Information Retrieval

Lecture 2: Retrieval models

Computer Science Tripos Part II

Simone Teufel
Natural Language and Information Processing (NLIP) Group
sht25@cl.cam.ac.uk

Today

- Definition of the information retrieval problem
- Query languages and retrieval models
- Boolean model
- Vector space model
- Logical model of a document/a term
- Term weighting
- Term stemming

Problem: given a query, find documents that are "relevant" to the query

- Given: a large, static document collection
- Given: an information need (reformulated as a keyword-based query)
- Task: find all and only documents that are relevant to this query

Issues in IR:

- How can I formulate the query? (Query type, query constructs)
- How does the system find the best-matching document? (Retrieval model)
- How are the results presented to me (unsorted list, ranked list, clusters)?

Information need
(method or algorithm) and clustering

- Indexing: the task of finding terms that describe documents well
- Manual indexing by cataloguers, using fixed vocabularies ("thesauri")
- labour and training intensive
- Automatic indexing
- Term manipulation (certain words count as the same term)
- Term weighting (certain terms are more important than others)
- Index terms can only be those words or phrases that occur in the text
- Large vocabularies (several thousand items)
- Examples: ACM - subfields of CS; Library of Congress Subject Headings
- Problems:
- High effort in training in order to achieve consistency
- Subject matters emerge \rightarrow schemes change constantly
- Advantages:
- High precision searches
- Works well for valuable, closed collections like books in a library

Medical Subject Headings (MeSH)	
\ldots	C11
Eye Diseases	C11.93
Asthenopia	C11.187
Conjunctival Diseases	C11.187.169
Conjunctival Neoplasms	C11.187.183
Conjunctivitis	C11.187.183.200
Conjunctivitis, Allergic	C11.187.183.220
Conjunctivitis, Bacterial	C11.187.183.220.250
Conjunctivitis, Inclusion	C11.187.183.220.538
Ophthalmia Neonatorum	C11.187.183.220.889
Trachoma	C11.187.183.240
Conjunctivitis, Viral	C11.187.183.240.216
Conjunctivitis, Acute Hemorrhagic	C11.187.183.394
Keratoconjunctivitis	C11.187.183.394.520
Keratoconjunctivitis, Infectious	C11.187.183.394.550
Keratoconjunctivitis Sicca	C11.187.183.749
Reiter's Disease	C11.187.781
Pterygium	
Xerophthalmia	
..	

- No predefined set of index terms
- Instead: use natural language as indexing language
- Mappings words \rightarrow meanings is not 1:1
- Synonymy (n words : 1 meaning)
- Polysemy (1 word : n meanings)
- Do the terms get manipulated?
- De-capitalised?
- Stemmed?
- Stemmed and POS-tagged?
sofa - couch
bank - bank

Turkey - turkey
advice - advised
can - can

- Use important phrases, instead of single words
cheque book (rather than cheque and book)
Implementation of indexes: inverted files

| Doc 1 |
| :--- | ---: |
| Except Russia |
| and Mexico no |
| country had had |
| the decency |
| to come to the |
| rescue of the |
| government. |

Doc 2	
It was arr	dark
and stormy	night
in the	country
manor.	The
time was	past
midnight.	

Term	Doc no	Freq	Offset
a	2	1	2
and	1	1	2
and	2	1	4
come	1	1	11
country	1	1	5
country	2	1	9
dark	2	1	3
decency	1	1	9
except	1	1	0
government	1	1	17
had	1	2	6,7
in	2	1	7
it	2	1	0
manor	2	1	10
mexico	1	1	3
midnight	2	1	17
night	2	1	6
no	1	1	4
of	1	1	15
past	2	1	15
rescue	1	1	14
russia	1	1	1
stormy	2	1	5
the	1	2	8,13
the	2	2	8,12
time	2	1	14
to	1	2	10,12
was	2	2	16

Information kept for each term:

- Document ID where this term occurs
- Frequency of occurrence of this term in each document
- Possibly: Offset of this term in document
- Boolean search
- Binary decision: Document is relevant or not (no ranking)
- Presence of term is necessary and sufficient for match
- Boolean operators are set operations (AND, OR)
- Ranked algorithms
- Ranking takes frequency of terms in document into account
- Not all search terms necessarily present in document
- Incarnations:
* The vector space model (SMART, Salton et al, 1971)
* The probabilistic model (OKAPI, Robertson/Spärck Jones, 1976)
* Web search engines

The Boolean model

Monte Carlo AND (importance OR stratification) BUT gambling

- Set theoretic interpretation of connectors AND OR BUT
- Often in use for bibliographic search engines (library)
- Problem 1: Expert knowledge necessary to create high-precision queries
- Problem 2: Binary relevance definition \rightarrow unranked result lists (frustrating, time consuming)
- A document is represented as a point in high-dimensional vector space
- Query is also represented in vector space
- Select document(s) with highest document-query similarity
- Document-query similarity is model for relevance \rightarrow ranking

3-dimensional term vector space:

- Dimension 1: "information"
- Dimension 2: "retrieval"
- Dimension 3: "system"

Documents and queries in term feature space

	Doc_{1}	Doc_{2}	Doc_{3}...	Doc_{n}		Q
m_{1}	14		1 ...	0	\leftrightarrow	0
term ${ }_{2}$	0	1	3 ...	1	\leftrightarrow	1
term ${ }_{3}$	0	1	0	2	\leftrightarrow	0
erm ${ }_{N}$	4	7	\ldots	5	$\stackrel{\leftrightarrow}{\leftrightarrow}$	1

Decisions to take:

1. Choose dimensionality of vector: what counts as a term?
2. Choose weights for each term/document mapping (cell)

- presence or absence (binary)
- term frequency in document
- more complicated weight, eg. TF*IDF (cf. later in lecture)

3. Choose a proximity measure

A proximity measure can be defined either by similarity or dissimilarity. Proximity measures are

- Symmetric $(\forall i, j: d(j, i)=d(i, j))$
- Maximal/minimal for identity:
- For similarity measures: $\forall i: d(i, i)=\max _{k} d(i, k)$
- For dissimilarity measures: $\forall i: d(i, i)=0$
- A distance metric is a dissimilarity metric that satisfies the triangle inequality

$$
\forall i, j, k: d(i, j)+d(i, k) \geq d(j, k)
$$

- Distance metrics are non-negative: $\forall i, k: d(i, k) \geq 0$

X is the set of all terms occurring in document $\mathrm{D}_{X}, \mathrm{Y}$ is the set of all terms occurring in document D_{Y}.

- Raw Overlap: raw_overlap $(X, Y)=|X \cap Y|$
- Dice's coefficient: (normalisation by average size of the two original vectors)

$$
\operatorname{dice}(X, Y)=\frac{2|X \cap Y|}{|X|+|Y|}
$$

- Jaccard's coefficient: (normalisation by size of combined vector - penalises small number of shared feature values)

$$
\operatorname{jacc}(X, Y)=\frac{|X \cap Y|}{|X \cup Y|}
$$

- Overlap coefficient:

$$
\text { overlap_coeff } f(X, Y)=\frac{|X \cap Y|}{\min (|X|,|Y|)}
$$

- Cosine: (normalisation by vector lengths)

$$
\operatorname{cosine}(X, Y)=\frac{|X \cap Y|}{\sqrt{|X|} \cdot \sqrt{|Y|}}
$$

Similarity measures, weighted

Weighted versions of Dice's and Jaccard's coefficient exist, but are used rarely for IR:

- Vectors are extremely sparse
- Vectors are of very differing length

Cosine (or normalised inner product) is the measure of choice for IR
Document i is represented as a vectors of terms or lemmas $\left(\vec{w}_{i}\right) ; t$ is the total number of index terms in system, $w_{i, j}$ is the weight associated with j th term of vector \vec{w}_{i}.

Vector length normalisation by the two vectors $\left|\overrightarrow{w_{i}}\right|$ and $\left|\overrightarrow{w_{k}}\right|$:

$$
\cos \left(\vec{w}_{i}, \overrightarrow{w_{k}}\right)=\frac{\overrightarrow{w_{i}} \vec{w}_{k}}{\left|\overrightarrow{w_{i}}\right| \cdot\left|\overrightarrow{w_{k}}\right|}=\frac{\sum_{j=1}^{d} w_{i, j} \cdot w_{k, j}}{\sqrt{\sum_{j=1}^{d} w_{i, j}^{2}} \cdot \sqrt{\sum_{j=1}^{d} w_{k, j}^{2}}}
$$

Distance measures

- Euclidean distance: (how far apart in vector space)

$$
\operatorname{euc}\left(\vec{w}_{i}, \overrightarrow{w_{k}}\right)=\sqrt{\sum_{j=1}^{d}\left(w_{i, j}-w_{k, j}\right)^{2}}
$$

- Manhattan distance: (how far apart, measured in 'city blocks')

$$
\operatorname{manh}\left(\vec{w}_{i}, \overrightarrow{w_{k}}\right)=\sum_{j=1}^{d}\left|w_{i, j}-w_{k, j}\right|
$$

Term importance and frequency

Zipf's law: the rank of a word is reciprocally proportional to its frequency:

$$
\operatorname{freq}\left(\text { word }_{i}\right)=\frac{1}{i^{\theta}} \text { freq }^{\left(\text {word }_{1}\right)}
$$

(with $1.5<\theta<2$ for most languages)
(word ${ }_{i}$ being the i th most frequent word of the language)

- Zone I: High frequency words tend to be functional words ("the", "of")
- Zone III: Low frequency words tend to be typos, or unimportant words (too specific) ("Uni7ed", "super-noninteresting", "87-year-old", "0.07685")
- Zone II: Mid-frequency words are the best indicators of what the document is about

Term Weighting: TF*IDF

Not all terms describe a document equally well:

- Terms which are frequent in a document are better $\rightarrow t f_{w, d}=f r e q_{w, d}$ should be high
- Terms that are overall rare in the document collection are better
$\rightarrow i d f_{w, D}=\log \frac{|D|}{n_{w, D}}$ should be high
\rightarrow
- TF*IDF formula: $t f * i d f_{w, d, D}=t f_{w, d} \cdot i d f_{w, D}$ should be high
- Improvement: Normalise $t f_{w, d}$ by term frequency of most frequent term in doc-

- Normalised TF*IDF:

$$
t f * i d f_{\text {nor } m, w, d, D}=t f_{\text {nor } m, w, d} \cdot i d f_{w, D}
$$

$t f_{w, d}:$	Term frequency of word w in document d
$n_{w, D}:$	Number of documents in document collection $\quad D$ which contain word w
$i d f_{w, D}:$	Inverse document fre- quency of word w document collection D
$t f * i d f_{w, d, D}:$	TF*IDF weight of word w in document d in document collection D
$t f * i d f_{\text {norm,w,d,D }}:$	Length-normalised TF*IDF weight of word w in docu- ment d in document collec- tion D
$t f_{\text {norm,w,d}}:$	Normalised term fre- quency of word w document d
max $_{l \in d} f r e q_{l, d}:$	Maximum term frequency of any word in document d

Document set: 30,000

Term	tf	$n_{w, D}$	TF*IDF
the	312	28,799	5.55
in	179	26,452	9.78
general	136	179	302.50
fact	131	231	276.87
explosives	63	98	156.61
nations	45	142	104.62
1	44	2,435	47.99
haven	37	227	78.48
2-year-old	1	4	3.88

IDF("the") $=\log \left(\frac{30,000}{28,799}\right)=0.0178$
TF*IDF("the") $=312 \cdot 0.0178=5.55$

Example: VSM (TF*IDF; cosine)

	Q	D_{7655}	D_{454}
hunter	19.2	56.4	112.2
gatherer	34.5	122.4	0
Scandinavia	13.9	0	30.9
30,000	0	457.2	0
years	0	12.4	0
BC	0	200.2	0
prehistoric	0	45.3	0
deer	0	0	23.6
rifle	0	0	452.2
Mesolithic	0	344.2	0

$\cos \left(Q, D_{454}\right)=\frac{19.2 \cdot 112.2+34.5 \cdot 0+13.9 \cdot 30.9}{\sqrt{19.2^{2}+34.5^{2}+13.9^{2}} \cdot \sqrt{112.2^{2}+30.9^{2}+23.6^{2}+452.2^{2}}}=.1322160530$
\rightarrow choose document D_{7655}

Self test VSM/ TF*IDF

- Build a document-term matrix for three (very!) short documents of your choice
- Weight by presence/absence (binary) and by TF*IDF (with estimated IDFs)
- Write a suitable query
- Calculate document-query similarity, using
- cosine
- inner product (i.e. cosine without normalisation)
- What effect does normalisation have?
- So far: each term is indexed and weighted only in string-equal form
- This misses many semantic similarities between morphologically related words ("whale" \rightarrow "whaling", "whales")
- Automatic models of term identity
- The same string between blanks or punctuation
- The same prefix (eg. up to 6 characters)
- The same stem (e.g. Porter stemmer)
- The same linguistic lemma (sensitive to Parts-of-speech)
- Effect of term manipulation on retrieval result
- changes the counts, reduces total number of terms
- increases recall
- might decrease precision, introduction of noise
M. Porter, "An algorithm for suffix stripping", Program 14(3):130-137, 1980
- Removal of suffixes without a stem dictionary, only with a suffix dictionary

```
CONNECT
CONNECTED
CONNECTING
CONNECTION
CONNECTIONS
```

- Terms with a common stem have similar meanings:
- Deals with inflectional and derivational morphology
- Conflates relate - relativity - relationship
- Treats Sand - sander and wand - wander the same (does not conflate either, though sand/sander arguably could be conflated)
- Root changes (deceive/deception, resume/resumption) aren't dealt with, but these are rare

[C] (VC) $\{\mathrm{m}\}[\mathrm{V}]$

C	one or more adjacent consonants
V	one or more adjacent vowels
[]	optionality
()	group operator
$\{x\}$	repetition x times
m	the "measure" of a word

shoe $\quad[\mathrm{sh}]_{C}[\mathrm{oe}]_{V} \quad \mathrm{~m}=0$

Mississippi $[\mathrm{M}]_{C}\left([\mathrm{i}]_{V}[\mathrm{ss}]_{C}\right)\left([\mathrm{i}]_{V}[\mathrm{ss}]_{C}\right)\left([\mathrm{i}]_{V}[\mathrm{pp}]_{C}\right)[\mathrm{i}]_{V} \quad \mathrm{~m}=3$
ears ([ea] $\left.]_{V}[\mathrm{rs}]_{C}\right) \quad \mathrm{m}=1$
Notation: m is calculated on the word excluding the suffix of the rule under consideration (eg. In $m=1$ for 'element' in rule "($m>1$) EMENT", so this rule would not trigger.)

Rules in one block are run through in top-to-bottom order; when a condition is met, execute rule and jump to next block
Rules express criteria under which suffix may be removed from a word to leave a valid stem: (condition) S1 \rightarrow S2
Possible conditions:

- constraining the measure:
$(m>1)$ EMENT $\rightarrow \epsilon \quad(\epsilon$ is the empty string $)$
REPLACEMENT \rightarrow REPLAC
- constraining the shape of the word piece:
- *S - the stem ends with S
- *v* - the stem contains a vowel
- *d - the stem ends with a double consonant (e.g. -TT, -SS).
- *o - the stem ends cvc, where the second c is not W, X or Y (e.g. -WIL, -HOP)
- expressions with AND, OR and NOT:
$-\left(m>1\right.$ AND $\left.\left({ }^{*} S O R * T\right)\right)-$ a stem with $m>1$ ending in S or T

```
SSES }->\mathrm{ SS
IES }->\mathrm{ I
SS }->\mathrm{ SS
S }
caresses -> caress
cares }->\mathrm{ care
```

Step 1: plurals and past participles
Step 1a

SSES	\rightarrow SS	caresses	\rightarrow caress
IES	\rightarrow I	ponies	\rightarrow poni
		ties	$\rightarrow \mathrm{ti}$
SS	\rightarrow SS	caress	\rightarrow caress
S	$\rightarrow \epsilon$	cats	\rightarrow cat

Step 1b				
$(\mathrm{m}>0)$	EED	$\rightarrow \mathrm{EE}$	feed	\rightarrow feed
			agreed	\rightarrow agree
$\left({ }^{*} v^{*}\right)$	ED	$\rightarrow \epsilon$	plastered	\rightarrow plaster
			bled	\rightarrow bled
$\left({ }^{*} v^{*}\right)$	ING	$\rightarrow \epsilon$	motoring	\rightarrow motor
			sing	\rightarrow sing

If rule 2 or 3 in Step 1 b applied, then clean up:

AT	\rightarrow ATE	conflat(ed/ing)	\rightarrow conflate
BL	\rightarrow BLE	troubl(ed/ing)	\rightarrow trouble
IZ	\rightarrow IZE	siz(ed/ing)	\rightarrow size
$\left({ }^{*}\right.$ d and not (*L or *S or *Z))	\rightarrow single letter	hopp(ed/ing)	\rightarrow hop
		hiss(ed/ing)	\rightarrow hiss
$\left(\mathrm{m}=1\right.$ and $\left.{ }^{*} \mathrm{o}\right)$	\rightarrow E	fil(ed/ing)	\rightarrow file
		fail(ed/ing)	\rightarrow fail

Step 1c
$\begin{array}{rll}\left({ }^{*} v^{*}\right) \mathrm{Y} \rightarrow \mathrm{I} & \text { happy } & \rightarrow \text { happi } \\ & & \text { sky }\end{array}$

Step 2: derivational morphology

$(m>0)$	ATIONAL	\rightarrow ATE	relational	\rightarrow relate
$(m>0)$	TIONAL	\rightarrow TION	conditional	\rightarrow condition
			rational	\rightarrow rational
$(m>0)$	ENCI	\rightarrow ENCE	valenci	\rightarrow valence
$(m>0)$	ANCI	\rightarrow ANCE	hesitanci	\rightarrow hesitance
$(m>0)$	IZER	\rightarrow IZE	digitizer	\rightarrow digitize
$(m>0)$	ABLI	\rightarrow ABLE	conformabli	\rightarrow conformable
$(m>0)$	ALLI	\rightarrow AL	radicalli	\rightarrow radical
$(m>0)$	ENTLI	\rightarrow ENT	differentli	\rightarrow different
$(m>0)$	ELI	\rightarrow E	vileli	\rightarrow vile
$(m>0)$	OUSLI	\rightarrow OUS	analogousli	\rightarrow analogous
$(m>0)$	IZATION	\rightarrow IZE	vietnamization	\rightarrow vietnamize
$(m>0)$	ATION	\rightarrow ATE	predication	\rightarrow predicate
$(m>0)$	ATOR	\rightarrow ATE	operator	\rightarrow operate
$(m>0)$	ALISM	\rightarrow AL	feudalism	\rightarrow feudal
$(m>0)$	IVENESS	\rightarrow IVE	decisiveness	\rightarrow decisive
$(m>0)$	FULNESS	\rightarrow FUL	hopefulness	\rightarrow hopeful
$(m>0)$	OUSNESS	\rightarrow OUS	callousness	\rightarrow callous
$(m>0)$	ALITI	\rightarrow AL	formaliti	\rightarrow formal
$(m>0)$	IVITI	\rightarrow IVE	sensitiviti	\rightarrow sensitive
$(m>0)$	BILITI	\rightarrow BLE	sensibiliti	\rightarrow sensible

Step 3: more derivational morphology

$(m>0)$	ICATE \rightarrow	IC	triplicate	\rightarrow triplic
$(m>0)$	ATIVE \rightarrow	ϵ	formative	\rightarrow form
$(m>0)$	ALIZE \rightarrow	AL	formalize	\rightarrow formal
$(m>0)$	ICITI \rightarrow	IC	electriciti	\rightarrow electric
$(m>0)$	ICAL \rightarrow	IC	electrical	\rightarrow electric
$(m>0)$	FUL \rightarrow	ϵ	hopeful	\rightarrow hope
$(m>0)$	NESS \rightarrow	ϵ	goodness	\rightarrow good

Step 4: even more derivational morphology

($\mathrm{m}>1$)	AL \rightarrow	reviv	\rightarrow reviv
$(\mathrm{m}>1)$	ANCE \rightarrow	ϵ allowance	\rightarrow allow
$(\mathrm{m}>1)$	ENCE \rightarrow	ϵ inference	\rightarrow infer
$(\mathrm{m}>1)$	ER \rightarrow	airliner	\rightarrow airlin
$(\mathrm{m}>1)$	IC \rightarrow	ϵ gyroscopic	\rightarrow gyroscop
$(\mathrm{m}>1)$	ABLE \rightarrow	ϵ adjustable	\rightarrow adjust
$(\mathrm{m}>1)$	IBLE \rightarrow	ϵ defensible	\rightarrow defens
$(\mathrm{m}>1)$	ANT \rightarrow	irritant	\rightarrow irrit
$(\mathrm{m}>1)$	EMENT \rightarrow	ϵ replacement	\rightarrow replac
$(\mathrm{m}>1)$	MENT \rightarrow	adjustment	\rightarrow adjust
$(\mathrm{m}>1$)	ENT \rightarrow	dependent	\rightarrow depend
($\mathrm{m}>1$ and (${ }^{\text {S }}$ or ${ }^{*} \mathrm{~T}$))	$\mathrm{ION} \rightarrow$	adoption	\rightarrow adopt
$(\mathrm{m}>1$)	$\mathrm{OU} \rightarrow$	homologou	\rightarrow homolog
$(\mathrm{m}>1)$	ISM \rightarrow	communism	\rightarrow commun
$(\mathrm{m}>1)$	ATE \rightarrow	activate	\rightarrow activ
$(\mathrm{m}>1)$	$\mathrm{ITI} \rightarrow$	angulariti	\rightarrow angular
$(\mathrm{m}>1)$	OUS \rightarrow	ϵ homologous	\rightarrow homolog
$(\mathrm{m}>1)$	IVE \rightarrow	ϵ effective	\rightarrow effect
($\mathrm{m}>1$)	IZE \rightarrow	bowdlerize	\rightarrow bowdler

Step 5: cleaning up

```
Step 5a
\begin{tabular}{|c|c|c|}
\hline \((\mathrm{m}>1)\) & \(\mathrm{E} \rightarrow \epsilon\) probate & \(\rightarrow\) probat \\
\hline & rate & \(\rightarrow\) rate \\
\hline (m=1 and not *o) & \(E \rightarrow \epsilon\) & \(\rightarrow\) ceas \\
\hline
\end{tabular}
```

Step 5b
($\mathrm{m}>1$ and *d and *L) \rightarrow single letter controll \rightarrow control
roll $\quad \rightarrow$ roll

Self test Porter Stemmer

1. Show which stems rationalisations, rational, rationalizing result in, and which rules they use.
2. Explain why sander and sand do not get conflated.
3. What would you have to change if you wanted to conflate them?
4. Find five different examples of incorrect stemmings.
5. Can you find a word that gets reduced in every single step (of the 5)?
6. Exemplify the effect that stemming (eg. with Porter) has on the Vector Space Model, using your example from before.

Summary and literature

- Indexing languages
- Retrieval models
- Term weighting
- Term stemming

Textbook (Baeza-Yates and Ribeiro-Neto):

- 2.5.2 Boolean model
- 6.3.3 Zipf's law
- 2.5.3 Vector space model, TF*IDF
- 7.2 Term manipulation, stemming

