1	1	17
had	1	2 1	6,7
in	2		7
it	2	1	0
manor	2	1	10
mexico	1	1	3
midnight	2	1	17
night	2	1	6
no	1	1	4
of	1	1	15
past	2	1	15
rescue	1	1	14
russia	1	1	1
stormy	2	1	5
the	1	2	8,13
the	1 2 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2	1 2 2 1 2 2	8,12
time	2	1	14
to	1	2	10,12
was	2	2	16

Information kept for each term:

- Document ID where this term occurs
- Frequency of occurrence of this term in each document
- Possibly: Offset of this term in document

Boolean search

- Binary decision: Document is relevant or not (no ranking)
- Presence of term is necessary and sufficient for match
- Boolean operators are set operations (AND, OR)

Ranked algorithms

- Ranking takes frequency of terms in document into account
- Not all search terms necessarily present in document
- Incarnations:
 - * The vector space model (SMART, Salton et al, 1971)
 - * The probabilistic model (OKAPI, Robertson/Spärck Jones, 1976)
 - * Web search engines

Monte Carlo AND (importance OR stratification) BUT gambling

- Set theoretic interpretation of connectors AND OR BUT
- Often in use for bibliographic search engines (library)
- Problem 1: Expert knowledge necessary to create high-precision queries
- Problem 2: Binary relevance definition → unranked result lists (frustrating, time consuming)

- A document is represented as a point in high-dimensional vector space
- Query is also represented in vector space
- Select document(s) with highest document—query similarity
- Document—query similarity is model for relevance → ranking

3-dimensional term vector space:

Dimension 1: "information"

Dimension 2: "retrieval"

Dimension 3: "system"

	Doc_1	Doc_2	Doc_3	 Doc_n		Q
$term_1$	14	6	1	 0	\longleftrightarrow	0
$term_2$	0	1	3	 1	\longleftrightarrow	1
term ₃	0	1	0	 2	\longleftrightarrow	0
				 	\longleftrightarrow	
$term_N$	4	7	0	 5	\longleftrightarrow	1

Decisions to take:

- 1. Choose dimensionality of vector: what counts as a term?
- 2. Choose weights for each term/document mapping (cell)
 - presence or absence (binary)
 - term frequency in document
 - more complicated weight, eg. TF*IDF (cf. later in lecture)
- 3. Choose a proximity measure

A proximity measure can be defined either by similarity or dissimilarity. Proximity measures are

- Symmetric ($\forall i, j : d(j, i) = d(i, j)$)
- Maximal/minimal for identity:
 - For similarity measures: $\forall i: d(i,i) = max_k d(i,k)$
 - For dissimilarity measures: $\forall i: d(i,i) = 0$
- A distance metric is a dissimilarity metric that satisfies the triangle inequality

$$\forall i, j, k : d(i, j) + d(i, k) \ge d(j, k)$$

• Distance metrics are non-negative: $\forall i, k : d(i, k) \geq 0$

X is the set of all terms occurring in document D_X , Y is the set of all terms occurring in document D_Y .

- Raw Overlap: $raw_overlap(X,Y) = |X \cap Y|$
- Dice's coefficient: (normalisation by average size of the two original vectors)

$$dice(X,Y) = \frac{2|X \cap Y|}{|X| + |Y|}$$

 Jaccard's coefficient: (normalisation by size of combined vector – penalises small number of shared feature values)

$$jacc(X,Y) = \frac{|X \cap Y|}{|X \cup Y|}$$

Overlap coefficient:

$$overlap_coeff(X,Y) = \frac{|X \cap Y|}{min(|X|,|Y|)}$$

Cosine: (normalisation by vector lengths)

$$cosine(X,Y) = \frac{|X \cap Y|}{\sqrt{|X|} \cdot \sqrt{|Y|}}$$

Weighted versions of Dice's and Jaccard's coefficient exist, but are used rarely for IR:

- Vectors are extremely sparse
- Vectors are of very differing length

Cosine (or normalised inner product) is the measure of choice for IR

Document i is represented as a vectors of terms or lemmas $(\vec{w_i})$; t is the total number of index terms in system, $w_{i,j}$ is the weight associated with j th term of vector $\vec{w_i}$.

Vector length normalisation by the two vectors $|\vec{w_i}|$ and $|\vec{w_k}|$:

$$cos(\vec{w_i}, \vec{w_k}) = \frac{\vec{w_i}\vec{w_k}}{|\vec{w_i}| \cdot |\vec{w_k}|} = \frac{\sum_{j=1}^{d} w_{i,j} \cdot w_{k,j}}{\sqrt{\sum_{j=1}^{d} w_{i,j}^2} \cdot \sqrt{\sum_{j=1}^{d} w_{k,j}^2}}$$

• Euclidean distance: (how far apart in vector space)

$$euc(\vec{w_i}, \vec{w_k}) = \sqrt{\sum_{j=1}^{d} (w_{i,j} - w_{k,j})^2}$$

• Manhattan distance: (how far apart, measured in 'city blocks')

$$manh(\vec{w_i}, \vec{w_k}) = \sum\limits_{j=1}^d |w_{i,j} - w_{k,j}|$$

Zipf's law: the rank of a word is reciprocally proportional to its frequency:

$$freq(word_i) = \frac{1}{i^{\theta}} freq(word_1)$$

(with $1.5 < \theta < 2$ for most languages)

 $(word_i)$ being the *i*th most frequent word of the language)

- Zone I: High frequency words tend to be functional words ("the", "of")
- Zone III: Low frequency words tend to be typos, or unimportant words (too specific) ("Uni7ed", "super-noninteresting", "87-year-old", "0.07685")
- Zone II: Mid-frequency words are the best indicators of what the document is about

Not all terms describe a document equally well:

- ullet Terms which are frequent in a document are better \to $tf_{w,d}=freq_{w,d}$ should be high
- Terms that are overall rare in the document collection are better $\rightarrow idf_{w,D} = log\frac{|D|}{n_{w,D}} \text{ should be high}$ \rightarrow
- TF*IDF formula: $tf*idf_{w,d,D} = tf_{w,d} \cdot idf_{w,D}$ should be high
- Improvement: Normalise $tf_{w,d}$ by term frequency of most frequent term in document: $tf_{norm,w,d} = \frac{freq_{w,d}}{max_{l \in d}freq_{l.d}}$
 - Normalised TF*IDF: $tf*idf_{norm,w,d,D} = tf_{norm,w,d} \cdot idf_{w,D}$

$tf_{w,d}$:	Term frequency of word w			
,	in document d			
$n_{w,D}$:	Number of documents in			
	document collection D			
	which contain word \boldsymbol{w}			
$idf_{w,D}$:	Inverse document fre-			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	document collection D			
$tf*idf_{w,d,D}$:	TF*IDF weight of word w			
	in document d in document			
	collection D			
$tf * idf_{norm,w,d,D}$:	Length-normalised TF*IDF			
	weight of word \boldsymbol{w} in docu-			
	ment d in document collec-			
	tion D			
$tf_{norm,w,d}$:	Normalised term fre-			
	quency of word w in			
	document d			
$max_{l \in d} freq_{l,d}$:	Maximum term frequency			
	of any word in document d			

Document set: 30,000

Term	tf	$n_{w,D}$	TF*IDF
the	312	28,799	5.55
in	179	26,452	9.78
general	136	179	302.50
fact	131	231	276.87
explosives	63	98	156.61
nations	45	142	104.62
1	44	2,435	47.99
haven	37	227	78.48
2-year-old	1	4	3.88

IDF("the") = log
$$(\frac{30,000}{28,799})$$
 = 0.0178
TF*IDF("the") = 312 · 0.0178 = 5.55

	Q	D_{7655}	D_{454}
hunter	19.2	56.4	112.2
gatherer	34.5	122.4	0
Scandinavia	13.9	0	30.9
30,000	0	457.2	0
years	0	12.4	0
BC	0	200.2	0
prehistoric	0	45.3	0
deer	0	0	23.6
rifle	0	0	452.2
Mesolithic	0	344.2	0

$$\begin{aligned} &\text{cos}(\textbf{Q},\,\textbf{D}_{7655}) = \frac{19.2 \cdot 56.4 + 34.5 \cdot 122.4 + 13.9 \cdot 0}{\sqrt{19.2^2 + 34.5^2 + 13.9^2} \cdot \sqrt{56.4^2 + 122.4^2 + 457.2^2 + 12.4^2 + 200.2^2 + 45.3^2 + 344.2^2}} = .2037698341 \\ &\text{cos}(\textbf{Q},\,\textbf{D}_{454}) = \frac{19.2 \cdot 112.2 + 34.5 \cdot 0 + 13.9 \cdot 30.9}{\sqrt{19.2^2 + 34.5^2 + 13.9^2} \cdot \sqrt{112.2^2 + 30.9^2 + 23.6^2 + 452.2^2}} = .1322160530 \end{aligned}$$

 \rightarrow choose document D_{7655}

- Build a document-term matrix for three (very!) short documents of your choice
- Weight by presence/absence (binary) and by TF*IDF (with estimated IDFs)
- Write a suitable query
- Calculate document—query similarity, using
 - cosine
 - inner product (i.e. cosine without normalisation)
- What effect does normalisation have?

- So far: each term is indexed and weighted only in string-equal form
- This misses many semantic similarities between morphologically related words ("whale" → "whaling", "whales")
- Automatic models of term identity
 - The same string between blanks or punctuation
 - The same prefix (eg. up to 6 characters)
 - The same stem (e.g. Porter stemmer)
 - The same linguistic lemma (sensitive to Parts-of-speech)
- Effect of term manipulation on retrieval result
 - changes the counts, reduces total number of terms
 - increases recall
 - might decrease precision, introduction of noise

M. Porter, "An algorithm for suffix stripping", Program 14(3):130-137, 1980

- Removal of suffixes without a stem dictionary, only with a suffix dictionary
- Terms with a common stem have similar meanings:
- Deals with inflectional and derivational morphology
- Conflates relate relativity relationship
- Treats Sand sander and wand wander the same (does not conflate either, though sand/sander arguably could be conflated)
- Root changes (deceive/deception, resume/resumption) aren't dealt with, but these are rare

CONNECTED
CONNECTING
CONNECTION
CONNECTIONS

$[C](VC)\{m\}[V]$

```
C one or more adjacent consonants
V one or more adjacent vowels
[] optionality
() group operator
{x} repetition x times
m the "measure" of a word
```

```
shoe [sh]_C[oe]_V m=0
Mississippi [M]_C([i]_V[ss]_C)([i]_V[ss]_C)([i]_V[pp]_C)[i]_V m=3
ears ([ea]_V[rs]_C) m=1
```

Notation: m is calculated on the word excluding the suffix of the rule under consideration (eg. In m=1 for 'element' in rule "(m > 1) EMENT", so this rule would not trigger.)

Rules in one block are run through in top-to-bottom order; when a condition is met, execute rule and jump to next block

Rules express criteria under which suffix may be removed from a word to leave a valid stem: (condition) $S1 \rightarrow S2$

Possible conditions:

• constraining the measure:

```
(m > 1) EMENT \rightarrow \epsilon (\epsilon is the empty string) REPLACEMENT \rightarrow REPLAC
```

- constraining the shape of the word piece:
 - *S the stem ends with S
 - *v* the stem contains a vowel
 - *d the stem ends with a double consonant (e.g. -TT, -SS).
 - *o the stem ends cvc, where the second c is not W, X or Y (e.g. -WIL, -HOP)
- expressions with AND, OR and NOT:
 - (m>1 AND (*S OR *T)) a stem with m> 1 ending in S or T

$$\begin{array}{c} \mathsf{SSES} \to \mathsf{SS} \\ \mathsf{IES} \to \mathsf{I} \\ \mathsf{SS} \to \mathsf{SS} \\ \mathsf{S} \to \\ \mathsf{caresses} \to \mathsf{caress} \\ \mathsf{cares} \to \mathsf{care} \end{array}$$

$$\begin{array}{c} (m{>}0) \; EED \to EE \\ \hline \text{feed} \to \text{feed} \\ \text{agreed} \to \text{agree} \\ \hline \text{BUT: freed, succeed} \\ \end{array}$$

$$\begin{array}{c} (*v*) \ \mathsf{ED} \to \\ \mathsf{plastered} \to \mathsf{plaster} \\ \mathsf{bled} \to \mathsf{bled} \\ \end{array}$$

Step 1: plurals and past participles

Step 1a

Step 1b

If rule 2 or 3 in Step 1b applied, then clean up:

AT	\rightarrow ATE	conflat(ed/ing)	\rightarrow conflate
BL	\rightarrow BLE	troubl(ed/ing)	\rightarrow trouble
IZ	\rightarrow IZE	siz(ed/ing)	\rightarrow size
(*d and not (*L or *S or *Z))	\rightarrow single letter	hopp(ed/ing)	\rightarrow hop
		hiss(ed/ing)	ightarrow hiss
(m=1 and *o)	$\rightarrow E$	fil(ed/ing)	→file
		fail(ed/ing)	\rightarrow fail

Step 1c

$$\begin{array}{cccc} (^*v^*) & Y & \to I & happy & \to happi \\ & sky & \to sky \end{array}$$

Step 2: derivational morphology

(m>0)	ATIONAL	ightarrow ATE	relational	\rightarrow relate
(m>0)	TIONAL	$\to TION$	conditional	\rightarrow condition
(' - /			rational	\rightarrow rational
(m>0)	ENCI	$\to ENCE$	valenci	\rightarrow valence
(m>0)	ANCI	ightarrow ANCE	hesitanci	ightarrow hesitance
(m>0)	IZER	\rightarrow IZE	digitizer	\rightarrow digitize
(m>0)	ABLI	\rightarrow ABLE	conformabli	\rightarrow conformable
(m>0)	ALLI	ightarrow AL	radicalli	ightarrow radical
(m>0)	ENTLI	\rightarrow ENT	differentli	\rightarrow different
(m>0)	ELI	$\rightarrow E$	vileli	\rightarrow vile
(m>0)	OUSLI	$\to OUS$	analogousli	ightarrow analogous
(m>0)	IZATION	\rightarrow IZE	vietnamization	\rightarrow vietnamize
(m>0)	ATION	ightarrow ATE	predication	\rightarrow predicate
(m>0)	ATOR	ightarrow ATE	operator	\rightarrow operate
(m>0)	ALISM	\rightarrow AL	feudalism	\rightarrow feudal
(m>0)	IVENESS	$\to IVE$	decisiveness	\rightarrow decisive
(m>0)	FULNESS	$\to FUL$	hopefulness	ightarrow hopeful
(m>0)	OUSNESS	$\to OUS$	callousness	ightarrow callous
(m>0)	ALITI	\rightarrow AL	formaliti	\rightarrow formal
(m>0)	IVITI	$\to IVE$	sensitiviti	\rightarrow sensitive
(m>0)	BILITI	$\to BLE$	sensibiliti	ightarrow sensible

Step 3: more derivational morphology

```
(m>0) ICATE \rightarrow IC triplicate
                                                \rightarrow triplic
(m>0) ATIVE \rightarrow \epsilon
                                               \rightarrow \text{form}
                                 formative
(m{>}0) \quad ALIZE \rightarrow \quad AL \quad formalize
                                               \rightarrow formal
(m>0) ICITI \rightarrow
                           IC electriciti
                                                \rightarrow electric
(m>0) ICAL \rightarrow
                          IC electrical → electric
(m>0) FUL \rightarrow
                                 hopeful
                                                  \rightarrow hope
(m>0) NESS \rightarrow \epsilon
                                 goodness \rightarrow good
```

Step 4: even more derivational morphology

```
(m>1)
                                   AL \rightarrow
                                                      \epsilon revival
                                                                                  \rightarrow reviv
                                   \mathsf{ANCE} \to
(m>1)
                                                      \epsilon allowance
                                                                                  \rightarrow allow
                                   \mathsf{ENCE} \to
(m>1)
                                                      \epsilon inference
                                                                                  \rightarrow infer
(m>1)
                                   \mathsf{ER} \to
                                                           airliner
                                                                                  \rightarrow airlin
                                   IC \rightarrow
(m>1)
                                                      \epsilon gyroscopic
                                                                                  \rightarrow gyroscop
                                   \mathsf{ABLE} \to
                                                           adjustable
(m>1)
                                                                                  \rightarrow adjust
                                   \mathsf{IBLE} \to
                                                      \epsilon defensible
                                                                                  \rightarrow defens
(m>1)
(m>1)
                                  ANT \rightarrow
                                                      \epsilon irritant
                                                                                  \rightarrow irrit
                                   \mathsf{EMENT} \to
(m>1)
                                                           replacement
                                                                                 \rightarrow replac
                                   MENT \rightarrow
(m>1)
                                                      \epsilon adjustment
                                                                                  \rightarrow adjust
                                   \mathsf{ENT} \to
                                                      \epsilon dependent
                                                                                  \rightarrow depend
(m>1)
(m>1 \text{ and } (*S \text{ or } *T))
                                  \mathsf{ION} \to
                                                           adoption
                                                                                  \rightarrow adopt
                                   OU \to
                                                                                  \rightarrow \text{homolog}
(m>1)
                                                           homologou
(m>1)
                                  \mathsf{ISM} \to
                                                           communism
                                                                                 \rightarrow commun
(m>1)
                                   ATE \rightarrow
                                                           activate
                                                                                  \rightarrow activ
                                  \mathsf{ITI} \to
(m>1)
                                                           angulariti
                                                                                  \rightarrow angular
                                  \mathsf{OUS} \to
(m>1)
                                                      \epsilon homologous
                                                                                 → homolog
                                  IVE \rightarrow
(m>1)
                                                           effective
                                                                                  \rightarrow effect
                                  IZE \rightarrow
(m>1)
                                                          bowdlerize
                                                                                  \rightarrow bowdler
```

Step 5: cleaning up

Step 5a

```
\begin{array}{cccc} \text{(m>1)} & & \mathsf{E} \to \epsilon & \mathsf{probate} & \to \mathsf{probat} \\ & & \mathsf{rate} & \to \mathsf{rate} \\ \text{(m=1 and not *o)} & & \mathsf{E} \to \epsilon & \mathsf{cease} & \to \mathsf{ceas} \end{array}
```

Step 5b

```
(m > 1 and *d and *L) \rightarrow single letter control \rightarrow control roll \rightarrow roll
```

- 1. Show which stems *rationalisations*, *rational*, *rationalizing* result in, and which rules they use.
- 2. Explain why sander and sand do not get conflated.
- 3. What would you have to change if you wanted to conflate them?
- 4. Find five different examples of incorrect stemmings.
- 5. Can you find a word that gets reduced in every single step (of the 5)?
- 6. Exemplify the effect that stemming (eg. with Porter) has on the Vector Space Model, using your example from before.

- Indexing languages
- Retrieval models
- Term weighting
- Term stemming

Textbook (Baeza-Yates and Ribeiro-Neto):

- 2.5.2 Boolean model
- 6.3.3 Zipf's law
- 2.5.3 Vector space model, TF*IDF
- 7.2 Term manipulation, stemming