Cambridge University Computer Laboratory

Computer Science Tripos Part IB [P]
Computer Science Tripos Part II(General) [C]
Diploma in Computer Science [D]

Compiler Construction

http://www.cl.cam.ac.uk/Teaching/1999/CompilerC

Arthur Norman acni@cl.cam.ac.uk
and
Martin Richards mr@cl.cam.ac.uk

Lent 2000

Summary

This course starts with a brief survey of various features and concepts common to many program-
ming languages, together with an outline of the kind of target code they require. The second part
of the course covers the design of the various parts of a compiler.

The course is intended to study compilation of a range of languages and accordingly syntax
for example constructs will be taken from various languages (with the intention that the particular
choice of syntax is reasonably clear).

In terms of programming languages in which parts of compilers themselves are to be written,
the preference varies between pseudo-code (as per the ‘Data Structures and Algorithms’ course)
and language features (essentially) common to C/C++/Java. The language Standard ML (which
the Diploma and Part II (general) students will see as part of the ‘Functional Programming’
course) is used when it significantly simplifies the code compared to C.

The following books contain material relevant to the course.

Compilers—Principles, Techniques, and Tools
A.V.Aho, R.Sethi and J.D.Ullman
Addison-Wesley (1986)

Ellis Horwood (1982)

Compiler Design in Java/C/ML (3 editions)
A.Appel
Cambridge University Press (1996)

Compiler Design
R.Wilhelm and D.Maurer
Addison Wesley (1995)

Introduction to Compiling Techniques
J.P.Bennett
McGraw-Hill (1990)

A Retargetable C Compiler: Design and Implementation
C.Frazer and D.Hanson
Benjamin Cummings (1995)

Compiler Construction
W .M.Waite and G.Goos
Springer-Verlag (1984)

High-Level Languages and Their Compilers
D.Watson
Addison Wesley (1989)

Acknowledgments

Various parts of these notes are due to or based on material developed by Dr M. Richards of the
Computer Laboratory. Dr G. Bierman provided the call-by-value lambda-form for Y.

Teaching and Learning Guide

[This is a Computer Laboratory mandated section of all lecture courses.]

The lectures largely follow the syllabus for the course which is as follows:

Survey of language constructs and their implementation.
Expressions, applicative structure, lambda expressions. Environments
and a simple lambda evaluator. Evaluation of function calls using
static and dynamic chains, Dijkstra displays. Situations where a simple
stack is inadequate. Objects and inheritance. Implementation of labels,
jumps, arrays and exceptions. L-value and r-value; choices for argument
passing and free-variable association. Dynamic and static binding.
Dynamic and static types, polymorphism.

Survey of execution mechanisms.
The spectrum of interpreters and compilers; compile-time and run-time.
Structure of a simple compiler. Java virtual machine.

Lexical analysis and syntax analysis.
Regular expressions and finite state machine implementations. Grammars,
Chomsky classification of phrase structured grammars. Parsing
algorithms: recursive descent, precedence and SLR(k). Syntax error
recovery.

Simple type-checking.
Type of an expression determined by type of subexpressions; inserting
coercions. Polymorphism.

Translation phase.
Intermediate code design. Translation of commands, expressions and
declarations. Translating variable references into access paths.

Code generation.
Typical machine codes. Codes generation from the parse tree and from
intermediate code. Simple optimisation.

Compiler compilers.
Summary of Lex and Yacc.

Runtime.
Object modules and linkers. Resolving external references. Debuggers,
break points and single step execution. Profiling, portability.

A good source of exercises is the past 10 or 20 years’ (sic) Tripos questions in that most
of the basic concepts of block-structured languages and their compilation to stack-oriented code
were developed in the 1960s. The course ‘Optimising Compilation’ in CST (part II) considers
more sophisticated techniques for the later stages of compilation and the course ‘Comparative
Programming Languages’ considers programming language concepts in rather more details.

Chapter 1

Introduction

1.1 Declarations, Expressions and Commands

A feature common to all computers is that they have memory and the fundamental ability to access
and update the contents of arbitrary words of memory. Single computer instructions tend to cause
simple changes to registers and memory. For example an instruction might have the effect of x := ¢
where z is a memory location or register and e is an expression constructed from memory locations
and registers. The exact valid forms of such source expressions e and descriptions of destinations
z depend strongly on the particular computer architecture.

The has led to high-level languages providing an abstract notion of ezpression which can be
constructed arbitrarily from its constituents (instead of being hardware restricted). Similarly, they
introduce the notion of assignment command which updates memory. In passing we note that the
forms which appear on the left-hand-side of an assignment are rather more restricted than the
right, the words Lwalue and Rvalue are often used here (“given z := e we evaluate x to give a
location (Lvalue) and e to give a Rvalue and then store the Rvalue in the Lvalue”). Also, instead
of using numeric descriptions of memory locations we give them symbolic names (e.g. a,b,fred).
Finally most languages have a mechanism for giving a symbolic name to a function or procedure.

So to summarise, the majority of languages have declarations which introduce (and possi-
bly initialise) new names, expressions which correspond to a calculation (often without effect on
memory) and commands which update memory or cause other actions like I/0. Both expressions
and commands may use the names introduced in declarations.

For the moment we will imagine that declarations introduce names which can contain values
(such names are often called variables). Declarations can often also introduce type-names which
name types or classes; this course concentrates on the former use.

1.2 Assignments, Lvalues and Rvalues

A feature common to all computers is that they have memory and the fundamental ability to
access and update the contents of arbitrary words of memory. Correspondingly, a basic feature of
most programming languages is the assignment command. For example,

x := 3;
X = y+1;
X = x+1;

In some languages the form of the assignment can be more general:

i:=(>b?j: k);
v[i] := v[a>b 7 j : kI;
vla>d 7 j : k] := v[il;
(2> 7 j : k) := i;

In the above examples the notation E 7 E1 : E2 denotes a conditional expression, and v[i] is a
subscripted expression.

It is common to describe the syntactic form of such assignments as
El := E2;

where E1 and E2 are both expressions, and to describe the meaning (semantics) of the command
as the execution of three steps.

1. Evaluate E1 to give an address.
2. Evaluate E2 to give a value.
3. Update the addressed cell with the value.
To avoid the overtones and confusion that go with the terms address and value we will use
the more neutral words Lvalue and Rvalue (first coined by C. Strachey).

An Lvalue (left hand value) is the address (or location) of an area of store capable of holding
the Rvalue.

An Rvalue (right hand value) is a bit pattern used to represent an object (such as an integer,
a floating point number, a function, etc.).

1.3 Definition of Variables

Most languages allow the programmer to declare variables. In C/Java for example, variables may
be declared as follows:

float p
float q

3.4;
p;

This causes a new storage cell to be found and associated with the name (or identifier) p. The
contents of this cell is initially set to the float number 3.4. Then a second new storage cell
(identified by q) is initialised with the contents of p (clearly 3.4). Here the defining operator
= is said to define by value. One can also imagine language constructs permitting definition by
reference (also called aliasing) where the defining expression is evaluated in left hand mode (or
Lmode) and the Lvalue obtained associated with the identifier, e.g.

float r ~ p;

Since p and r have the same Lvalue they share the same storage cell and so the assignments:
p := 1.63 and r := 1.63 will have the same effect, whereas assignments to q happen without
affecting p and r. In C++ definition this by reference is written

float &r = p;

whereas (for ML experts) in ML mutable storage cells are defined explicitly so the above example
would be expressed:

val p = ref 3.4;
val q = ref (!p);
val r = p;

Observe that Lmode evaluation (like Rmode evaluation) in general requires some computation
to be done. Consider the program:

int i = 2;
int x ~ m[i, i];

i:=3;

...// here x still refers to m[2,2]

Note that m[i,i] is an expression which (like i) can be evaluated in both L and R modes.
Some expressions have only Rvalues (e.g. x+1) and so may not be used, for instance, on the left
hand side of an assignment.

1.4 Names

The term name is often used to mean different things and confusion frequently results. It is
sometimes, for instance, unwittingly used as a synonym for Lvalue. In these notes we will always
use the word name to refer to the identifiers coined by a programmer and used in a program. The
only property we require of names is that, given two of them, it is possible to determine whether
they are the same (i.e. same sequence of letters, digits, etc.) or not.

It is the existence of commands which makes programming languages quite different from the
rest of mathematics. We will first consider expressions in the absence of commands.

1.5 Expressions and Declarations

The characteristic feature of an expression is that it yields a value as a result. We have seen
that it can be either an Lvalue or an Rvalue (depending on the context). However, without the
assignment commands Lvalues are of no interest, and as in ordinary mathematics we shall, for
the time being, only be concerned with Rvalues. (For the time being we will also assume that
expressions do not contain operators with side effects such as f (x++) in C/Java.)

One consequence is that whether a variable is defined by copying or by aliasing is irrelevant
for now—we return to this later.

Languages with only (side-effect-free) expressions and declarations are often called functional
languages. We study them first because of their relative simplicity, but we take pains to ensure
that each name is associated with a memory location so that later introducing an assignment
operator is easy. The language ML, although it has non-functional parts, encourages a functional
style (and the courses here on ML tend not to mention assignment).

A useful property of functional languages is referential transparency which means that the
value of an expression only depends on the values of its subexpressions. This means that normal
mathematical equivalences hold, e.g. e + e = 2 x e. However in the presence of side-effects this
fails, e.g. in Java we have

X+ + x++ £ 2% (x++)

One might fear than abandoning assignment leads to inexpressive languages. However, pro-
vided one keeps the idea of an initialised declaration (note initialisation differs conceptually from
assignment) then functional languages are as powerful as other languages.

Because this part of the course is not concerned with any particular language, we will intro-
duce an expression-based language of our own which captures ideas common in other languages.
We will introduce an expression e to be one of the following forms:

e 1, an integer;

e I, a name;

e e1 + es, provided e; and ey are (smaller) expressions;

e e1 — eq, provided e; and e; are (smaller) expressions;

e e17es : e3, provided eq, e; and ez are (smaller) expressions;

e let x = ey in ey, provided z is a name and e; and es are (smaller) expressions. The phrase
T = ey is seen as a declaration;

e ¢1ey, (an application) provided e; and ey are (smaller) expressions;

e \z.e1, (a lambda-abstraction) provided e; is a (smaller) expression.

The first forms will be familiar to everyone. The final form Az.e; is an (anonymous) function which
takes an argument z and yields e;. Thus the conventional function definition f(z) = e would here
be written f = Az.e. We will later note that for many purposes (Az.ez)e; and let x = e1 in ey
can be treated almost identically.

In examples, we will allow abstractions and applications to take multiple arguments and use
additional operators from the above.

1.6 Environments

In order to evaluate a+5+b/a we need to know the values of a and b. We speak of evaluating an
expression in an environment which provides the values of the names in the expression. One way
to provide such an environment is by the above let form, e.g.

2+3/7 in a+3/a
y+2/y in x+y+3/x

let a
let x

Yet another way is to use lambda calculus (described later):

(Aa. a+3/a) (2+3/7)
(Ax. x+y+3/x) (y+2/y)

(Note that in programming languages like ML, A is often written fn and we will occasionally
adopt this convention in these notes.) These two methods are exactly equivalent and have the
same meaning. The name y in the second expression is not bound and its value must still be found
in the environment in which the whole expression is to be evaluated. Variables of this sort are
known as free variables. Variables with local definitions are known as bound variables.

Given an expression we can formally define its bound variables BV (e) and its free variables
BV (e) inductively:

BV(n) = {}
BV(z) = {}
BV(61 + 62) = BV(el) U BV(GQ)
BV(\z.e) = BV(e)U{x}
BV (let t =e1 ine;) = BV(e1)UBV(e2)U{z}
FV(n) = {}
FV(z) = {«}
FV(el +62) = FV(el) UFV(62)
FV(Ax.e) = FV(e)\{z}
FV(let x =e1 inex) = FVier)U(FV(ex)\ {z})

Note that the expected BV (e) U F'V (e) = {} does not always hold—consider
(let a = 2 in a)+a

This has FV(e) = {a} because of the final a (which is unbound) but also BV (e) = {a} because
of the let which binds a to 2 within the parentheses. Note also that this shows the idea of scope
already exists such a simple language.

1.7 Applicative structure

Arithmetic expressions (and commands) can be represented as a tree structure which makes clear
which operators act on which operands. For example, a+b can be represented as +(a, b) or
diagrammatically as follows:

and a+3*b can be represented as +(a, *(3,b)) or as

This structure is called the applicative structure of the expression. An alternative name is syntaz
tree. Applicative structures are difficult to read because of the deep nesting of brackets, but they
help to emphasise the uniform way in which complicated expressions (and commands) can be built
out of smaller ones. The rule for evaluation is simple and is as follows:

1. Evaluate the operands (in any order).

2. Apply the operator to the operand values.

One could regard a lambda abstraction as an operator of a complicated sort. For instance, the
applicative structure of {\a. a+3/a}(3+b) could be:
[fn a. +(a, /(3, a))]

(®)

It is probably better to introduce a new basic operator Apply to deal with function applica-
tions, so that the structure for f (x) is:

(apply)
) ()

This maintains the convention that all applicative expression operators are constants of the system.

One apparent exception to the evaluation rule is the evaluation of the conditional expression.
Consider

x>0 7?7 x @ =X

One possible applicative form of this might be

where Cond is defined to have the rather special meaning of evaluating only one of the two alter-
natives depending on the result of the condition. This is necessary in x=0 7 1 : 1/x for instance.

1.8 Lambda calculus

There are three main reasons for studying lambda calculus when considering programming lan-
guages. These are:

1. It is a useful notation for specifying the scope rules of identifiers in programming languages,
and helps to demonstrate such notions as “holes in the scope of variables”.

2. It helps one to understand what a function is, and what it means to pass a parameter.

3. There is a well established mathematical theory of lambda calculus.

The following are examples of lambda expressions:

AX. X

f(lg. g x)

f(x, y)

{A,x). (b x) y} ((At. t),(Ar. 1))
Af. (Ag. g g (g. (£ g g))

To enhance readability, certain identifiers (e.g. those spelt with non-alphanumeric characters) may
be used as infixed dyadic operators. For example, x+y*z may be written to denote +(x,*(y,z)).

In an abstraction Az.e, the identifier z is called the bound variable and the expression e is
called the body.

Evaluation of lambda expressions is by means of two simple rewrite rules.
e a-conversion. The expression (Ax.e) can be replaced by (Ay.e') where y is any identifier

that does not occur in e and where €’ is e rewritten with all occurrences of the identifier x
replaced by the identifier y.

e (-reduction. The expression (Ax.ej)es can be replaced by a copy of e; with all occurrences
of the bound variable x replaced by the argument ey, provided that

1. e; contains no (inner) bound occurrences of identifier x, and

2. ey contains no free variables that are bound in e;.

The a-conversion rule is used to remove conflicts that prevent g-reductions from being applicable.

To enhance readability in these notes, lists of bound variables enclosed in parentheses will be
allowed after A instead of a single variable and lists of arguments will be allowed in applications;
this follows the ML practice.

A few example evaluations are given below.

{\tt+16}(4) = 20
{A(2,b).2 + b}(5,6) 11
A {(Axf(x+1)B)H(yy=*2) = (Ax{Ayy*2Hx+1))3)
{Ay.y = 2}(4)
= 8

An important property of a lambda expression is that one can determine from the text of the
expression (i.e. without having to evaluate it) to which bound variable each occurrence of a name
is bound (unless it is free). A suitable algorithm is as follows:

Given an occurrence of the name z

1. Find the smallest textually enclosing lambda (or let) expression.

2. Compare z with the bound variables names, if there is a match we have finished, otherwise
repeat from (1) to try the lambda expression one level further out.

1.9 The correspondence between programming languages
and lambda calculus

Here we show that the let notation, both for introducing definitions of simple names and functions,
can be eliminated in favour of A.

Consider the following expression:
{ let £(y) = y*2

in let x
in f(x+1)

]
w

}

In this f is a function with one bound variable y whose body is the expression y*2. We might
write: let £ = (Ay. y*2). Similarly x is like a bound variable of a lambda expression whose
body is £ (x+1) and whose argument is 3. Thus we could re-write the whole expression as:

{ let £ = Ay. y*2
in (Ax. £(x+1)) (3)
}

which further can be re-written as:

10

Df. Ox. £(x+1)) (3} Oy. y*2)

Hence, the lambda notation can completely express both simple variable and function definitions.
Indeed it can usefully be seen as a machine code in its own right (there was even a machine built
at Cambridge some years back which used essentially A-calculus as its machine code!). Just as
we chose to prefer higher level notation than (say) Pentium machine code, one prefers the more
usual let and function forms rather than the rebarbarative A form for real programming—its real
benefit is that of understanding concepts like scoping.

1.10 A short interlude on recursion

When a function is defined in terms of itself as in the following C/Java definition

int scantree(Tree *x) { ...
. scantree(x->left) ...

. scantree(x->right)

It is said to be defined recursively. If several functions are defined in terms of themselves they are
said to be mutually recursive. Suppose there is a call scantree (sometree) to the function given
above, then while this call is being evaluated it may happen that the call scantree(x->left) is
executed. While this second call is active there are two activations of scantree in existence at
once. The second call is said to be a recursive call of scantree. Note that therefore there will be
two distinct variables called x (holding different values) in such circumstances; we therefore need
to use fresh storage for variable x at each call to scantree. Below we see how to use a stack for
this purpose.

Notice that it is possible to call a function recursively without defining it recursively.
let f(g,n) = { ...
. glg,n-1)
in f(f, 5)

Here the call g(g,n-1) is a recursive call of £.
[Exercise: complete the body of £ so that the call yields 5! = 120.]

1.11 The need for the word rec

Consider the following expression:
{ let £f(n) = n=0 7 1 : nxf(n-1)
in £(4)
}

The corresponding lambda expression is

(M. £(4)) (An. n=0 ? 1 : nxf(n-1))

11

We observe that the scope of f is £(4), and that the f in £ (n-1) is unbound and certainly different
from the f in f (4). However, here the programmer presumably was trying to define the recursive
factorial function and so meant the f on the right hand side to be the same as the £ he was
defining. To indicate that the scope of z in (let z=e in e') extends to include both e as well as
e’ the keyword rec is normally used.

let rec f(n) = n=0 7 1 : nxf(n-1)
which can be more primitively written as

let rec £ = An. n=0 ? 1 : n*xf(n-1)

The linguistic effect of rec is to extend the the scope of the defined name to include the right
hand side of the definition.

In ML, all fun-based definitions are assumed to be recursive, and so the definition
fun f(x) = e;
is first simplified (de-sugared) by the most ML systems to

val rec £ = fn x => e;

1.12 The Y operator

At first sight, the rec construction seems to have no lambda calculus equivalent; however, postu-
lating a new operator Y enables a solution to be found. Consider

let H = Af. An. n=0 ? 1 : nxf(n-1)

f is now bound, but H is not the factorial function, for

HOx. x)(6) = {An. n=0 7 1 : nx(Ax. x)(@-1)} (6)
= {An. n=0 ? 1 : nx(n-1)} (6)
= 6%5
= 30

However, if g were the factorial function, then

H(g) = An. n=0 7 1 : n*xg(n-1)
= the factorial function
= g

thus H(g) =g if g is the factorial function. It therefore seems plausible that, if we can find a g for
which H(g) =g, then the g we found would be the factorial function. Given an function, ® say, any
value v such that ®(v) = v called a fized point of ®. (Observe that 1 and 2 are both fixed points
of the ordinary function on reals given by ¢(x) = 2 — 2z + 2, but note that our ® will typically
map functions to functions.)

In the same sense that the fixed points of a quadratic az? + bz + ¢ can be found by a formula
(this can be seen as a function which operates on ¢ and gives us x)
—(b-1)+t+/(b—-1)2 —4ac
xTr=
2a

12

we could hope for a function Y which returns the fixed point of its argument, e.g. Y (H) = factorial
or more generally
Y ® = some value f such that ®f = f.

Put more simply we want
Y®=3(Y).

If this can be done, then we can rewrite any recursive function simply using Y, e.g. writing
let rec £ = An. n=0 7 1 : n*xf(n-1)
as
let £ = YC Af. An. n=0 7 1 : nxf(n-1))

and we can evaluate a call of £ knowing no more about Y than the property Y® = ®(Y ®). For
example, with H = Af. An. n=0 7 1 : n*xf(n-1)

£(3) = Y@ (3) [definition of f]
= H(Y(H)) (3) [property of Y]
= {dn. n=0 7 1 : nx(Y(H) (n-1))} (3) [lambda reduction]
= 3% Y(H)(2)
= 3 * 2 x Y(H) (D) [similarly]
= 3% 2x*x1xY(HO [similarly]
= 3 x2x*x1x%*1 [similarly]

It is somewhat remarkable at first that such a Y exists at all and moreover that it can be
written just using A and apply. One can write!

Y = Af. (Ag- (f(Xa. (99)a)))(Ag- (f(Xa- (gg)a))).

(Please note that learning this lambda-definition for Y is not examinable for this course!) For
those entertained by the “Computation Theory” course, this (and a bit more argument) means
that the lambda-calculus is “Turing powerful”.

Note that the definition of Y given here will only find fixed points of functions, like H above
of type (int — int) — (int — int) and in doing so yield a function of type int — int. It will not
find the numeric fixed points of

Az, 2% — 22 + 2.

(Why?)

Finally, an alternative implementation of Y (there seen as a primitive rather as the above
arcane lambda-term) suitable for an interpreter is given in section 1.14.

1.13 Object-oriented languages

The view that lambda-calculus provides a fairly complete model for binding constructs in pro-
gramming languages has generally been well-accepted. However, notions in inheritance in object-
oriented languages seem to require a generalised notion of binding. Consider the following C++
program:

1The form
Y = Xf. (Ag- g9)(Ng- f(99))
is usually quoted, but (for reasons involving the fact that our lambda-evaluator uses call-by-value and the above
definition requires call-by-name) will not work on the lambda-evaluator presented here.

13

const int i = 1;

class A { comnst int i = 2; };
class B : A { int £(Q); };

int B::f() { return i; }

There are two i variables visible to £(): one being i=1 by lexical scoping, the other i=2 visible
via inheritance. Which should win? C++ defines that the latter is visible (because the definition
of £() essentially happens in the scope of B which is effectively nested within A). The i=1 is only
found if the inheritance hierarchy has no i. Note this argument still applies if the const int
i=1; were moved two lines down the page. The following program amplifies that the definition of
the order of visibility of variables is delicate:

const int i = 1;

class A { const int j = 2; };

void g()

{ const int i = 2;
class B : A { int f() { return i; }; }
// which i does f() see?

The lambda-calculus for years provided a neat understanding of scoping which language designers
could follow simply; now such standards committees have to use their (not generally reliable!)
powers of decision.

Note that here we have merely talked about (scope) wvisibility of identifiers; languages like
C/Java also have declaration qualifier concerning accessibility (public, private, etc.). It is for
standards bodies to determine whether, in the first example above, changing the declaration of
i in A to be private should invalidate the program or merely cause the private i to become
invisible so that the i=1 declaration becomes visible within B::£(). (Actually draft ISO C++
checks accessibility after determining scoping.)

We will later return to implementation of objects and methods as data and procedures.

1.14 Mechanical evaluation of lambda expressions

We will now describe a simple way in which lambda expressions may be evaluated in a computer.
We will represent the expression as an applicative structure and evaluate it in an environment
that is initially empty. The applicative structure that we shall use has tree nodes representing
variables, constants, addition, function abstraction and function application. In ML this can be
written:

datatype Expr = Name of string |
Numb of int |
Plus of Expr * Expr |
Fn of string * Expr |
Apply of Expr * Expr;

Later in the course we will see this also can be described by the context-free grammar

<Expr> -> <Name> | <Int> | <Expr>+<Expr>
| fn <Name>.<Expr> | <Expr>(<Expr>)

14

The expression: {Ax. (An. n+x)(4)} (3) would be written in ML (or C, assuming appro-
priate (constructor) functions like Apply, Fn etc. were defined to allocated and initialise structures)
as:

Apply (Fn("x", Apply(Fn("n", Plus(Name("n"), Name("x"))),
Numb(4))),
Numb (3))

and be represented as follows:

— | Apply
—| Fn
— Nane
— 71| Apply X
———=| Fn
— | Plus
k Nunb Nunb Nane
3 4 n

When we evaluate such an Expr we expect to get a value which is either a integer or a
function. For non-ML experts the details of this do not matter, but in ML we write this as

datatype Val = IntVal of int | FnVal of string * Expr * Env;

(the justification for why functions consist of more than simply their text will become apparent
when we study the evaluator ‘eval’ below).

We will represent the environment of defined names (names in scope) as a linked list with
the following structure:

datatype Env = Empty | Defn of string * Val * Env;

(I.e. an Env value is either Empty or is a 3-tuple giving the most recent binding of a name to a
value and the rest of the environment.) The function to look up a name in an environment? could
be defined in ML as follows.

fun lookup(n, Defn(s, v, r)) =
if s=n then v else lookup(n, r);

| lookup(n, Empty) = raise oddity("unbound name");
p pty y

We are now ready to define the evaluation function itself:

fun eval(Name(s), r) lookup(s, r)
| eval(Numb(n),) IntVal(n)
| eval(Plus(e, e’), r) =
let val v = eval(e,r);

val v’ = eval(e’,r)
in case (v,v’) of (IntVal(i), IntVal(i’)) => IntVal(i+i’)
| (v, v’) => raise oddity("plus of non-number")
end
| eval(Fn(s, e), r) = FnVal(s, e, 1)

2There is a tradition of using letters like r or p for ‘environment’ to avoid clashing with the natural use of e for
‘expression’.

15

eval (Apply(e, e’), r) =
case eval(e, 1)
of IntVal(i) => raise oddity("apply of non-function")
| FnVal(bv, body, r_fromdef) =>
let val arg = eval(e’, r)
in eval(body, Defn(bv, arg, r_fromdef))
end;

The immediate action of eval depends on the leading operator of the expression it is evaluating. If
it is Name, the bound variable is looked up in the current environment using the function lookup. If
it is Numb, the value can be obtained directly from the node (and tagged as an IntVal). If it is Plus,
the two operands are evaluated by (recursive) calls of eval using the current environment and
their values summed (note the slightly tedious code to check both values correspond to numbers
else to report an error). The value of a lambda expression (tagged as a FnVal) is called a closure
and consists of three parts: the bound variable, the body and the current environment. These
three components are all needed at the time the closure is eventually applied to an argument.
To evaluate a function application we first evaluate both operands in the current environment
to produce (hopefully) a closure (FnVal(bv, body, r_fromdef)) and a suitable argument value
(arg). Finally, the body is evaluated in an environment composed of the environment held in the
closure (r_fromdef) augmented by (bv, arg), the bound variable and the argument of the call.

At this point it is appropriate to mention that recursion via the Y operator can be simply
incorporated into the interpreter. Instead of using the gory definition in terms of A, we can
implement the recursion directly by

| eval(Y(Fn(f,e)), r) =
let val fv = IntVal(999);
val r’ = Defn(f, fv, r);
val v = eval(e, r’)
in

fv :
v
end;

v; (* updates value stored in r’ *)

This first creates an extended closure r’ for evaluating e which is r extended by the (false)
assumption that f is bound to 999. e (which should really be an expression of the form A\z. €’
to ensure that the false value of £ is not used) is then evaluated to yield a closure, which serves
as result, but only after the value for f stored in the closure environment has been updated to
its proper, recursive, value fv. This construction is sometimes known as “tying the knot [in the
environment]” since the closure for £ is circular in that its environment contains the the closure
itself (under name f).

A more detailed working evaluator including Y and let) can be found on the web page for
this course (see front cover).

1.14.1 Static and dynamic scoping

This final point is worth a small section on its own; the normal state in modern programming
languages is that free variables in are looked up in the environment of existing at the time the
function was defined rather than when it is called. This is called static scoping or static binding
or even lexical scoping; the alternative of using the calling environment is called dynamic binding
and was used in many dialects of Lisp. The difference is most easily seen in the following example:

let a = 1;

16

let £() = a;
let g(a) = £Q);
print g(2);

Check your understanding of static and dynamic scoping by observing that this prints 1 under the
former and 2 under the latter.

Exercises

1. Draw the tree structure representing the lambda expression form of the following program.

{ let x =3
in let f(n) = n+x
in let x = 4
in f(x)

}

Apply the eval function by hand to this tree and an empty environment and draw the
structure of every environment, that is used in the course of the evaluation.

2. Is it possible to write a finite program that would cause this evaluator to attempt to create
an infinitely long environment?

3. Modify the interpreter to use dynamic scoping; is it now possible to write a finite program
that would cause this evaluator to attempt to create an infinitely long environment?

1.15 A more efficient implementation of the environment

The previous lambda evaluator (also known as an interpreter) is particularly inefficient in its
treatment of names since it searches a potentially long environment chain every time a name
is used. This search can be done much more efficiently if the environment were represented
differently; moreover the technique we describe is much more appropriate for a compiler which
generates machine code for a target machine. Consider the following:

{fn(a, b,c).[fn(x,y)|(fn t|BL)| [{fn(u v).B2 }(12, 63)} (1,6, 3)
E3 E4
E2

El

The environment structure can be represented as a tree as follows (note that here the tree is
logically backwards from usual in that each node has a single edge to its parent, rather than each
node having an edge to its children):

El:(a, b, c)
E2: (X,vY, 2) E4: (u, v)

E3: (t)

17

The levels on the right give the depth of textual nesting of lambda bodies, thus the maximum
number of levels can be determined by inspecting the given expression. When evaluating B1, we
are in environment E3 which looks like:

E1l:(a,b,c) level 1
E2: (x,y,2) level 2
E3:(t) level 3

We can associate with any name used in Bl an ‘address’ consisting of a pair of numbers,
namely, a level number and a position within that level. For example:

a:(1,1) b:(1,2) c:(1,3)
x:(2,1) y:(2,2) z:(2,3)
t:(3,1)

Similarly within B2:

a:(1,1) b:(1,2) c:(1,3)
u:(2,1) v:(2,2)

At execution time, the environment could be represented as a vector of vectors. For example,

E2 —— |

E4 ——

a
u b

\ C

A vector such as the one pointed to by E2 is called a display (first coined by Dijkstra). Notice
that while evaluating B2 in environment E4 we may use the “address” (2,1) to access the variable
u. It should be clear that the pointer to the current display provides sufficient information to
access any currently declared variable and so may be used in place of the environment chain used
in the eval function.

You will recall that a closure (the value representing a function) consists of three parts—the
bound variable, the body and the environment information. If we are using the display technique
then the environment part can be represented by a pointer to the appropriate display vector. For
instance, the environment part of the closure for (fn t.B1) in the last example is the pointer to
the display vector for E2.

E2 a

[E—— X b
y c
z

In order to apply this closure to an argument value k, we must first create a new display
which consists of a copy of E2 augmented with a new level. The new display will be as follows:

E3 —— —

:>Oopy of E2 pointers

I

The body of B1 is then evaluated in this new environment. When the application is complete the
value is returned and the previous environment reinstated.

The compiled form of a function often consists of code which first constructs the new display
and then evaluates the body; hence the closure is often represented as a pair of pointers:

Conpi | ed code Di spl ay

18

Exercise

Re-implement the eval function defined above using a display mechanism for the environment
(instead of the linked list).

1.16 Evaluation using a stack

A stack has the property that items can be placed on the top or removed from the top. Such a
storage organisation is sometimes called a LIFO (last in first out) store. Stacks are often used in
the implementation of programming languages since they provide an efficient means of allocating
work space used in the evaluation of expressions. To evaluate an expression consisting of an
operator applied to two operands, the operands are first evaluated and then the operator applied
to the results obtained. This can be shown diagrammatically as follows:

Eval uation path -

V3

\% 1 Vi | V2

S2 S3

The evaluation proceeds along the evaluation path. The initial stack (S1) is empty. After
evaluating the first operand the stack (S2) contains one value namely V1. The second operand
causes a second value to be placed on the stack (S3) and, finally, the operator takes these two
value from the stack replacing them by the single result V3 as shown in stack (S4).

This mechanism works for expression of any complexity; for example, the evaluation of
2+(8/4)*5 is as follows:

Eval uati on path

2 ‘ 10
T
S7
S1
2
2 2 5
S2
S6
2 8 2 8 4 2 2
S3 sS4 S5

Observe that we only use the applicative structure to help us find the evaluation path. To
perform the evaluation it is sufficient to know the order in which the items appear in the evaluation
path, namely:

19

2 8 4 / 5 * +
This order is called the reverse polish form of the expression 2+(8/4)*5 and it is important since

e it is easy to obtain

e and it is an order of evaluation that works.

If we connect the operator to the path on the way down rather than on the way up we obtain
the sequence:

+ 2 x / 8 4 5
This is called the polish (or prefix) notation and is close to the functional form
plus(2, mult(div(8, 4), 5))
Notice that monadic operators can be transformed to reverse polish form. For example, the
reverse polish form of 2 * (-3) is 2 3 ~ * where ~ denotes the monadic minus operator. Some

expressions are not quite so susceptible. Consider the expression: 2=3 7 4 : 5x%6.
Eval uation path

The choice of evaluation path depends on the value of the boolean expression. The closest approach
to reverse polish form might be

As far as compiled code is concerned, it does not matter that the reverse polish form cannot be
written as a linear sequence of items.

1.17 The use of a stack in function calls

The observation that function calls are in many respects similar to applicative expression operators
leads one to suspect that it possible to use a stack in the implementation of function applications.
Consider the call £(3,4) of a function defined as follows:

let f(x, y) = E

If we regard f as an ordinary operator we find that, at the time when f is to be applied, the top
two items of the stack are 3 and 4.

20

The evaluation of the call involves the evaluation of E and so one might provide a new stack on
which to perform this evaluation.

I [a]a] [

Arguments Workspace for call

Ultimately the evaluation of E will yield a value V, say, at which time the stacks will be as follows:
| TsT4]

Then finally this result is carried back to the previous stack frame and the old control path
resumed. At that moment the stack will look as follows:

1.18 An implementation of function calls

What follows is a description of a simple mechanism for the implementation of function calls.
Many variations and optimisations are possible and so the implementation given here should only
be regarded as a guide.

When a function is called it is allocated a piece of stack (sometimes called a stack frame, or
activation record) that is used to hold temporary values that are needed during the course of the
evaluation of the body. A frame pointer (P) will be used to point to the base of the stack frame
that is currently active.> When the function call is complete the previous stack frame must be
re-instated and execution must resume at the point just after the call. For this to be possible the
previous frame pointer (Pi) and the return address (L) are held in the current stack frame.

When a function is applied, a new display must be constructed so that the free variables of
the function are accessible during the evaluation of the body. This new display could be placed in
the stack frame allocated for the function call, and so combined with the previous frame pointer
and return address the base of a stack frame is as follows:

lo]]
T N~
p Di spl ay

The size of the display depends on the textual depth of nesting of the function body and so is
known when the function is being compiled. Local variables of the function can be allocated cells
within the stack frame and accessed using constant offsets relative to the stack frame pointer.

The purpose of the display is to allow for access to the free variables of the function. Since every
free variable is a local variable of some other function it would be sufficient for each element of
the display to be a pointer to the appropriate stack frame. The display can, thus, be a vector of
frame pointers. In the example in section 1.15, the environment E3 was as follows:

El:(a,b,c) level 1
E2: (x,y,2) level 2
E3:(t) level 3

When execution is in environment E3, the current stack will be as follows:

3Tt is convenient to assume the stack is essentially an array of 4-byte or 8-byte locations (capable of holding an
integer or a pointer) and to describe accessing the 5th location in the current stack frame as P[4] etc.

21

t
[Pt E[E2]]
N

p Di spl ay

where E1 and E2 are pointers to the stack frames containing (x,y,z) and (a,b,c).

a b ¢ X y z
il [T] Pililea] []]
Enpt ;
E1l D_gglgy E2 Display

Notice that all the variables a, b, c, x, y, z and t can be accessed via P.

a: P[2][2] ©b: P[2][3] c: P[2][4]
x: P[31[3] y: P[3]1[4] =z: P[3]1[5]
t: P[4]

Thus P can be regarded as a representation of the current environment and so can be used,
for example, as the environment part of a closure.

An example

Consider the following fragment of program:

let r() =

{leta, b=1, 2
let f(x, y) = a*x + bxy
let ¢ = 3
c := £(4,5)

}

At the moment when f is just about to be entered the current stack frame is as follows:

Code for f
777777 b \f] ¢
pifel [1]2["[3]a]5]
T W_/
Di spl ay Argunents for f
p

At the moment just after f has been entered (when a*x+b*y is about to be evaluated) the
state is as follows:

Code for f
777777 a b \f c
pPfo] (12" "[3]a]5]
~—
Di spl ay Argurents for f
777777 X
el [TTa]5s]
T Di spl ay
P

If E is the environment part of the closure for £, the display can be constructed by compiled
code at the start of £ consisting of a sequence of assignments (assuming the size of the new display
is 3).

22

P[2] := E[2] // make a copy
P[3] := E[3] // of the display
P[4] := E // add one more level

The arguments can now be popped from the calling stack frame and placed in their appropriate
positions in the current frame.

Notice that at this moment a, b, x and y can be addressed via P as follows:

a: P[4][4] b: P[4][5]
x: P[5] y: P[6]

Just after the return from the call £(4,5) the stack is as follows:

Code for f
£ a b \f

Di spl ay

The implementation of this mechanism can be reasonably efficient provided there are sufficient
general registers available to hold the P pointer and all the display pointers. These registers
could be set up on entry to the function. This would allow all the variables (both local and free)
to be directly addressed. On some machines saving and restoring display registers can be done
efficiently using the store-multiple and load-multiple instructions. However, given the relative
rarity of variables which are neither top-level (global) nor local, it often suffices just to maintain
a static link to which we now turn.

1.19 Static chain method

Instead of storing the entire display in each stack frame (of size 0 in a top-level function, of size n
in a function textually nested n times etc.), the display can be held implicitly be merely keeping a
chain of pointers (called the static chain) through the stack frames corresponding to the different
levels of the display. The base of a stack frame (the linkage information) now consists of:

1. The previous frame pointer P.
2. The return address L.

3. The static chain pointer S.

Assuming the linkage information is of size 3 words, on entry to the above example call to £(), a,
b, x and y can be addressed via P as follows:

a: P[2][3] b: P[2][4]
x: P[3] y: P[4]

The length of the static chain is equal to the textual nesting level of the current piece of code
that is being executed and is, of course, equal to the size of the current display. The elements of
the display are the pointers to all the stack frames that the static chain passes through.

A possible calling sequence for the call f(args ...) is as follows:

code to calculate the arguments

E := <environment part of f>

B := <code address part of f>

NEWP := <pointer to the first free stack position>
L := ret; JMP B subroutine jump to f

ret:

The code at the entry point of £ could be:

NEWP[0] := P save the previous P pointer

P := NEWP change to the new P pointer
P[1] := L save the return address
P[2] := E save the static chain link

and the code to return from £ could be:

L := P[1] find the return address
P := P[0] restore the previous P pointer
JMP L branch to the return address

One way to examine the possible actual code sequences for (say) the Pentium architecture is
to create a file foo.c containing C such as

extern int g(int);
int f(int x) { return g(x+1)+2; }

and then to compile it using (say) gcc with
gcc -S foo.c

This creates a file foo.s containing generated machine for for the host architecture (so chose a
Pentium machine to see Pentium code!). Beware: ‘gcc’ constructs a downwards-growing stack as
opposed to the upwards-growing stack used in these notes (see variations below) so everything will
not correspond exactly.

1.20 Variations

The calling sequence outlined above should only be regarded as a guide, since many variations
and optimisations are possible. A few of the possibilities are as follows.

1. Most modern machines have a fair number of registers. Some of these are very useful in
holding pointers to the current stack frame, the limit of stack, arguments and local variables
(the Part IT course on optimising compilers looks at register allocation for user variables in
more detail). It is then worth evaluating which of these should be preserved over procedure
call by the called routine and which the caller has responsibility to save. Some registers may
be used to cache outermore lexical levels obtained from the display (or from following the
static chain). This course ignores such clever uses of register and uses P[n] to access local
variables, P[2] [n] to access variables via following the static chain once etc.

24

2. The outermost display level is the same for every display and so may be regarded as constant
needing no code to repeatedly set it (some linkers arrange that a dedicated register points
to (small) global variables which are held contiguously). The innermost display level is
represented by the P pointer. In practice only about 3% of variable accesses belong to
the intermediate levels and so many compilers accept longer access times for such variables
instead of calculating them at entry to the procedure ‘just in case they are needed’. This
improves the efficiency of most procedures. This 3% fact also justifies the modern tendency
to use static links in preference to displays.

3. An advantage of the static chain approach is that the position of the arguments in a stack
frame depends only on their number and type and not on the textual depth of the procedure.
This means that the code in the call to deal with the arguments can (possibly) place them
directly in the correct positions in the new stack frame.

4. A decision must be made whether to allocate one (large enough) contiguous region of store
for the stack, or to break the stack on each procedure call.

5. In most programming languages procedures are constant (not updatable by assignment)
and so no storage cells need be allocated for them. When such a procedure is referenced the
compiler can easily construct the environment pointer and entry address that would have
been in the closure. Notice that the required environment pointer is the pointer to the stack
frame that would have held the closure if a storage cell had been allocated. Proper closures
are needed for procedure variables, and they are usually used when procedures are passed
as parameters to other procedures.

6. Often extra information is stored in a stack frame to allow for improved runtime diagnostics.
This requires a difficult compromise between space efficiency, execution efficiency and the
effectiveness of the debugging aids.

1.21 Situations where a stack does not work

If the language allows the manipulation of pointers then erroneous situations are possible. Suppose
we have the “address of” operator & which is defined so that &x yields the address of (or pointer
to) the storage cell for x. Suppose we also have “contents of” operator * which takes a pointer
as operand and yields the contents of the cell to which it refers. Naturally we expect * (&x)=x.
Consider the program:

let £() = { let a =0
in &a
}
let p = £0)

The result of £ is a pointer to the local variable a but unfortunately when we return from the call
this variable no longer exists and p is initialised to hold a pointer which is no longer valid and
if used may cause an extremely obscure runtime error. Many languages (e.g. Pascal) avoid this
problem by only allowing pointers into the heap.

Some other objects such as functions and arrays contain implicit pointers to the stack and
so have to be restricted if a stack implementation is to work. Consider:

let £(x) = { let g(t) = x+t
in g

}

25

let addl = f(1)

The result of £(1) should be a function which will add one to its argument. Thus one might hope
that add1(23) would yield 24. It would, however, fail if implemented using a simple stack. We
can demonstrate this by giving the state of the stack at various stages of the evaluation. Just after
the £ has been declared the stack is as follows:

: = Code fo

l

At the time when g has just been declared in the evaluation of £ (1) the stack is as follows:
Code for f

¢ Code for g

x\g
[Pofrofso ['7]Pi]Lifsi[1 [V 7]

P

After the declaration of add1 the stack would be as follows:
Code for f
¢ \Acl)r:ere x used to be

Code for g

Thus if we now try to use addl it will fail since its implicit reference to x will not work. If g
had free variables which were also free variables of £ then failure would also result since the static
chain for g is liable to be overwritten.

The simple safe rule that many high level languages adopt to make a stack implementation
possible is that no object with implicit pointers into the stack (procedures, arrays or labels) may
be assigned or returned as the result of a procedure call. Algol-60 first coined these restrictions
as enabling a stack-based implementation to work.

ML clearly does allow objects to be returned from procedure calls. We can see that the
problem in such languages is that the above implementation would forbid stack frames from being
deallocated on return from a function, instead we have to wait until the last use of any of its
bound variables.* This implementation is called a “Spaghetti stack” and stack-frame deallocation
is handled by a garbage collector. However, the overhead of keeping a whole stack-frame for
possibly a single variable is excessive and we now turn to an efficient implementation.

1.22 TImplementing ML free variables

In ML programs like

val a = 1;
fun g(b) = (let fun f(x) = x + a + b in f end);
val p = g 2;
val q = g 3;

we have seen that an implementation which permanently allocates b to the stack location where
it is passed will not work.

4More precisely, using static links, to the last use of any free variable of the called function.

26

A mechanism originally proposed by Strachey is as follows. To declare a function such as
let f(x) =x+a+b

a tuple is constructed (called the free variable list) which contains the values (Lvalues or Rvalues
whichever is appropriate) of the free variables. A pointer to this list is sufficient environment
information for the closure. For £ defined above the list would be as follows:

FV——=| a
b

During the evaluation of a function call, two pointers are needed: the P pointer, as before, to ad-
dress the arguments and local variables, and a pointer FV to point to the free variable list (although
note that the FV pointer could be treated as an additional hidden argument to functions—this
would be appropriate for expressing the translation as C code rather than machine code).

This mechanism requires more work at function definition time but less work within the call
since all free variables can be accessed via a simple indirection. It is used in the Edinburgh SML
implementation. (An additional trick is to store a pointer to the function code in offset 0 of the
free variable list as if it were the first free variable. A pointer to the free variable list can then
represent the whole closure as a single word.)

Note that this works most effectively when free variables are Rvalues and hence can be copied
freely. When free variables are Lvalues we need to enter a pointer to the actual aliased location in
the free variable list of each function which references it. It is then necessary also to allocate the
location itself on the heap. (For ML experts: note that ML’s use of ref for updateable variables
means that this is already the case in ML.)

1.23 Parameter passing mechanisms

When we apply a function to an argument we write:
f (arg)

where f is a function (or more strictly an expression yielding a function) and arg is any expression.
In a referentially transparent language all we need to know about arg is its value; but, as we have
seen, there are two sorts of value that might be considered, namely an Lvalue or an Rvalue. Many
languages (e.g. Pascal, Ada) allow the user to specify which is to be used. For example:

let f(VALUE x) = ...

might declare a function whose argument is an Rvalue. The parameter is said to be called by
value. Alternatively, the declaration:

let f(REF x) = ...

might declare a function whose argument is an Lvalue. The parameter is said to be called by
reference. The difference in the effect of these two modes of calling is demonstrated by the
following example.

let r(REF x) = { x := x+1 } let r(VALUE x) = { x := x+1 }
let a = 10 let a = 10

r(a) r(a)

// a now equals 11 // a now equals 10

27

1.24 Note on Algol call-by-name

Algol 60 is a language that attempted to be mathematically clean and was influenced by the
simple calling mechanism of lambda calculus. In the standard report on Algol 60 the procedure
calling mechanism is described in terms of textually replacing a call by a copy of the appropriate
procedure body. Systematic renaming of identifiers was used to avoid problems with the scope of
names. With this approach the natural treatment for an actual parameter of a procedure was to
use it as a textual replacement for every occurrence of the corresponding formal parameter. This
is precisely the effect of the lambda calculus evaluation rules and in the absence of the assignment
command it is indistinguishable from call-by-value or call-by-reference.?

When an actual parameter in Algol is called by name it is not evaluated in either Lmode or
Rmode but is passed to the procedure as an unevaluated expression. Whenever this parameter is
used within the procedure, the expression is evaluated. Hence the expression may be evaluated
many times (possibly yielding a different value each time). Consider the following Algol program.

INTEGER a,i,b;
PROCEDURE f (x) INTEGER;
BEGIN a := x;

i = i+1;
b :=x
END;
a:=i:=b:=10;
f(i+2);

COMMENT a=12, i=11 and b=13;

ML and C/C++ have no call-by-name mechanism, but the same effect can be achieved by passing
a suitable function by value. The following convention works:

1. Declare the parameter as a parameterless function (a ‘thunk’).
2. Replace all occurrences of it in the body by parameterless calls.

3. Replace the actual parameter expression by a parameterless function whose body is that
expression.

The above Algol example then transforms into the following C program:

int a = 10, i = 10, b = 10;
int pointlessname() { return i+2;}
void f(int x(void)) { a = x();
i = 1i+1;
b =x0;
}

f (pointlessname);

[C experts might care to note that this trick only works for C when all variables free to the thunk
are declared at top level; Java cannot even express passing a function as a parameter to another
function.]

5Well, there is a slight difference in that an unused call-by-name parameter will never be evaluated! This is
exploited in so-called ‘lazy’ languages and the Part II course looks at optimisations which select most appropriate
calling mechanism for each definition in such languages.

28

1.25 A source-to-source view of argument passing

Many modern languages only provide call-by-value. This invites us to explain, as we did above,
other calling mechanisms in terms of call-by-value (indeed such translations, and languages capable
of expressing them, have probably had much to do with the disappearance of such mechanisms!).

For example, values passed by reference (or by result—Ada’s out parameter) typically have
to be Lvalues. Therefore they can be address-taken in C. Hence we can represent:

void f1(REF int x) { ... x ... }
void f2(IN OUT int x) { ... x ... } // Ada-style
void £3(0UT int x) { ... x ... } // Ada-style
void f4(NAME int x) { ... x ... }
.. f1(e)
.. f2(e)
.. £3(e)
. f4(e)
as
void f1’(int *xp) { ... *xp ... }
void 2’ (int *xp) { int x = *xp; { ... x ... } *xp = x; }
void 3’ (int *xp) { int x; { ... x ... } *xp = x; }
void f4’ (int xf()) { ... xf(... }
. f12(&e) ...
. £27 (&e) ...
. £37(&e) ...

. f4(fn) => e)

It is a good exercise (and a frequent source of tripos questions) to write a program which prints
different numbers based on which (unknown) parameter passing mechanism a sample language
uses.

1.26 Modes of binding free variables

Consider a function definition such as
let £f(x) = x+a

We have seen how x can be passed by value or by reference. It is also possible to distinguish the
modes of association of free variables such as a. The language CPL provided syntactic means of
specifying this process: a function whose free variables are called by value was defined using the
= operator. If the free variables are called by reference then the function was defined using the ==
operator. For example,

let a = 3 let a = 3

let f(x) = x+a let f(x) == x+a
// £(5) equals 8 // £(5) equals 8
a := 10; a := 10;

// £(5) equals 8

// £(5) equals 15

Nowadays languages provide the latter form only, leaving the former form to be simulated by the

user by

let a = 3
let private_a = a // save ‘a’ at definition
let £(x) = x + private_a

// £(5) equals 8

a := 10;

// £(5) equals 8

The variable private_a can be made truly private (visible in the body of £ but not at a:=10;)
by the ML ‘local’ construct or merely by taking a little care:

let a =3
let f = (let private_a = a // save ‘a’ at definition
in fn x => x + private_a)

1.27 Labels and jumps

In Algol, if the destination label of a jump is in the same block as the jump, then the jump only
involves a simple transfer of control. However, if the destination is in an outer block then the
jump also involves the removal of some declared variables from the stack, and if the destination
is global to the current procedure then the jump will cause an exit from one or more procedures.
Consider:

{ let r(1ab) = { ...
. goto lab

r ()

The call r(M) is equivalent to obeying the body of r with appropriate parameter substitutions.
Thus the call is equivalent to:

. goto M

and so the jump clearly should cause control to be resumed at the point labelled M.

In terms of the stack implementation it is necessary to reset the P pointer to the value it had
at the moment when execution entered the scope of M. Notice that, at the time when the jump is
about to be made, the current P pointer may differ. One way to implement this kind of jump is
to represent the value of a label as a pair of pointers—a pointer to compiled code and a P pointer
(note the similarity to a function closure—we need to get to the correct code location and also to
have the correct environment when we arrive). The action to take at the jump is then:

1. reset the P pointer,

30

2. transfer control.

We should notice that the value of a label (like the value of a function) contains an implicit
frame pointer and so some restrictions must be imposed to avoid nonsensical situations. Typically
labels (as in Algol) may not be assigned or returned as results of functions. This will ensure that
all jumps are jumps to activations that dynamically enclose the jump statement.

1.28 Exceptions

ML and Java exceptions and their handlers are conveniently seen as a restricted form of goto,
albeit with an argument.

This leads to the following implementation: a try (Java) or handle (ML) construct effectively
places a label on the handler code. Entering the try block pushes the label value (recall a
label /frame-pointer pair) onto a stack of handlers and successful execution of the try block pops
the handler stack. When an exception occurs its argument is stored in a reserved variable (just like
a procedure argument) and the label at the top of the handler stack is popped and a goto executed
to it. The handler code then checks its argument to see if matches the exceptions intended to be
caught. If there is no match the exception is re-raised therefore invoking the next (dynamically)
outermore handler. If the match succeeds the code continues in the handler and then with the
statement following the try-except block.

For example given exception foo; we would implement
try Cl1 except foo => C2 end; C3
as

push(exc_stack, L2);
c1
pop (exc_stack) ;
goto L3:
L2: if (raised_exc != foo) doraise(raised_exc);
C2;
L3: C3;

and the doraise() function looks like

void doraise(exc)

{ raise_exc = exc;
goto pop(exc_stack) ;

}

Now, an alternative to an explicit stack is to keep a linked list of handlers (label-value, next)
and have a H pointer which points to its head. This has the advantage that each element can be
stored in the stack frame which is active when the try block is entered; thus a single stack suffices
for function calls and exception handlers.

Finally, sadly ANSI C labels cannot be used as values as indicated above, and so code shown
above would have to be implemented using the library function setjmp() instead.

31

1.29 Arrays

When an array is declared space must be allocated for its elements. In most languages the
lifetime of an array is the same as that of a simple variable declared at the same point, and so it
would be natural to allocate space for the array on the runtime stack. This is indeed what many
implementations do. However, this is not always convenient for various reasons. Consider, for
example, the following:

{ int x=1, y=2;
int v[nl; // an array from O to n-1
int a=3, b=4;

Within the body of the above block the current stack frame might look like the following;:

el ements of v

T 0 1 n
subscripts

(This assumes, as in C, that v itself is a constant and does not require a storage cell.) In this
example, n may be large and so the variables a and b may be a great distance from P. On some
machines access to such variables is less efficient. Moreover, if n is not a compile-time constant,®
the position of a and b relative to P will not be known until runtime, again causing inefficiency.
Many implementations allocate such array elements on a separate stack, often working from the
other end of store. This necessitates a separate array-stack pointer (A, say) and space in the main
stack to save and restore it. For the above example the two stacks may look as follows:

0
T subscripts
A

When execution leaves the current procedure P, L, S and A must all all restored. On many
implementations A is restored at the end of the execution of any block in which an array is
declared.

1.30 Object-oriented language storage layout
Declarations (in C++) like
class A { int al,a2; } x;

allocate storage for two integers and record the fact that al is at offset zero, and a2 is at offset 4
(assuming ints are 4 bytes wide). Now after

6C requires n to be a compile-time constant.

32

class B : A { int b; };

objects of type B have 3 integer fields a1 and a2 (by inheritance) normally stored at offsets 0 and 4
so that (pointers to) objects of type B can be passed to functions expecting objects of type A with
no run-time cost. The member b would then be at offset 8. The following definition is similar.

class C : A { int c; };

Now, suppose one has multiple inheritance (as in C++) so we can inherit the members and
methods from two or more classes and writes:

class D : B,C { int d; };

Firstly there is the observation that passing an object of type D to a routine expecting C must
involve a run-time cost of an addition so that element c can be accessed at offset 8 in the received
C. (This assumes that B is stored at offset zero in D.)

There is also the more fundamental question as to what are the members of objects of type
D. Does it have 7 (3 in both B and C and also d)7 Or maybe 5 (al, a2, b, c, d)?7 C++ by default
has 7, i.e. the two copies of A are separate. In C++ we can cause the two copies of A to share by
replacing the definitions for B and C by

class B : virtual A { int b; };
class C : virtual A { int c; };
class D : B,C { int d; };

But now the need to treat objects of type D as objects of type B or C means that the storage layout
for D is likely to be implemented as

struct { A *__p, int b; A *__q, int c; A x; } s =
{ &s.x, 0, &s.x, 0, { 0, O }};

I.e. there is a single A object and both the _p field of the logical B object and the __q field of the
logical C object share it. This is necessary so that a D object can be passed to routines which
expect a B or a C object—but note that is causes declarations like B x to be of 16 bytes: 8 for the
A, 4 for the indirect pointer (after all, routines need to be compiled which access the elements of
a B not knowing whether is it a ‘true’ B or actually a D).

Such arguments are one reason why Java omits multiple inheritance. Its interface facility
provides similar facilities.

The above details only dealt with ordinary members and inheritance. Suppose we now add
member functions (methods). Firstly consider the implementation of a method like:

class C {
int a;
static int b;
int f(int x) { return a+b+x;}

};

How is £ () to access its variables? Recall that a static variable is per-class, and a non-static one
per-instance. Hence the code could be re-written as:

33

int unique_name_for_b_of_C;
class C {
int a;
int f(int x) { return a + unique_name_for_b_of_C + x;}
};
Now consider a call to £() such as c.f(x) where c is of class C. This is typically implemented as
an ordinary procedure call unique name for_f_of _C(c,x) and the definition of £ () implemented

as:

int unique_name_for_f_of_C(C c, int x)

{ return c.a // fixed offset from c
+ unique_name_for_b_of_C // global variable
+ X; // argument

};

Let us now turn to how inheritance affects this model of functions, say in Java:

class A { void £() { printf("I am an A"); 1}};
class B:A { void £() { printf("I am a B"); 1}};

A x;

By;

void g(A p) { p.£0; }

main() { x.£0); // gives: I am an A
y-£0; // gives: I am a B
g(x); // gives I am an A
g(y); // gives what?

}

There are two cases to be made; should the fact that in the call p.f(); we have that p is of type
A cause A::f(); to be activated, or should the fact that the value of p, although now an A was
originally a B cause B::£(); to be activated and hence “I am a B” to be printed? In Java the
latter happens; by default in C++ the former happens, to achieve the arguably more useful Java
effect it is necessary to use the virtual keyword:

class A { virtual void £f() { printf("I am an A"); }};
class B:A { virtual void £() { printf("I am a B"); }};

So how is this implemented? Although it appears that objects of type A have no data, they
need to represent that fact that one or other f is to be called. This means that their underlying
implementation is of a storage cell containing the address of the function to be called. (In practice,
since there may be many virtual functions and so a virtual function table is used whereby a class
which has one or more virtual functions has a single additional cell which points to a table of
functions to be called by this object. This can be shared among all objects declared at that type,
although each type inheriting the given type will in general need its own table).

For more details on this topic the interested reader is referred to Ellis and Stroustrup “The
annotated C++ reference manual”.

1.31 Data types

In the course so far we have essentially ignored the idea of data type. Indeed we have used ‘int x
= 1’ and ‘let x = 1’ almost interchangeably. Now we come to look at the possibilities of typing.

34

One possibility (adopted in Lisp, Prolog and the like) is to decree that types are part of an Rvalue
and that the type of a name (or storage cell) is the value last stored in it. This is a scheme of
dynamic types and in general each operation in the language need to check whether the value
stored in the cell is of the correct type. (This manifested itself in the lambda calculus evaluator in
section 1.14 where errors occur if we apply an integer as a function or attempt to add a function
to a value).

Most mainstream languages associate the concept of data type with that of an identifier.
This is a scheme of static types and generally providing an explicit type for all identifiers leads to
the data type of all expressions being known at compile time. The type of an expression can be
thought of as a constraint on the possible values that the expression may have. The type is used
to determine the way in which the value is represented and hence the amount of storage space
required to hold it. The types of variables are often declared explicitly, as in:

float x;
double d;
int i;

Knowing the type of a variable has the following advantages:

1. It helps the compiler to allocate space efficiently, (ints take less space than doubles).

2. It allows for overloading. That is the ability to use the same symbol (e.g. +) to mean different
things depending on the types of the operands. For instance, i+i performs integer addition
while d+d is a double operation.

3. Some type conversions can be inserted automatically. For instance, x := i is converted to
x := itof (i) where itof is the conversion function from int to float. Similarly, i+x is
converted to itof (i)+x.

4. Automatic type checking is possible. This improves error diagnostics and, in many cases,
helps the compiler to generate programs that are incapable of losing control. For example,
goto L will compile into a legal jump provided L is of type label. Nonsensical jumps such
as goto 42 cannot escape the check. Similar considerations apply to procedure calls.

Overloading, automatic type conversions and type checking are all available to a language
with dynamic types but such operations must be handled at runtime and this is like to have a
drastic effect on runtime efficiency. A second inherent inefficiency of such languages is caused by
not knowing at compile time how much space is required to represent the value of an expression.
This leads to an implementation where most values are represented by pointers to where the actual
value is stored. This mechanism is costly both because of the extra indirection and the need for a
garbage collecting space allocation package. In implementation of this kind of language the type
of a value is often packed in with the pointer.

One advantage of dynamic typing over static typing is that it is easy to write functions which
take a list of any type of values and applies a given function to it (usually called the map function).
Many statically typed languages render this impossible (one can see problems might arise if lists
of (say) characters were stored differently from lists of integers). Some languages (most notably
ML) have polymorphic types which are static types but which retain some flexibility expressed
as parameterisation. For example the above map function has ML type

(a => B) * (a list) -> (f list)

If one wishes to emphasise that a statically typed system is not polymorphic one sometimes says
it is a monomorphic type system.

35

Polymorphic type systems often allow for type inference, often called nowadays type recon-
struction in which types can be omitted by the user and reconstructed by the system. Note that
in a monomorphic type system, there is no problem in reconstructing the type of Ax. x+1 nor
Ax. x 7 false:true but the simpler Ax. x causes problems, since a wrong ‘guess’ by the type
reconstructor may cause later parts of code to fail to type-check.

We observe that overloading and polymorphism do not always fit well together: consider
writing in ML Ax. x+x. The + function has both type

(int * int -> int) and (real * real -> real)

S0 it is not immediately obvious how to reconstruct the type for this expression (ML rejects it).
It may be worth talking about inheritance based polymorphism here.

Finally, sometimes languages are described as typeless. BCPL (a forerunner of C) is an
example. The idea here is that we have a single data type, the word (e.g. 32-bit bit-pattern),
within which all values are represented, be they integers, pointers or function entry points. Each
value is treated as required by the operator which is applied to it. E.g. in £(x+1,y[z]) we treat
the values in £, %, y, z as function entry point, integer, pointer to array of words, and integer
respectively. Although such languages are not common today, one can see them as being in the
intersection of dynamically and statically type languages. Moreover, they are often effectively
used as intermediate languages for typed languages whose type information has been removed by
a previous pass (e.g. in intermediate code in a C compiler there is often no difference between a
pointer and an integer, whereas there is a fundamental difference in C itself).

1.32 Source-to-source translation

It is often convenient (and you will have seen it done several times above in the notes) to explain
a higher-level feature (e.g. exceptions or method invocation) in terms of lower-level features (e.g.
gotos or procedure call with a hidden ‘object’ parameter).

This is often a convenient way to specify precisely how a feature behaves by expanding it
into phrases in a ‘core’ subset language. Another example is the definition of

while e do €'
construct in Standard ML as being shorthand (syntactic sugar) for
let fun f() = if e then (e'; £()) else () in f() end

(provided that f is chosen to avoid clashes with free variables of e and e').

A related idea (becoming more and more popular) is that of compiling a higher-level language
(e.g. Java) into a lower-level language (e.g. C) instead of directly to machine code. This has
advantages of portability of the resultant system (i.e. it runs on any system which has a C compiler)
and allows one to address issues (e.g. of how to implement Java synchronized methods) by
translating them by inserting mutex function calls into the C translation instead of worrying
about this and keeping the surrounding generated code in order.

1.33 Spectrum of Compilers and Interpreters

One might think that it is pretty clear whether a language is compiled (like C say) or interpreted
(like BASIC say). Even leaving aside issues like microcoded machines (when the instruction set is

36

actually executed by a lower-level program at the hardware level “Big fleas have little fleas upon
their backs to bite them”) this question is more subtle than first appears.

Consider Sun’s Java system. A Java program is indeed compiled to instructions (for the
Java Virtual Machine—JVM) which is then typically interpreted (one tends to use the word
‘emulated’” when the structure being interpreted resembles a machine) by a C program. One
recent development is that of Just-In-Time—JIT compilers for Java in which the ‘compiled’ JVM
code is translated to native code just before execution.

If you think that there is a world of difference between emulating JVM instructions and
executing a native translation of them then consider a simple JIT compiler which replaces each
JVM instruction with a procedure call, so instead of emulating

load_local_var 3
we execute
load_local_var(3);

where the procedure load_local_var () merely performs the code that the interpreter would have
performed.

Similarly, does parsing our simple expression language into trees before interpreting them
cause us to have a compiler, and should we reserve the word ‘interpreter’ for a system which
interprets text (like some BASIC systems)?

So, we conclude there is no line-in-the-sand difference between a compiled system and and
an interpreted system. Instead there is a spectrum whose essential variable is how much work is
done statically (i.e. before execution starts) and how much is done during execution.

In our simple lambda evaluator earlier in the notes, we do assume that the program-reading
phase has arranged the expression as a tree and faulted any mismatched brackets etcHowever, we
still arrange to search for names (see Lookup) and check type information (see the code for e; +e5)
at run-time.

Designing a language (e.g. its type system) so that as much work as possible can be done
before execution starts clearly helps one to build efficient implementations by allowing the compiler
to generate good code.

37

Chapter 2
Compiling Techniques

A compiler is a program to translate the source form of a program into its equivalent machine
code or relocatable binary form. The number of compilers that exist is very large and considerable
human effort has been expended in constructing them. As a result most parts of the compilations
process have become well understood and the job of writing a compiler is no longer the difficult
task it once was. A compiler tends to be a large program (typically 10,000 to 50,000 machine
instructions and sometimes as high as 300,000 to a million instructions) and it is wise to structure
it in order to make its individual components small enough to think about and handle conveniently.

If a language is sufficiently simple it and is designed suitably, it can be compiled by a one pass
compiler, that is, it can be compiled a small piece (often just a statement) at a time. During the
compilation process the data types and allocated locations of variables are remembered together
with any other information that may be needed later on during the compilation. The space
required for this is substantially less than the space needed to hold the entire program and there
is usually no limit on the size of the program than may be compiled in this way. In general such
a compiler is simple in design and fast in execution.

Most languages have features that make compilation in a single pass either difficult or im-
possible. For example, in Algol 60 the declaration of names may occur many line or even pages
after they are first used, as in:

BEGIN REAL m;

PROC g;
BEGIN REAL x;
f(m);
m:
END

END

In this example it would be difficult to compile the call £(m) using a single pass compiler since
although m seems to be declared as a REAL at the time of the call this is superseded by the label
declaration some lines later. Similarly in ML, consider programs like:

val g = 3;
fun f(x) ..
and g(x) e

1]
[0}

38

For most current programming languages, it is normal to compile in a number of stages (or
passes) with the output of one pass being the input of the next. A compiler designed in this way
is called a multi-pass compiler.

2.1 The structure of a typical multi-pass compiler

We will take as an example a compiler with four passes.

arse i i
[¢ token p intermediate
stream tree code

haracter
stream

target
code

R —

2.1.1 The lexical analyser

This reads the characters of the source program and recognises the basic syntactic components
that they represent. It will recognise identifiers, reserved word, numbers, string constants and all
other basic symbols (or tokens) and throw away all other ignorable text such as spaces, newlines
and comments. For example, the result of lexical analysis of the following program:

{letx =1
X :=x+y

}

might be:
LBRACE LET ID/x EQ NUM/1 ID/x ASS ID/x PLUS ID/y RBRACE

Lexical tokens are often represented in a compiler by small integers and for composite tokens
such as identifiers, numbers, etc. additional information is passed by means of pointers into
appropriate tables; for example calling a routine lex () might return the next token while setting
a global variable lex_aux_string to the string form of an identifier when ID is returned, similarly
lex_aux_int might be set to the binary representation of an integer when NUM is returned.

2.1.2 The syntax analyser

This will recognise the syntactic structure of the sequence of tokens delivered by the lexical anal-
yser. The result of syntax analysis is often a tree representing the syntactic structure of the
program. This tree is sometime called an abstract syntax tree. The syntax analyser would recog-
nise that the above example parses as follows:

LBRACE LET ID'x EQ NUMB/1 ID/x ASS | D/x PLUS | D)y RBRACE

| | | | . |
id exp exp exp exp

definition ‘ exp ‘

decl aration command

bl ock

39

and it might be represented within the compiler by the following tree structure:
—=| LET /; EQDEF

— ——| NUMB X

L l
ASS

— T 1D

y

where the tree operators (e.g. LET and EQDEF) are represented as small integers.

In order that the tree produced is not unnecessarily large it is usually constructed in a
condensed form as above with only essential syntactic features included. It is, for instance, un-
necessary to represent the expression x as a <sum> which is a <factor> which is a <primary>
which is an <identifier>. This would take more tree space space and would also make later pro-
cessing less convenient. The phrase ‘abstract syntax tree’ refers to the fact the only semantically
important items are incorporated into the tree; thus a+b and ((a)+(((b))) might have the same
representation, as might while (e) C and for(;e;) C.

2.1.3 The translation phase

This pass flattens the tree into a linear sequence of intermediate object code. At the same time it
deals with

1. the scopes of identifiers,
2. declaration and allocation of storage,

3. selection of overloaded operators and the insertion of automatic type transfers.
The intermediate object code for the command:
y :=x07 -x : x

might be as follows:

LP 3 load x

LN O load 0O

LT less than
JF L36 jump if false to L36
LP 3 load x

NEG negate it
JUMP L37 jump to L37
LAB L36

LP 3 load x

LAB L37

SP 4 store y

Alternatively, the intermediate object code could be represented within the compiler as a directed
graph as follows:

—JwP3H{No LT

2.1.4 The code generator

This pass converts the intermediate object code into machine instructions and outputs them in
either assembly language or relocatable binary form. The code generator is mainly concerned with
local optimisation, the allocation of registers and the selection of machine instructions.

The four passes just described for a clear-cut logical divisions of the compiler, but are not
necessarily applied in sequence. It is, for instance, common for the lexical analyser to be a
subroutine of the syntax analyser and for it to be called whenever the syntax analyser requires
another lexical token. It is also quite common for the translation phase and the code generator to
be merged into one pass. Some compilers have additional passes, particularly if a high degree of
optimisation is required.

2.1.5 Advantages of the multi-pass approach

1. It breaks a large and complicated task into smaller, more manageable pieces.

2. It is possible to reduce the store requirements of the compiler by overlaying the code for a
later pass in the space occupied by the code of an earlier pass.

3. Modifications to the compiler (e.g. the addition of a synonym for a reserved word, or a minor
improvement in compiler code) often require changes to one pass only and are thus simple
to make.

4. A multi-pass compiler tends to be easier to describe and understand.

5. More of the design of the compiler is machine independent. It is sometimes possible to
arrange that all machine dependent parts are in the code generator.

6. The job of writing the compiler can be shared between a number of programmers each
working on separate passes. The interface between the passes is easy to specify precisely.

2.2 Lexical analysis

This is a critical part of a simple compiler since it can account for more than 50% of the compile
time. This is because:

1. character handling tends to be expensive,

2. there are a large number of characters in a program compared with the number of lexical
tokens, and

3. the lexical analyser usually constructs name tables and performs the binary conversion of
constants.

For production compilers it was traditional to allocate one’s most skillful programmers to the
lexical analyser.

2.2.1 Regular expressions

The recognition of lexical tokens is straightforward and does not require a sophisticated analyser.
This results from the simple syntax of lexical tokens. It is usually the case that all the lexical tokens
of a language can be described by regular expressions, which then implies that the recognition can
be performed by a finite state algorithm.

41

A regular exzpression is composed of characters, operators for concatenation (space), alterna-
tion (|) and repetition *, and parentheses are used for grouping. For example, (a b | ¢)* d is
a regular expression. It can be regarded as a specification of a potentially infinite set of strings,
in this case:

d

abd cd

ababd abcd cabd ccd
etc.

This is best derived by constructing the corresponding transition diagram by repeated application

of the following rules.

]

The transition diagram for the expression “(a b | c)* d” is:

This can be regarded as a generator of strings by applying the following algorithm:

1. Follow any path from the starting point to any accessible box.

2. Output the character in the box.

3. Follow any path from that box to another box (possibly the same) and continue from step
(2). The process stops when the exit point is reached.

We can also use the transition diagram as the basis of a recogniser algorithm. For example, an

analyser to recognise :=, :, <numb> and <id> might have the following transition diagram:
E yes ,T‘yes ASS
no \—iL/ COLON

yes
[digit digit NUVB
e

no

Optimisation is possible (and needed) in the organisation of the tests. This method is only
satisfactory if one can arrange that only one point in the diagram is active at any one time.

42

It is sometimes convenient to draw the transition diagram as a directed graph with labelled
edges. For example, the graph for the expression “(a b | ¢)* d” can be represented as follows:

c
1 d 3
a
b

With state 3 designated an accepting state, this graph is a finite state acceptor for the given
regular expression. The acceptor is easily implemented using a transition matriz to represent the

graph.

We will demonstrate the method by considering the following syntax of floating point numbers
(the ‘=>’ notation is introduced below in section 2.3):

s is
e is
p is
d is

s U
| E | DE
F | JF

[o PRSI« BN O ISV B ==

[SN S

a sign

the exponent symbol
the decimal point

a digit

The corresponding graph is:

Number

Unsigned number
Unsigned decimal number
Exponent part

Decimal fraction
Integer

Unsigned integer

+ or -
E

0-9

The corresponding matrix is as follows:

d p e other

S1 | S2
S2
S3
S4
S5 | .
S6 | S7
S7
S8

S3 S4 S6

S3 S4 S6 .
S3 S4 Sé6 acc
S5 . . .
S5 . S6 acc
S8

S8 . . .
S8 . . acc

In a program that uses this technique each matrix entry would specify the address of some code to
deal with the transition' and note the next matrix row to be used. The entry acc would point to

1E.g. multiply the current total by 10 and add on the current digit

43

the code that processes a complete floating point number. Blank entries correspond to syntactic
error conditions.

In general, this technique is fast and efficient, but if used on a large scale it requires skill and
cunning to reduce the size of the matrix and to reduce the number of separate transition routines.

2.3 Phrase structured grammars

A grammar consists of an alphabet of symbols (think of these as characters to lexing or tokens
resulting from lexing) and set of rules for generating a language (set of strings) of such symbols.
For example, if the alphabet were the set of all letters {a ... z} and the rule were “generate all
strings of length three” we would have a language whose strings are:

aaa, aab, ... zzy, zzz

A more useful form of grammar is the phrase structured grammar where the generation rule is
given as a set of productions. It is first necessary to break the alphabet into two sets of symbols:
terminal symbols like a, b, c above which may occur in the input text and non-terminals like Term
or Declaration which do not occur in input text but summarise the structure of a sequence of
symbols. The most general form of a production is:

AB...C > PQ...R

where A...Z are symbols and A B ... C contains at least one non-terminal. This rule specifies
that if A B ... Coccursin a string belonging to the grammar then the string formed by replacing
AB ... CbyP Q ... R also belongs to the grammar (note that the symbol ‘: : =’ is sometimes
used as an alternative to ‘->’). There must be a unique non-terminal S, say, called the sentence
symbol that occurs by itself on the left hand side of just one production. Any string that can be
formed by the application of productions is called a sentential form. A sentential form containing
no non-terminals is called a sentence. The problem of syntax analysis is to discover which series
of applications of productions that will convert the sentence symbol into the given sentence.

It is useful to impose certain restrictionson A B ... Cand P Q ... R and this has been
done by Chomsky to form four different types of grammar. The most important of these in the
Chomsky Type 2 grammar.

2.3.1 Type 2 grammar

In the Chomsky type 2 grammar the left hand side of every production is restricted to just a single
non-terminal symbol. Such symbols are often called syntactic categories. Type 2 grammars are
known as context free grammars and have been used frequently in the specification of the syntax of
programming languages, most notably Algol 60 where it was first used. The notation is sometime
called Backus Naur Form or BNF after two of the designers of Algol 60. A simple example of a
type 2 grammar is as follows:

S -> AB
A -> a

A -> ABb
B -> bec
B -> B

A slightly more convenient way of writing the above grammar is:

44

S -> AB
A -> a | ABD
B -> bc | Ba

The alphabet for this grammar is {S, A, B, a, b, c, d}. The non-terminals are S, A, B being
the symbols occurring on the left-hand-side of productions, with S being identified as the start
symbol. The terminal symbols are a, b, c, d, these being the characters that only appear on
the right hand side. Sentences that this grammar generates include, for instance:

abc

abcbbc
abcbca
abcbbcaabca

Where the last sentence, for instance, is generated from the sentence symbol by means of the
following productions:

S

I

A-——————— B

I I
A-—————- B-—--—- b B---a
I I o
A-B-—-b B---a | b-c |
Lt
ab-c | b-c| || |1
L
abcbbcabbca

A grammar is ambiguous if there are two or more ways of generating the same sentence. Convince
yourself that the follow three grammars are ambiguous:

a) S -> AB

A -> a | ac
B -> b | cb
b) S -=> aTb | TT
T -> ab | ba
c) C -> if E then C else C | if E then C

Clearly every type 2 grammar is either ambiguous or it is not. However, it turns out that it is not
possible to write a program which, when given an arbitrary type 2 grammar, will terminate with
a result stating whether the grammar is ambiguous or not. It is surprisingly difficult for humans
to tell whether a grammar in ambiguous. One example of this is that the productions in (¢) above
appeared in the original Algol 60 published specification. As an exercise, determine whether the
example grammar given above is ambiguous.

For completeness, the other grammars in the Chomsky classification are as follows.

2.3.2 Type 0 grammars

Here there are no restrictions on the sequences on either side of productions. Consider the following
example:

45

S -> aSBC | aBC¢C
CB -> BC
aB > ab
bB -> bb
bC -> bec
cC -> cc

This generates all strings of the form a™b"c" for all n > 1.

To derive aaaaabbbbbccccc, first apply S -> aSBC four times giving:
aaaaSBCBCBCBC
Then apply S -> aBC giving;:
aaaaaBCBCBCBCBC
Then apply CB -> BC many times until all the Cs are at the right hand end.
aaaaaBBBBBCCCCC

Finally, use the last four productions to convert all the Bs and Cs to lower case giving the required
result. The resulting parse tree is as follows:

S

a-S——————— B-C
| a-§----—----mmm--—- B-C | |
[| a-S-=—==—===—--- B-C | | | |
[| | a=8=-=—==-B-C | | | | |
[T I laB-CIl | [11111
| | | | a-b B-C B-C B-C B-C |
[I I 1| b-bB-CB-CB-C | |
[1111 1b-bB-CB-C | | |
[T 1111 1bbB-CI| |||
O I < O A IO A
T Y I Y20 O I
111t eecl |
Ftrrr 11t t 1l ecll
Frrrrr 1ttt ecl
O O Y B (Y2
O Y Y I B
aaaaabbbbbccccec

As a final remark on type 0 grammars, it should be clear that one can write a grammar
which essentially specifies the behaviour of a Turing machine, and syntax analysis in this case is
equivalent to deciding whether a given string is the answer to some program. This is undecidable
and syntax analysis of type 0 grammars is thus, in general, undecidable.

2.3.3 Type 1 grammars

A production in a type 1 grammar takes the following form:

46

A...BPC...D ->A...BU...VC...D

where P is a single non-terminal symbol, and the sequences A ... B,C ... Dand U ... V are
sequences of terminal and non-terminal symbols. The sequence U ... V may not be empty. These
grammars are called context sensitive since P can only be replaced by U ... Vif it occurs in a

suitable context.

2.3.4 Type 3 grammars

This is the most restrictive of the phrase structured grammars. In it all productions are limited
to being in one of the following forms:

A > a
or A -> a8B

That is, the right hand side must consist of a single terminal symbol possibly followed by a single
non-terminal. It is sometimes possible to convert a type 2 grammar into an equivalent type 3
grammar. Try this for the grammar for floating point constants given earlier.

Type 3 grammars can clearly be parsed using a finite state recogniser, and for this reason
they are often called regular grammars. [To get precise correspondence to regular languages it is
necessary also to allow the empty production S -> € otherwise the regular language consisting of
the empty string (accepted by an automaton whose initial state is accepting, but any non-empty
input sequence causes it to move to a non-accepting state) cannot be represented as a type 3
grammar.]

Finally, note that clearly every Type 3 grammar is a Type 2 grammar and every Type
2 grammar is a Type 1 grammar etc. Moreover these inclusions are strict in that there are
languages which can be generated by (e.g.) a Type 2 grammar and which cannot be generated by
any Type 3 grammar. However, just because a particular language can be described by (say) a
Type 2 grammar does not automatically mean that there is no Type 3 grammar which describes
the language. An example would be the grammar G given by

S > a
S -> S a

which is of Type 2 (and not Type 3) but the grammar G’ given by

S -> a
S -=> a8

clearly generates the same set of strings (is equivalent to G) and is Type 3.

2.4 Syntax analysis

The type 2 (or context free) grammar is the most useful for the description of programming
languages since it is powerful enough to describe the constructions one typically needs and yet
is sufficiently simple to be analysed by a small and generally efficient algorithm. Some compiler
writing systems use BNF (often with slight extensions) as the notation in which the syntax of the
language is defined. The parser is then automatically constructed from this description.

We will now look at three main parsing techniques, namely: recursive descent, precedence
and SLR(1).

47

2.5 Recursive descent

In this method the syntax is converted into transition diagrams for some or all of the syntac-
tic categories of the grammar and these are then implemented by means of recursive functions.
Consider, for example, the following syntax:

P > (T) | n
F -> FxP | F/P | P
T -> T+F | T-F | F

Notice that the original syntax has been modified to avoid left recursion? to avoid the possibility
of a recursive loop in the parser. The recursive descent parsing functions are outlined below
(implemented in C):

void RAP()
{ switch (token)
{ case ’(’: 1lex(); RATQ);
if (token != ’)’) error("expected ’)’);
lex(); return;
case ’n’: lex(); return;
default: error("unexpected token");
}
}

void RAF()
{ RAP();
for (;;) switch (token)
{ case ’%’: lex(); RAP(); continue;
case ’/’: lex(); RAP(); continue;
default: return;

}

2By replacing the production

F->F*«P|F/P|P
with
F->PxF|P/F|P

which has no effect on the strings accepted, although it does affect their parse tree—see later.

48

3

void RAT()
{ RAFQ);
for (;;) switch (token)
{ case ’+’: lex(); RAF(); continue;
case ’-’: lex(); RAF(); continue;
default: return;

}
}

2.6 Data structures for parse trees

It is usually best to use a data structure for a parse tree which corresponds closely to the abstract
syntax for the language in question rather than the concrete syntax. The abstract syntax for the
above language is

E > E+E | E-E | ExE | E/E | (E) |n

This is clearly ambiguous seen as a grammar on strings, but it specifies parse trees precisely and
corresponds directly to ML’s

datatype E = Plus of E x E | Minus of E x E |
Mult of E*x E | Div of E *x E |
Paren of E | Num of int;

Indeed one can go further and ignore the (E) construct in the common case parentheses often
have no semantic import beyond specifying grouping. In C the construct tends to look like:

struct E {
enum { T_Plus, T_Minus, T_Mult, T_Div, T_Paren, T_Numb } flavour;
union { struct { struct E *left, *right; } diad;
// selected by T_Plus, T_Minus, T_Mult, T_Div.
struct { struct E *child; } monad;
// selected by T_Paren.
int num;
// selected by T_Numb.
} u;
};

It is not generally helpful to reliability and maintainability to make a single datatype which
can represent all sub-structures of a parse tree. For parsing C, for example, one might well expect
to have separate abstract parse trees for Expr, Cmd and Decl.

It is easy to augment a recursive descent parser so that it builds a parse tree while doing
syntax analysis. The ML datatype definition defines constructor functions, e.g. Mult which maps
two expression trees into one tree which represents multiplying their operands. In C one needs to
work a little by defining such functions by hand:

struct E *mkE_Mult(E *a, E *b)

{ struct E *result = malloc(sizeof (struct E));
result->flavour = T_Mult;

49

struct E *RdP()
{ struct E *a;
switch (token)
{ case *(’: lex(); a = RAT();
if (token != ’)’) error("expected ’)’);
lex(); return;
case ’n’: a = mkE_Numb(lex_aux_int); lex(); return a;
/* do names by
*ok case ’i’: a = mkE_Name(lex_aux_string): lex(); return a;
*/

default: error("unexpected token");
}

/* We should have also had a right-associative ’**’ operator here! */

struct E *RdF()
{ struct E *a = RAP();
for (;;) switch (token)
{ ©case ’%’: lex(); a = mkE_Mult(a, RdP()); continue;
case ’/’: lex(); a = mkE_Div(a, RAP()); continue;
default: return a;

}

struct E *RdT()
{ struct E *a = RAF();
for (;;) switch (token)
{ case ’+’: lex(); a = mkE_Plus(a, RAF()); continue;
case ’-’: lex(); a = mkE_Minus(a, RAF()); continue;
default: return a;

}
}
Figure 2.1: Recursive descent parser yielding a parse tree
result->u.diad.left = a;
result->u.diad.right = b;
return result;
}

A recursive descent parser which builds a parse tree for the parsed expression is given in
Figure 2.1.

When there are many such operators like +, -, *, / with similar syntax it can often simplify the
code to associate a binding power with each operator and to define a single routine RdE(int n)
which will read an expression which binds at least as tightly as n. In this case RAT() might
correspond to RAE(0), RAT() to RAE(1) and RAP() to RAE(2).

This idea is can be pushed further to produce a table-driven parser to which topic we now
turn.

50

2.7 Simple precedence

For simple arithmetic grammars a parser based on the precedence of the operators is possible.
Consider the token stream:

[x*xy+a/t-cx*xd]

Let us define two relations LT and GT which hold as follows:

+ - * / k%]
[LT LT LT LT LT

+ GT GT LT LT LT GT
- GT GT LT LT LT GT
*x |GT GT GT GT LT GT
/ GT GT GT GT LT GT
*x | GT GT GT GT LT GT

then we can parse the above expression by means of the following steps:

We start with: [x*xy+a/t-cx**d]
[LT * GT + => [(xxy) +a/t-cx**xd]
+ LT/ GT - =>1[(x*xy) + (a/t) - c **x 4]
[LT + GT - => [((x*xy)+(a/t)) - c **x d]

= LT % GT] => [((xxy)+(a/t)) - (cxxd)]
[LT - GT 1 => [(((xxp)+(a/t))-(c**xd)) 1]

It is worth noting that this method allows both the precedence and associativity of operators to
be specified. For example a-b-c parses as (a-b)-c, but ax*bx*xc as a**(b**c).

2.8 General precedence

For some grammars it is possible to define relations EQ, GT and LT between alphabet characters
(terminal or non-terminal) of the grammar in such a way that, if

U A B C DV
is a sentential form, and
ULT AEQBEQ CEQDGT YV
then there must be a production X => A B C D and so
U X V

is a simpler sentential form. A matrix defining these relations then forms the basis of a very simple
parser.

The definitions of EQ, LT and GT are as follows:

1) AEQB <=> P-> ... AB... is a production

51

2) ALTB <=> P->...A0U... is a production

and U =>B ... (using one or more
productions)
3a) AGTB <=> P -> ... UB ... is a production
and U => ... A
3b) AGTB <=> P->...UV ... 1is a production
and U => ... A
and V =>B ...

The grammar is a precedence grammar if for all pairs of alphabet characters at most one of
the relations holds. The following grammar in not a precedence grammar.

S -> <E>

E -> T | E+T
T -> P | TxP
P > (E) | I

since, for instance < EQ E and < LT E. It can, however, be modified into the following equivalent
grammar which is a precedence grammar.

S > <E >

E> -> E

E > T | E+ T
T -> T

T -> P | TxP
P > (E) | 1I

2.8.1 Construction of the precedence matrix

Before we construct the matrix it is convenient to form, for each non-terminal U in the grammar,
two sets Left (U) and Right (U) of symbols that can start and end strings derived from U. If
U => B ... then Bis in Left(U). Similarly, if U => ... B then B is in Right (U).

Left (U) can be derived for all non-terminals in the grammar by the following algorithm:
1) Initialise all sets Left(U) to empty.

2) For each production U -> A ...
enter A into Left(U)

3) For each production U -> V ...
enter all the elements of Left(V) into Left(U)

4) Repeat (3) until no further change.
Right (U) can be derived similarly. For the example grammar the sets are as follows:

52

U Left (U) Right (U)
EE|ET" TP (I|ET TP)I
E |ET"TP (I T TP) I
T TP (I TP) I
T TP (I P)I
P (1) I

The following algorithm constructs the precedence matrix. For each pair A B occurring
consecutively in a production (i.e. P => ... A B ... is a production) do the following;:

1) Enter A EQ B into the matrix

2) Enter A LT X into the matrix
for all X in Left(B)

3a) Enter X GT B into the matrix
for all X in Right(A)

3b) Enter X GT Y into the matrix

for all X in Right(A)
and all Y in Left(B)

For the example grammar, there are 8 pairs to consider:

[® e 5[® [+ T[T *[* PICE[E]

and the resulting matrix is:

E> E T T P I *x +) >
E|- - - - - - - - - EQ EQ
E - - - - - - - - EQ GT GT
|- - - - - - - - (GT GT GT
T - - - - - - - EQ GT GT GT
P - - - - - - - GT GT GT GT
) - - - - - - - GT GT GT GT
I - - - - - - - GT GT GT GT

x| - - - - EQ LT LT - - - -
+ - - EQ LT LT LT LT - - - -
(|EQ LT LT LT LT LT LT - - - -
EQ LT LT LT LT LT LT - - - -

For this grammar it is possible to find two functions £ and g with the property that:

if A EQ B then f(A) = g(B)
if A LTB then f(A) < g(B)
if AGT B then f(A) > g(B)

Define such functions for this grammar and show that it is not possible in general. Why are such
functions useful?

The following program will perform the parse using the precedence matrix. P[k] is the kth
symbol of source text, and S[i] is the ith element of a stack.

53

S[o] = P[0]; i =0, k = 1;
while (P[k] !'= ’>?)
{ S[++i] = PLk++];
while (S[i] GT P[k])
{ int j = i;
while (S[j-11 EQ S[j1) j--;
S[j] = Leftpart(S[j] ,..., S[il);
i=73;
}
}

The function Leftpart finds the subject of the production whose right part is given as its argu-
ment(s). Syntactic errors are detected by either encountering a blank entry in the matrix or by a
failure in the function Leftpart.

NB. Note that the parsing program above is independent of the grammar to be used—all the
grammatical details are stored in the tables. One can say that here the grammar is coded as data
whereas in the recursive descent parser it was coded as program.

2.9 SLR parsing

Various parsing algorithms based on the so called LR (k) approach have become become popular.
These are specifically LR(0), SLR(1), LALR(1) and LR(1). These four methods can parse a source
text using a very simple program controlled by a table derived from the grammar. The methods
only differ in the size and content of the controlling table.

To exemplify this style of syntax analysis, consider the following grammar (here E, T, P ab-
breviate ‘expression’, ‘term’ and ‘primary’—an alternative notation would use names like <expr>,
<term> and <primary> instead):

#0 S -> E eof

#1 E -> E + T
#2 E -> T

#3 T -> P xx T
#4 T -> P

#5 P > i

#6 P > (E)

The form of production #0 is important. It defines the sentence symbol S and its RHS consists of
a single non-terminal followed by the special terminal symbol eof which must not occur anywhere
else in the grammar.

We first construct what is called the characteristic finite state machine or CFSM for the
grammar. Each state in the CFSM corresponds to a different set of items where an item consists
of a production together with a position marker (represented by .) marking some position on the
right hand side. There are, for instance, four possible items involving production #1, as follows:

E >.E + T
E > E .+ T
E -> E +.T
E -> E + T.

If the marker in an item is at the beginning of the right hand side then the item is called an
initial item. If it is at the right hand end the the item is called a completed item. In forming item

54

sets a closure operation must be performed to ensure that whenever the marker in an item of a set
precedes a non-terminal, E say, then initial items must be included in the set for all productions
with E on the left hand side.

The first item set is formed by taking the initial item for the production defining the sentence
symbol (S -> .E eof) and then performing the closure operation, giving the item set:

1: { S -> .E eof
E > .E + T
E ->.T
T -> .P *x T
T -> .P
P > .i
P ->.(E)
}

States have successor states formed by advancing the marker over the symbol it precedes.
For state 1 there are successor states reached by advancing the marker over the symbols E, T, P, i
or (. Consider, first, the E successor (state 2), it contains two items derived from state 1 and the
closure operation adds no more (since neither marker precedes a non terminal). State 2 is thus:

2: { S -> E .eof
E -> E .+ T
}

The other successor states are defined similarly, except that the successor of eof is always the
special state accept. If a new item set is identical to an already existing set then the existing set
is used. The successor of a completed item is a special state represented by $ and the transition
is labeled by the production number (#i) of the production involved. The process of forming the
complete collection of item sets continues until all successors of all item sets have been formed.
This necessarily terminates because there are only a finite number of different item sets.

For the example grammar the complete collection of item sets given in Figure 2.2. Note
that for completed items the successor state is reached via the application of a production (whose
number is given in the diagram).

The CFSM can be represented diagrammatically as follows:

E () eof []
—@ 2 €0 accept

prgee

Before we can construct an SLR(1) parser we must define and compute the sets FOLLOW(A)
for all non-terminal symbols A. FOLLOW(A) is defined to be the set of all symbols (terminal and
non-terminal) that can immediately follow the non-terminal symbol A in a sentential form. They
can be formed iteratively by repeated application of the following rules.

95

eof

-> .E

1: { S

-> .E + T
-> .T
-> .P
-> .P

->
->

E
E
T
T

=>

* %

=>

i

=> 10

(

.C E)

P

eof => accept

.eof

-> E

2: { 8

=>

-> E .+ T

E

=>

-> E + .T
-> .P

3: { E

* %

T

=>

=> 10

(

#1 => §

-> E + T .

4: { E

#2 => $

T .

=->

5: { E

=>

%k %
#4 =>

=> T

{

=>

% %

-> P
-> .P
-> .P

->
->

7: { T

% %

T
T

=>

i

=> 10

(

.C E)

#3 => §

% %

-> P

g8: { P

#5 => §

i,

9: { P

.E

(
-> .E + T
-> .T
-> .P

P

->

10:{ P

=> 11
=>

E

E
E

% %

T
T

=>

=> 10

(

=> 12
=>

)

(E
-> E .+ T

->

11:{ P

E

#6 => $

(

=->

12:{ P

Figure 2.2: CFSM item sets

56

1.

2.

If there is a production of the form X => ... Y Z ... put Z and all symbols that can start
Z into FOLLOW(Y).

If there is a production of the form X -> ... Y put all symbols in FOLLOW (X) into FOLLOW(Y).

We are assuming here that no production in the grammar has an empty right hand side. For our
example grammar, the FOLLOW sets are as follows:

FOLLOW(E) = { eof +) }
FOLLOW(T) = { eof +)}
FOLLOW(P) = { eof +) *x }

From the CFSM we can construct the two matrices action and goto:

1.

If there is a transition from state i to state j under the terminal symbol k, then set
action[i,k] to Sj.

If there is a transition under a non-terminal symbol C, say, from state i to state j, set
goto[i, C] to j.

If state i contains a transition under eof set action[i, eof] to acc.

If there is a reduce transition #p from state i, set action[i, k] to #p for all terminals k
belonging to FOLLOW(A) where A is the subject of production #p.

If any entry is multiply defined then the grammar is not SLR(1). Blank entries are represented
by dash (-).

action goto
state | eof (i) + k% | P T E
S1 - S10 S9 - - - | S6 S5 82
S2 | acc - - - S3 - - - -
S3 - S10 S9 - - - | S6 sS4 -
S4 | #1 - - #1 #1 - - - -
S5 | #2 - - #2 #2 - - - -
S6 | #4 - - #4 #4 ST | - - -
S7 - S10 S9 - - - | S6 S8 -
S8 | #3 - - #3 #3 - - - -
S9 | #5 - - #5 #5 #5 | - - -
S10 - S10 89 - - - | 86 S5 S11
Si1 - - - 812 83 - - - -
S12 | #6 - - #6 #6 #6 | - - -

The parsing algorithm used for all LR methods uses a stack that contains alternately state

numbers and symbols from the grammar, and a list of input terminal symbols terminated by eof.
A typical situation is represented below:

aAbBcCdDeEf | uvwszxyz eof
Herea ... f arestate numbers, A ... E are grammar symbols (either terminal or non-terminal)
and u ... z are the terminal symbols of the text still to be parsed. If the original text was

syntactically correct, then

ABCDEuvwxyz

57

will be a sentential form.

The parsing algorithm starts in state S1 with the whole program, i.e. configuration
1 | the whole program upto eof

and then repeatedly applies the following rules until either a syntactic error is found or the parse
is complete.

1. If action[f, u] = Si, then transform

aAbBcCdDeEf | uvwzxyz eof
to

aAbBcCdDeEfui | vwxyz eof

2. If action[f, ul = #p, and production #p is of length 3, say, then it will be of the form
P -> C D E where C D E exactly match the top three symbols on the stack, and P is some
non-terminal, then assuming gotolc, P] = g

aAbBcCdDeEf | uvwzxyz eof
will transform to
aAbBcPg | uvwzxyz eof

Notice that the symbols in the stack corresponding to the right hand side of the production
have been replaced by the subject of the production and a new state chosen using the goto
table.

3. If action[f, u]l = acc then the situation will be as follows:
aQb | eof

and the parse will be complete. (Here Q will necessarily be the single non-terminal in the
start symbol production (#0).

4. If action[f, ul = - then the text being parsed is syntactically incorrect.

Note again that there is a single program for all grammars; the grammar is coded in the actionand
goto matrices.

As an example, the following steps are used in the parsing of i + i:

Stack text production used
1 i+ i eof

11i9 + i eof

1P6 + i eof P->i
1T5H + i eof T ->P

1 E2 + i eof E->T
1E2+3 i eof

1E2+31i9 eof

1E2+3P6 eof P-—>i
1E2+3T4 eof T ->P

1 E2 eof E->E+T

58

T
[\t] /* ignore blanks and tabs */ ;

[0-9]1+ { yylval = atoi(yytext); return NUMBER; }

"mod" return MOD;
"div" return DIV;
"sqr" return SQR;
\n|. return yytext[0]; /* return everything else */

Figure 2.3: calc.1l

2.9.1 Errors

A syntactic error is detected by encountering a blank entry in the action or goto tables. If this
happens the parser can recover by systematically inserting, deleting or replacing symbols near the
current point in the source text, and choosing the modification that yields the most satisfactory
recovery. A suitable error message can then be generated.

2.9.2 Table compaction

In a typical language we can expect there to be over 200 symbols in the grammar and perhaps
rather more states in the CFSM. The table action and goto are thus like to require over 40000
entries between them. There are good ways of compacting these by about a factor of ten.

2.10 Lex

Lex and Yacc are programs that run on Unix and provide a convenient system for constructing
lexical and syntax analysers.

Lex takes as input a file (e.g. calc.l) specifying the syntax of the lexical tokens to be
recognised and it outputs a C program (normally lex.yy.c) to perform the recognition. The
syntax of each token is specified by means of a regular expression and the corresponding action
when that token is found is supplied as a fragment of C program that is incorporated into the
resulting lexical analyser. Consider the lex program calc.1 in Figure 2.3. The regular expressions
obey the usual unix conventions allowing, for instance, [0-9] to match any digit, the character +
to denote repetition of one or more times, and dot (.) to match any character other than newline.
Next to each regular expression is the fragment of C program for the specified token. This may
use some predefined variables and constants such as yylval, yytext and NUMBER. yytext is a
character vector that holds the characters of the current token (its length is held in yyleng). The
fragment of code is placed in the body of an external function called lex, and thus a return
statement will cause a return from this function with a specified value. Compound tokens such
as NUMBER return auxiliary information in suitably declared variables. For example, the converted
value of a NUMBER is passed in the variable lexlval. If a code fragment does not explicitly return
from lex then after processing the current token the lexical analyser will start searching for the
next token.

In more detail, a Lex program consists of three parts separated by %%s.

59

declarations

W

translation rules
Wb

o/o

auxiliary C code

The declarations allows a fragment of C program to be placed near the start of the resulting lexical
analyser. This is a convenient place to declare constants and variables used be the lexical analyser.
One may also make regular expression definitions in this section, for instance:

ws [\t\nl+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

These named regular expressions may be used by enclosing them in braces ({ or }) in later
definitions or in the translations rules.

The translation rules are as above and the auxiliary C code is just treated as a text to be
copied into the resulting lexical analyser.

2.11 Yacc

Yacc (yet another compiler compiler) is like Lex in that it takes an input file (e.g. calc.y) speci-
fying the syntax and translation rule of a language and it output a C program (usually y.tab.c)
to perform the syntax analysis.

A Yacc program has three part separated by %%s.

declarations

W

translation rules
Wb

o/o

auxiliary C code

Within the declaration one can specify fragments of C code (enclosed within special brackets
%{ and %}) that will be incorporated near the beginning of the resulting syntax analyser. One
may also declare token names and the precedence and associativity of operators in the declaration
section by means of statements such as:

%token NUMBER
%left ’*° DIV MOD

The translation rules consist of BNF-like productions that include fragments of C code for
execution when the production is invoked during syntax analysis. This C code is enclosed in
braces ({ and }) and may contain special symbols such as $$, $1 and $2 that provide a convenient
means of accessing the result of translating the terms on the right hand side of the corresponding
production.

The auxiliary C code section of a Yacc program is just treated as text to be included at the
end of the resulting syntax analyser. It could for instance be used to define the main program.

An example of a Yacc program (that makes use of the result of Lex applied to calc.l) is
calc.y listed in Figure 2.4.

60

W
#include <stdio.h>

%}
%token NUMBER

Yleft 2+ 1=
%left ’*’ DIV MOD

/* gives higher precedence to ’*’, DIV and MOD */
%left SQR

hh
comm: comm ’\n’
| /* empty =/
| comm expr ’\n’ { printf("%d\n", $2); }
| comm error ’\n’ { yyerrok; printf("Try again\n"); }

I

expr: ’(’ expr ’)’ {38 =292; }

| expr ’+’ expr { $$ = $1 + $3; }
| expr °-’ expr { $$ = $1 - $3; }
| expr ’%’ expr { $$ = $1 = $3; }
| expr DIV expr { $$ = $1 / $3; }
| expr MOD expr { $$ = $1 % $3; }
| SQR expr {3 =92 % $2; }
| NUMBER

hh

#include "lex.yy.c"
yyerror(s)

char *s;

{printf ("%s\n", s);
}

main()

{ return yyparse();
}

Figure 2.4: calc.y

61

Yacc parses using the LALR(1) technique. It has the interesting and convenient feature that
the grammar is allowed to be ambiguous resulting in numerous shift-reduce and reduce-reduce
conflicts that are resolved by means of the precedence and associativity declarations provided by
the user. This allows the grammar to be given using fewer syntactic categories with the result
that it is in general more readable.

The above example uses Lex and Yacc to construct a simple interactive calculator; the trans-
lation of each expression construct is just the integer result of evaluating the expression. Note
that in one sense it is not typical in that it does not construct a parse tree—instead the value of
the input expression is evaluated as the expression is parsed. The first two productions for ‘expr’
would more typically look like:

expr: ’(’ expr ’)’ {8 =292; }
| expr ’+’ expr { $$ = mkbinop(’+’, $1, $3); }

where mkbinop () is a C function which takes two parse trees for operands and makes a new one
representing the addition of those operands.

62

Chapter 3

Translation

The translation phase of a compiler normally converts the abstract syntax tree representation of
a program into intermediate object code which is usually either a linear sequence of statements or
an internal representation of a flowchart. We will assume that the translation phase deals with (1)
the scope and allocation of variables, (2) determining the type of all expressions, (3) the selection
of overloaded operators, and (4) generating of the intermediate code.

In this section we will use a simple but real-feeling example language (it is actually based on
BCPL) with the following abstract syntax tree structure:

type N = string; (* shorthand for ’name’ *)
datatype E = Var of N | Num of int | Ap of N x (E 1list) |
True | False |

Neg of E | Pos of E | Not of E |
Subscript of E * E |

Plus of E * E | Minus of E *x E |
Mult of E* E | Div of E * E |
EQof ExE | Ne of Ex E |

Lt of ExE | Gt of Ex E |

Le of E*xE | Ge of E *x E |

And of E*E | Or of E x E |

Cond of E * E *x E | Valof of C

and C = Seq of C * C | Unless of E x C |
Ifil of Ex C | If20of ExC *x C |
While of E * C | Until of E * C |

Assign of N * E | AssignSubscript of E * E * E |
For of N * E * E *x C | Result of E |

Call of N * E 1list | Let of D * C
and D = And of D * D | Valdef of N * E | Arraydef of N x int |
Fndef of N * (N list) * E | Rtdef of (N * N list) * C;

An example program fragment that can be represented by the above abstract syntax tree is given
later.

We will assume that this language is essentially typeless and so all expression values are of
the same size. It is to be implemented using a simple stack and the static chain method will
be used for accessing free variables. We will also assume that functions may not be passed as

63

arguments or returned as results. Most of these restrictions could easily be removed by decorating
the abstract syntax tree with more type information.

The intermediate object code for this language which we adopt is a linear sequence of simple
statements that describe instructions acting on the runtime stack. This is based on OCODE from
the BCPL compiler but note the Java Virtual Machine code is similar. A stack frame will has the
following form:

P sP

Here S is the static chain pointer, P’ is the dynamic stack pointer and L is the return address.
Variables are accessed by the following intermediate code statements:

Statement Meaning

LvnO SP++; SP[0] := P[n];

Svn o0 P[n] := SP[0]; SP--;
Lvnl SP++; SP[0] := P[2][n];
Svnil P[2] [n] := SP[0]; SP--;
Lv n 2 SP++; SP[0] := P[2]1[2][n];
Svn 2 P[2][2][n] := SP[0]; SP--;
etc.

The address of a variable (or zeroth element of an array) can be computed using Laddr, for example
Laddr n 2 SP++; SP[0] := &P[2][2] [n]

Some of the other intermediate code statements are as follows:

Ln k SP++; SP[0] := k;

Plus SP[-1] := SP[-1] + SP[0]; SP—;
Neg SP[0] := - SP[0];

Eq SP[-1] := SP[-1] = SP[0]; SP--;
Jt Ln B := SP[0]; SP--; if B goto Ln;
Jf Ln B := SP[0]; SP--; if !B goto Ln;
Jmp Ln goto Ln;

Lab Ln Ln:

Setsp n SP = P+n;

Call ILn d k // Call the function or routine whose
// entry point is labelled Ln and which
// was declared at a textual depth d levels
// less than the current depth,
// incrementing the P pointer by k positiomns.
NP := P+k
NP[0] := P // the old P
NP[1] := Li // the return address
if d=0 do NP[2] :=P // current level
if d=1 do NP[2] P[2] // one level out
if d=2 do NP[2] P[2]P[2] // two levels out

etc.

P := NP

goto Ln // Jump to the entry point
Li:SP := P+k-1 // return here

64

Entry Ln Ln:

Rtn L := P[1] // get return address
P := P[0] // get old P pointer
goto L

SetRes // RES for function results
RES := SP[0]; SP--;

LdRes SP++; SP[0] := RES;

The use of this intermediate code can be shown by considering the following C program fragment:

int i = 36; // i in P[3]
int g(a,b) { i = axi+b; } // Entry L1
int f(x,y) { return x==0 7 0 : // Entry L2

x*xy + f(x-1,y+1); }

int p(int n) // Entry L3 n in P[3]
{ if (n==0) return 1;
else
{ int v[11]; // v in P[4]..P[14]
int h(x) { return f(n,x); } // Entry L4
int j; // j in P[15]

for (j = 0; j<i1; j++)
{ gln, j); vIjl =n(j) }

return v[10];

The code generated for the function g might be:

Entry L1 // entry to g(a,b)
Setsp 4 // Leave space for a in P[3] and b in P[4]

Lv 30 // a

Lv 3 1 // i
Mult // *

Lv 4 0 // b
Add // +
Sv 31 // i :=

Rtn

and the code for the definition of h might be:

Entry L4 // entry to h(x)

Setsp 3 // Leave space for x in P[3]

Setsp 7 // Leave linkage space for call f(n, x)

Lv 3 1 // n (one level out, pos 3)

Lv 30 // x (current level, pos 3)

Call L2 1 4 // call £ (entry L2, declared one level out,
// new P at pos P+4)

Rtn // the result will be in RES

These statements will be generated within the translation phase by means of calls such as the
following;:

65

Gen3(Lv, 1, 3);
Gen3(Lv, 0, 3);
gen4(Call, 2, 1, 4);
genl(Rtn) ;

The different intermediate code operators can be represented by distinct integers and so the
intermediate code can be written to a file as just a sequence of integers.

3.1 Scope and allocation of variables

In a block structured language, variables can be declared and their scope is limited to the region
of program for which the declaration is valid. When an identifier is encountered during translation
it must be looked up in a stack of currently declared identifiers to discover its datatype and how it
is to be accessed (i.e. its address). This stack of name cells is maintained by the translation phase.
New cells are added when a declaration is encountered and they are removed when the translator
moves out of the scope of the declaration. When an identifier is encountered during translation it
is looked up by searching down the name cell stack. The first matching name cell will be the one
required.

For our example language, name cells would contain: a pointer to the name node, the type
(integer, function or routine), the textual level, and the allocated position within its stack frame
if it were an integer or the entry label number if it were a function or routine.

3.2 Translation of expression

Some of the functions used during translation are as follows:

trexp (x) translate an expression in Rmode
trexplist(x) translate an expression list in Rmode
trlexp (x) tranlate an expression in Lmode
trname (op,x) translate a name, op is one of

Lv, Sv, Laddr or Call
jumpcond(x,b,n) translate a conditional jump
trcom(x) translate a command
declnames (x) declare the names in a declaration,
allocate stack space where necessary, and put
suitable items in the declaration vector
trdecl(x) perform a second pass over a
declaration to compile code to
initialise variables

During translation certain global variables hold information about the current state. For
instance, ssp is the simulated stack pointer holding the distance between P and SP at the current
point in the compiled code. Another variable is depth that hold the textual depth of the current
piece of code being compiled. It is incremented when starting to translate the body of a function,
and decremented when the translation of the body is complete. The argument to trexp is the
tree for the expression being translated. An outline of its definition is as follows:!

1We have adopted ML to describe this code since we can exploit pattern matching to make the code more concise
than C or Java would be. For ML experts there are still things left undone, like defining the ++ and -- operators
of type int ref -> int.

66

fun trexp(Num(k))
trexp(Id(s))
trexp(Plus(x,y))
trexp (Minus(x,y))

trexp(Div(x,y))
trexp(Neg(x))
trexp (Not (x))
trexp(Ap(f, el)) =
let val s = ssp in
gen2(Setsp, s+3)
trexplist(el);
trname(Call, f);
genl(s+1);
ssp := s;
genl(Ldres);
++ssp

end
| trexp(Cond(b,x,y)) =

I

let val p = ++label;
val q = ++label in
jumpcond (b,false,p);

trexp(x);
gen2(Jmp,q) ;
--ssp;
gen2(Lab,p);
trexp(y);
gen2(Lab,q)
end;
etc...

fun trexplist[] = O

(gen2(Ln, k); ++ssp)

(trname(Lv,s); ++ssp)

(trexp(x); trexp(y); genl(Plus); --ssp)
(trexp(x); trexp(y); genl(Minus); --ssp)
trexp(Mult(x,y)) = (trexp(x); trexp(y); genl(Mult); --ssp)
(trexp(x); trexp(y); genl(Div); --ssp)
(trexp(x); genl(Neg))

(trexp(x); genl(Not))

// leave space for linkage
// translate args

// Compile Call Lf d

// Compile k

// Restore saved ssp

// Allocate two labels

// code to put x on stack
// jump to common point
// at Lab stack is one less

// code to put y on stack
// common point; result on stack

| trexplist(e::es) = (trexp(e); trexplist(es));

3.3 Translation of boolean expressions

If a boolean expression occurs in a context where a conditional jump is to be made on the outcome
of the evaluation then some optimisation is possible. For example, consider code like

IF x>0 AND A[i]=0 THEN ...

If x>0 is false then there is no need to evaluate A[i]=0 (assuming it is side-effect free). Some
languages (like C) even provide a special operator ‘€&’ which prescribes such short-cut evaluation.
We will use the function jumpcond to compile such expressions. Its first argument is the tree
structure of the expression, the second is a truth value stating whether a jump is to be made on
true or on false, and the third argument is the number of the label to jump to. The definition of

jumpcond is outlined below:

fun jumpcond(True, true,
| jumpcond(True, —
| jumpcond(False, false,
| jumpcond(False, s

n)

2)

n) =

)

= gen2(Jmp, n)
= 0O
gen2(Jmp, n)
= 0

67

| jumpcond(Not(x), b, n) = jumpcond(x, not b, n)
| jumpcond(And(x, y), true, n) =
let val m = ++label in
jumpcond(x, false, m);
jumpcond(y, true, n);
gen2(Lab, m)
end
| jumpcond(And(x, y), false, n)

(jumpcond(x, false, n);
jumpcond(y, false, n))
(jumpcond(x, true, n);
jumpcond(y, true, n))

| jumpcond(Or(x, y), true, n)

| jumpcond(Or(x, y), false, n) =
let val m = ++label in
jumpcond(x, true, m);
jumpcond(y, false, n);
gen2(Lab, m);
end
| jumpcond(x, b, n) = (trexp(x);
gen2((b 7 Jt:Jf), n);
--ssp)

3.4 Translation to machine code from intermediate code

The part II course on ‘Optimising Compilation’ will cover this topic in an alternative manner,
but let us for now merely observe that each intermediate instruction listed above can be mapped
into a small number of Pentium instructions. For example, if the current offset of SP above P is 4
words (i.e. the stack has 5 words used) then?:3

LAB L3 ssp = 4 here (3 linkage,x,y)

LP 3 ssp = 5 here (3 linkage,x,y,temp)
LN 7 ssp = 6

MINUS ssp = 5

SP 3 ssp = 4

LP 3

LN O

LT

JF L4

can be translated in a instruction-by-instruction manner (using a Pentium register here called fp
as the frame pointer P since the Pentium stack pointer does not fit well into our upward growing
stack model):

L3: movl 12(fp),’%eax ; LP 3 (get value)
movl %eax,20(fp) ; LP 3 (write to stack at ssp=b)
movl #7,24(fp) ; LN 7 (and write to stack at ssp=6)
movl 20(fp),’%eax ; MINUS (operand 1)
subl 24(fp),%eax ; MINUS (operand 2)

2Note that this code could result from compiling the body of
int £(int x, int y) { x = x-7; if (x < 0) ...}

3Here we abbreviate “Lv k 07 as “LP k” and similarly “Sv k 0” as “SP k”.

68

movl %eax,20(fp) ; MINUS (write result to ssp=5)
movl 20(fp),%eax ; SP 3 ([pointlessly!] get value)
movl %eax,12(£fp) ; SP 3 (do the store)

With a little more care in remembering values in registers between translations of individual
intermediate instructions quite reasonable, though far from optimal, code can be produced.

3.5 Translation using tree matching and rewriting

This section gives an alternative method of generating code for CISC-like target architectures
directly from parse trees.

Ref: Code Generation Using tree matching and Dynamic programming by Aho, A.V., Gana-
pathi, M. and Tjiang, S.W.K. ACM Transactions on Programming Languages and Systems, Vol
11, No 4, October 1989.

A slightly simplified version of the algorithm is presented here. The algorithm uses a collection
of tree rewrite rules to define the resulting translation. Each rule has four components as follows:

replacement <- template cost code

where replacement is a single node, template is a tree, cost is the cost of using this rule, code
is a fragment of compiled code. For example:

Rule Cost Code
#1 Ri <- Kc MOV #c,Ri
#2 Ri <- Ma MOV a,Ri
#3 C <- Ass(Ma, Ri) MOV Ri,a
#4 C <- Ass(Ind(Ri),Ma) MOV a,*Ri

#5 Ri <- Ind(Add(Kc,Rj))
#6 Ri <- Add(Ri, Ind(Add(Kc,Rj)))

MOV c(Rj),Ri
ADD c(Rj),Ri

= NNNDNDNN

#7 Ri <- Add(Ri, Rj) ADD Rj,Ri
#8 Ri <- Add(Ri, K1) INC Ri
The tree pattern could be drawn as in Figure 3.1. The tree for the command: v[i] := x might

be as in Figure 3.2. A third representation of the same tree is
Ass(Ind (Add (Add (Kv,Rp) ,Ind (Add(Ki,Rp))), Mx)

This tree can be ‘covered’ by the templates in several ways, but one that gives the least cost is
given in Figure 3.3. The total cost in this case is 7. Using this covering, the code and resulting
trees produced by a depth first left to right scan are as follows:

Ass(Ind (Add (Add (Kv,Rp), Ind(Add(Ki,Rp))), Mx)

MOV #v,RO Ass(Ind (Add (Add(RO,Rp), Ind(Add(Ki,Rp))), Mx)
ADD Rp,RO Ass(Ind (Add (RO, Ind (Add (Ki,Rp))), Mx)
ADD i(Rp),RO Ass(Ind(RO), Mx)
MOV x,*RO C

69

:
Ee(®)

#: #3 #4
#5 #6 #7 #8
oI YR BV Y NCY Y
RN
©)

Figure 3.1: Tree version of rules

Figure 3.2: Tree for v[i] := x

70

Figure 3.3: Minimum cost covering

Other coverings are possible but these would give different costs and different code sequences. The
algorithm given here is designed to find a least cost covering efficiently.

The template #6 Add(R?, Ind(Add(K?7,R?7))) contains paths from the root to its three leaf
nodes, namely:

Add.1--R?
Add.2--Ind.1--Add.1--K?
Add.2--Ind.1--Add.2--R?

The integers specify which edge is being taken from an operator node. The length of a path is the
number of edges it contains. The path Add.1--R? is of length 1 and occurs in template #6 (this is
denoted by #6/1). We can combine all the paths from all the templates to form a tree as follows:

Rule/Length

n00-Add.1-n01-R?--a00 #8/1,#7/1,#6/1
| .2-n02-Ind.1-n03-Add.1-n04-K1-a01 #6/3,#5/2,#1/0

| | *-K?7-a02 #6/3,#5/2,#1/0

I .2-n05-R?-a03 #7/1,#6/3,#5/2

[

[

| *x-K1--a04 #8/1,#1/0
[*-R?--a05 #7/1
*—Ass.1-n06-Ind.1-n07-R?--a06 #4/2

| | *x-M?--a07 #3/1,#2/0
| .2-n08-M?7--a08 #4/1,#2/0
I *-R?--a09 #3/1
x—Ind.1-n09-Add.1-n10-K1--a10 #5/2,#1/0
| | x—K?7--all #5/2,#1/0
| .2-n11-R?--al2 #7/1,#5/2
*x-K1--al3 #1/0
*x-K?--ald #1/0
*-M7--alb #2/0

71

The internal nodes of the tree are labelled n00 to n11, and the leaf nodes are labelled a00 to a15.
Notice that the path Add.1--R7 is of length 1 and occurs in three different templates, namely #8,
#7 and #6 which accounts for why #8/1,#7/1,#6/1 is attached to node a00. The node a01 is
at the end of the path Add.2--Ind.1--Add.1--K1 which is a path of length three belonging to
template #6. However, a01 is also at the end of Ind.1--Add.1--K1 which is a path of length 2
belonging to template #5, and it also ends a path of length zero belonging to template #1. This
accounts for #6/3,#5/2,#1/0 being attached to a01.

This tree forms the basis of a finite state acceptor with the leaf nodes being the accepting
states. Extra transitions must be added, but the number of nodes remains unchanged. Consider
the path string: Ind.1--Add.2--Ind.1--Add.1--K1. Starting from n00, Ind.1 gets us to n09,
then add.2 gets us to n11, but from here the only transition in the tree is on R? to a12. This
tells us that there are no path strings starting with Ind.1--Add.2--Ind.1 belonging to any of
our set of templates. What we should do is delete the first item of our path string, giving us
Add.2--Ind.1--Add.1--K1 and see if this leads to an accepting state. Thus from state n11, a
transition on Ind.1 should lead to n03. One way of viewing this is if state n11 does not encounter
R7 then it should behave like state n02. Looking carefully at the tree we see that:

State Not followed by Behaves like
n01 R? n00
n02 Ind.1, K1 or R? n00
n03 Add.1 or Add.2 n09
n04 K1 or K7 nl0
n05 R? nil
n06 Ind.1 or M7 n00
n07 R? n09
n08 M? or R7 n00
n09 Add.1 or Add.2 n00
nl0 K1 or K7 n01
nil R? n02

This easily leads to the resulting finite state acceptor described by the following table:

Add.1 Add.2 Ass.1 Ass.2 1Ind.1 K1 K? R? M7 | like

[

e e o
n00 | nO0i1*x n02* n06* n08* n09* al3* ald*x - albx| -
n01 | nO1 n02 n06 n08 n09 al3 al4 a00* al5 | n00
n02 | n01 n02 n06 n08 n03x* a04* ald a0bx alb5 | n00
n03 | n04* n0O5%* n06 n08 n09 al3 al4 - al5 | n09
n04 | n01 n02 n06 n08 n09 a01* a02* a00 al5 | ni10
n05 | n01 n02 n06 n08 n03 a04 al4 a03x alb | niil
n06 | no01 n02 n06 n08 n07* al3 al4d - a07*| n00
n07 | ni0 niil n06 n08 n09 al3 al4 al06x alb | n09
n08 | no01 n02 n06 n08 n09 al3 al4 a09* a08*| n00
n09 | ni10* nlix n06 n08 n09 al3 al4 - alb5 | n00
nl0 | no01 n02 n06 n08 n09 al0* all* a00 alb | n01
nll | no01 n02 n06 n08 n03 a04 ald4 al2* al5 | n02

The asterisks (*) indicate transitions that are in the original tree. The non-asterisked entries of a
row are copied from the row it (otherwise) behaves like. Compare, for instance, row n11 with row
n02.

The rule/length information associated with accepting states are encoded as bit patterns, as
shown in the following table.

72

#8 #7 #6 #5 #4 #3 #2 #1 Path Rule/Length

a00 10 10 0010 000 000 00O O O Add.1-R? #8/1,#7/1,#6/1
a01 00 00 1000 100 000 00 O 1 Add.2-Ind.1-Add.1-K1 #6/3,#5/2,#1/0
a02 00 00 1000 100 000 00 O 1 Add.2-Ind.1-Add.1-K? #6/3,#5/2,#1/0
a03 00 10 1000 100 000 00 O O Add.2-Ind.1-Add.2-R? #7/1,#6/3,#5/2
a04 10 00 0000 000 000 00 O 1 Add.2-K1 #8/1,#1/0

a05 00 10 0000 000 000 00O O O Add.2-R? #7/1

a06 00 00 0000 000 100 00 O O Ass.1-Ind.1-R7 #4/2

a07 00 00 0000 000 000 10 1 O Ass.1-M? #3/1,#2/0

a08 00 00 0000 000 010 00 1 O Ass.2-M? #4/1,#2/0

a09 00 00 0000 000 000 10 O O Ass.2-R? #3/1

al0 00 00 0000 100 000 00 O 1 Ind.1-Add.1-K1 #5/2,#1/0

all 00 00 0000 100 000 00 O 1 1Imnd.1-Add.1-K? #5/2,#1/0

al2 00 10 0000 100 000 00 O O Imnd.1-Add.2-R7? #7/1,#5/2

al3 00 00 0000 000 000 00O O 1 Ki #1/0

al4 00 00 0000 000 000 00 O 1 K7 #1/0

al5 00 00 0000 000 000 00 1 O M? #2/0

The number of bits allocated for a template is one greater than the length of the longest path
in the template. The position of a one indicates the length of an accepted path string. Bit strings
allow overlapping matches to the same tree template to be recorded.

3.6 The Algorithm

Perform a left to right depth first scan over the subject tree attaching (context) states of the
acceptor to each node. For the given example this gives:

Replacement Ri Ri Ri Ri C CRiRi

Rule number #8 #7 #6 #5 #4 #3 #2 #1

Ass n00 00 00 0000 000 001 00 O O #4/0

(#4->C) 00 00 0000 000 000 OO O O

*-Ind n06 00 00 0000 000 010 00 O O #4/1

| *-Add n01 00 01 0001 000 000 OO O O #6/0, #7/0

| (#6->Ri) 00 00 0000 000 100 00 O O #4/2

| *-Add n01 00 01 0000 000 000 00O O O #7/0

| | (#7->Ri) 10 10 0010 000 000 00 O O #8/1,#7/1,#6/1

| | *-Kv n01 00 00 0000 000 000 00 O 1 #1/0

| | | (#1->Ri) 10 10 0010 000 000 00 O O #8/1,#7/1,#6/1

| | *-Rp n02 00 10 0000 000 000 00 O O #7/1

| *-Ind n02 00 00 0010 001 000 00 O O #6/1,5/0

| (#5->Ri) 00 10 0000 100 000 00 O O #7/1,#5/2

| *x-Add n03 00 01 0100 010 000 00 O O #7/0,#6/2,#5/1

| (#7->R1i) 00 00 0000 000 000 OO O O

| *-Ki n04 00 00 1000 100 000 00 O 1 #6/3,#5/2,#1/0

| | (#1->Ri) 10 10 0010 000 000 00 O O #8/1,#7/1,#6/1

| *-Rp n05 00 10 1000 100 000 00 O O #7/1,#6/3,#5/2

*-Mx n08 00 00 0000 000 010 00 1 O #4/1,#2/0
(#2->Ri) 00 00 0000 000 000 10 O O #3/1

73

An item of the form (#i->0p) indicates that the current branch of the parse tree can be
matched by rule #i, and if it is, the branch would be replaced by a leaf node with operator Op.

The bit patterns indicate for each position in the parse tree which rules are matched and
to what depths. When the least significant bit is a one then that point in the tree, it can be
matched by the corresponding rule. For instance, the bit pattern indicates that the root node can
be matched by rule #4. The value obtained for a node is computed by ANDing together the bit
patterns for its children and shifting the result right by one position. When a template matches
that position in the tree can be replaced by a leaf node. This may lead to another accepting
state whose bit pattern should be regarded as being ORed with the bit pattern for the node itself.
Careful study of the above table should make the mechanism clear.

As each possible replacement is found its cost is computed and, if found to be lower than the
cost of a previously discovered replacement (yielding the same leaf node), the new cost and the
number of the rule that made it possible is recorded in the tree.

When the depth first scan is complete the root node will contain a list of possible leaf
nodes that it can be replaced by, together with the minimum cost for each replacement and the
corresponding rule that was used. A second pass over the tree can generate the code corresponding
to this minimum cost covering,.

74

Chapter 4

Object Modules and Linkers

We have shown how to generate assembly-style code for a typical programming language using
relatively simple techniques. What we have still omitted is how this code might be got into a
state suitable for execution. Usually a compiler (or an assembler, which after all is only the word
used to describe the direct translation of each assembler instruction into machine code) takes a
source language and produces an object file or object module (.o on Unix and .0BJ on MS-DOS).
These object files are linked (together with other object files from program libraries) to produce an
executable file (.EXE on MS-DOS) which can then be loaded directly into memory for execution.
Here we sketch briefly how this process works.

Consider the C source file:

int m = 37;

extern int h(void);

int f(int x) { return x+1; }
int g(int x) { return x+m+h(); }

Such a file will produce a code segment (often called a text segment on Unix) here containing code
for the functions £ and g and a data segment containing static data (here m only).

The data segment will contain 4 bytes probably [0x25 00 00 00].

The code for £ will be fairly straightforward containing a few bytes containing bit-patterns
for the instruction to add one to the argument (maybe passed in a register like %eax)) and return
the value as result (maybe also passed in %eax). The code for g is more problematic. Firstly it
invokes the procedure h () whose final location in memory is not known to g so how can we compile
the call? The answer is that we compile a ‘branch subroutine’ instruction with a dummy 32-bit
address as its target; we also output a relocation entry in a relocation table noting that before the
module can be executed, it must be linked with another module which gives a definition to h().

Of course this means that the compilation of £() (and g()) cannot simply output the code
corresponding to f; it must also register that £ has been defined by placing an entry to the effect
that £ was defined at (say) offset 0 in the code segment for this module.

It turns out that even though the reference to m within g() is defined locally we will still need
the linker to assist by filling in its final location. Hence a relocation entry will be made for the
‘add m’ instruction within g() like that for ‘call h’ but for ‘offset 0 of the current data segment’
instead of ‘undefined symbol h’.

A typical format of an object module is shown in Figure 4.1 for the format ELF often used
on Linux (we only summarise the essential features of ELF).

75

Header information; positions and sizes of sections
.text segment (code segment): binary data

.data segment: binary data

.rela.text code segment relocation table:

list of (offset,symbol) pairs showing which offset within
.text is to be relocated by which symbol (described
as an offset in .symtab)

.rela.data data segment relocation table:

list of (offset,symbol) pairs showing which offset within
.data is to be relocated by which symbol (described
as an offset in .symtab)

.symtab symbol table:

List of external symbols used by the module:

each is listed together with attribute

1. undef: externally defined;

2. defined in code segment (with offset of definition);
3. defined in data segment (with offset of definition).
Symbol names are given as offsets within .strtab

to keep table entries of the same size.

.strtab string table:

the string form of all external names used in the module

Figure 4.1: Summary of ELF

4.1 The linker

Having got a sensible object module format as above, the job of the linker is relatively straight-
forward. All code segments from all input modules are concatenated as are all data segments.
These form the code and data segments of the executable file.

Now the relocation entries for the input files are scanned and any symbols required, but not
yet defined, are searched for in (the symbol tables of) the library modules. (If they still cannot
be found an error is reported and linking fails.) Object files for such modules are concatenated as
above and the process repeated until all unresolved names have been found a definition.

Now we have simply to update all the dummy locations inserted in the code and data segments
to reflect their position of their definitions in the concatenated code or data segment. This is
achieved by scanning all the relocation entries and using their definitions of ‘offset-within-segment’
together with the (now know) absolute positioning of the segment in the resultant image to replace
the dummy value references with the address specified by the relocation entry.

(On some systems exact locations for code and data are selected now by simply concatenating
code and data, possibly aligning to page boundaries to fit in with virtual memory; we want code
to be read-only but data can be read-write.)

The result is a file which can be immediately executed by program fetch; this is the process by
which the code and data segments are read into virtual memory at their predetermined locations
and branching to the entry point which will also have been marked in the executable module.

76

4.2 Dynamic linking

Consider a situation in which a user has many small programs (maybe 50k bytes each in terms of
object files) each of which uses a graphics library which is several megabytes big. The classical idea
of linking (static linking) presented above would lead to each executable file being megabytes big
too. In the end the user’s disc space would fill up essentially because multiple copies of library code
rather than because of his/her programs. Another disadvantage of static linking is the following.
Suppose a bug is found in a graphics library. Fixing it in the library (.0BJ) file will only fix it in
my program when I re-link it, so the bug will linger in the system in all programs which have not
been re-linked—possibly for years.

An alternative to static linking is dynamic linking. We create a library which defines stub
procedures for every name in the full library. The procedures have forms like the following for
(say) sin():

static double (*realsin) (double) = 0; /* pointer to fn */
double sin(double x)
{ if (realsin == 0)

{ FILE *f = fopen("SIN.DLL"); /* find object file */

int n = readword(f); /* size of code to load */
char *p = malloc(n); /* get new program space */
fread(p, n, 1, f); /* read code */

realsin = (double (*)(double))p; /* remember code address */

3

return (*realsin) (x);

Essentially, the first time the sin stub is called, it allocates space and loads the current version
of the object file (SIN.DLL here) into memory. The loaded code is then called. Subsequent calls
essentially are only delayed by two or three instructions.

In this scheme we need to distinguish the stub file (SIN.0BJ) which is small and statically
linked to the user’s code and the dynamically loaded file (SIN.DLL) which is loaded in and ref-
erenced at run-time. (Some systems try to hide these issues by using different parts of the same
file or generating stubs automatically, but it is important to understand the principle that (a) the
linker does some work resolving external symbols and (b) the actual code for the library is loaded
(or possibly shared with another application on a sensible virtual memory system!) at run-time.)

Dynamic libraries have extension .DLL (dynamic link library) on Microsoft Windows and
.so (shared object file) on Linux. Note that they should incorporate a version number so that an
out-of-date DLL file cannot be picked up accidentally by a program which relies on the features
of a later version.

The principal disadvantage of dynamic libraries is the management problem of ensuring that
a program has accept to acceptable versions of all DLL’s which it uses. It is sadly not rare to try
to run a Windows . EXE file only to be told that given DLL’s are missing or out-of-date because the
distributor forgot to provide them or assumed that you kept your system up to date by loading
newer versions of DLL’s from web sites! Probably static linking is more reliable for executables
which you wish still to work in 10 years’ time.

[The end]

7

