
Programming in Java

A C Norman, Lent Term 2006

Part IA

2

Contents

1 Preface 7
1.1 What is programming about? . 7
1.2 What aboutgoodprogramming? 8
1.3 Ways to save time and effort . 9

1.3.1 Use existing resources 9
1.3.2 Avoid dead-ends . 9
1.3.3 Create new re-usable resources 10
1.3.4 Documentation and Test trails 10
1.3.5 Do not make the same mistake twice 10

1.4 Where does Java fit in? . 11

2 General advice for novices 13

3 Introduction 15
3.1 Introduction . 15

3.1.1 Books . 18
3.2 Practical work . 21

3.2.1 Exercises . 24
3.3 A Cook-book Kick-start . 28

3.3.1 Code Layout . 33
3.3.2 Emacs . 34
3.3.3 Drawing to a window: JApplets 37
3.3.4 HTML and appletviewer 42
3.3.5 Exercises . 43

4 Basic use of Java 49
4.1 Data types, constants and operations49

4.1.1 Reserved Words . 49
4.1.2 Basic Types . 51
4.1.3 Exercises . 65

4.2 Operators and expressions . 71

3

4 CONTENTS

4.2.1 Exercises . 74
4.3 Control structures . 77

4.3.1 Exercises . 77
4.4 Control structures Part 2 . 82

4.4.1 Expression Statements 82
4.4.2 Blocks . 82
4.4.3 Null statements . 83
4.4.4 if . 83
4.4.5 while , continue andbreak 84
4.4.6 do . 84
4.4.7 for . 85
4.4.8 switch , case anddefault 85
4.4.9 return . 87
4.4.10 try , catch andthrow , finally 87
4.4.11 assert . 88
4.4.12 Variable declarations . 88
4.4.13 Method definitions . 89
4.4.14 Exercises . 90

4.5 Java classes and packages . 98
4.5.1 Exercises . 108

4.6 Inheritance . 115
4.6.1 Inheritance and the standard libraries 116
4.6.2 Name-spaces and classes 120
4.6.3 Program development with classes 125

4.7 Generics . 129
4.7.1 Exercises . 130

4.8 Important features of the class libraries 139
4.8.1 File input and output . 140
4.8.2 Big integers . 147
4.8.3 Collections . 150
4.8.4 Simple use of Threads 150
4.8.5 Network access . 153
4.8.6 Menus, scroll bars and dialog boxes 155
4.8.7 Exercises . 160

5 Designing and testing programs in Java 167
5.1 Different sorts of programming tasks171
5.2 Analysis and description of the objective 179

5.2.1 Important Questions . 179
5.2.2 Informal specifications 180
5.2.3 Formal descriptions . 181

CONTENTS 5

5.2.4 Executable specifications 181
5.3 Ethical Considerations . 182
5.4 How much of the work has been done already? 183
5.5 What skills and knowledge are available? 185
5.6 Design of methods to achieve a goal 186

5.6.1 Top-Down Design . 186
5.6.2 Bottom-Up Implementation 189
5.6.3 Data Centred Programming 190
5.6.4 Iterative Refinement . 190
5.6.5 Which of the above is best? 191

5.7 How do we know it will work? 191
5.8 While you are writing the program 194
5.9 Documenting a program or project 195
5.10 How do we know it does work? 197
5.11 Is it efficient? . 200
5.12 Identifying errors . 201
5.13 Corrections and other changes 204
5.14 Portability of software . 205
5.15 Team-work . 206
5.16 Lessons learned . 207
5.17 Final Words . 208
5.18 Challenging exercises . 208

6 A representative application 219
6.1 A Lisp interpreter . 219

6.1.1 Exercises . 233

7 What you do NOT know yet 235

8 Model Examination Questions 237
8.1 Java vs ML . 237
8.2 Matrix Class . 238
8.3 Hash Tables . 238
8.4 Compass Rose . 239
8.5 Language Words . 239
8.6 Exception abuse . 240
8.7 Queues . 240
8.8 Loops . 240
8.9 Snap . 240
8.10 Partitions . 241
8.11 Laziness . 241

6 CONTENTS

8.12 Cryptarithmetic . 242
8.13 Bandits . 242
8.14 Exception . 244
8.15 Features . 245
8.16 More features . 245
8.17 Debate . 246
8.18 Design . 246
8.19 Filter (Coffee?) . 246
8.20 Parse trees . 247
8.21 Big Addition . 248
8.22 Lists in Java . 248
8.23 Pound, Shillings and Ounces . 248
8.24 Details . 249
8.25 Name visibility . 250
8.26 Several Small Tasks . 250
8.27 Some Tiny Questions . 251

9 Java 1.5 or 5.0 versus previous versions 253
9.1 An enhancedfor loop . 253
9.2 Generics . 254
9.3 assert . 254
9.4 Static imports . 254
9.5 Auto-boxing . 254
9.6 Enumerations . 254
9.7 printf . 255
9.8 Scanner . 255
9.9 Variable numbers of arguments for methods255
9.10 Annotations . 256
9.11 Enhanced concurrency control 256

Chapter 1

Preface

1.1 What is programming about?

In the early days of computers programming involved a full understanding of the
way that the hardware of your computer worked, your program,when run, took
over essentially the whole machine and it had to include everything needed to
manage input and output. In extreme cases one started the process of loading
code into a computer by using hand-switches to place bit-patterns directly into
the machine’s memory. After a while operating systems came along and pro-
vided serious insulation from that level of extreme awareness of hardware, and
high-level languages make it possible to express programs in at least semi-human-
understandable form. But still the emphasis was on “writing aprogram”, which
tended to be a stand-alone application that solved some problem.

Libraries of pre-written sub-programs grew up, but for a very long time the
ones that anybody could rely on having access to were either rather specialist or
the functionality that they provided was at a rather low and boring level. There
were libraries that could really help you with serious tasks(such as building a
windowed user-interface) but none of them gained really global acceptance, and
only a few were of any use on more than one brand of computer. The libraries that
were standard with typical programming languages providedfor fairly limited file
and terminal access input and output, modest string handling and really not a lot
else. Operating systems made their capabilities availablein the form of libraries
that programs could call on, but overall coherent design wasrare and use of these
“libraries” led to inherently non-portable code.

Building a new library was not part of the common experience ofprogram-
mers, and indeed large-scale re-use of code was the exception rather than the rule.

There has been an ideal or a dream of re-usable software components for ages,
but it is only recently that it has started to become something that can be not

7

8 CHAPTER 1. PREFACE

just feasible but reasonably convenient. Java is one of the languages that encour-
ages this move, and the whole Object Oriented Programming movement that Java
forms part of provides a context.

So in the old world one thought of a program as a large complicated thing
that called upon facilities from a few fixed libraries that you happened to have
available. Today instead of that you should often start a project with the intention
of developing a set of new re-usable and general libraries that themselves build on
and extend existing software components. You will design these libraries so that
once they exist the program you had to write becomes a fairly simple application
of them: it will do some minor customisation and link together different units
within the overall structure of your libraries, but with luck it will of itself be
fairly small and straightforward. If you do this well you will find that the library
you have created will serve you well in future projects, or itmay even become
something worth circulating (or selling) of itself. With these ideas in mind you
will want to make it well-structured, robust and you may evenfeel motivated to
accompany it with some coherent documentation!

So overall the mind-set for the 21st Century is that you designand write re-
usable components and libraries, and that writing mere stand-alone programs is a
terribly old-fashioned and dull thing to do!

1.2 What aboutgood programming?

The first and utterly overriding character of a good program is that it must be fit
for its purpose. Good programming must not only lead to a goodprogram, but
should do so in a way that reaches a successful conclusion reliably and without
taking more time and effort than is really required.

These comments may seem bland and self-evident, but they have real conse-
quences! The first is that you can not judge a program until youknow what its
purpose is. Even though almost all the exercises you will do this year will be
both small and will never have any part of their code re-used it will be proper for
you to practise writing them as if they are much larger and more important. That
will mean that you are expected to accompany the code you write with both notes
about its external behaviour and how to use it and with comments that describe its
internal structure and organisation. For certain sorts of library code it will make
sense to use the documentation arrangements that the main Java libraries use. This
involves things called “documentation comments” and a utility called javadoc

that will be described later.
Without this documentationyou may believe that your programs meet their

purpose but you do not have any basis for expecting others theagree.

1.3. WAYS TO SAVE TIME AND EFFORT 9

1.3 Ways to save time and effort

Working with computers can swallow up an astonishing amountof time. To be
able to get everything you need done you will want to find ways of economising.
The key to doing this effectively is to concentrate on techniques that save time in
the long run. Some ideas that appear to speed things up in the short run can end
up costing more later on!

1.3.1 Use existing resources

You are encouraged to use code-fragments from these notes inany way you want.
You can sometimes get a fresh project off the ground by extracting at least frag-
ments from a previous piece of work you have done. The Java libraries are your
friend: they contain facilities to do many of the things you will find yourself need-
ing. In general before you ever write anything from scratch for yourself consider
whether there is something that can give you a head-start.

Everybody might reasonably worry that the above paragraph could be seen as
an invitation to plagiarise! Do not take it that way: couple it with a very firm re-
mark that when you use other material you should acknowledgeyour sources, and
you should not pillage the material of those who are unwilling to make their work
available to you. As far as tickable exercises for this course are concerned you are
encouragedto discuss what you are doing with friends and supervisors, and col-
lect code-sketches and fragments from them, provided that when you submit your
work to the department you really understand everything in your submission and
you have learned enough that (if necessary) you could then instantly and comfort-
able re-create your submission in a sound-proof booth visibly cut-off from further
help. So rather than sit and suffer in isolation, seek web-sites, friends, demonstra-
tors, books and code libraries to give you guidance so long asyou learn from then
and do not just blindly copy!

1.3.2 Avoid dead-ends

Sometimes you can start designing or writing some code and asyou go things
seem to get harder and harder. Something is not working and you have no idea
why. You do not want to get in such a state! Clear advance planning and a well
organised set of working habits are the best way to avoid the mess. If you find
yourself in what feels like a dead-end then avoid (a) panic (b) a tendency to try
almost random changes in the hope that things will improve and (c) temptation
to work all afternoon, evening and night until you solve things. Go back and
look at your plan. If necessary refine it so you can make progress in tiny steps.
Explain your plan and your code to somebody else (either in person or in the form

10 CHAPTER 1. PREFACE

of written documentation). But do not just get bogged down: taking a break and
coming back fresh can often save overall time.

1.3.3 Create new re-usable resources

An ideal that this course would like to instil in you is one of creating re-usable
bodies of code. This will take more care and time when you firstimplement them
(and of course anything re-usable deserves proper documentation and testing) but
that can be well paid back when you get a chance to call on it again. At a mini-
mum this can include keeping all your working code from both the tickable and
other exercises in these notes so you can use parts of them as templates in future
projects.

1.3.4 Documentation and Test trails

Neatly formatted code with clear comments and a well set out collection of test
cases can seem slower to write then a jumble of code that is just thrown together.
However long experience suggests that the jumble of code is much less likely to
work first time, and that especially as your projects get bigger that early investment
in good habits pay dividends.

1.3.5 Do not make the same mistake twice

Especially while learning a new language, such as Java, you will make mistakes.
As you design and write gradually larger and larger bodies ofcode you will make
mistakes. Observe and appreciate these, and try to observe yourself as you un-
cover and correct them. Possibly even keep a small notebook of “bugs I have had
in my code”. Then each time you make a mistake seek some schemethat can pre-
vent the same one from causing significant trouble in the future. Your fingers will
always leave typos in everything you write and your mind can always wander: the
idea is not to avoid glitches totally, it is to build up a personal toolkit of ways to
overcome them without pain or waste.

1.4. WHERE DOES JAVA FIT IN? 11

1.4 Where does Java fit in?

Figure 1.1: Silver Bullet
Needed.

There are those who believe that Object Oriented De-
sign and Programming isThe Answer to reliable
large-scale system building, a silver bullet1 that cures
the major woes of the last fifty years of over-costly and
haphazard use of computers. Java is one of the major
practical and widely-used languages that fall within
the Object Oriented family. Key attitudes that come
with this are that projects should be structured into po-
tentially re-usable blocks (the Javaclass construct
that you will learn about later being a major way of
achieving this). These blocks should each take respon-
sibility for just one aspect of the overall behaviour you
are trying to code up. The decomposition should be
arranged so that interaction between blocks is as tidy
and disciplined as possible.

Overall at least a rough caricature is that ML
stresses absolute correctness via mathematically styled
structure, and encourages very concise programming
styles. Java on the other hand follows a view that language constructs that support
large-scale structuring of projects are the key. It also expects that having the user
write out types and qualifiers explicitly will help others toread your program.
ML as taught last term provides a fairly basic library, but mostly you spend the
Michaelmas Term writing stand-alone programs and fragments. With Java there
is heavy emphasis on a rich (and perhaps hence complicated) library that supports
a very full range of computing needs.

1Brad Cox in Byte magazine October 1990, pp 209–218 puts things in much these extreme
words.

12 CHAPTER 1. PREFACE

Chapter 2

General advice for novices

Following tradition, I provide ten items of guidance for thebenefit of those who
are relatively new to programming. I hope that each of these will be re-inforced
during the course as a whole, but here they are collected together at the beginning:

1 Understand the task you are about to solve before starting to write a pro-
gram about it. Work through methods and procedures by hand onpaper
etc. Plan some test cases. Identify cases that will represent boundaries
or oddities. In general prepare a plan before you start goinganywhere
near a computer;

2 Sketch the structure of the whole of your code out informally so you have
full overview before fussing about exact syntax etc. Ensureyou know
what you expect that the computer will do. This initial sketch can be
very informal, and may be in terms of diagrams rather than anything that
looks much like real programming. The key word here is “structure”.
This applies with way greater force when your code starts to grow: you
should always design a good way to factor your code into reasonably
self-contained and independent components (each will be one “class” in
your code) right from the start;

13

14 CHAPTER 2. GENERAL ADVICE FOR NOVICES

3 Write outkey parts of above in the form of comments before you start
the real code. Concentrate in these comments on the “what” and“why”
of your code rather the details of “how”. This will really help when you
show your work to somebody else because you need help! I will explain
this one again: The first thing you will type into a computer when you
start writing any program will be a set of overview comments that explain
its strategy and structure;

4 At least for a first version of anything, favour clarity and obvious cor-
rectness over pretty well everything else. Clever tricks, worries about
efficiency, generalisations etc can come later;

5 Neat consistent layout and thoughtfully named fields, methods, variables
etc. are a good investment of your time. Cryptic is bad even if it saves
keystrokes in the short term;

6 If a task is too big to solve in just one gulp look for ways of breaking it
down into sub-tasks. As you do this think about ways you will be able to
test code you write for each sub-task and work on the whole thing step
by step;

7 When you try to compile your code and see a syntax error do not panic.
Learn to interpret the compiler’s diagnostics. And only tryto remove
one error at a time: count it as a success if next time you try tocompile
thefirst error has give so you can then concentrate on the second;

8 When you have compiled your program and run it and it gives wrong
answers or behaves badly do not panic. First work to understand what is
wrong and only after you have found where the problem is thinkabout
ways to fit it. Do not just try random changes! Eg. confirm what your
program actually does by adding assert and extra print statements;

9 Whenever you find you have to change your program review comments,
consider if it will now do exactly what you want, and re-run all your test
cases. Experience shows that changes (for whatever cause) can introduce
new problems while you are in the process of fixing old ones;

10 If you find you are spending a seriously long time trying to make sense
of anything then find help from friends or a supervisor or a book. Do not
just keep building up your frustration not getting anywhere!

Chapter 3

Introduction

3.1 Introduction

We have been using Java as a first-year teaching language herein Cambridge
since 1997-8. We teach this course following on from “Foundations of Computer
Science” which used ML, and there are a number of things it is intended to do:

1. Provide all of our students with exposure to a common programming lan-
guage that can be used by later courses and practical work in the CST;

2. Introduce the syntax that is (almost) common to several ofthe most widely
used practical programming languages today (the syntax of Java has a great
deal in common with that of C and C++, so having learned Java youare
quite a long way to understanding those languages too);

3. Discuss the process of designing, writing and debugging programs and raise
some awareness of issues of style;

4. Present the Object Oriented aspects of a programming language as means
to enforce modularity in large programs;

5. Teach basic use of Java, a language that has significant relevance in the
outside world today.

Note that in our Part IA course “Software Engineering II” provides significant ex-
tra coverage on issues of structuring programs (especiallyones that are large or
developed by collaborative work in a group), and in Part IB course there is a lec-
ture course once entitled “Further Java” and now renamed ”Concurrent Systems
and Applications”: it should not be imagined that I will cover all aspects of the
language or its use here!

15

16 CHAPTER 3. INTRODUCTION

The nature of teaching a course involving programming in some particular lan-
guage means that some features need to be mentioned well before the place where
they can be fully explained, and so it will not make sense to keep the presentation
in lectures totally linear and tied to these notes, but for supervision purposes the
structure shown here should suffice. With each section I willhave a few examples
or exercises. Especially at the start of the course these will often be pretty silly,
but the ones right at the end can be viewed as samples of the sort of question that
might arise in the examination. Although I want some of my examples to be nice
and easy I would like to have others that are interesting challenges for those who
already think they know it all (ha ha). It is always very hard to judge the amount
of trouble these will give you all, so if they are either too easy or too difficult
I apologise. Examination questions will be set on the supposition that you have
attempted a reasonable sampling of the exercises.

The aim of these notes is that they should serve both as guidance to students
and to supervisors, and so there is no separate supervisor’sguide. Originally I had
intended that they would be structured into sixteen sections corresponding to the
sixteen lectures available. As I prepared the notes I concluded that such a rigid
arrangement was not tenable. Thus the lectures can be expected to cover roughly
the material in these notes in roughly the same order, with anapproximation to
one-sixteenth of the entire notes corresponding to each lecture!

It might be noted that a Java course for the Diploma students runs during the
Michaelmas term. The lecture notes associated with that course may provide a
presentation of Java which is different from mine and thus may complement my
lectures or shed light on issues that I fail to.

The course this year will be based on use of the version of Javasometimes
known as “Java 5.0” and sometimes as “Java 1.5”. This should now be counted as
the current and widely-used version, but if you use computers other than the main
university ones here you may come across earlier releases. Please avoid them for
course-related work to avoid confusion.

Some members of the audience for this course will already have significant
practical experience with Java. Others will have written lots of programs before
but in C, C++ or Pascal, but the only thing I can properly assume here is that
everybody has attended the Foundations of Computer Science course given in the
Michaelmas term and hence that everybody is used to writing code in the language
ML. While those who have seen Java before will undoubtedly findthe first few
lectures and exercises here very easy, I hope that they will find material that is new
and worth-while being introduced in due course. In the first year that this course
was given it was observed by one Director of Studies at a largeCollege that some
of his students who did already know Java concluded on that basis that they need
not attend the lectures, but that their examination resultsindicated that this had
not been a perfect judgement call.

3.1. INTRODUCTION 17

Figure 3.1: Reproduced courtesy Kevin McCurley.

18 CHAPTER 3. INTRODUCTION

3.1.1 Books

All bookshops these days seem to devote many metres of shelf-space to books that
purport to teach you Java in a given small number of days, to help you even if you
are an “idiot”, or to provide “comprehensive and detailed” coverage of even those
parts of Java that the language definers have left deliberately vague. I believe that
this is a course where it is important for every student to have their own copy
of a supporting textbook/manual. But the issue of which book to buy will end
up a somewhat personal choice since differing levels of detail will suit different
students! Browse the following in libraries and bookshops, talk to students in
higher years and seek advice from your Directors of Studies and Supervisors about
what is liable to suit you.

My first recommendation has as most of its pages what is in effect hard copy
of the on-line detailed documentation of the Java library. As a result it is not a
smooth consistent read, but I find that very many people need that information in
printed form while they are getting used to navigating the library and understand-
ing what it can do for them. Java in a Nutshellfifth edition (Feb 2005)

Java Foundation Classes in a Nutshell (1999)
David Flanagan
O’Reilly

Note that the fifth edition is due to be published as your course begins!

There are two books[11, 6] that I think you might reasonably consider and that
are probably easier for self study in that they do not get so rapidly enmeshed in
full detail.

Thinking in Java
Bruce Eckel
Prentice-Hall, 2002third edition

and
Java Gently
Judy Bishop
Addison Wesley, 2003,third edition

Eckel’s book is distributed (at no cost) viawww.eckelobjects.com so if
you are actually prefer reading computer screens to real books it counts as a great
bargain!

Some Directors of Studies will strongly point you towards the book[2] that
was that main text for this course a couple of years ago:

Objects First with Java: a Practical Introduction using BLUEJ
David Barnes and Michael K̈olling
Prentice Hall/Pearson, 2005,second edition

3.1. INTRODUCTION 19

Figure 3.2: Not (quite) the main course book.

20 CHAPTER 3. INTRODUCTION

This book emphasises issues of overall program structure and design above
concern for the exact details of the Java language or its libraries and so is almost
exactly the antithesis of the Nutshell books! It was used as the main teaching text
here in 2003-4, and you may find the BlueJ software (http://www.bluej.org)
provides a useful environment within which to develop and test your code. Note
that this year’s edition of both the book and the software hasdeveloped from the
versions available last year.

There will be plenty of other useful books, and any individual student may
find a different one especially to their own taste. If selecting a book other than
the one I suggest that you make sure that what you learn from itcan be related to
the lectures that I give. Since this year we are using a rathernew version of Java
beware that old editions of books may not be sufficiently up todate.

Java is a “buzzword-compliant” language, and when people hear that you are
learning it they will instantly pick up all sorts of expectations. Even though this
course is sixteen lectures long I will not be able to fulfil allof these, and that is in
part why the Computer Science Tripos has a course entitled “Concurrent Systems
and Applications” in Part IB that follows on from this one. There are three issues
that I should mention right here at the start of the notes, if only to protect myself
and the department against misunderstandings as to our purpose:

Java is for use animating Web pages:
Some of the huge first flush of enthusiasm that greeted the emergence of
Java was because it could be used to make rather naff animatedfigures dance
on web pages. This was of course amazing when web pages had previously
been so rigidly static, but it is not a good model for the central issues in
Computer Science. This will typically not be the sort of use ofJava that we
try to teach you here;

Java is the best programming language:
The Computer Laboratory shows by its actions that it views ML as its pref-
erence for a first language to teach its students, with Java asa second one.
Later on in the course we will provide coverage ranging from brief men-
tion to detailed explanations of quite a few other languages: certainly C,
C++, Lisp and Prolog. The Software engineering courses mention a scheme
called just ‘Z’ that is in effect a programming language, andyou will see
from past examination papers that we have high regard for Modula 3. What
is shown by that is that the Computer Laboratory view is that different lan-
guages may prove best for different tasks, and that the optimal choice will
change as the years go by (it happens that we no longer teach our students
either Fortran or COBOL, and our coverage of assembly code is present

3.2. PRACTICAL WORK 21

because it forms an important link between the concerns of hardware de-
signers, operating system experts and compiler writers, and not because we
expect students to do project work in it). At present Java is our choice for
the first “traditional”-style programming language we teach: this does not
mean it will automatically be the only or best choice forall future practical
work and projects;

Students should be taught about “programming in the large”:
As this is a first year course I will be concentrating on the fundamental
building blocks of program construction. This is in line with the Engineer-
ing Council “EA1” concern about introducing students to the fundamental
tools, materials and techniques in their subject. I view it is self-evident
that until a student can write small programs competently and painlessly it
would not make sense to expect them to be able to work in groupson large
projects. However in all the practical work associated withthis course you
should expect the assessors to demand that all code you writeis well laid
out, properly commented, that it displays a sensible programming style and
that you are in a position to justify its correctness. In short that a generally
professional approach has been taken even though many of theexercises are
short and somewhat jokey toy problems.

3.2 Practical work

The main environment the laboratory expects you to use for this course is PWF
Linux. At the start of Term you should be given an introduction that explains how
to re-boot certainly the PWF systems in Cockroft 4 or in the Intel Laboratory in
the Gates Building so they run Linux. PWF workstations in otherparts of the
University may not have been configured with this dual-boot option, but if they
have then you can use them. Although Java runs perfectly happily on Windows
we want you to do much of your practical work on Linux so that bythe time you
come to the Operating System course later in the year you havemade significant
personal use of both Windows and Linux.

At least for the first half of the Term we would also encourage you to use the
emacs editor and build and run your Java programs using the somewhat primitive
command-line driven toolsjavac , java andappletviewer . Use of these will
be explained later. The reasoning behind this is not that it guarantees to make your
Java-specific experience as comfortable as possible, but because the technologies
involved are ones you need to find out about at some stage! Specifically I note
that

• emacs is a rich and powerful editor. You can use it in a simple way while

22 CHAPTER 3. INTRODUCTION

you are beginning work, but it has extension mechanisms thatallow it to
morph to provide specialist support for different sorts of document, and it
can provide a single environment (and set of keystrokes to learn) that covers
not just editing your program but also compiling and runningit, reading and
sending e-mail and many other tasks. It probably counts as the most widely
used general-purpose Unix/Linux editor and versions for Windows are also
available. Your really simple use of it now will help those ofyou who
choose to use if in more elaborate ways later on.

• The use of thejavac andjava commands explicitly (as distinct from you
using them implicitly through an all-encompassing specialist Java devel-
opment environment) means that when you see any curious messages or
complaints you know where they come from. It also introducesyou to a
typical model for how software is built (theedit, compile, testcycle). When
you are more experienced you will no doubt move on and use integrated
environments1. In some respects these help by doing things for you – but
especially since you have survived the Foundations of Computer Science
course last Term it now seems proper that you get to see how to do things
for yourself.

For reference material it may prove most convenient to use on-line documenta-
tion, and in particular the web-browsable HTML version. This is available to you
in $CLTEACH/acn1/java/docs , so you can launch a browser and start looking
at it by going

firefox $CLTEACH/acn1/java/docs/index.html &

and around the first thing you may want to do is to set yourself abookmark on that
page. There is ahugeamount of documentation there. The bits I find most useful
are the “Java 2 Platform API Specification” which documents (in painful detail)
all of the library facilities that are provided, and the “Java Tutorial” which links
to a Sun website with much helpful explanation, and which youmay find a very
good complement to the textbooks I have suggested. All the time I am writing
any Java code at all I will have a web-browser open on the “API”section of the
documentation, since it is useful to have a quick way to checkdetails of the library
very close at hand.

You can obviously run PWF Linux in one of the big shared workstation areas,
and there is a great deal to be said for at least starting off that way: you can com-
pare notes with other students when you have problems. But youcan also access

1Microsoft’s Visual Studio is perhaps a definitive example: for Java you can install either
Netbeans (from Sun) or Eclipse (from IBM) free of charge. BlueJ has very different objectives but
may also prove useful to some.

3.2. PRACTICAL WORK 23

Figure 3.3: Remember about RSI, posture etc, please.

24 CHAPTER 3. INTRODUCTION

PWF by usingssh and an “X-windows server” to access of of the lab’s PWF
linux systems that are set up for remote use, eglinux2.pwf.cl.cam.ac.uk or
linux.pwf.cam.ac.uk . If your own computer is set up to run Linux those will
already be present for you. If you run Windows you can get goodversions free of
charge by installing a Unix-compatibility layer fromhttp://www.cygwin.com ,
but getting everything to work nicely there may be messy enough that those of a
nervous disposition would do better to work in Cockroft 4 or one of the College
computer rooms where PWF Linux is directly available!

It is also perfectly in order for you to install Java on your own computer. Apart
from the fact that the Java development kit uses around 450 Mbytes installing it
should not prove hard, it does not cost anything and performance should work
well under either Windows, Linux or MacOS on any even reasonably recent pc.
If you do that you must be willing to take full responsibilityfor installing and
maintaining everything, and should take care to back up all important files. For
just running small Java exercises there should not be much difference in the ex-
perience you have using your own rather than a public machine2, however if you
habitually use a PWF system somewhere other than in Cockroft 4 or the Intel
laboratory your own system might reduce your need to wait while you re-boot a
public machine into Linux, and if you experiment with one of the integrated Java
environments you nay find performance much better on your ownsystem. If you
have a Macintosh note that Java 1.5 has only very recently become available, so
please double-check that that is the version you have.

To fetch a Java compiler you will need to connect to

http://java.sun.com/j2se

where you can find the Java “SDK Standard Edition, version 5.0”, and its ac-
companying documentation. You should be aware that the package you have to
download is around 50 Mbytes for the main kit, with the documentation being an
additional large download and the “Netbeans” development environment yet more
that youmaywant to explore but are not obliged to worry about. Sun can supply
either Windows (2000/XP) or Linux versions of all of these.

The Eclipse development environment can be found athttp://www.eclipse.org .

3.2.1 Exercises

Tickable Exercise 1

The first part of this tickable exercise is issued as part of the introduction to the
use of Linux on the PWF. The task set here is thus “Part B” of the complete Tick.

2Great thanks are due to the Computing Service for ensuring that this is the case.

3.2. PRACTICAL WORK 25

Log on to the PWF. Create a new directory and select it as your current one,
eg

mkdir Tick1B
cd Tick1B

Issue the following commands that copy two files form the Computer Lab’s
teaching filespace into your new directory.

cp $CLTEACH/acn1/TickBase.class .
cp $CLTEACH/acn1/TickBase1.class .

You should be able to check that the files are present. These two files provide
a basis upon which the exercise builds.

Now inspect Figure 3.4 which is documentation associated with the two files
that you have just copied. A more extensive version of the same material is avail-
able on-line as

www.cl.cam.ac.uk/Teaching/current/ProgJava/notes/Ti ckDoc/

Now prepare a file that calledTick1.java containing the text

// Tick 1. Your Name Goes Here

public class Tick1 extends TickBase
{

public static void main(String []args)
{

(new Tick1()).setVisible(true);
}

public String myName()
{

return "Your Name";
}

}

Obviously you will put your own name in the places that are suggested by
what I have written here!

Compile your program and then run it:

javac Tick1.java
java Tick1

26 CHAPTER 3. INTRODUCTION

Figure 3.4: Documentation of Tick 1 Part B.

3.2. PRACTICAL WORK 27

If all has gone well a window should appear, and it should havesome text
and a pattern on it. There is a menu that you can select. If you copy the files
to your own machine you can try theprint menu, but on the PWF there are
technical reasons why that is not supported, and these lie outside just Java. So
select the menu item labelledpostscript . You should then see a dialog box
asking you to choose a file name. I suggest that you select the nametick1.ps
and I very strongly suggest that you use the extension.ps whatever name you
actually choose. When you accept the file-name you have chosen the “select file”
dialog box disappears and you can not see that anything much has happened, but
the file you indicated should have been created for you. It should contain an
image of the screen window in the Postscript document format. Close the little
Java window, and you can send this to a printer using the command

lpr tick1.ps

The resulting sheet of paper is what goes to your ticker.
As an optional extra you can arrange to change the colour of (some of) the text

generated by adding lines roughly like the following to yourJava source file:

public java.awt.Color myColour()
{

// RED GREEN BLUE
return new java.awt.Color(0.7f, 0.1f, 1.0f);

}

where the three floating point numbers given (note that you have to write a letter
‘f’ at their end) should each be in the range 0.0 to 1.0 and theygive the proportions
or red, green and blue in the colour.

You can also check what happens if you present your name in different ways.
For instance I tried “A C Norman” as well as “Arthur Norman”. If you wanted
to keep your program in a file called sayMyTick.java rather thanTick1.java

you would have to change its name within the file too. Verify that you can do that.

Discussion

This exercise is intended to send several signals and messages about Java:

• One can build new programs building on existing components that do quite
a lot for you. Here you copied in the TickBase class files, but your own pro-
gram then builds on them and can customise the behaviour of the provided
code in various ways. Through doing this a very short fragment of code let
you create a window and print its contents;

28 CHAPTER 3. INTRODUCTION

• To use the software component TickBase you do not need to see its internal
structure: all you need is documentation about how to use it.As part of
stressing this I am not going to provide you with the source code of Tick-
Base, but by the end of this course you will probably be able to re-create
it;

• Part of the way of using components like this involves the Java keyword
extends , and part of the way that the code runs involves the keywordnew.
These are both key parts of the Object Oriented structure of Java, and you
should look forward to finding out more about just what they really mean
later on.

• The page of documentation included as part of these notes tells you that
TickBase is interested in amyName() . This documentation is in the style
of the bulk of the Java on-line documentation, and was created by using a
simple tool calledjavadoc that interpreted some special comments in the
TickBase source code. However the full output from javadoc ison the web
page listed a little earlier and perhaps gives a bit more of anidea of just how
much complexity is involved under the surface. The lesson that I learn is
that if you use javadoc for anything other than a full-scale project you will
need to edit its output heavily to remove material that your audience does
not really need to see.

(End of tickable exercise)

3.3 A Cook-book Kick-start

In this section I will try to get you started with Java. This means that all sorts of
aspects of it will be described in an order that is not really logical, but is motivated
by that fact that some features of the language must be described early if you are
to get any programs at all written. I will not provide much justification for the
recipes that I give. Later on it will be possible to re-visit these examples and
understand what the various odd keywords are all saying and what options might
be available, but for now you can just copy them out parrot fashion.

I would like you to type in all the examples for yourselves andtry them out,
since that will educate your fingers into following the rulesthat Java imposes, and
it will also (each time your fingers stray) give you exposure to Java error messages
and the joys of finding and fixing mistakes.

My first example in fact is an echo of the first part of Java Tick 1. A mildly silly
tradition in teaching programming languages is that the first program presented
should just print out “hello ”. The way of doing this in Java looks like this:

3.3. A COOK-BOOK KICK-START 29

System.out.printf("Hello");

which is a call to a library function calledprintf 3 that will display the given
string. The prefix “System.out ” is not part of the name of the function — it
happens to be providing the instruction that that printed output should be sent to
the standard output stream, ie typically straight to your screen or terminal. In
essential terms the line shown above is the whole important part of your first Java
program. However there is actually quite a lot more to be discussed before you
can try it!

The first thing is that Java is acompiledprogramming language, so unlike
the situation you have seen in ML it is essential to place yourprogram in a file
before it can be used. In this case you should use a file calledHello.java and
it is essential that the file name should start with the wordHello since that is the
name that we will soon repeat within the file. The spelling should be with a capital
letter as shown4, and the file-name should be completed with the suffix.java .

If you startemacs and use the menu selection “Files/Open File” you get a
chance to create a new file for this project, and if you may5 notice that when you
type in the string in the example it is displayed in an alternate colour (to help
remind you to match your quote marks), and when you type the close parenthesis
after the string the matching bracket gets flashed to help youkeep that side of
things under control.

It is possible to make very extensive customisations of emacs. If you put a
file called .emacs in your home directory it can contain directives that apply
whenever emacs starts. In particular if you put a line

(global-font-lock-mode t)

then you will get syntax colouring enabled every time: I find this convenient. For
now I suggest that you avoid putting large amounts of other clever stuff there!

You will also see that the menu-bar at the top of theemacs window has en-
tries that let you do all the things that editors ought to — andmore besides. See
figures 3.5 and 3.7: note that the printed form of my notes willbe in black and
white but the downloadable version on the lab’s web page

http://www.cl.cam.ac.uk/Teaching/2005/ProgJava

will show relevant information in colour. Also note that thesample programs
being edited and tested in the pictures ofemacs in use may be ones taken from
previous years’ versions of this course.

3Many Java texts use a functionprintln here rather thanprintf .
4Well actually if you are working on a Windows system the capitalisation is not so important,

but even there you are strongly advised to keep to it so that when you transfer your programs back
to Unix before showing them to the assessors they still work!

5Provided the “global font lock” options is selected.

30 CHAPTER 3. INTRODUCTION

A “Java mode” is automatically selected when you edit a file whose name ends
in .java and this is the first pay-off you see from this convention. If you select
a “global font lock” this can colour your code so that language keywords, strings,
comments and so on are all displayed in different colours6. It also assists with
indentation and provides editing commands that move aroundin the file in a way
that understands Java syntax. A major feature ofemacs is that it is amazingly
customisable, and configuration files can provide it with special support for many
languages and layout conventions. If you browse enough sites on the web you
may find many extra options that you can install: hold back andavoid these until
you have got really used to the default setup! Please!

Figure 3.5: Two windows, with emacs editing a program.

Your complete first Java program needs a great pile of guff that surrounds the
one interesting line we have and turns it into something thatcan be executed. In
essence two things need to be documented. The first is something that indicates
the external name that the program will be known by. This willalways be exactly
the same as the start of the name of the file it is stored in. You may consider it
silly to have to re-state information that looks as if it should already be available,
but for now please suspend disbelief and accept that a program that lives in a file
calledHello.java will have to contain the text

6At a minimum this can be very helpful if you accidentally failto close a string or comment!

3.3. A COOK-BOOK KICK-START 31

public class Hello
{

...
}

where the... will be filled in soon with material that includes our call to
System.out.println .

The second piece of information needed is an indication of where Java should
start its processing, and the convention that the language imposes here is that it
expects to find a procedure7 with the namemain . The definition of a suitable
procedure then involves the incantation

public static void main(String[] args)
{

...
}

of which the only word that is currently worth describing is “main ”, which is a
reminder of the historical tendency to refer to the place where a program started as
being the “main program” while what are now known as functions or procedures
might have been called “sub-programs”.

Comments can be introduced by “// ” and every good program starts with a
note that explains a few key facts about it. Obviously the longer the program
the more that it will be proper to put in comments at both the start and throughout
your code, but note that assessors will certainly expect your name and the exercise
identification to be at the head of every submission you make.

Putting this all together we get the full contents of the fileHello.java as

// This is the file "Hello.java" prepared by A C Norman
// and the program just prints a fixed message. 1998-2006.

public class Hello
{

public static void main(String[] args)
{

System.out.printf("Hello%n");
}

}

7In these notes I will use the terms “function”, “procedure” and “method” pretty-well inter-
changeably. Some other languages use these words to indicate refined differences — typically
the term “procedure” would be something that did not return avalue, while a “function” would.
The word “method” comes out of ideas of so-called Object Oriented Programming and indicated
a function that is defined within a “class”. Although I have not yet explained what a class is we
have seen the keywordclass towards the head of our Java programs.

32 CHAPTER 3. INTRODUCTION

Figure 3.6: Style does matter.

3.3. A COOK-BOOK KICK-START 33

There is a yet further odd addition in what I have just shown. The%narranges
to put a newline at the end of your message.

For a very short program that hardly does anything interesting that seems to
have a lot of “magic” keywords. But in only a few weeks time you will know what
they all mean, and why they make sense. For now just keep a file that contains the
above basic sample code and copy it every time you want to start a new program
so you do not have to waste time keying in all the junk repeatedly!

3.3.1 Code Layout

Many people have quite strong views about code layout and indentation. That
includes me! The style you will see in these notes almost always places any “} ”
vertically below the “{ ” that it matches. I try to indent anything that is within
such braces by four space positions. Beyond that my guiding principle is to try to
keep my code so that it looks pretty on the screen or page, is efficient in its use of
the page and is as easy to navigate over as I can manage. Savingkeyboard effort
is not a high priority, since actually typing in programs is such a very small part
of the total pain that goes into getting a complete and robustworking program.
The defaultemacs idea about indentation and brace layout is differs from mine:
whichever you choose to follow please be consistent and try to make your code
easy for yourself and others to read.

The comment above about efficiency in the use of the page is because when
reading your code it is especially convenient if all the bitsyou want to see fit
within one screen-full of the editor’s window. Thus I count excessive splitting of
constructs over multiple lines as unhelpful, just as are large swathes of blank lines.
I prefer comments in blocks (which may often make up significant paragraphs)
that describe the code that follows them. And the comments should be readable
English in proper sentences intended to help some poor person faced with revising
or updating the code to correct some imaginary bug or add a newfeature.

Java provides some encouragement for special comments thatare introduced
with the sequence “/ ** ”8 and going on over possibly many lines until the next
“ * / ”. These are there to support extra software tools that extract those comments
and format them as separate documentation for the program. In this course I will
illustrate that scheme later on.

Well all the above discussion has just left us with a fileHello.java . Unlike
(typical teaching use of) ML, Java expects programs to be processed by a sepa-
rate compiler before they are executed. This compiler is a program that checks
the syntax and types of the code you show to it, and translatesfrom the human-

8Ordinarily as well as “// ” comments that just run to the end of the line you can write long
comments starting with “/ * ”.

34 CHAPTER 3. INTRODUCTION

readable9 source file such asHello.java into a more compact10 digested binary
file (calledHello.class in this case) that can subsequently be executed repeat-
edly without any need to re-do all the potentially time-consuming checking. To
carry out this conversion you need to say

javac Hello.java

The javac command tends to be jolly taciturn unless it finds something in
your program that offends it. It does not say anything and so after it has run you
may like to usels to verify that the fileHello.class has been created. Finally
we can run it:

java Hello

Note that whenjavac was used to compile the program it was essential to
quote the.java extension, while when the program was to be run you must not
use the.class extension that the pre-digested version of the program was given.
This level of apparent inconsistency is not at all restricted to Java, and the exact
rules on matters such as this are liable to differ between different vendor’s sets of
Java tools. What I describe here relates just to Sun’s SDK!

3.3.2 Emacs

The editoremacs is the preferred text editor to use while taking this course.I
think it may be best for most people to start by keeping two windows available
on their screens, one theemacs edit window and the second a command-prompt
from which they can issue the build and run commands directly. When working
with an edit and a command window note that you have to go “File/Save Buffer”11

to getemacs to ensure that the file on disc is brought up to date with respect to the
version you have been editing in its buffer. Provided you do this before issuing the
javac command from your other window it is reasonable and most convenient to
keepemacs loaded throughout your session. It is also possible to compile and run
Java (or other) programs while remaining entirely withinemacs, and to get any
reports of syntax errors generated by a compiler to re-position the editor’s caret
close to where the error was detected. But for the rather smallprograms you will
be working with during this Part IA course all is excessive and using one window
to edit and one to compile as in Figure 3.5 remains simplest.

The next program to be shown is a rather simple extension of the one we have
already discussed, but instead of just printing a fixed message it prints a table of
squares. In a file calledSquares.java you should place:

9Well, at least it is readable if you include enough comments!
10Actually for really tiny programs like this one the binary file may be bigger than the source it

relates to, but for and program big enough to be interesting what I say will hold true.
11Or the equivalent keyboard sequence, Ctrl-x Ctrl-s.

3.3. A COOK-BOOK KICK-START 35

public class Squares
{

public static void main(String[] args)
{ for (int i=0; i<10; i++)

{ System.out.printf("The square of %d is %d%n",
i, i * i);

}
}

}

There are two new things here. The first is the iteration statement

for (int i=0; i<10; i++) { ... }

which arranges to declare a variable calledi and set it first to 0, then to 1, then 2
and so on for so long asi<10 remains true. The curious syntaxi++ is inherited
from theCprogramming language and means “increment i”: a less cryptic way of
achieving the same effect would be to write “i=i+1” instead.The single= sign in
Java is an assignment operator and changes the value of the variable named on its
left. The wordint is short for “integer” and specifies the type thati should have.
Type Java typeint denotes integers which are explicitly limited to a range that
is consistent with representation as 32-bit values. UnlikeML Java expects you to
specify the type of pretty well everything you mention, and when you introduce a
new variable you can change its value later using a= operation without having to
worry about any special extra works likeref .

The second new feature is the string argument toprintf where emdedded
percent signs stand for where the numeric values you want displayed need to be
substituted in. The%dindicates that what you want displayed is expected to be an
integer: other letters could be used when you were needing toprint other sorts of
item. Once again I need to make a remark this year that is to do with the transition
to Java 1.5: in previous years and in many books you will see this code written as

System.out.println("The square of " + i + " is " + (i * i));

where the plus signs in fact indicate string concatenation and Java is converting
integers to printable form fairly automatically. I prefer the use ofprintf because
the%dindicates very explicitly that I am about to print an integer(not some other
sort of thing). It can also be extended to give me quite refinedcontrol over the
layout of the table I generate.

Note that when I came to want to type in the Squares program to check it I did
not type it in from scratch. Instead a copied the earlier Hello program and adjusted
the few lines in its middle to perform the new operations. Typically it will also
be necessary to change a few comments to make them relate to the new reality,
but creating new code by making incremental extensions to old is a very useful

36 CHAPTER 3. INTRODUCTION

technique and can save a lot of time and effort. It also means that remembering
all those boring bits is at least slightly less necessary.

One further development of the Squares example will illustrate a few more
Java idioms. This code (which I will put in a filePowers.java) computes powers
and does so by a repeated-squaring technique that may be familiar from the ML-
based course last term:

public class Powers
{

public static void main(String[] args)
{

// I will use println for simple fixed text
System.out.println("Table of powers");
for (int i=0; i<10; i++)

// .. and printf to incorporate values within a template
{ System.out.printf("%dˆ%d = %d%n", i, i,

power(i, i));
}

}
static int power(int x, int n)
{ if (n == 0) return 1;

int y = power(x, n/2);
if ((n % 2) != 0) return x * y* y;
else return y * y;

}
}

which produces the results

Table of powers
0ˆ0 = 1
1ˆ1 = 1
2ˆ2 = 4
3ˆ3 = 27
4ˆ4 = 256
5ˆ5 = 3125
6ˆ6 = 46656
7ˆ7 = 823543
8ˆ8 = 16777216
9ˆ9 = 387420489

The new features shown here are the definition of a function and calls to it.
Observe that the types of the arguments for the function and the type of its result
are all explicitly given (asint here). The code does distinctly more arithmetic,

3.3. A COOK-BOOK KICK-START 37

where+, - , * and / stand for addition, subtraction, multiplication and division.
The percent sign%gives a remainder. Numeric comparisons are written with>,
<, >= and<= for the obvious comparisons, and the rather less obvious== for an
equality test and!= for inequality.

Conditional statements appear as

if (condition) statement

or

if (condition) statement
else statement

Note that the parentheses around the condition are part of the Java syntax
(inherited fromC) and they may not be omitted.

You need to use the wordreturn explicitly to indicate what value your pro-
cedure should hand back.

It is a very common beginner’s error to get mixed up about where braces and
semicolons are needed — and mix-ups on this front can cause special trouble
with theelse after anif statement. In doubt just remember that you can group
several statements (or indeed just one) together to make a single big statement
just by enclosing them (or it) in braces “{ . . .} ”. The braces I have around the
call to printf just after thefor were put in not because they are essential (the
call to printf counts as a single statement and could be the thing that thefor

loop performed in a repetitive way) but because I think the braces there make it
easier to see just what the range of thefor is. Similarly it is often good style to
use braces that are in some sense redundant after the keywordif just to ensure
that the structure of your code is utterly evident to any reader.

The series of small examples above show enough of Java that they can form the
basis for exercises that use integer arithmetic and a few recursive sub-functions.
With luck they contain enough examples of usage that you can now go away and
write all sorts of little programs that perform calculations with at most minor
recourse to the textbook to check exact details.

3.3.3 Drawing to a window: JApplets

I will therefore move onto another cook-book example which shows a different
sort of Java program. The ones seen so far are refereed to as stand-alone applica-
tions. The next one will be described as an “applet”. It has aneven higher load
of mumbo-jumbo to surround the small bits that are its essential core, but illus-
trates how you can start to use Java for graphics programmingand to interact with
windows, mice and the like. As with my Hello program I will start by quoting

38 CHAPTER 3. INTRODUCTION

Figure 3.7: emacs on Windows, with the “Global Font Lock” option for syntax
colouring.

the important bit of the code that lives in the middle. In thiscase it will arrange
to keep track of where your mouse last was when you pressed itsbutton, and will
respond to new mouse clicks by drawing a straight line on the screen to join the
old to new position.

Since at this stage I want to make this key part of the code lookas short and
easy as possible I have omitted any comments — after all I am about to give an
explanation here in the accompanying text!

3.3. A COOK-BOOK KICK-START 39

In the Hello program we used a function calledprintf by referencing it rela-
tive to some library objectSystem.out . Here we need to suspend disbelief for a
short while and image two things, one callede that allows us to call library func-
tions that reveal the position of the mouse (getX andgetY) and another called
g that is analogous toSystem.out but which supports a functiondrawLine for
putting a straight line up on the screen. Suppose furthermore that there are integer
variableslastX andlastY that will be used to store the previous position where
the mouse was clicked. It now makes sense to show the kernel ofthe drawing
program:

int x = e.getX(), y = e.getY();
g.drawLine(lastX, lastY, x, y);
lastX = x;
lastY = y;

Look under the linkJava Platform Core API on the web-browsable doc-
umentation. Clicking at the top of the screen throughIndex makes it almost as
quick to look upgetX , getY anddrawLine as it would be to check for them
in the index of a book. In either case you are liable to find neartheir documen-
tation the explanation of other related functions, such asdrawRect , drawOval ,
fillArc , drawString and many many more.

Once one has sorted out how to use one of these in general the rest follow on
naturally, so it can be useful to browse the documentation occasionally to make
yourself familiar with the collection of operations that are supported.

The next natural question is one of where the mysteriouse andg came from,
and how it could be arranged that the above code is activated every time the
mouse button is pressed. Well just as a simple stand-alone application has a spe-
cial function calledmain , one that deals with the mouse will have one called
mousePressed . This gets the objecte passed down to it from the system. all
one needs to know is that the type used to declare this variable isMouseEvent .
Access to the screen is obtained by declaringg to be of typeGraphics and ini-
tialising it with the value returned by a call togetGraphics 12. These types and
conventions are to some extent part of a large design that underlies the Java li-
braries, but at this stage the only proper way to cope with them is to copy them
carefully from existing working programs and check detailsin the documentation.
When you look at the documentation I expect your main initial response to be one
close to “Wow” as you see just how many types and functions Java provides you
with. Overall there is more complexity and power in these libraries than there is
in the language itself. Anyway here is the full version of themouse click handler
function — not too messy provided one is happy to take the library calls on trust!

12In this initial example I usegetGraphics but often the object you want will come to you
in other ways.

40 CHAPTER 3. INTRODUCTION

public void mousePressed(MouseEvent e)
{

// I have to obtain access to a drawing context
Graphics g = getGraphics();
// I also need to extract (x,y) co-ordinates from
// the mouse event.
int x = e.getX(), y = e.getY();
g.drawLine(lastX, lastY, x, y);
lastX = x;
lastY = y;

}

I can now give the whole fileDraw.java which includes the above important
function definition, but which also has the relevant junk that is needed to connect
it in to the Java run-time environment. You will see that I have this time used
comments from/ * to * / for some of the big block comments. The arrangement
with columns of vertical stars is purely a convention that I like and which makes
the range of the comment clearly visible. The lines startingimport arrange for
convenient access to several extra Java libraries. You willfind import statements
at the top of most of my sample programs from now on and the exact list of things
you need to “import” will seem jolly mysterious. All I can sayat this stage is
that you can start by copying the lines I give and that in a weekor so you will
understand how to check the Java on-line documentation to sort out exactly what
you need exactly when.

The qualifications (extends and implements) on the declaration of the
Draw class ensure that this program can draw to the screen and respond to the
mouse. When a file contains a class that extendsJApplet the rules for it start-
ing up are not like ordinary programs. Instead of definingmain it defines the
functions shown here.

/ *
* Draw.java A C Norman

*
* Simple applet to draw lines on a screen

* in response to mouse clicks. See also "Draw.html".

* /

/ *
* At the start of almost any Java program it will

* be necessary to incant a few "import" statements to

* provide Java with more convenient access to various

* standard libraries.

* /

3.3. A COOK-BOOK KICK-START 41

import javax.swing. * ;
import java.awt. * ;
import java.awt.event. * ;

public class Draw extends JApplet
implements MouseListener

{
private int lastY = 0, lastY = 0;

public void init()
{

// I need to activate the mouse event handlers.
this.addMouseListener(this);

}

/ *
* Each time the mouse button is pressed I will draw a

* line on the screen from the previous mouse position

* (or (0,0) at the start) to where the mouse now is.

* /
public void mousePressed(MouseEvent e)
{

// I have to obtain access to a drawing context
Graphics g = getGraphics();
// I also need to extract (x,y) co-ordinates
// from the mouse event.
int x = e.getX(), y = e.getY();
g.drawLine(lastX, lastY, x, y);
lastX = x;
lastY = y;

}

/ *
* The full mouse event model uses the four extra

* procedures shown below. To keep this code as short

* and simple as I can I will not cause them to do

* anything, but the Java event handler scheme demands

* that they exist. Hence these definitions of functions

* that do nothing at all!

* /
public void mouseReleased(MouseEvent e) {}
public void mouseClicked(MouseEvent e) {}

42 CHAPTER 3. INTRODUCTION

public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

}

/ * end of Draw.java * /

Without a prototype such as the above to start from it could take a huge amount
of reading of the manuals to find all of the Java types and functions to put together.
However once you have the prototype to work from there is at least some chance
that variations on the theme can be constructed by making incremental changes,
and the details of these changes can be sorted out by looking in the manuals close
to the place where the features that are currently used get documented. The ver-
sion I have given here uses the classJApplet while you may find some books use
Applet (without the initial letter J) that is an older version of something similar.

3.3.4 HTML and appletviewer

The earlier examples were run using commands such asjava Hello . This one
is not a stand-alone application but a JApplet, and so has to be run using a thing
calledappletviewer . What is more it needs yet another file to be prepared: one
that will let it know how large an area of the screen should be set aside for the
drawing to appear in. This new file must be calledDraw.html , and its contents
are as follows:

<HTML>
<BODY>

<APPLET code="Draw.class" width=400 height=400>
Java is not available.

</APPLET>
</BODY>

</HTML>

This file consists of a set of nested sections, where the startof a section is a
word contained in angle brackets and the corresponding end-marker is the same
word but with “/ ” in front of it. Once again the most interesting part is in themid-
dle where theAPPLETtag is used to provide a reference to the compiled version of
our program (ieDraw.class) and to specify the width and height of the window
in which it is to work. The text “Java is not available” shouldnever appear when
you use this file! It is there so that it can be displayed as an error message if this
HTML13 file is inspected using software that does not understand Java. For the
purposes of this course the only use you will make of the file isto say

13Hypertext Mark-Up Language.

3.3. A COOK-BOOK KICK-START 43

appletviewer Draw.html

which should cause a 400 by 400 (pixel) window to appear within which you
can click the mouse to good effect. The window thatappletviewer should
provide a pull-down menu that contains an entryquit or close than can be
used to terminate the program. Observe (with quiet gloom) that appletviewer

demands that you quote the.html suffix, and that inside the HTML file you have
to specify the full name of your class file (ie including the.class suffix), while
to run simple stand-alone Java applications you just gave the base part of the file-
name. Ah well!

The Draw program shown here is a useful prototype, but the most glaring
problem it exhibits is that if you rearrange your windows while using it so as to
obscure part of what you have drawn then that bit does not get re-painted when
you reveal the window again.

When you move towards larger programs (ones spread over very many files)
you will probably need to read up about a tool calledjar and find out (it is easy!)
how you can package many Java class files into a single archive, and how HTML
files refer to such archives. I will not explain that in this Part IA course.

3.3.5 Exercises

Tickable Exercise 2

Do both parts A and B please.

Part A

The following Java function is a rather crude one for finding afactor of a
numbern and returning it, or returning1 if the number is prime.

static int factorof(int n)
{ int factor = 1;

for (int i=2; i * i<=n; i++)
{ if (n % i == 0) factor = i;
}
return factor;

}

The code works by checking each possible factor from 2 upwards, stopping
when the trial factor exceeds the square root of the number being tested.
This stopping condition is reasonable because if a numbern is not prime
than it must have at least one factor in the range 2. . .

√
n.

44 CHAPTER 3. INTRODUCTION

Write a stand-alone Java program that incorporates the abovecode and that
prints out a list of all the prime numbers from 2 to 100.

Optional: Changefactorof to make it more efficient by first letting it
check whether 2, 3 or 5 is a factor and then instead of tryingall possible
factor up to the square root ofn let it just try those that are 1, 7, 11, 13, 17,
19, 23 or 29 mod 30. Ie do not bother with numbers that are themselves
divisible by 2, 3 or 5. This should lead to making just 8/30= 26.66% of the
number of test divisions that the original version did. Doesthe new version
run faster, and if so by about what factor?

Part B: Binomial Coefficients
This exercise is a deliberate incitement to write a very inefficient program.
Later on there will be an example that prompts you to write a much faster
program that can computer the same answers! The binomial coefficients14

may be defined by the rules

nCr = n−1Cr +n−1Cr−1
nC0 = 1
nCn = 1

This definition could naturally turn into an ML function definition

fun binom(n, r) =
if r = 0 orelse r = n then 1
else binom(n-1, r-1) + binom(n-1, r);

Write the corresponding Java code and use it to tabulate2nCn for n from 0
to 12.

If you are using Java on Unix you should go “time java Binom ” to run
the example and when your program has run you will get a reportof how
long the computation took. Keep all the output so you can compare both
results and timing data with the method described later on.

(End of tickable exercise)

14There is some question as to whether I should use the notationnCr here or

(

n
r

)

. I hope this

will not confuse you too much!

3.3. A COOK-BOOK KICK-START 45

A better drawing program

The drawing program as presented is very clumsy. There are a number of ways it
could be improved. The suggestions made here are not the correct route towards
a properly finished professional quality drawing program but may still count as
useful practise with Java.

1. In the 400 by 100 window, interpret mouse clicks in the top 50 pixels as
button activity that can select options. The x co-ordinate may be split into
(say) 4 ranges to give four buttons. In mousePressed add:

if (y < 50)
{ if (x < 100) .. action1

else if (x < 200) .. action2
else if (x < 300) .. action3
else .. action4

}
else
{ normal mouse processing
}

2. The crude buttons as above could select whether further regular mouse
clicks drew lines (as before) or useddrawOval to draw circles. Another
button might select a drawing colour using

g.setColor(Color.blue); // or red, black etc

3. My code, which was trying to be as short as possible, did nottreat the
first mouse click specially, and so all trails started at (0,0). That should
be changed.

4. drawString(string, x, y) places text in a window at the given posi-
tion. It could be used to label the “buttons”.

I think that the code that you could potentially achieve herewould be pretty good
for this stage in the course!

46 CHAPTER 3. INTRODUCTION

Turtle Graphics

The following code shows some
more new features of Java. It de-
fines apaint method (ie function)
in an applet. The appletviewer ar-
ranges that this function is invoked
every time the applet’s window is
uncovered or otherwise needs re-
drawing, and so it leads to pictures
that are a lot more robust than the
mouse-driven Draw program shown
earlier. The code also uses a new
type, double which is for floating
point numbers, and some calls to the
Maths library to compute sines and cosines. The odd notation(int)x indicates
that the code wants to convert the floating point valuex into an integer (int) so it
is of the correct type to be passed on todrawLine .

Put the code in a fileTurtle.java and prepare a suitable associated file
Turtle.html . Experiment with the code and see how the image changes de-
pending on the values of the three variables marked. For mostvalues ofinc I
seem to find that a closed figure is drawn providedN is large enough, but I have
some trouble producing an explanation of why or a characterisation of exactly
what values ofinc will lead to this behaviour. I also find the degree of symme-
try hard to explain. Generally this is an illustration of thefact that quite short
programs can have behaviour that is complicated to explain!

/ *
* Turtle.java A C Norman

* illustration of Turtle Graphics and the "paint" method.

* /

import javax.swing. * ;
import java.awt. * ;
import static java.lang.Math. * ;

public class Turtle extends JApplet
{

public void paint(Graphics g)
{ // Try changing the following 3 numbers...

double size = 5.0, inc = 11.0;
int N = 5000;
double x = 200.0, y=200.0,

3.3. A COOK-BOOK KICK-START 47

th1 = 0.0, th2 = 0.0, th3 = 0.0;
for (int i=0; i<N; i++)
{ th3 = th3 + inc;

th2 = th2 + th3;
th1 = th1 + th2;
double x1 = x+size * cos(PI * th1/180.0);
double y1 = y+size * sin(PI * th1/180.0);
g.drawLine((int)x, (int)y, (int)x1, (int)y1);
x = x1;
y = y1;

}
}

}
/ * end of Turtle.java * /

The code is really using angles in degrees (not in radians), and the variables
th1 , th2 and th3 hold values that are angles. As coded above some of these
angles can grow to ridiculously large values, it might make sense to insert lines
based on the prototype

if (th2 >= 180.0) th2 = th2 - 360.0;

in suitable places with a view to keeping all the angles that are used in the range
−180.0 to+180.0.

The import static java.lang.Math. * line makes it possible to use
sin , cos andPI in the simple way shown.

Note that in Java (and indeed with many window systems) the y co-ordinate
starts at 0 at the top of the screen and increases as you go down. This makes sense
(sort of) when the screen is containing text, in that counting lines you normally
start at the top. For pictures it can be a little muddling until you are used to it, and
can mean that things sometimes come out upside down the first time you try them.

48 CHAPTER 3. INTRODUCTION

Chapter 4

Basic use of Java

4.1 Data types, constants and operations

The first section of these notes introduced a few small but complete Java programs,
but when you type them into the computer you still have to takea great deal on
trust. But with those examples to use as a framework I can now start a more
systematic introduction of the Java language and its associated libraries. Actually
in the lectures I expect to skim over this material very rapidly: you will in reality
learn about the Java data types and syntax as you write programs. However I
view it as important that you have reference material in yourhandout that shows
what everything is so that if you have trouble in your coding you have somewhere
reasonably close at hand where you can check some details. However if you need
a gentle path to settle into Java programming I do suggest that you try various of
the example programs and exercises here so that you get used to and comfortable
with a good range of Java syntax.

4.1.1 Reserved Words

The first thing to do is to catalogue the words that are reserved: if you accidentally
try to use one of these names as the name of one of your variables or functions you
can expect most curious error messages from Java! So even though I do not want
to explain what all of these mean yet it may help you if I provide a list of words
to be avoided. In some cases of course the presence of a word here will alert you
to the availability of some operation, and you can then look up the details in the
manual. A clever editor might display words from this list insome alternative
colour to help you notice any unintentional uses. An even more clever one might
use different colours for the one (such asint) that name basic types, the ones
such asfor that introduce syntax and ones liketrue that are just the names of

49

50 CHAPTER 4. BASIC USE OF JAVA

Figure 4.1: Start with some small examples. . .

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 51

important built-in constants.

abstract assert boolean break byte
case catch char class const
continue default do double else
enum extends false final finally
float for goto if implements
import instanceof int interface long
native new null package private
protected public return short static
strictfp super switch synchronizedthis
throw throws transient true try
void volatile while

A joke about the above table of reserved words is that at present Java does not
actually use them all — specificallyconst andgoto do not represent any oper-
ation supported by Java. By prohibiting people from using these words as names
for variables the Java designers have left themselves a little flexibility to extend
the language in the future if they want to or are forced to, andthey can perhaps
give better error messages when people who are used to some other language that
does include these keywords first tries out Java.

There are some other words which are used for names that perform important
system functions. If you unintentionally define a function with one of these names
you might find that you have introduced side-effects of amazing magnitude when
the system calls your function instead of the one it was expecting! Beware here,
because although incorrect use of a genuine reserved word will result in a syntax
error it could be that defining a function with one of the following names would
have subtle or delayed bad consequences rather than a nice clean instant crash.

clone equals finalize getClass hashCode
notify notifyAll toString wait

OK so the above information is more negative then positive, but I hope it will
rescue a few of you from otherwise most mysterious behaviourwhen you might
otherwise have tried to use one of the reserved words for yourown purposes.

4.1.2 Basic Types

Earlier examples used the wordint to declare integer variables, and the range of
values that can be represented goes from around−2 billion to around+2 billion.
To be more precise the smallest validint is−231 =−2147483648 and the largest
one is 231−1= 2147483647. You are not expected to remember the decimal form
of the numbers, but you should be aware of roughly how big theyare. Integer

52 CHAPTER 4. BASIC USE OF JAVA

overflow is ignored: the result of an addition, subtraction or multiplication will
always be just what you would get by representing the true result as a binary
number and just keeping the lowest 32 bits. A way to see the consequences of this
is to change thePowers program so it goes up to higher powers, say 20. The final
section of the output I get is

...
8ˆ8 = 16777216
9ˆ9 = 387420489
10ˆ10 = 1410065408
11ˆ11 = 1843829075
12ˆ12 = -251658240
13ˆ13 = -1692154371
14ˆ14 = -1282129920
15ˆ15 = 1500973039
16ˆ16 = 0
17ˆ17 = 1681328401
18ˆ18 = 457441280
19ˆ19 = -306639989

where the value shown for 1010 is clearly wrong and where we subsequently get
values that probably count as rubbish. Note both the fact that overflow can turn
positive values into negative ones (and vice versa) and the special case (obvious in
retrospect) where 1616 shows up as zero. Since 16 is 24 the binary representation
of 1616 is clearly a 1 followed by a string of 64 zeros, and in particular the least
significant 32 bits are all zero. This lack of detection of integer overflow is some-
times convenient but it is also a potential major source for getting wrong answers
without even knowing it.

Java provides several alternative integer-style primitive data-types which rep-
resent different trade-offs between expected speed, spaceand accuracy. They are:

byte: 8-bit integers in the range−128 to+127;

short: 16-bit integer, range−215 = −32768 to 215−1 = 32767;

int: 32-bit integers as discussed already;

long: 64-bit integers, is range is from−263 to 263−1 which means that almost
all numbers with up to 19 decimal digits can be represented.

It may be helpful to those who are not already used to the binary representation
of signed values if I tabulate the representation used for the byte datatype. The
wider integral types use just the natural generalisation:

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 53

Number Representation in binary
−27 26 25 24 23 22 21 20

127 0 1 1 1 1 1 1 1
126 0 1 1 1 1 1 1 0
. . .

3 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

−1 1 1 1 1 1 1 1 1
−2 1 1 1 1 1 1 1 0
−3 1 1 1 1 1 1 0 1
−4 1 1 1 1 1 1 0 0
. . .

−126 1 0 0 0 0 0 1 0
−127 1 0 0 0 0 0 0 1
−128 1 0 0 0 0 0 0 0

One way to understand how the negative numbers arose is to seethat−1 is the
bit-pattern that has the property that if you add 1 to it and ignore the final carry
you get the representation that means 0. It can also help to suppose that negative
number “really’ have an infinite string of 1 bits glued onto their left hand end. The
representation used is known as “two’s complement”.

When you write an integer literal in your Java code you can write it in decimal,
octal or hexadecimal (base-16). You can also make your written integer either of
type int or type long ; there is no direct way to write either abyte or short .
Decimal numbers are written in the utterly ordinary way you would expect. You
add a suffix “L” if you want to make the value along and you should always do
this if the value is outside the range of ordinary available to anint , but you might
sometimes like to do it for even small values when using them in a context where
arithmetic on them should be done inlong precision. Examples are:

12345 an ordinary int
1234567890123L a long value
10L a long but with a smallish value
1000000L * 1000000L an expression where the L suffix

matters
1000000 * 1000000 without the L this would overflow.

My belief is that hardly anybody ever wants to write a number in octal these
days1, but Java allows it, taking any number that starts with0 as being in octal.

1But this may be just a matter of fashion, and perhaps elsewhere in the world octal is still
appreciated.

54 CHAPTER 4. BASIC USE OF JAVA

Thus037 is the octal way of writing the number 31. TheL suffix can be used to
specify long octal values. Observe a slight jollity. If you write the number0 it
is interpreted as being in octal. Fortunately zero is zero whatever radix is used to
write it!

Hexadecimal is much more useful. Each hexadecimal digit stands for four
bits in the number. Letters fromA to F are used to stand for the digits with weight
10. . .15. Hexadecimal numbers are written with the prefix0X. Note that the suffix
L for long , theX in hexadecimal numbers and the extended digits fromA to F can
all be written in either upper or lower case. I strongly recommend use of upper
case forL since otherwise it is painfully easy for a casual reader to muddle10l

(long ten) and101 (one hundred and one).
Here are some numbers written in hexadecimal

0X0 this is zero, not gravy powder
0xe otherwise 14
0xffffffff -1 as an int
0xBadFace what other words can you spell?
0x7fffffff largest int
0x80000000 most negative int
0x00010000 2 to the power 16
0x7fffffffffffffffL largest long

I rather suspect that the main importance ofbyte andshort is for when you
have huge blocks of them2 where the fact that they take up less space can be of
practical value.

Floating point values also come in two flavours, one with a larger range and
precision than the other. The more restricted one is calledfloat . A float uses
32-bits of memory and can represent values up to about 3.4e383 with a precision
of six to seven significant figures. Until you have sat throughthe course on numer-
ical analysis please avoid use of it4. The more sensible floating point type is called
double and uses 64 bits to store numbers with magnitude up to about 1.7e308,
with an accuracy of sixteen or seventeen significant figures.The internal repre-
sentation of floating point values and the exact behaviour inall circumstances was
originally taken from an International Standard referred to as IEEE 754. Some
bit-patterns are reserved to represent “+∞” and “−∞” while others are values that
are explicitly not representations of valid floating point values — these are known
as NaNs (Not A Number). A few possibly unexpected effects arise from this. For

2See the description later on of arrays.
3ie 3.4×1038.
4In fact a number of the Java library functions require arguments of typefloat , so it is not

possible to avoid this type. Its use is satisfactory in circumstances where the precision it supports
is all that is justifiable, for instance when specifying the brightness of a colour.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 55

instance floating point division never fails: 0.0/0.0 yields a NaN, while any other
value divided by 0.0 results in an infinity. Also ifu is a floating point value then
it is possible for the expressionu == u to evaluate tofalse (!) because the
rules for all numeric comparison operators is that they return false when at least
one of their arguments is a NaN. Another oddity is that one canhave two floating
point valuesu andv such that bothu == v and(1.0/u) != (1.0/v) ! This
oddity is achieved by havingu = -0.0 andv = +0.0 . These delicacies are al-
most certainly exhibited by most other languages you will come across, but Java
documents them carefully since it is very keen indeed to makesure that Java pro-
gram will give exactly the same results whatever computer itis run on. Even if
it does very delicate things with the marginal and curious cases of floating point
arithmetic. Recent versions of the Java language use a keyword strictfp to
indicate places whereall the consequences of IEEE floating point must be hon-
oured: specifically its use means that the results computed should be identical
whatever machine run on, and will have rounding errors exactly as expected.
Without strictfp and on some computers Java will deliver results that are both
more accurate and are computed faster!

Here are some floating point constants:

0.0 this is double (by default)
0.0F if you REALLY want a float
1.3e-11 specify an exponent (double)
22.9e11F float not double
22.9e11D be explicit that a double is required
1e1 no "." needed if there is an "e"
2. "." can come at end
.2 "." can come at start
2D must be a double because of the D

I would suggest that you always make your floating point constants start with
a digit and contain a decimal point with at least one digit after it since I think that
makes things more readable.

In Java the result of a comparison is of typeboolean , and the boolean con-
stants aretrue andfalse . As in ML (and unlike the situation in C, in case you
know about that),boolean is a quite separate type fromint .

Despite the fact that this section is about the Java primitive types and not about
the operations that can be performed on data, it will make some of my examples
easier if I next mention the ways in which Java can convert from one type to
another. In some cases where no information will be lost (eg converting from a
byte or short to anint) the conversion will often happen without you having to
worry much about it and without anything special having to bewritten. However
the general construction for making a type conversion is called acast, and it is
written by using a type name in parentheses as an operator. Wehave already

56 CHAPTER 4. BASIC USE OF JAVA

already seen a couple of examples in theDraw program where(int)x was used
to convert the floating point valuex into an integer. The opposite conversion can
then of course be written as in

for (int i=1; i<10; i++)
System.out.printf("%22.8g%n", 1.0/(double)i);

where the(double) is a cast to converti to floating point5. The format spec-
ifier6 %22.8g is for printing a floating point value in a General format using a
precision of 8 significant figures and padding with blanks to make 22 characters
printed in all. Until you understand exactly when automaticconversions apply it
may be safest to be explicit. Java allows you to write casts for those conversions
that it thinks are sufficiently reasonable. You can cast between any of the flavours
of integer. When you promote from a narrower integer to a widerone the value
is always preserved. When you cast from a wider integer to a narrower one the
result is what you get from considering the binary representation of the values
concerned, and the cast just throws away unwanted high-order bits. Casts from
integers tofloat anddouble preserve value as best they can7. Casts from float-
ing point values to integers turn NaNs into 0, and infinities into either the most
positive or most negative integer. Floating point values that are too large to be
an int or long also turn into the largest available integer. The exact rules for
casts from floating point values tobyte andshort are something to look up in
the reference manual in the improbable case it matters to you. There are no casts
betweenboolean and other types. You need to use explicit expressions such as
(i != 0) to map from an integer to a truth-value8.

The typechar can be used to declare a variable that holds a single character.
To write a constant suitable for putting into such a variableyou just write the
relevant character within single quote marks, as in

char mychar = ’A’;
if (myChar == ’q’) ...

It is frequently necessary to use characters that do not fit soneatly or clearly
between quotes. For instance the single quote character itself, or a “character” to
represent the end of a line. A set of escape codes are used for these, where instead
of a single character one writes a short sequence starting with the escape character
“ \ ”. The supported escape sequences are:

5In this case the cast is not needed: Java will do the required conversion so that it can perform
the division.

6You will see a bunch of common format specifiers just in examples here. You can look up full
details in the on-line documentation, or find a medium-sizedsynopsis later in these notes.

7Casts fromint or long to float or from long to double can not always preserve
an exact result because the floating point format may not haveenough precision available. The
closest floating point value to the true result will be delivered.

8Unlike the position in C where there is not much distinction between integers and booleans.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 57

\n newline, linefeed (very commonly used)
\" double quote mark
\’ single quote mark
\\ use when a single \ is wanted
\b backspace
\t tab
\f newpage, formfeed (unusual)
\r carriage-return

Carriage returns are used in Windows text files and as line separation in some
Internet protocols, but when creating simple text files you do not generally see
or need to mention it: Java does any necessary conversions toyou so that on
Windows, Macintosh and Unix an end of line in a file is talked about in your
programs as just‘\n’ .

In addition it is possible to write\ nnn wherennn stands for 1, 2 or 3 octal
digits: this indicates the character with the specified character-code in a standard
encoding. Use of octal escapes is not at all common. Furthermore Java allows
inclusion of characters from an astonishingly large character set by use of a nota-
tion \u followed by four hexadecimal digits. The 16-bit number represented by
the hexadecimal digits is taken as being in a set of characterencodings known
as Unicode. Casts betweenint and char give direct access to this encoding.
For example\u2297 and (char)0x2297 both give the character “⊗”. In fact
the Unicode escapes do not just apply within Java character literals but can be
usedanywhere in a Java program where you want an unusual symbol — and
this means that in some sense you can have variables names with Greek, Rus-
sian and Eastern glyphs in them. Unicode gradually becomingmore widely used,
but most computers still do not have full Unicode fonts installed, and so exotic
characters will not always be displayed properly even though within Java they are
handled carefully. The following applet displays the characters that are available
using the viewer it is run under. It uses a cast(char) to convert an integer to
a character and some fresh library calls (egsetFont(new Font(...)) and
drawString). It also illustrate something that you will probably want to retrofit
to most of the little examples in these notes. It allocates aBufferedImage that
it draws into, and then thepaint method just displays whatever is in the bitmap.
This does wonders for arranging that when you obscure bits ofyour window the
content gets re-painted nicely!

It also makes a crude modification of the earlierDraw program so that mouse
clicks at various places in the window adjust the range of characters displayed.

/ *
* Unicode.java A C Norman

*

58 CHAPTER 4. BASIC USE OF JAVA

* Display the Unicode characters as supported

* by the current browser.

* /

import java.awt. * ;
import java.awt.event. * ;
import javax.swing. * ;
import java.awt.image. * ;

public class Unicode extends JApplet
implements MouseListener

{
private boolean isFilled = false;
private int fontSize = 20; // or whatever!
private int page = 0;
private BufferedImage p =

new BufferedImage(
32* fontSize,
35* fontSize,
BufferedImage.TYPE_BYTE_BINARY);

public void init()
{

addMouseListener(this);
}

public void mousePressed(MouseEvent e)
{

if (e.getX() < 200) page++;
else page--;
if (page > 63) page = 0;
if (page < 0) page = 63;
isFilled = false;
repaint(); // force screen to re-draw

}

public void paint(Graphics g)
{

if (!isFilled) fillImage();
g.drawImage(p, 0, 0, this);

}

void fillImage()

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 59

{
Graphics g = p.getGraphics();
g.setColor(Color.WHITE); // background
g.fillRect(0, 0, 32 * fontSize, 35 * fontSize);
g.setFont(new Font("Serif",

Font.PLAIN, fontSize));
g.setColor(Color.BLACK); // text
g.drawString("page = " +

Integer.toHexString(32 * 32* page),
0, fontSize);

for (int y=0; y<32; y++)
{ for (int x=0; x<32; x++)

{ char c = (char)((32 * page+y) * 32+x);
g.drawString(String.valueOf(c),

fontSize * x,
fontSize * (y+2));

}
}
isFilled = true;

}

public void mouseReleased(MouseEvent e) {}
public void mouseClicked(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

}

/ * end of Unicode.java * /

The output from this program will depend on the range of fontsinstalled on
the computer you run it on. PWF Linux has a range of European characters, math-
ematical symbols and oddments available. While preparing these notes I ran the
code on my home Windows XP system where all sorts of fonts haveaccumulated
over the years, and the image included here (figure 4.2.) is from there. I also
use a program called Vmware which lets me install many “virtual” computers on
my single home one: using that I installed essentially the version of Linux used
on the PWF but told the Linux installer to include support for all available lan-
guages: by moving some files into a directory “jre/lib/fonts/fallback ” I
could get results very similar to those that I get from Windows. A message I hope
you will absorb here is that Java itself provides portable support for international
and special-purpose character sets you may need to configureits runtime before
you can takefull advantage of it. Also before you distribute applications relying
on that you have to concern yourself with how well your customers’ operating

60 CHAPTER 4. BASIC USE OF JAVA

Figure 4.2: Unicode characters in the range 0x3000 to 0x33ff

systems will deal with the fonts!
We have already seen string literals in our code, just written within double

quote-marks. The associated type isString . Although the use of capitals and
lower case is just a convention in Java the fact that the type is String rather
thanstring is a hint that this does not have exactly the same status as thetypes
int , char and so on. In factString is the name of a quite complicated data-
type (in Java we will find that this is known as aclass) and this class pro-
vides access to a number of string conversion and manipulation functions. We

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 61

have already seen “+” can be used to give string concatenation. Java also ar-
ranges that if one argument for+ is a String it will take steps to convert the
other to String format so that this concatenation can take place. You can look
up “Class java.lang.String ” in the on-line documentation or a reference
manual to see that there are standard library functions for case-conversion and all
sorts of other string operations.

For now the points to observe are that

1. Strings are represented by a data-type that exports functions to find the
length of a string, concatenate strings and perform variousconversions;

2. Strings are read-only, so if you want to change one you in fact make a new
string containing the adjusted text;

3. Strings are not the same as arrays9 of characters;

4. It is not necessary to memorise every single string operation that Java pro-
vides.

Java supports arrays. An array is just a block of values whereone has the
ability to use an integerindexto select which one is to be referenced. The types for
arrays are written with the array size in square brackets. Anempty pair of square
brackets means that the size is not being specified at that point, but it will be made
definite somewhere else in the program. We saw an array declaration as early as
the Hello program where the functionmain was passed an array ofStrings .
In this case the array will be used to pass down to the Java application any words
given on the command line after the parts that actually launch the application:

// File "Args.java"
// Display arguments from command line

public class Args
{

public static void main(String[] args)
{

for (String s : args)
System.out.println(s)

}
}

This introduces a new version of thefor statement. It can be compiled and then
run by saying

9Which will be covered in the next section of these notes!

62 CHAPTER 4. BASIC USE OF JAVA

javac Args.java
java Args one two three

it prints out

one
two
three

The points to notice here are that the type of argument thatmain was an array
of strings, and thefor loop will obey its body once for each string in that array.
An alternative and older-fashioned way of achieving the same effect would be to
find the length of the array and count, indexing into the arrayto extract values
explicitly:

for (int i=0; i<args.length; i++)
System.out.println(args[i])

In this case the array held Strings, but Java arrays can be declared in forms to
hold any sort of Java data. This includes having arrays of arrays, which is the Java
way of modelling multi-dimensional structures.

In Java a distinction is made between declaring a variable that can hold an
array and actually creating the array that will live there. Declaring the variable
happens just as for declaring integer or floating point variables, and you do not at
that stage specify how big the array will be:

{ int[] a;
...

has declared10 a to be ready to store an integer array (of unspecified size and
currently unknown contents), much as

{ double d;
...

says thatd will subsequently be able to store double-precision floating point val-
ues. There are two ways that the actual concrete array can come into existence.
The first is to combine the declaration with an initializer that makes the array and
fills in its elements:

10The syntax that I will try to use throughout these notes has all declarations written as a
type followed by the name of the variable that is to be declared. Thusint[] is the type of
an array able to hold integers. When you declare a variable of an array type Java allows you
to put the brackets either next to the base type (as I will generally do) or after the name of the
variable that is being declared, as inint myArray[]; . This latter case is perhaps useful
when you want to declare a bunch of variables at once, some scalars and some arrays, as in
int simple,row[],grid[][]; .

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 63

{ int[] p = {2,3,5,7,11,13,17};
...

where the values within the braces can in fact be arbitrary (integer-valued)
expressions. The second way of creating an array uses a keyword new which
is Java’s general mechanism for allocating space for things. The wordnew is
followed by a type that describes the structure of the item tobe allocated.

{ int[] fairly_big = new int[1000];
...

In this case the array contents will be left in a default state. In fact Java is very
keen to avoid leaving anything undefined or uncertain, sinceit wants all programs
to execute in exactly the same way every time and on every machine, so it demands
that a fresh integer array starts off holding 0 in every element. It has analogous
rules to specify the initial value of any other field or array element that has not
had a value given more explicitly.

Note that all Java arrays use subscripts that start at 0, so anarray of length
1000 will accept subscripts 0, . . . , 999. Attempts to go outside the bounds will be
trapped by the Java run-time system. Subscripts must be of type int . You may
not uselong values as subscripts. If you write achar , byte or short expression
as a subscript Java will convert it to anint for you as if there had been a suitable
cast visible.

When an array is passed as an argument to a function the called function can
update the members of the array, but if it creates a whole new array by something
such as

args = new String [5];

this will replace the array wholesale within the current function but have no effect
on the calling routine. The terminology that Java uses for all this is that it will
pass a “reference” to the array as the actual argument.

The following example shows the creation of an array, code that fills in entries
in it, a slightly dodgy illustration of the fact that two-dimensional arrays can be
viewed as arrays of one-dimensional arrays and a crude demonstration of how you
might print multiple values of a single line by building up a string that maps the
entire contents of the line.

64 CHAPTER 4. BASIC USE OF JAVA

// Array1.java
// Create a 3 by 3 array, swap rows in it (!)
// and print tolerably neatly.

public class Array1
{

public static void main(String[] args)
{

int [][] a = new int[3][3]; // 3 by 3 array
int [] b; // array of length 3
for (int i=0; i<3; i++) // fill in all of a

for (int j=0; j<3; j++) a[i][j] = i+10 * j;
// The next line recognises that a[i] are 1-dimensional
// arrays of length 3. It swaps two of them around!

b = a[0]; a[0] = a[2]; a[2] = b;
for (int i=0; i<3; i++) // Print each row
{ String s = ""; // Build row up here

for (int j=0; j<3; j++)
s = s + " " + a[i][j];

System.out.println(s); // Then print it
}

}
}

which prints

2 12 22
1 11 21
0 10 20

The things to notice in the above example are firstly that variablesa andb are
declared with array types, but these types neither specify sizes nor imply that a
genuine array actually exists, and secondly the way in whichthe two-dimensional
array is dismembered. Observe also the syntax associated with new for allocating
space for the array, and the fact that nothing special had to be done at the end
to discard the space so allocated. Java will recycle memory previously used by
arrays (and indeed any other structures) once it knows that they are no longer
needed. This is of course just like the situation in ML.

We have seen a number of other types in the sample programs. Aswell as
String there wasGraphics , Font andMouseEvent . Java 1.2 defines over 500
such non-simple types! Thus one thing you can be certain of isthat I will not
discuss all of them, and neither will the follow-on Java course next year. Each of
these has (in some sense) the same status and possibilities as the programs you
have written where you start off by declaring a newclass . Each ofString ,

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 65

Graphics and so on represents a class and its implementation might well be in
Java stored in a file that starts off

public class Whatever ...

You have seen with the classes that you define for yourself that a class is a
context within which you can define a collection of functions, and so it should be
no surprise that each of the 500+ Java library classes provides a whole bunch of
associated functions (eg forString we have mentioned thevalueOf operation,
and forGraphics we have useddrawLine anddrawString). There are thus
literally thousands of library functions available. Theirorganisation into classes
provides some structure to the collection, but in the end youprobably have to find
out about the ones you need to use by searching through the documentation. These
notes will introduce a sampling of library classes and the functions they support
with a view to directing you towards interesting areas of Java functionality. Very
often I find that the best way to start to understand the use of anew part of the
class library is to study and then try to modify some existingcode that uses it.

The Java designers suggest use of a convention where the names of ordinary
variables and functions start with a lower case letter whileclass-names start with
a capital. They further recommend use of words spelt in all capitals for things that
should be thought of as constants (such asPI that we used earlier). The syntax
associated with declaring something immutable will be covered later on once we
have got through the use of other important words such aspublic andstatic

which are of course still unexplained.

4.1.3 Exercises

Tickable Exercise 3

The functionSystem.currentTimeMillis() returns along value that is the
count of the number of milliseconds from midnight on 1st January 1970 to the
moment at which it is executed. Thus something like

long start = System.currentTimeMillis();
for (int i=0; i<13; i++)
{ System.out.println(binom(2 * i, i));
}
long timeSpent = System.currentTimeMillis()-start;
System.out.println("Done in " + timeSpent +

" milliseconds");

in the middle of a program can be used to record how long it takes to run. Note
that this is the time as measured by a stop-watch (or hour glass), and will depend

66 CHAPTER 4. BASIC USE OF JAVA

quite strongly on how many other people are using the computer at the same time.
On a single-user computer it can give a tolerably reliable indication of the cost of
a computation and even on a shared machine it is better than noinformation at all.

1. Adapt the Binomial Coefficients program suggested in the previous set of
examples so that it reports the time it takes to get as far as displaying24C12,
which (I think) has the value 2704156. Your submission to theassessors
should include a table of the values of2nCn for n from 1 to 12, and the
number of milliseconds that your program took to run.

2. Remove the definition of the sub-function that you used to compute the bi-
nomial coefficients, and add to your program a line that declares and create
an array calledc of size 25 by 25. Set thec[0][0] to 1. Now the first row
of the matrix holds values of0Cr .

Now fill in subsequent rows one at a time using the rules

c[n][0] = c[n][n] = 1

c[n][r] = c[n−1][r −1]+c[n−1][r]

so that the matrix gradually gets filled up with binomial coefficients. Keep
going until the 24th row has been filled in. Then print out the values of
c[2 * i][i] for i from 0 to 12, and again measure how long this takes.

3. [From here on is optional]The above calculation can be done using a one-
dimensional array, so that at each stage in the calculation it holds just one
row of binomial coefficients, ie values ofnCr for a single value ofn. At each
stage by filling its values in in reverse order something like

c[i] = 1;
for (int j=i-1; j>0; j=j-1) c[j] = ...

the new values can replace the old ones in such a way that nothing is over-
written too early. Thefor loop shown here setsj first to the valuei-1 ,
then toi-2 , and so on all the way down to 3, 2 and finally 1. I could of
course have writtenj-- or --j where here I putj=j-1 !

Write this version of the program using an array of length 80, and make the
array containlong values rather than justint . First arrange that on every
even row it prints the middle element from the part of the array that is in use,
so it duplicates the output printed by the previous two examples. Then make
the loop continue further and thus find (by inspection) the largest value ofi
such that2iCi can be represented exactly as a Javalong . The value is less
than 40.

(End of tickable exercise)

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 67

A Numerical Monster

A very fine paper called “Numeri-
cal Monsters” by Essex et al[12] ex-
plains how many calculations that
you might think were straight-
forward have extra depth when done
using finite precision computer arith-
metic. One example is the function

y = (x2−2x+1)− (x−1)2

In ideal arithmeticy would always be
zero. If however the function is com-
puted using floating point arithmetic
as shown (and provided an over-
clever compiler does not do alge-
braic re-arrangement of the formula:
the Java compiler is well-behaved in
this respect) an interesting graph can emerge. For instancethe graph shown here
was produced using a very simple Java program and plotting for x in the range 1-
3.0e-8<x<1.0+3.0e-8 andy from -1.5e-16 to +1.5e-16. Write your own version
of a program to re-create this graph, and investigate the what it shows near other
values ofx. Two cases I will suggest investigating are 1.0e8<x<2.0e8,|y|<10
and 14999.99999999253<X<14999.99999999257,|y|<3.2e-8. Your challenge
is to understand exactly how the finite nature of computer arithmetic leads to the
precise patterns generated, and how these patterns would vary if details of the
arithmetic model were altered.

The Dutch National Flag

Provided that at the start of your program you have written

import java.util. * ;

The code

int [] a = new int [1000];
Random r = new Random();
for (int i=0; i<1000; i++) a[i] = (byte) r.nextInt();

first makes an array of length 1000. It then creates a new random-number genera-
tor (calledr), and finally calls the random number generator 1000 times tofill in
entries in the array. The cast to typebyte ensures that each entry in the array will

68 CHAPTER 4. BASIC USE OF JAVA

end up in the range from−128 to+127. There will of course be duplicate values
in the array.

The task you have to achieve is to rearrange the numbers in thearray so that
they fall into three bands. The first band, say all the elements from 0 tom, should
contain all the numbersx with x < −40. The second band (m+1 ton) will be for
−40≤ x < 40, while the final band (n+1 to 999) is forx≥ 40. This is known as
the Dutch National Flag problem because its originator (E J Dijkstra) presented it
in terms of values that had one of the three colours that his country’s flag11 used,
rather than the numeric ranges I have suggested here.

The problem would probably be easy if you could allocate three fresh arrays
and copy each item from the original into one or the other of these, based on its
“colour”. At the end you could then copy the three chunks backinto the original
array at the positions they needed to go. But this challenge involves the idea of
efficiency too, and your final solution must not use any extra arrays, and it should
ideally inspect or move each value as few times as it can. Notethat just sorting the
values in the array into ascending order would satisfy the objectives that concern
where values must end up, but since the problem does not stateanything at all
about any desired order of the items that fall within any of the three bands a
solution based on sorting is over-elaborate and too expensive.

It may well be useful to try your hand at the Polish Flag problem — my ency-
clopaedia shows the Polish flag as having just two stripes12. Thus the Polish Flag
problem is to rearrange the values in the original chaotic array so that all negative
ones (say) come before all positive ones, but without any further constraint on the
re-ordering apart that it should be achieved reasonably efficiently.

The Mauritian Flag seems to go Red, Blue, Yellow and then Green.. .

Matrix Operations

Set up two 5 by 5 arrays of typedouble[][] . Fill in the first so that13 the element
at position(i, j) has value 1/(i + j +1.0). Fill in the other so that the the elements
on the diagonal have the value 1.0 while all other elements hold 0.0.

The program wanted now will be one that gradually turns the first matrix into
one that has just 1.0 elements down its diagonal and zeros elsewhere. The permit-
ted operations are

1. Multiply all the elements in a row by the same non-zero value;

2. Subtract a multiple of one row from another.

11Red, White and Blue in that order
12Red and White
13This form of matrix is known as a Hilbert Matrix.

4.1. DATA TYPES, CONSTANTS AND OPERATIONS 69

and whenever one of these operations is performed on the firstmatrix it must also
be performed on the second.

The first matrix can be made diagonal by tidying up first the first column, then
the second, then the third and so on. To tidy up columni you first multiply rowi
by 1/ai,i, since this will leave14 the element on the diagonal as 1.0. Then for every
row apart from rowi you subtract a suitable multiple of rowi so as to make the
element in columni vanish.

Do this and display the elements of the second matrix, which should in fact
have ended up as the inverse of the original Hilbert matrix!

Encryption

The following code fragment starts with a string calledkey and fills out an array
k with repeated copies of the character codes from the key until k has 256 entries
in it:

String key = "My Secret Key";
int keyLength = key.length();
int [] k = new int [256];
for (int i=0; i<256; i++)

k[i] = (int)key.charAt(i % keyLength) % 256;

All the values stored ink have been reduced so as to be in the range 0 to 255.
Observe the use of functionslength() andcharAt() from theString class. I
have used a fixed string as the keyword here.

The repeated use of the fixed numeric constant “256” in this code is a stylistic
oddity. In some ways once the arrayk has been declared it might be nicer to use
k.length to talk about the number of elements it has. I took the view when
writing this that the exact size of the array is part of the core specification of the
algorithm I am implementing. . . When you write this program whatever else you
dopleasedo not use your password as text in the program you write!

The program you have to write here may be related to an encryption method
known as RC4 that was once a trade secret of RSA15 but which was published
anonymously and presumably improperly a couple of years ago. RC4 is used
as the encryption technology in a large number of generally used packages and
although its security may not have been proved it is widely believed to be re-
spectable. It is also fast.

14For now assume please that the diagonal element was non-zeroso that the division behaved
properly and did not end up yielding and IEEE infinity.

15The major American encryption and security company. You maylike the view consideration
of the proper uses of such code as an exercise relating to the Professional Practise and Ethics
course.

70 CHAPTER 4. BASIC USE OF JAVA

The first part of the procedure is to create an arrays of 256 integers, and ini-
tialise it. It is first set so that the value at positioni is just i (i runs from 0 to 255).
Now your code should scramble this up using they keyk using the following pro-
cess:

For i from 0 to 255 do
Let j be (s[i] + k[i]) reduced to 8 bits
Swap the items at positions i and j in the array s

The term “reduced to 8 bits” can be implemented by just takingthe remain-
der16 when the value concerned is divided by 256.

At the end of this the arrays holds a working collection of scrambled data.
This is used to generate a sequence of 8-bit numbers which canbe combined
with a message to encrypt it. Starting with variablesi and j both zero the next
encryption-number is obtained as follows:

Increment i modulo17 256
Set j to j + s[i], again modulo 256
Swap s[i] with s[j]
Let t be s[i] + s[j] modulo 256
The result is s[t]

The algorithm is clearly short enough to be utterly memorable! The sequence
of numbers it generates can be added to the (8-bit) charactercodes of a message
to give the encoded version, and if the recipient knows the key that was used then
decryption is just generating and subtracting the same sequence of values. It is
vital that a key used with this method shouldneverbe re-used, and competent
security tends to involve really careful attention to many details that do not belong
in this course18.

Code the scheme described above. Print the first dozen output values from
it for your chosen key. You may like to check with a friend to see if their im-
plementation generates the same sequence as yours when given the same key —
by the nature of this code there is not obviously going to be any other way of
characterising the correct output!

16In the next section we will also see that it can be achieved by writing something like
(s[i] + k[i]) & 0xff .

17“modulo” means just the remaindering operation.
18But which will be covered later in the CST.

4.2. OPERATORS AND EXPRESSIONS 71

4.2 Operators and expressions

The examples shown already have included uses of the usual arithmetic operators,
both as used on integers and on floating point values. Now is the time to present
a systematic list of the operators that Java provides and theway they are used
in expressions. One of the critical things in any programming language is the
syntactic priority of operators. For instance in normal usage the expressiona+
b×c must be read as if it had beena+(b×c) rather than as(a+b)×c. To stress
the importance of knowing which operators group most tightly I will list things
ordered by their syntactic precedence rather than by what they do. The simple
arithmetic cases will be listed but not discussed at any great length.

++, -- : We have already see use of++ as a postfix operator that increments
a variable. The full story is that the expression++a has the side-effect of
increasing the value of the variablea by 1 and its overall value is that in-
cremented value whilea++ incrementsa but the value of the expression is
theoriginal value ofa. The use of-- is similar except that it subtracts one
rather than adds one to the variable mentioned. These operations can apply
to either integer or floating point variables;

+, - (unary): Unary+ does not do anything but is there for completeness. Unary
- negates its (numeric) argument;

˜ : The˜ operator treats its integer operand as a binary number and negates each
bit in the representation. If you look back at the earlier table that illustrated
binary numbers you can check that˜0 will have the same value as-1 ;

! : The! operator may only be applied to a boolean operand, and it complements
the logical value concerned, so that!true is false ;

(type): Casts are included here to show their precedence and to point out that
as far as syntax is concerned a cast acts just as a unary operator;

* , / , %: Multiplication, division and remaindering on any arithmetic values. The
odd case is the%operation when applied to floating point arguments. If
x % y is computed then Java finds anintegervalueq that is the quotient
x/y truncated towards zero, and then defines the remainderr by x = qy+ r.
If integer and floating point values both appear in the same expression the
integers are promoted to the floating type before the arithmetic is performed.
Similarly if integers of different lengths are mixed or if floats and doubles
come together the arithmetic is performed in the wider of thetwo types;

+, - : Both integers and floating point can be added and subtracted much as one
might expect;

72 CHAPTER 4. BASIC USE OF JAVA

+ (string): If the + operator is used in a context where at least one argument is
a string then the other argument will be converted to a string(if necessary)
and the operation then denotes string concatenation. We have seen this used
as a way of forcing a conversion from a numeric type to a stringready for
printing. Note that the concatenation step will generally involve allocating
extra memory and copying data from each of the two original strings, so
it will tend to be much more expensive that the arithmetic uses of the+

operator.

<<, >>, >>>: Consider an integer as represented in binary. Then the<< operator
shifts every bit left by a given number of places, filling in atthe right hand
end with zeros. Thus the program fragment:

for (int i=0; i<32; i++)
System.out.printf("%d : %d%n", i, (1 << i));

will print out numbers each of which have representations that have a single
1 bit, with this bit in successive places. The result is a table of powers of 2,
except that the penultimate line of output will display as a negative integer
and the final one will be zero! There are two right-shift operators. The
usual one,>>, treats numbers as signed values. A signed value is treated
as if they were first converted to binary numbers with an unlimited number
of bits. For positive values this amounts to sticking an infinite run of 0
digits to the left while for negative ones it involved preceding the number
with lots more 1 digits. Next the value is shifted right, and finally the value
is truncated to its proper width. The effect is that positiveintegers get 0
bits moved into the vacated high order positions while negative ones get 1s.
When shifting anint the shift amount will be forced to lie in the range 0
to 31, while for typelong it can only be from 0 to 63. The special right
shift written as>>> shifts right but always fills vacated bits with 0. It is very
useful when an integer is being thought of not as a numeric value but as a
collection of individual bits;

<, <=, >, >=: The usual arithmetic comparisons are available, and I haveal-
ready remarked that there are a few delicacies with regard tofloating point
comparisons and NaNs, infinities and signed zeros;

instanceof: This will be discussed later;

==, != : Equality and inequality tests. For the primitive types they test to see if
things have the same value. For other types (arrays and the object-types that
are introduced later on) the test determines if the things compared are “the
same object”;

4.2. OPERATORS AND EXPRESSIONS 73

&: On integer operands the& operator forms a number whose binary value has a
1-bit only where both of the inputs have a 1. For positive values, for instance
a & 0xf anda % 16will always yield the same result. Long tradition of
languages where the “and” operator is significantly faster then division and
remainder means that many old-fashioned programmers will make what is
now maybe excessive use of this idiom. The& operator can also be applied
to boolean operand, in which case is means just “and”;

ˆ : Exclusive or. See below to compare inclusive and exclusiveor;

| : Inclusive or. Note that for integer valuesa&˜b | b&˜a == aˆb and the
same identity holds for boolean values except that! has to be used for the
complement/negation operation rather than˜ . Here are the truth tables for
inclusive and exclusive or:

“ | ” 0 1
0 0 1
1 1 1

“ ˆ ” 0 1
0 0 1
1 1 0

&&: In a boolean expression such asA & B if the value ofA was false there is
perhaps no need to evaluateB. The simple “and” notation does not take ad-
vantage of this, but the alternate formA && Bdoes. Apart from efficiency
this can only make a difference if evaluating the sub-expression B would
have side-effects. In general I think it is probably good style to use&&

rather than just& whenever a boolean expression is being used to control an
if or similar statement, while& is probably nicer to use when calculations
are being performed on boolean variables;

|| : This is the version of the “or” operator that avoids processing its right hand
operand in cases where the left hand one shows that the final value should
be true . Its use is entirely analogous to that of&&;

?: It is sometimes nice to embed a conditional value within an expression, and
Java lets you do that using the slightly odd-looking syntaxa ? b : c. This
expectsa to be of typeboolean , while the other two operands can have
any type provided that they are compatible. Ifa is true the result is the first
of these expressions, otherwise it is the second. For instance the messy-
looking expression

(a==0 ? "zero" : "non-zero")

has the value"zero" if a is zero and"non-zero" otherwise. The phrase
(a || b) could be replaced by the equivalent form(a ? true : b) ,
while (a && b) has the same meaning as(a ? b : false) ;

74 CHAPTER 4. BASIC USE OF JAVA

=: Assignment in Java is just an operator. Thus you can assign to a variable
anywhere within an expression. The value of a sub-expression that is an
assignment is just the value assigned. Thus silly things like ((a=a+a) +

(b=b-1)) are good syntax if not good sense. A more benign use of the
fact that assignments are just expressions arises in the idiom (a = b = c

= d = 0) . The assignment operator associates to the right so the example
means(a = (b = (c = (d = 0)))) and thus assigns zero to all of the
four variables named;

* =, /= , %=, +=, -= , <<=, >>=, >>>=, &=, ˆ= , |= : These operators combine
assignment with one of the other operators that have been listed earlier.
They provide a short-hand notation when the same thing wouldotherwise
appear to the left and immediately to the right in an assignment. For instance
a = a+3 can be shortened toa += 3 The abbreviation has slightly more
real value when the assignment concerned is to some variablewith a name
much longer than justa, or especially if it is into an array element, since the
short form only has to evaluate the array subscript expression once. This
can lead to a difference in meaning in cases where evaluatingthe subscript
has a side-effect, as in the artificial fragment

int [] a = ...;
int [] b = ...;
int p = 0, q = 1;
for (int i=0; i<10; i++)

a[p++] += b[q++];

where index variablesp andq step along through the arraysa andb and it
is important that they are each incremented just once each time around the
loop.

4.2.1 Exercises

Bitwise operations on integers

Investigate, either on paper or by writing test programs, each of the following
operations. Explain what they all mean, supposing that the variables used are all
of type int :

1. ˜a + 1 ;

2. a++ + ++b ;

3. a & (-a) ;

4.2. OPERATORS AND EXPRESSIONS 75

4. a & ((1<<b)-1) ;

5. (a>>>i) | (a<<(32-i)) ;

6. a + (a<<2) ;

7. (int)(byte)a ;

8. (a & 0x80000000) != 0 ;

9. (a++ != b++) && (a++ == b++) ;

10. (--a != --b) | (--a == --b) ;

11. (a < 0 ? -a : a) .

Counting bits in a word

Write a function that counts the number of non-zero bits in thebinary represen-
tation of an integer. You can first do this using a test for eachbit in the style
a & (1<<n) != 0 . Next see if any of the examples in the previous exercise
give you a way to identify a single bit to subtract off and count. Consider also the
expression

(c[a & 0xff] + c[(a>>8) & 0xff] +
c[(a>>16) & 0xff] + c[(a>>24) & 0xff])

for some suitable arrayc .

What does this do?

This exercise and the few following it introduce a few fragments of amazingly
twisted and “tricky” code. Please do not view the inclusion of these programming
techniques here as an indication that you will be examined onthem or that you
are being encouraged to use such obscure constructions in your own programs.
It is more that puzzling through these examples can refine your understanding of
the interactions between the Java arithmetic operations such as+ and%and the
ones that work on the binary representations of numbers, ie& and>>. In a few
circumstances the ultra-cunning bit-bashing might save time in a really critical
part of some program and so could be really important, but almost always clarity
of exposition is even more important than speed. Certainly use of these tricks will
not make your programs any shorter, in that the bulk of the comments needed to
justify and explain them will greatly exceed the length of more straight-forward
code that has the same effect!

76 CHAPTER 4. BASIC USE OF JAVA

Start off witha any positive value. Execute the following19 and discuss what
value gets left ina at the end. Hint: look at the binary representation ofa to start
with.

a -= (a>>>1) & 03333333333;
a -= (a>>>1) & 03333333333;
a = ((a>>>3) + a) & 0707070707;
a = a % 63;

And this. . .

a &= 0x3f;
a = ((a * 02020202) & 0104422010) % 255;

And this. . .

c = a & -a;
r = a + c;
a = (((r ˆ a) >>> 2) / c) | r;

[In each case it will help if you look at the numbers in binary.]

Integers used to represent fractions

Considera as a value expressed in binary but now as a positive fractional value
in the range 0 to 1. This means that there will be an implicit binary point just to
its left. Then0xffffffff will be just a tiny bit less than 1,0x80000000 will
stand for 1/2 and0x40000000 for 1/4. In terms of this representation interpret
the effect of executing the following four statements one after the other.

a += a >>> 2;
a += a >>> 4;
a += a >>> 8;
a += a >>> 16;

Division and Shifts

If a is a positive integer thana/2 anda>>1 give the same result. What is the
relationship between their values ifa is negative. Carry on the analysis for division
by 4, 8, 16,. . . and the corresponding right shifts.

19Discussions with Alan Mycroft caused this and some of the other curious examples here to
re-surface. For a collection of real programming oddities including some of these try searching
for “Hakmem” on the World Wide Web or find “The Hacker’s Delight”[15] in a library

4.3. CONTROL STRUCTURES 77

Some Exclusive-Or operations

What is the final effect ona andb of the sequence

a ˆ= b;
b ˆ= a;
a ˆ= b;

Sieve for primes

Create an array of typeboolean and length 1000. Set all elements totrue to
start with. Then set items 0 and 1 tofalse

Repeat the following two steps

1. Find the firsttrue item in the array. If there are none left then exit. Print
out the index of the value you have found, and call itp.

2. Set each item in the array that is at a position that is a multiple of p to be
false , for instance as in

for (i=p; i<1000; i+=p) map[i] = false;

The numbers you have printed should be the primes up to 1000.
If you wanted to find the primes up to several million (for instance to count

them rather than to tabulate them) it would make sense to makethe array represent
just the odd numbers not all numbers. It might also save significant amounts of
space to represent the array as an array onint rather thanboolean and pack
information about 32 odd-numbers into eachint . You might note that some
programming languages can implement boolean arrays in thatway without much
user intervention — Java does not.

4.3 Control structures

4.3.1 Exercises

Ambiguous If

Consider the sample code fragment

if (a == 0)
if (b == 0) System.out.println("Both 0");

else System.out.println("Some other case");

78 CHAPTER 4. BASIC USE OF JAVA

Figure 4.3: Keep control structures simple!

4.3. CONTROL STRUCTURES 79

and wonder exactly what happens if one or other ofa or b is non-zero. Write
sample programs that test the actual behaviour of the real Java compiler either to
discover how Java resolves the near-ambiguity in syntax that this example repre-
sents.

Periodic Forests of Stunted Trees

The forms explained here were investigated by J C P Miller whowas a lecturer
here in the Computer Laboratory. Their study leads on into that of error correcting
codes and so is perhaps less detached from the serious technical side of computer
science than one might think.

A root-line for a forest is a periodic binary sequence. Sinceit is hard to draw
things that repeat indefinitely it is useful to display such sequences by showing
one or two cycles and than agreeing that the ends of display should be treated as
being joined up to make a circle. Here is a sample root-line:

. X . . X X X . . X . . X X X . . X . . X X X .

A forest grows from a root-line by the simple rule that a branch grows when and
only when exactly one cell in the row beneath it is present (this is an exclusive OR
operation). I am drawing lines upwards20 following this rule from the root-line I
showed above yields

? ?
? X X X X X X X X X X X X X X X X X X ?

? X . X . X . X . X . X . X . X . X . X ?
? X . . X X . . X X . . X X . . X X . . X ?

? . X X X . X X X . X X X . X X X . X X X . ?
? X X . X . . X . X X . X . . X . X X . X . . ?

? . X . . X X X . . X . . X X X . . X . . X X X ?

and the pattern seems to have died. In many cases after a number of rows the orig-
inal row will re-appear21. Triangular clearings appear on the way. The challenge
is to understand when a pattern will die and when it will repeat, how the vertical
repetition period relates to the original horizontal one, and how large the largest
clearings will be. Write a Java application or Applet that takes a command-line
argument or otherwise accepts information from the user in the form of a string of
X and. characters. It should then display the generated forest.

20If you print things toSystem.out it would probably be easier to print with growth down-
wards. If you draw things to the screen in an Applet putting iteither way up is easy. Observe that I
have drawn question marks to show where the pattern depends on data beyond the initial segment
of pattern. If you can allow for the (infinite) repetition of the base-line you do not need these.

21You will see that I have only drawn a finite section of the infinite repeating base-line, and so
the forest is drawn as getting narrower as you grow it upwards. However it should be understood
to be of infinite width and so patters can re-occur exactly.

80 CHAPTER 4. BASIC USE OF JAVA

Life

1

2

3 4 5

6

78

�

The world consists of an infinite sheet of graph paper. Each
square may at any one time be either black or white. Ev-
ery square has eight neighbours Every so often all squares
simultaneously follow the following rules:

1. A square that is black at present remains black if it
has two or three black neighbours. Otherwise it turns
white;

2. A white square becomes black if it has exactly three
black neighbours.

These rules define a behaviour which was invented by John Conway
(who at the time was in the Mathematics department here) and which
is known as Life. One starts off with a board that has a small number
of black seed points and display the position as the generations go
by. There are many astonishingly complicated things that can happen
and people have designed starting positions that illustrate them. The

challenge here is to make the computer run the rules and display the world-state.
A useful starting configuration to try has just five black cells arranged as at the
head of this paragraph. It explodes and seethes for quite a long while before the
situation stabilises. One thing to note is that all decisions about the next generation
are expected to be taken simultaneously, so any program thatupdates the world
incrementally is liable to get wrong answers. A further problem is that the the
ideal playing surface for Life is infinite, while computers tend not to be. Two
resolutions to this are usually considered. One places an immutable wall of white
cells as a border around the world so that all activity is contained within them.
The other scheme often used is to use a finite playing area but considers its left
hand column to be adjacent to its right most one and its top to be adjacent to its
bottom row. This amounts (depending on how you think of it) toplaying Life on
a torus or to ensuring that all initial positions are replicated in a periodic manner
across an infinite plane.

The easiest program for this will set uptwoboolean arrays. The first holds the
current generation, while the second will be filled in with the next. My version
of a program that does this, complete with code to set up the initial pattern that I
have suggested and to draw the board positions in an applet window is around 75
lines long. I used a 200 by 200 board and kept the outermost rows and columns
permanently blank. That means that when accessing neighbours I can read from
them without going outside my array. Clearly the first exercise here is to reproduce
something like that.

4.3. CONTROL STRUCTURES 81

There are then three follow-up challenges. The first looks back to the optional
part of the binomial coefficient tickable exercise: can you get away with just one
boolean array rather than two, possibly keeping a boolean vector to store just one
row of backup information but mostly updating the world in place. To do so would
save around half of the memory that the simple program uses.

Figure 4.4: Gosper’s Glider Gun.

The second challenge ob-
serves that representing the
playing area as arrays of type
boolean is probably wasteful.
This would be a typical appli-
cation where packing 32 cells
into an int and using lots of
bitwise and, or and shift oper-
ations to deal with them would
be common practice. It would
of course be possible to achieve
this by having nice abstract
procedures to reference the bit
at position (x,y) in an array
even though the array was be-
ing represented in a packed way. But it would perhaps give bigspeed savings to
look for ways to exploit the fact that bitwise operations on integers can handle 32
bits all at once and to try to use this to compute new values forseveral cells at the
same time.

Finally, and given that this program tends to run a little slowly, one looks at
where the time goes. Much of it will be wastage on parts of the board that are
totally white and hence where nothing is going to happen. Tryto speed your code
up by avoiding as much of such wasted as is reasonable.

Eight Queens

Count the number of ways of placing eight queens on a chess board so so that
no pair are in the same row, column or diagonal as each other. This is a classical
puzzle to go in an introduction to programming and there are lots of clever tricks
that can be used. It is the sort of thing that most supervisorswill have come across
before so I will not provide a fully worked through solution here, but I might
observe that the search might well be done by a recursive function that when
called at depthn will try to place a queen on rown of the chess-board.

82 CHAPTER 4. BASIC USE OF JAVA

Permutations

In Java arrays can be passed as arguments and newly created arrays can be re-
turned as results. Write a function that accepts an array of strings as its argument,
and which hands back and array whose elements are themselvesarrays of strings
giving all possible permutations of the input. For instanceif I use curly brackets
to denote arrays here one might like{"a" , "b" , "c" } to turn into{{"a" , "b" ,
"c" }, {"a" , "c" , "b" } {"b" , "a" , "c" }, {"b" , "c" , "a" }, {"c" , "a" , "b" },
{"c" , "b" , "a" }}.

As with several of the other Java exercises I might suggest that you design and
test an ML version first.

4.4 Control structures Part 2

There are two aspects of syntax that I will put off until a yet later section. One if
the syntax associated with the wordclass that we have seen wrapped around
every program we have written. The other is the matter of the “. ” that ap-
pears between or possibly within so many names, egSystem.out.println and
g.drawString . A few other bits of syntax will just not be covered in this first
course, although you may find traces of them in the grammar anddiscussion of
them in textbooks — and possibly also in next year’s “Concurrent Systems and
Applications” course.

But I will talk through each of the important components of thesyntax and
give at least one illustration of each.

4.4.1 Expression Statements

Certain sorts of Java expression can be used as a statement — all that is necessary
is to stick a semicolon on the end of it. The cases permitted are where evaluating
the expression might have a side-effect. Thus an assignmentexpression, a function
call or a pre- or post-increment expression can be used. As anexample, consider
the statementx++; which just incrementsx . An example such as1+2+3; is not
considered valid: it would calculates the value6 and then throws it away!

4.4.2 Blocks

Several statements can be placed one after the other to make asingle large state-
ment. Braces{ . . .} are used around the statements to group them. In various
earlier languages the keywordsbegin andend were used instead of braces, but
Java prefers the version where you type in fewer key-strokes. If you see a block

4.4. CONTROL STRUCTURES PART 2 83

with semicolons in the semicolons are just parts of expression statements and
nothing special to do with the fact that there is a block there. Again some earlier
languages differed by using semicolons between statementsin a block rather than
as termination of expression statements. Blocks can be nested any way you want.
You may insert extra braces to stress the grouping of any collection of statements
you feel deserves that, in much the same way that extra parentheses can always
be used to emphasis the grouping within expressions. I thinkthere are enough
examples of blocks throughout these notes that I do not need to give a special one
here.

4.4.3 Null statements

If you insert a stray semicolon into a Java program it (mostly) does not matter
much, since a semicolon alone can be interpreted as an empty statement that does
nothing. The most striking example of the use of a null statement is in something
like

if (a > 7);
else System.out.println("Gotcha");

where theif needs a statement before itselse part but no real action is needed.
If you really need such a place-holder I would suggest that the following is clearer
and flags your unusual intent more clearly.

if (a > 7) {/ * NOTHING* /}
else System.out.println("Gotcha");

Better yet rearrange your code to make tests happen in a positive sense:

if (a <= 7) System.out.println("Gotcha");

4.4.4 if

It takes a little while to get used to the fact that the condition tested byif is
written in parentheses. Some people prefer a style where thestatement after an
if is always written as a block, even if it is only a single statement, so that the
range that theif controls is made very explicit. This point of view has some sense
behind it, especially if the statement after theif is more than half a line long.

The control expression used byif must be of typeboolean and so equality
tests are written as ina==0 and nota=022. Using a single rather than double
equals sign is a common slip.

22Which would be an assignment and would have typeint i.

84 CHAPTER 4. BASIC USE OF JAVA

4.4.5 while, continue and break

A while loop executes its command repeatedly for so long as the guarding ex-
pression remainstrue . Its syntax is very much like that ofif . Within the iterated
command you can embed a statement “break; ”, and execution of that will cause
a premature exit from the loop. The commandcontinue; 23 can be useful if the
iterated command is a long block, and it causes the loop to proceed at once to its
next cycle. Bothbreak; andcontinue; are very convenient at times, but it is
often good style to avoid them when reasonably convenient sothat the boolean
expression at the top of thewhile loop represents a total statement about the cir-
cumstances in which it will loop and when it will terminate. The following sample
shows a fairly typicalwhile loop. Look back at your Discrete Mathematics notes
for explanation of why it computes a highest common factor and to give clues to
a reason for carrying out the extra computations. You may also like to code up an
extended Euclidean algorithm as a function that calls itself (say in ML rather than
Java) and observe that use ofwhile loops does not always lead to the shortest or
most transparent code.

int a = 72, b = 30;
int u = 1, v = 0;
while (b != 0)
{ int q = a / b;

int r = a - q * b;
a = b;
b = r;
int t = u - q * v;
u = v;
v = t;

}
// Here a is the HCF. What are u, v?

Note thatbreak can be used to exit other loops, and it is also used with
switch statements, which will be described soon.

4.4.6 do

Sometimes the most natural way to write a loop puts the test ofa termination
condition at the end of the loop rather than at the start. Thiscircumstance is
supported by thedo statement, although I find it much less useful thanwhile . In
fact I will often express

do

23Observe that the syntax for each of these command includes a semicolon, The identifier men-
tioned in the full grammar is something I will not discuss here.

4.4. CONTROL STRUCTURES PART 2 85

{
...

} while (xxx);

by writing it instead as

while (true)
{

...
if (!xxx) break;

}

since I think thatdo puts the details of what the loop is about rather too far down
the page. Anyway that also gave me a chance to include an example of a break
statement for you! The issues of programming style here could give rise to a
variety of discussions. A good policy is to try rather hard tomake it very clear and
obvious just when each loop you write is going to terminate, and indeed to make
it clear (in comments as necessary) why you know it will eventually terminate.

4.4.7 for

Iteration withfor has been seen in several examples. What is shown in the Java
syntax is that each of the three components within the parentheses and separated
by semicolons is optional. The most extreme case is when noneare present:
for (;;) { ... } means just the same aswhile (true) { ... } .

In for (A;B;C) the expressionA is an initializer evaluated just once at the
start of the loop.B is a boolean expression and is used just as in awhile statement
to determine when to terminate. FinallyCgets evaluated between each cycle of the
loop, and it often increments some variable. The idiomfor (i=0;i<N;i++)

executes its commandN times counting from 0 toN-1 . The alternative way of
writing things isfor (i=1;i<=N;i++) . It loops the same number of times but
is maybe slightly less commonly used. Of course with the second version the
variablei starts at 1 not 0: this typically makes it less suitable for use as an array
subscript because in Java subscripts start at 0.

4.4.8 switch, case and default

There are occasions when one wants to dispatch to many different code fragments
based on the value of some expression. This could be achievedby writing a chain
of if .. else statements, but oftenswitch provides a much neater way of
expressing things.

The construction starts withswitch (Expression) . The expression given
must be of typechar , byte , short or int . Note thatlong is not allowed. The

86 CHAPTER 4. BASIC USE OF JAVA

switch -header is followed by a block enclosed in braces, and withinthis block
there can be special switch labels. The usual sort reads “case Constant: ” and
control arrives just after the colon if the integer value of the switch expression
agrees with the constant aftercase . It is often useful to specify what action
should be taken if none of the cases that have explicit coverage happen, and for
this a label “default: ” can be set. Case (and default) labels do not disturb the
usual sequential execution of statements, and so unless something special is done
after one case is processed control will proceed to the next one. This is usually not
what is wanted. Abreak; can be used to exit from the entire switch block. Many
programmers would count it is good style to put an explicit comment in whenever
a break is not being used, to show that its omission was deliberate and not an
accident.

If no explicit default label is given but a switch is executedin such a way that
none of the cases match it just acts as if there had been a default label just before
its final close brace.

It is generally a good thing to useswitch whenever you have more than
three or four options to select between, in that it tends to bemuch clearer and
easier to understand than length strings of nestedif statements. In the following
rather silly example it is imagined that the user has provided the functionshow

Observe that the case labels do not have to be in any special order, and that a
single statement can be attached to several labels.

switch ((int)n)
{

case 2: show("the only even ");
// drop through

case 3: case 5: case 7:
case 11: case 13: case 17:

show("prime\n");
break;

case 4: case 9:
case 16: show("square\n");

break;
case 8: show("cube\n");

break;
default:show("dull or too large\n");

// now just drop off the end
}

4.4. CONTROL STRUCTURES PART 2 87

4.4.9 return

When a function has done all it needs to it will want to return a result. This is
achieved using thereturn statement. Function definitions (see later) always in-
dicate what type of result is required. They may have used thekeywordvoid to
indicate that no result is needed. Such is the case withmain . Forvoid functions
one just writes “return; ”, while in all other cases the syntax is “return Ex-
pression; ”.

4.4.10 try, catch and throw, finally

Real programming languages need to be able to implement code that can recover
from errors and handle unusual cases tidily. The handling scheme in Java uses
the throw statement to raise exceptions. Throw statements specify anobject
which should generally24 be of typeException 25. The effect is that control
exits from the current block or procedure and any enclosing ones, all the way
until a suitable handler is found. If no such handler is present the computation
is terminated. The system has a number of built-in exceptions it will generate.
For instance an attempt to divide by the integer 0 raises an exception of type
ArithmeticExpression . Various functions that read from files can raise ex-
ceptions to indicate that the file did not exist, the current user did not have permis-
sion to read it or an attempt was made to read data beyond its end.

Handling exceptions involves prefixing a block with the wordtry and adding
on the end of it one or more clauses that describe what to do in unusual cases.
A clause that startscatch (Argument) is followed by another block which gets
obeyed if the system detects an exception whose type matchesthat declared for the
Argument. A singletry may be followed bycatch handlers for several different
types of exception.

try
{ z = 1/0; } // raises an exception!
catch (ArithmeticException e) { ... }

After all catch clauses you can put the keywordfinally followed by another
block. The intent here is that this block will get executed come whatever, and it
will usually be used to tidy files or data-structures that theprogram might other-
wise have left in a mess. A typical scheme to provide robust access to files would
go something like

<open the file for reading>
try

24I do not want to give the full and precise rules here!
25To be more precise of some type derived fromException .

88 CHAPTER 4. BASIC USE OF JAVA

{ while (true) <read-more-from-file>
}
catch (<end-of-file-exception>)
{ // whole file read here. Good!

<success code>
}
finally
{ // must tidy up even if some failure

// other than end-of-file intruded
<close the file>

}

Later on I will give concrete examples that fill in the function calls and so on in
this framework.

Some programmers viewcatch andthrow as neat and convenient language
features to be used wherever they fit. Certainly the file-handling example above
makes very good use of them. Others, and I tend to fit into this category, would
like to see them used rather sparingly in code since they can result in all sorts
of loops and functions terminating unexpectedly early and therefore undermine
attempts to make absolute statements about their end results.

4.4.11 assert

A statement of the formassert Expression; will evaluate the expression (which
really ought not to have any side-effects. If its value isfalseand if some magic
flag was supplied when the Java launcher was run then an exception is raised.
Assertions can have a second expression that can be used to give more details of
what you thought had gone wrong. It is proper style to includethem at places in
your code where there is some reasonably cheap consistency check that you could
apply and when used well they are a huge aid to testing and debugging.

If you run your program normally the assertions will not be checked, and
furthermore having them in your source file will not hurt performance enough to
notice. If however you run the java command with the extra flag-ea the extra
checks will be done. Usage such as

java -ea:CheckThisClass SomeClass

will arrange to check just the assertions in the named class.

4.4.12 Variable declarations

Variable declarations can occur anywhere within a block. They are also allowed
in the first component of afor statement. The scope of a variable that is declared

4.4. CONTROL STRUCTURES PART 2 89

within a block runs from the declaration onwards until the end of the block. A
declaration made in afor statement has a scope that covers the remainder of the
for statement, including the end-test and increment expressions as well as the
iterated block. In fact the scope of a declaration appears toinclude the initialiser
for that variable, but if you try to use the variable there youshould expect at least
a warning message. So things like

{ int x = x+5;
...

}

should not be attempted! A local consists of a type, then the name of the variable
being declared, and optionally one or more pairs of square brackets (to denote the
declaration of an array). Any initializer follows an “=” sign, and for arrays the
initializers are written in braces so that many individual values can be given so
as to fill in the whole array. A local variable declaration canbe preceded by the
word final , and this marks the variable that is being declared as one that will not
subsequently change. A convention is that constants shouldbe spelt entirely in
upper case, as have the examplesPI andPLAIN that have been seen so far. Here
is an example:

final double E = 2.718281828459045235;
E = 1/E; // NOT valid because of "final"

4.4.13 Method definitions

A function definition starts with some optional qualifier words. The available
words are

public protected private static
abstract final native synchronized

and if present these can be written in any order. I will explain what they mean
later on. Next comes the type of result the function will return, which is either
an type or the special wordvoid to indicate “no result”. Next is the name of
the function that is being declared, followed by a list of formal arguments (in
parentheses). A formal argument must be given a type, and maybe preceded by
final if the body of the function will never update it. The grammar shown earlier
indicated that pairs of square brackets may be written afterthe formal parameter
list, but this should not be used in any new code26. If the execution of the function
can cause an exception to be raised and this exception is to becaught somewhere
then the fact must be mentioned by following the list of formal parameters by the

26It is a concession to some earlier versions of Java where it could be used for functions that
returned arrays.

90 CHAPTER 4. BASIC USE OF JAVA

keyword throws and then a list of exception types. Finally there is a block (ie
some statements within braces) that forms the body of the function that is being
defined.

For the moment you willstill have to take the qualifierspublic andstatic

on trust. They relate to the construction of the class that the whole file defines.

4.4.14 Exercises

Concerning3n+1

Take any numbern. If it is even then halve it, while if it is odd replace it with
3n+1. Repeat this process to see what happens in the long run. For various very
small integers you will find that you end up in a cycle 1→ 4→ 2→ 1. . . but it is
not at first clear whether this is the ultimate fate when you start from an arbitrary
integer.

Write a program that generates the sequence starting from each integer from
1 to 1000. If the sequence ends at 1 record the number of steps it took to get
there. If you have taken over 10000 steps on some particular sequence then stop
and report just that value: after all maybe the sequence starting from that seed
goes on for ever, either by diverging to infinity or by finding acycle different from
the one that includes 1. If on the way you generate an odd number larger than
(Integer.MAX VALUE-1)/3 you should also stop the calculation there since
otherwise you would suffer from integer overflow and subsequent work would be
nonsense. The constantInteger.MAX VALUE is another Java built-in constant
useful in cases such as this.

Arrange that you only print anything when a new record is broken for the
length of a sequence or when you would reach integer overflow.For each record-
breaker display the seed, the number of steps taken before 1 is reached (or the fact
that an overflow occurs) and the largest value in the sequenceconcerned.

Tickable Exercise 4

As you start this exercise note that ticks 1, 2, 3 and 4 are probably fairly easy. Tick
5 is going to be a somewhat larger piece of work so as soon as youhave finished
this one you might like to look ahead and get started on it!

In ML a function calledquicksort could be defined as

fun select ff [] = []
| select ff (a :: b) =

if (ff a) then a :: select ff b
else select ff b;

4.4. CONTROL STRUCTURES PART 2 91

fun quicksort [] = []
| quicksort (a :: b) =

quicksort (select (fn p => p < a) b) @
[a] @
quicksort (select (fn p => p >= a) b);

The idea is to use the first element of the input list as apivot. One then selects out
first all the remaining values that are less than this pivot, and all the values that are
at least as large. Recursive calls sort the two sub-lists thusgenerated, and a final
and completely sorted list is obtained by concatenating thevarious parts that have
been collected.

The ML version is very elegant and shows some of the importantideas behind
the Quicksort algorithm. However it misses out several other things that are im-
portant in the real Quicksort method, mostly issues concerning use of memory.
In this exercise you are to implement a version of Quicksort in Java. You should
write a procedure with signature27

void quickSortInner(int [] v, int i, int j)

which will sort that part of the arrayv that has subscripts fromi to j . It will
be up to you to decide if these limits are inclusive or exclusive. The procedure
should work by first seeing if the sub-array it has to work on isempty. If so it can
return without doing anything! Otherwise it should take thefirst (active) element
of the array as a pivot and rearrange28 the remaining items so that the array gets
partitioned at a pointk such that the pivot has been moved to positionk , all items
to the left are smaller than the pivot and all items to the right are at least as large
as it. It should do this re-arrangement without using more than a few extra simple
variables: ie it is not acceptable to create a whole fresh array and copy material
via it. quickSortInner can then call itself recursively in a way suggested by
the ML code to complete the sorting process.

You should also define a function called justquickSort that takes only one
argument — the array to be sorted. Remember that the.length selector can tell
you how large the array is.

To show that your code works you should demonstrate the following tests:

1. Create an array of length 10 and show the effect of sorting itwhen its initial
contents are (a) the numbers 1 to 10 starting of in the right order to begin
with, (b) 1 to 10 in exactly the opposite order to begin with, (c) ten num-
bers generated bynextInt() from the random number package (d) ten
numbers all of which are zero;

27The signature of a function is just the specification of the types of its arguments and result.
28Remember the National Flag exercise.

92 CHAPTER 4. BASIC USE OF JAVA

2. Measure the time taken to sort various length vectors of random data where
you should use lengths 16, 32, 64, . . . up until the sorting runtakes several
seconds. For each test compute the quotient of the time takenand the value
N log(N) whereN is the number of items being sorted.

Optional part for those who are keen: Read the Java documentation for the
Array.sort(int []) method that Java 2 provides. Write code to time it and
compare the results with the code you wrote yourself. When measuring times
work with arrays long enough that each test takes several seconds. Observe
that the fact that the Java libraries provide you with sorting methods (see also
Collections.sort) means that most Java users will never need to implement
their own Quicksort: you are doing it here as an exercise and because it is good for
Computer Scientists to understand what goes on inside libraries, since next time
around it may be their job to implement libraries for some newlanguage.

As a furtheroptional extension to this exercise consider the following and
adjust your code accordingly, then repeat all your tests:

1. The ML quicksort partitions items by comparing them with the value that
happened to be first in the list. In the plausible cases where the original
data is already in ascending or descending order this leads to excessive cost.
Selecting as the “pivot” the median of the first, last and middle element from
the array being sorted29 does better;

2. It is probably best to stopquickSort from recursing once it gets down to
sub-arrays of length 3 or 4. The end result is that italmostsorts the array,
but a final pass of bubble-sort can finish off the job nice and fast. Is this
born out in your code?

3. The partitioning code here can be delicate! Unless you arecareful it can
escape beyond the bounds of the array, or it can get muddled about whether
the two final values in the middle of the array need exchangingor not. Sim-
ple implementations can be made safe by making all the end-conditions in
your loops composite ones rather like

while (k>=i && v[k] > pivot) ...

while if we could get away with it it should be faster to go something more
like

while (v[k] > pivot) ...

29Always supposing there are at least 3 items in the list.

4.4. CONTROL STRUCTURES PART 2 93

Investigate how well you can trim down your inner loops whileretaining
code that always works! The Part IB course on Data Structures and Algo-
rithms and the textbook by Cormen et al[9] are where this levelof detailed
study really belongs!

(End of tickable exercise)

Highest Common Factors

Implement code to compute Highest Common Factors using the Euclidean Algo-
rithm. Extend it to use the extended algorithms that at the end will allow you to
solve equations of the form

Au+Bv= 1

Tickable Exercise 5

The work called for here will be done in sections, and it is expected that while
working towards the tick you will be able to design, code and test each section
before moving on to the next. The idea involves creating a package of routines
that can compute with (univariate) polynomials. For the purposes of this exercise
a polynomial

(a0 +a1x+a2x2 + . . .+anxn)/b

will be represented as an instance of a the class:

class Poly
{

private String variableName;
private long [] coeffs;
private long denominator;
... constructors and methods as needed

}

wherevariableName holds “x”, the array calledcoeffs stores the coefficients
a0 to an and thelong denominator holds the value shown asb above. Because
Java lets you enquire as to the length of an array it is not necessary to store the
degreen explicitly. In this representation common factors should be cancelled
out between numerator and denominator, and the highest degree coefficientan

should never be zero. In this exercise all polynomials will be in terms of the
same variable,x, so thevariableName should always be set to"x" and it will
not play much of a part in any of the calculations! Step by stepcarry out the
following tasks, testing what you have done as best you can asyou go:

94 CHAPTER 4. BASIC USE OF JAVA

Create simple polynomials: Write functions that can create the “polynomial”
that represents just a given integer, a given fraction and the simple poly-
nomial “x”;

Debug-quality printing: Write code that takes a polynomial and displays its co-
efficients. For this part of the exercise it is not at all important that the
display format you design be tidy or that it respects line-lengths. So for
instance you may generate output such as

(1 * xˆ0 + 0 * xˆ1 + -3 * xˆ2)/2

with various unnecessary symbols in there. The object is to be able to see
your polynomials clearly enough that you can test and demonstrate what
comes next!

Special-case multiplication: Write code to multiply a polynomial by an integer,
to divide it by an integer, and to multiply it byx. Note that in the first
two cases you will need to do calculations (involving greatest common di-
visors30) to reduce the coefficients to lowest terms. In the latter case the
result will be of one higher degree than the input and so will be represented
with a coefficient vector one item longer. These routines should not alter
their input, but should create new polynomial data to represent the results;

Addition and Subtraction: Take two polynomials and create another that repre-
sents their sum (or difference). This involves more fun withensuring that
the result is over a common denominator, and subtracting twopolynomi-
als can lead to a result of lower degree if the leading terms cancel (as can
adding if the leading terms start off as similar but with opposite signs);

Multiply: If you have one polynominal of degreem and one of degreen then
their product is of degreem+n. Write code that computes it;

Differentiate: in fact differentiation of a polynomial by its variable is rather an
easy operation (and so would be integration, which you wouldneed in an
optional extra to this exercise). If the polynomial contains an original terms
aixi then the derivative contains just(iai)xi−1;

Proof of pudding part 1: Let P0 = 1,P1 = x and from there on define a sequence
using the recurrence relationship

Pn = ((2n−1)xPn−1− (n−1)Pn−2)/n

30Otherwise known as highest common factor.

4.4. CONTROL STRUCTURES PART 2 95

Using your polynomial manipulation program calculate and tabulate the val-
ues up to (and including)P12;

Proof of pudding part 2: Now instead define

Pn =
1

2nn!
dn

dxn(x2−1)n

(This is known as Rodrigues formula, in case you wondered, andthe poly-
nomials you are computing are Legendre Polynomials)

Using this recipe compute and display values up toP12. The two sequences
of polynomials you have computed ought to match!

Testing to destruction: extend your tables until the values computed by the two
recipies forPn are incorrect because of some internal integer overflow, and
report where your program first displays a result that is certainly incorrect;

Optional extra (a): Write code that evaluates a polynomial at an integer value of
its variable, ie atx= n. Write code that computes the (indefinite) integral of
a polynomial with respect to its variable. Combine these two to allow you
to evaluate definite integrals. Display a table showing values of

∫ 1

x=−1
Pi(x)Pj(x)

for i and j running from 0 to 5 (say);

Optional extra (b): Let y be one of the polymonials (Pn) that you have just com-
puted. Evaluate

(1−x2)y′′−2xy′ +n(n+1)y

Tabulate this for various small values ofn.

Note: the examples worked with here are Legendre polynomials, and provide an
example taken from Sturm-Liouville theory. Optional extra(a) shows that they are
orthogonal over the range from−1 to +1 and this in fact makes them useful for
producing certain sorts of good numerical approximations to functions. Optional
extra (b) is showing you that these polynomials are solutions of a differential
equation: many other interesting sequences of functions satisfy recurrence for-
mulae, have orthogonality propertiesand are solutions to differential equations!
Abramowitz and Stegun’s book of tables[1] is probably the easiest place to sug-
gest you look to find out more.

(End of tickable exercise)

96 CHAPTER 4. BASIC USE OF JAVA

Pollard Rho integer factorisation

In previous years this was Tickable exercise 5. There are in fact a few delicacies
with regard to integer overflow (which do not greatly damage it as an exercise but
which could raise questions about it). You may still like to try it!

The explanation of this exercise is quite long, and it maybe looks messy, but I
can assure you that the code that has to be written is tolerably short and managable
once you have sorted out what needs doing.

Randomised factorisation: Implement the following algorithm that (possibly)
finds a factor of an integer that it is given:

A single trial that looks for a factor ofN is performed by selecting a random
positive numberR and computingS= R %N. This is a number between 0
andN−1. If the number is 0 deem this trial a failure. Next compute the
highest common factor ofSandN. If this is 1 then again the trial is deemed
a failure. However if the HCF is not 1 then it is a factor ofN and because it
is also a factor ofS it must be less thanN. This counts as success!

The complete factorisation algorithm works by running a number of trials.
If for a numberN the first

√
N trials all fail then we will pretend thatN

is prime. Otherwise a factor of it has been found, and dividing this intoN
gives us its co-factor. Smaller factors of each of these can then be sought
using the same technique.

Use this procedure to try to factorise the numbers 2i − 1 for i from 2 up-
wards, stopping when your program starts to take more than a second or so
to run.

The Birthday problem: Suppose we have a sequence of numbers all of which
are less thanN, and these values are generated in some way such that each
numberxn is some fixed function ofxn−1. A concrete example would be if
xn = (x2

n−1−1) %N. For mostN and forx0 = 2 this sequence31 is in fact
pretty unpredictable.

Any such sequence must eventually repeat a value, and once ithas it nec-
essarily continues in a loop. If consecutive values behave well enough as if
they are random up to this point then the expected length of the sequence

31There is a significant delicacy here: when you computex2
n−1 its value can be almost as large

asN2 even though the remaindering will rapidly bring it down to a smaller range. This can lead
to integer overflow and a particularly un-wanted effect is that a value you generate may end up
unexpectedly negative (whenN2 is outside the valid range of integers). I suggest you mostly
ignore this here (!) and at most take an absolute value to ensure that the sequences you generate
consist of positive numbers. Also there is not much special about starting withx0 = 2 and other
randomish starting values might work just as well.

4.4. CONTROL STRUCTURES PART 2 97

before a repeat is related to the problem of how many people you have to
have in a room before you should expect to find that two of them share a
birthday. In this case the room is on a planet in a galaxy far far away, where
the length of the year isN, and the statistics suggest that we need around√

N of our aliens.

For this exercise you are to imagine one algorithm that detects a cycle and
implement a second and much better one.

The algorithm you just have to imagine guarantees to find a cycle as soon
as it arises. It allocates a big array and stores values in this array as they are
generated. As each one is generated it also checks through the ones already
seen to see if the new value has occurred before, and if so declare the loop
detected. This method is easy to visualise but it needs an array as long as
the longest potential loop, and the search means that beforefinding a loop
at stepn it has done aboutn2/2 comparisons with old values. This is slow.

The second method, which you should implement, records the value ofxi

each timei reaches the next power of 2 and compares newly generated val-
ues against this one stored value. It argues that if there is aloop then even-
tually the loop will be totally traversed between consecutive powers of 2,
and thus will be detected. Furthermore this will be at worst afactor of two
beyond the place where the first repeat happened.

Having coded the second loop-detection algorithms try it onsequences gen-
erated byxn = x2

n−1−1 modN for variousN and verify that for a reason-
able proportion of values ofN andx0 a loop is found after very roughly

√
N

steps.

Pollard Rho: This builds on the previous two parts, so please do not start it until
you have completed them. But then re-work the loop detection code so that
instead of comparing each newxn with a saved valuex2k using an equality
test compute the HCF ofN andxn− x2k. Stop if this is not 1, ie if a factor
of N has been found. In the case whenxn = x2k the method has failed: you
may either give up in that case or try starting again with a different value
for x0.

Implement this using the Javalong type. If the numberN is composite
it is probable (although not guaranteed) that this will find afactor of N
within around 4

√
N trials, and will thus be able to find a factor any Java

long value quite rapidly. Of course ifN starts off as a prime this scheme
will never manage to find a factor of it! To test this you shouldprobably
create numbers that are known to be composite by multiplyingtogether two
int -sized values.

98 CHAPTER 4. BASIC USE OF JAVA

Optional: The scheme above does not of itself find a complete decomposition
of an integer into prime factors — it just splits composite numbers into
two. A complete fatorisation method needs to extend it with first a filter so
that numbers that are prime are not attacked, and secondly with recursive
calls that try to factor the two numbers that Pollard Rho splitour num-
ber into. Investigate the JavaBigInteger class that provides arithmetic
on long integers and which also provides a test for (probable) primality.
Re-implement your code to useBigInteger rather thanlong and to use
isProbablyPrime to avoid trying to factor when it is futile. Thus produce
code that can produce complete factorisations of reasonably large numbers.
How many digits long a number can you factorise in say 20 seconds?

Some of you no doubt consider yourselves to be Java experts! You may like
to arrange that the calculationx2

n−1 − 1 modN is computed exactly even
whenN is almost as large as a Javalong can be, and that overflow does
not interfere. An easy way to do this is to use the Java librarybig integer
support, but what I would prefer here would be code expressedentirely in
terms of use oflong arithmetic.

4.5 Java classes and packages

What has been described thus far should provide a foundation for understanding
the small-scale structure of Java programs. If you have understood it you are
equipped to write programs that have up to (say) half a dozen sub-functions and
that are limited to living in a single source file. So far the data that Java can work
with has been limited to the primitive typesint and so on, together with arrays
of them. The time has now come to discuss the Java idea of aclass. This is used
both to support the construction of user-defined data-structures and to impose an
order on programs that are large enough that they should properly be spread across
several source files. A discussion of Java classes will include an explanation of
what all the “. ” characters are doing in the sample programs seen so far. Allof
this counts as “Object Oriented Programming”.

One of the aspects of programming language design that has proved to be
especially important is that control of the visibility of names. This whole issue
tends to look rather frivolous — a distraction — while your programs are only a
page or two long but it makes a critical difference to big (andperhaps especially
collaborative) projects. There are several interlocking reasons to want to keep
name-spaces under control. One as so that a large chunk of code can be given
a cleanly defined interface consisting of the functionalitythat it makes visible to
the outside world. Everything not so exported is then deemedprivate to the group
who maintain that body of code, and they may change internal parts of their design

4.5. JAVA CLASSES AND PACKAGES 99

Figure 4.5: Classes and Packages make Java “modern”.

100 CHAPTER 4. BASIC USE OF JAVA

with complete confidence that this can not hurt anybody else.
A second reason for keeping name-spaces well controlled is so that different

parts of a large program are free to re-use the most obvious names for their func-
tions and variables, secure that this can not introduce unexpected clashes.

Related to both of these is the fact that when trying to understand code limits
on the visibility of names can allow you to concentrate on just the range in the
code where something is relevant.

Java controls access to names at three levels. At the finest grain it has scope
rules that are much like those of most other programming languages. If a local
variable is declared within a block that variable can only bereferenced using code
textually within that block. Java understands the idea thata re-declaration of a
variable in an inner block would create a different variablewith the same name,
and that within the inner block the new variable would shadowthe old one, as in

int func(int a)
{

{ int a = 4, b = 5; // ????
for (int a=0; a<10; a++) b++; // ????
System.out.printf("%d %d%n", a, b);

}
return a;

}

and it views this as something that could be codified and that to a computer has
a totally logical interpretation. But that it is a potential cause of real confusion to
human programmers so it should be prohibited! Thus the aboveexample will be
rejected by the Java compiler and all the interesting computer-science discussion
of exact rules about scope can be set aside. You may like to note, however, the
variables do not clash in any way if their scopes do not overlap, so the following
is valid:

int func(int a)
{

{ int i = 4;
for (int j=0; j<a; j++) i++;
System.out.println(a + " " + i);

}
for (int i=0; i<10; i++) a * = 2;
for (int i=0; i<a; i++) a--;
return a;

}

The scopes associated with each declaration ofi are disjoint.
The other two aspects of Java name-space control are more interesting. The

important words used here areclassandpackage.

4.5. JAVA CLASSES AND PACKAGES 101

All names of Java variables and procedures32 live in some class. In general
you have to gain access to the class before you can use its members33. A member
of the current class can be referred to just by giving its unqualified name, but in
other cases you need to have access to an object of the required class and refer to
the member using a dot “. ” as a selector on it. This is what was happening in cases
such asg.drawLine whereg was a variable of typeGraphics anddrawLine

was a member of that class. When a class is defined the user can arrange which
of its members can be referenced by other classes in this manner, so that internal
details of the class can not even be accessed using this sort of explicit naming.
The wordpublic flags a component of a class that should be universally visible
while private marks one that should not.

Classes thus contribute in two ways to the avoidance of confusion over names.
Firstly they mean that most references to things outside thecurrent class will
include a dot selector that indicates fairly explicitly what context the name is to be
taken from, and secondly they can arrange that some names arekept totally local
to the class within which they are used and canneverbe accessed from anywhere
else. It is perhaps worth reminding you at this stage of the qualifier final that
can turn a variable declaration into the definition of a constant. There are further
refinements in the control of name visibility and use that Java provides, and the
keywordsprotected , abstract andstatic relate to some of them: these will
be discussed later on.

Classes themselves have names, and so a scheme is needed to structure the
name-space that they live in. A collection of classes can be placed in a “package”.
When classes are declared only those that have been given thepublic attribute34

are visible outside the package. Furthermore since the ideais that any other Java
code35 can access the public classes of a package there is a somewhatcurious
linkage between package names and the filing system on your computer. This
linkage is mediated by a thing called the “class path” which can list the places
that Java should search to find the compiled code if you refer to a class defined
in some package. You can expect that any reasonable default Java setup will have
your class path set up for you already so that you can access all of the standard
Java libraries and so that code in the current directory can be used. The full names
of classes generally contain dots. Various names starting with the component
java are reserved for the system, and ones starting withsun are for use by Sun

32From now on I will increasingly move towards the Java notation and call these “methods”.
33We will see later that in some cases, when the name has been declared asstatic , one

can refer to the item via the name of its containing class. Butin the more general case it will be
necessary to have an instance of the class and access the itemvia that.

34Making a classpublic is a similar idea to making a member of that classpublic , but of
course we are talking now about a different level in the structure of a program.

35Ideally anywhere in the world!

102 CHAPTER 4. BASIC USE OF JAVA

Computers, who designed Java. The various further parts to package names are
intended to group packages into hierarchies. For instance every package whose
name starts withjava.awt is to do with the Java Abstract Window Toolkit, which
is the part of Java that provides facilities to pop up windowson your display. The
packagejava.awt.event is the sub-part of this that contains classes relating
to events — we have seen an example where these could be causedby the user
clicking with the mouse but there are others. The Java documentation contains a
list of all the predefined packages that are part of the Java core, and then lets you
browse the complete set of classes defined in each. Each classof course provides
a number of variables and methods: the number of standard library methods is
huge!

Specifying full names in the package hierarchy could becomevery tedious, so
Java provides a user-configurable way of setting up shorthand forms of reference.
Recall that various sample programs we have seen began with a collection of
import statements

import javax.swing. * ;
import java.awt. * ;
import java.awt.event. * ;

This adjusted Java’s name resolution scheme so that the class MouseEvent (say)
could be referred to by that short name. Without theimport it would still have
been possible to write the same program but it would have beennecessary to use
a fully spelt-out “java.awt.event.MouseEvent ” to name the class, and that
would involve knowing exactly which of the standard parts ofthe Java library
MouseEvent belongs in. The “* ” in the import statements show tells Java to
support short names for all the classes in the packages named. It is also possible
to put a single class name in animport statement. This could be useful if only
one member of a package was to be used and you did not want to risk confusion
with other names from that package. Some Java programmers take the view that
import with a “* ” introduces risk of giving them access to classes other thanones
the know about, and so always spell their imports out fully, despite that being a
little more verbose. Note that the syntax of Java only allowsthe wild-card “* ”
to be placed right at the end of animport where it means “all the classes in this
package”.

If you issueimport statements that attach to two or more packages that define
identically named classes then Java will refuse to get muddled: it just insists that
you use fully spelt-out names for the classes that could otherwise be ambiguously
resolved. This is probably safer than a scheme where the first(or possibly the
last?)import statement took precedence.

Java comes with around 200 and huge numbers of pre-defined classes, and so
getting to know them all is a big job. You are not expected to doso especially

4.5. JAVA CLASSES AND PACKAGES 103

as future Java releases will add yet more, and it is probable that when you work
on any big Java project you may find yourself using substantial third-party class
libraries. But it does make a lot of sense for you to have a good overview of what
is available to you so that when relevant you can use existingwell-tested library
code rather than starting to write something of your won.

As well as being a way of organising the name-space all Java classes count
as data-types. When something’s type is a class it is usual to refer to the thing
as an “object”. Thought of in terms of objects, a class definesa data structure
that contains fields that are the variables defined in it and happens also to be able
to contain definitions of functions that will access these fields. If the variables
were declared public then any code anywhere can access them and so there do not
really have to be any (explicit) methods defined within the class. There will in
fact always be a few implicitly defined ones that are to do withthe creation and
deletion of objects.

Taking a minimal approach36 to class definition I can now set up a definition
that would let me represent binary trees where each node in the tree contains an
integer:

// Compare the ML version, which would be
// datatype Tree =
// nullTree |
// makeTree of int * Tree * Tree;
// or some such.

class BinaryTreeOfIntegers
{

public int value;
public BinaryTreeOfIntegers left;
public BinaryTreeOfIntegers right;

}

Comparison with the ML version reminds us that it is importantto be able to have
some way of telling when the left and right children of such a tree do not really
exist. In ML that was achieved with an explicit alternative constructor, which I
callednullTree . In Javaanyvariable which has a class37 as its type can either
hold a proper instance of that class (ie an object) or it can hold the special value
null . This value is provided as a keyword in Java. Ie the wordnull is hard-
wired into the Java language and not just some curious pre-defined variable. It
also has the odd property that the same value may be used with any sort of class

36The class I define here would work, but it misses out on exploiting a lot of structuring and
security features that classes can provide, and so isjusta minimal start.

37Or array.

104 CHAPTER 4. BASIC USE OF JAVA

or array variable to set the variable to a state where it “doesnot hold an any object
at all”.

Once a class has been defined it will be useful to declare variables using it and
create objects to go in them. Here I will create a rather smalltree using the above
class definition:

...
BinaryTreeOfIntegers a1, a2, a3;
// a1, a2, a3 are all un-initialised here, and
// Java complains if you try to compile a program
// that relies on the values of variables that
// might not have been given a value.
a1 = new BinaryTreeOfIntegers();
a2 = new BinaryTreeOfIntegers();
a3 = new BinaryTreeOfIntegers();
a1.value = 1;
a2.value = 2;
a3.value = 3;
a1.left = a2;
a1.right = a3;
// the next 2 lines are not needed in that
// null is the default value given to a field
// that would hold an object.
a2.left = a2.right = null;
a3.left = a3.right = null;
...

Note (but do not worry about, for now) the parentheses after the class name fol-
lowing new. And also observe how dreadfully clumsy all this is.

Note that Java provides default initialisers for instance variable in classes and
elements in arrays, but not for local variables within methods. The default values
used are zero for numeric fields, false for booleans,‘\0’ for characters andnull

for all references.
Anybody who is a C or C++ programmer is liable to have a questionto ask at

this stage, but those who have mostly seen ML should see all this as reasonable.
You can also see “. ” being used as a selector to access the components of a class
object. The C programmers can read my footnote38! Java objects are created in
much the same way as Java arrays are, usingnew, and there is no need to take

38In C or C++ one would distinguish rather carefully between a structure and a pointer to the
structure. And in C terms all Java class variables hold pointers. However in Java it is not really
useful to think this way since all Java operations have been designed to prevent any explicit tricks
involving pointers. Please try to think of Java objects as more in the style of ML data. In C
you the explicit visibility of the difference between a structure that is directly at hand and one
that is referred to via a pointer leads to a distinction between the use of “. ” and “-> ” to access

4.5. JAVA CLASSES AND PACKAGES 105

any special action when you have finished with one. The Java run-time system is
expected to tidy up memory for you. However grossly excessive object creation
can either consume time or utterly run you out of memory. The first loop in the
following code does not do anything very useful with the objects it creates, and it
discards them all rather rapidly. It may be a bit inefficient.The second loop creates
a million objects and chains them all together so that none ofspace concerned can
be recycled. At one million you may get away with this, but if you tried to do this
a few hundred times more your computer’s memory would not be able to keep up
with the demands of the program and an exception would be raised to report this
fact.

for (int i=0; i<1000000; i++)
{ BinaryTreeOfIntegers x =

new BinaryTreeOfIntegers();
x.value = i;
// x is implicitly discarded here

}
BinaryTreeOfIntegers w;
for (int i=0; i<1000000; i++)
{ BinaryTreeOfIntegers x =

new BinaryTreeOfIntegers();
x.right = w; // chain on to w
w = x;

}

There are very few cases in Java where it would be considered good style to
define a class that only had variables defined within it39. Mostly an attempt will
be made to collect almost all of the methods that work with theclass as part of
it. Very frequently the variables in the class can then be made private , and
thepublic methods provide a clean and abstract interface to everything. There
is something of a convention about providing and naming methods to access the
data stored in an instance of a class: methods that update variables have names
starting withset , ones that retrieve boolean values startis while others that
retrieve information start withget . Here is the previous example expanded to
follow these conventions, and adjusted so that the case of boolean variables can
be illustrated:

components. Again Java does not need this and so only has one notation, even though in some
sense it uses dot where a C programmer would naturally reach for an arrow.

39The most plausible good case I can think of is when all the variables are marked asfinal
so they are constants and the class is just used to encapsulate the name-space within which these
constants are defined.

106 CHAPTER 4. BASIC USE OF JAVA

// Compare the previous Java version where
// the variables were public but there were
// no methods.
class BinaryTreeOfBools
{

private boolean value;
private BinaryTreeOfBools left;
private BinaryTreeOfBools right;

public void setValue(boolean n) { value = n; }
public void setLeft(BinaryTreeOfBools t)
{ left = t; }
public void setRight(BinaryTreeOfBools t)
{ right = t; }

public boolean isValueTrue()
{ return (value==true); }
public BinaryTreeOfBools getLeft()
{ return left; }
public BinaryTreeOfBools getRight()
{ return right; }

}

For small classes this just adds way too much extra verbiage and feels silly. How-
ever for a large and compilicated class with many other methods having a regular
and predictable naming can be a real help. It also provides a way that you can
give read-only access to some variables or you can check the sanity of values
to be assigned to others, ending up with much finer-grained control over access
than even use of thepublic andprivate qualifiers give you. The term “bean”
is sometimes used for Java classes that follow this set of conventions, and some
programming tools exploit it. Because it makes small programs so much bulkier
I will not use this style in every example in these notes, but you can notice that
many of the Java library classes clearly have and you might think about it again
when you move on to writing large classes for yourself.

Here is a sample Java class that might be useful within other programs and that
illustrate methods that actually do something useful. It isa start at code that will
enable Java code to work with complex numbers. An odd-looking programming
style that it illustrates is one where to combine two complexnumbers, saya andb,
one will call a method associated with one of them, passing the other as argument.
Thus the sum of the two values will be requested asa.plus(b) . It is not possible
(in Java) to redefine or extend the basic “+” operator to make it “add” objects
from some new user-defined class, hence use of a method name such asadd is

4.5. JAVA CLASSES AND PACKAGES 107

necessary here40.

public class Complex
{ private double x, y;

// define setX, setY, getX, getY here if you want.

public Complex(double realPart, double imagPart)
{ x = realPart;

y = imagPart;
}
public double modulus()
{ return Math.sqrt(x * x+y * y);
}
public Complex plus(Complex a)
{ return new Complex(x + a.x, y + a.y);
}
public Complex times(Complex a)
{ return new Complex(x * a.x - y * a.y,

x* a.y + y * a.x);
}

}

This would be placed in a fileComplex.java and compiled usingjavac in the
usual way to make a fileComplex.class . Because I have not put in apackage

statement this class will live in a default package, and whenother Java programs
run and they want a class calledComplex they might manage to find this one if
its class file is still in the current directory.

The Complex class illustrates one new concept. Observe the method defini-
tion that uses the name of the class as its own name and which does not specify a
separate return type:

public Complex(double realPart, double imagPart)
{ x = realPart;

y = imagPart;
}

It has no return statement in it. A method whose name matches that of the class is
aconstructorand you will typically use it withnew to create fresh instances of the
class thing concerned. If you do not specify an explicit constructor function then
a default one is supplied — it has no arguments and does not leaves all variables
in their default state. It is valid to have several constructors provided that the types

40In contrast the language C++ does allow you to extend the meaning of all the operators that
are denoted by punctuation marks. Many people believe the conciseness and elegance that can be
achieved that way is more then balanced out by the potential for severe confusion.

108 CHAPTER 4. BASIC USE OF JAVA

of their arguments are different. Observe here how the methods that are members
of the class all have access to theprivate variables, but no code outside the class
will have.

Sometimes when referencing a variable it is useful to stressthat you are talking
about one in the current instance. The keywordthis always refers to the object
from which you invoked a method, and so the constructor and the plus methods
above could have been written out in a way that some would consider clearer:

public Complex(double x, double y)
{ this.x = x;

this.y = y;
}

public Complex plus(Complex a)
{ return new Complex(this.x + a.x, this.y + a.y);
}

Explicit use ofthis can be used to avoid mixups if the name of a formal pa-
rameter for a method matches the name of a variable in the class. Consider the
following and the muddle that would arise without the use ofthis , but also note
how much nicer it is to select names that avoid any hint of a clash.

public Complex plus(Complex x)
{ return new Complex(this.x + x.x, this.y + x.y);
}

4.5.1 Exercises

Complete theComplex class

The class as shown here does not support division, and does not have an equal-
ity test. If you define a method calledtoString() in it then will be called to
“print” the number when you use “+” to concatenate it with a string. Finish off
theComplex class adding in these and whatever other facilities you feelwill be
generally useful.

Polar Complex Numbers

The Complex represents complex numbers in Cartesian form, ie asx+ iy. But
the internal variablesx andy that it uses are bothprivate so nobody outside
the class can tell this! An alternative representation of complex numbers would
store a number as a pair(r,θ) where the complex value concerned had modulusr
and argumentθ. In other words one would havez= reiθ. At the cost of comput-
ing a few arc-tangents and the like it is possible to create a re-workedcomplex

4.5. JAVA CLASSES AND PACKAGES 109

class that has exactly the same external behaviour as the original one but which
stores internal values in polar form. The constructor function and addition become
messier, multiplication becomes easier and the modulus function becomes utterly
trivial. Implement and test the polar version of the class.

Wolves and Caribou

On a certain island there live some wolves and some caribou. In yearn there are
obviouslywn wolves andcn caribou. What happens the next year depends. . .

• Wolves hunt, and the total number of dinners they get is proportional to
wnkn. The number of baby wolves is automatically proportional tothe num-
ber of dinners their (potential) parents are able to eat overand above the
amount needed to keep the parents active. The wolf minimum feed intake
and reproductive capability may be modelled as

wn+1 = wn +k1wn(cn−k2)

• In each year the stock of caribou would increase by a factork3 were it not
for the depredations of the wolves, since each dinner for a wolf is one less
member of the herd. Thus

cn+1 = k3cn−k1wncn

• Baby wolves eat, hunt and reproduce as from yearn+ 1, and there are no
losses of caribou other than as described above. In particular we do not have
to worry about over-grazing etc.

At the beginning of time the island is stocked with a herd of 100000 caribou,
and a medium-sized pack of ravening wolves. Over a number of years various
things could happen. Either wolves or caribou or both could die out, or the pop-
ulations could stabilise. For some values of the constants and initial wolf popula-
tion various of these do indeed occur. For instance if at the start there are twice as
many wolves as caribou the next year there will only be wolvesleft (one should
adjust the equations given so that negative populations getturned into zero ones),
and the year after that the wolves all expire of hunger.

In fact for many configurations the populations do not stabilise, but they do of-
ten get locked into stable cycles that last several years. This improbable situation
has been observed by real naturalists not only in the situation described here but
with regard to disease spread (mumps and children say) and other natural systems.
Write java code to investigate.

110 CHAPTER 4. BASIC USE OF JAVA

Packages andjar files

Make a sub-directory called (say)ex251 and put some Java source files there. Put
package ex251 at the top of the files. Now compile the code, eg sayingjavac

ex251/ * .java . By unless you explicitly set aclasspathJava looks for classes
that are in a given package by using the package name as if it described a chain of
sub-directories down from the current directory. So now setup several different
packages and create files that illustrate the use ofprotected and others that
fail to compile because you have not made allowance for suitable cross-package
visibility. Now look up aboutjar files and prove to yourself that you can take
a complete Java program (consisting of many classes) and consolidate it into a
single (jar) file that can then let anybody else run it in a simple and convenient
way.

These activities are not essential for any of the example programs that you
have to write for this year’s Java course, but starting to investigate and practise
now will put you in a good position for some of next year’s work, and particularly
the Group Project. I am also aware that this exercise is asking you to read ahead
in these notes. . .

Tickable Exercise 6

The following definition of apaint method uses the rudimentaryComplex class
as shown earlier in this section. The Mandelbrot set can be drawn
by considering the sequence defined
by z0 = 0 andzn+1 = z2

n + c where
both z and c are complex numbers.
For most values ofc eventually val-
ues ofzn become large. If one counts
and finds the smallestn such that
|zn| > K for some suitableK then
that n will depend on the value ofc
that was used. The well-known pic-
tures arise by using different colours
to display the values ofn associated
with values ofc = x+ iy as x and
y vary. Because drawing this in-
volves a significant calculation for
every single point within the ap-
plet’s window it can be painfully
time-consuming. To arrange that the
screen looks more interesting this

4.5. JAVA CLASSES AND PACKAGES 111

code arranges to draw a crude blocky version first and then gradually refine it
into the correct high-resolution image. You may have seen some web browsers do
similar things to give better apparent responsiveness whenloading and displaying
pictures from web sites! The code draws a part of the Mandelbrot set centred
around (midX , midY) and with widthrange , these referring to the values of the
constantc in the iteration. If the value ofz has not grown large withinLIMIT

steps it is supposed that it never will. The code illustratesuse of theColor class.
Colours are sometimes specified in terms of the amounts of Red, Blue and Green
that go to make them up. Printers will tend to think in terms ofCyan, Magenta
and Yellow41 while in yet other circumstances one uses Hue (running through the
colours of the rainbow), Saturation (eg white through pinksup to a full-blooded
rich red) and Brightness (all colours fading to black at zero brightness, just as all
wash out to white (or grey) at zero saturation).

Insert this program in a suitable framework and investigateother areas of the
display by altering the relevant variables. You should be aware that if you increase
the screen size orLIMIT the code can becomevery time-consuming. Indeed it
might very well be sensible while testing to decrease the finest resolution used to
say 8 rather than 1. And because thepaint method computes the whole picture
each time it is called any disturbance of the screen is liableto provoke a complete
re-calculation (at great cost). I find that the appletviewerdoes not exit until the
end of a call topaint() and so even quitting from it can involve an amazingly
long delay!

public void paint(Graphics g)
{ // I Paint first in crude 16 * 16 blocks and then

// in finer and finer tiles. This is so that
// SOMETHING appears on the screen rather rapidly.
for (int resolution=16; resolution>=1; resolution/=2)
{ double midX = -0.25, midY = 0.85; // Adjust these

double range = 0.004; // Adjust this
int screenSize = 400; // Match .html
int s2 = screenSize/2;
for (int y=0; y<screenSize; y+=resolution)
for (int x=0; x<screenSize; x+=resolution)
{ int n = 0;

int LIMIT = 250; // Maybe adjust this?
Complex z = new Complex(0.0, 0.0);
Complex c =

new Complex((range * (x-s2))/s2 + midX,
(range * (y-s2))/s2 + midY);

// Important loop follows.

41Printing inks favour analysis in terms of subtractive colours rather than additive ones.

112 CHAPTER 4. BASIC USE OF JAVA

while (n++ < LIMIT && z.modulus() < 4.0)
{ z = z.times(z); // z = z * z;

z = z.plus(c); // z = z + c;
}
// Draw in black if count overflowed
if (n >= LIMIT) g.setColor(Color.black);
// ... otherwise select a colo(u)r based on
// the Hue/Saturation/Brightness colour model.
// This gives me a nice rainbow effect. If
// your display only supports 256 (or fewer)
// colours it will not be so good.
else g.setColor(Color.getHSBColor(
// cycle HUE as n goes from 0 to 64

(float)(n % 64)/64.0f,
// vary saturation from 0.2 to 1.0 as n varies

(float)(0.6+0.4 *
Math.cos((double)n/40.0)),

// leave brightness at 1.0
1.0f));

// screen coords point y downwards, so flip to
// agree with norman human conventions.
g.fillRect(x, screenSize-y, // posn

resolution, resolution); // size
}

}
}

Complete the program based on the above and test it.
Next checkGraphics.getClipBounds andRectangle.contains in the

Java documentation. Adjust the program so that whenpaint is called it first finds
the clip rectangle associated with the re-paint operation.This is a rectangle on the
screen such that only points within this area need to be re-displayed. Arrange
that the loop onx andy that at present re-computes the colour for every point on
the whole screen just loops round doing nothing for points outside the clipping
rectangle and so only does the expensive operations for points inside it. Try the
new version, and in particular move other windows to obscuresmall parts of it and
then move them away so you can see the effect of the partial re-draw operations.

Note that the above program will display best if your screen is set up to support
lots of colours. On a display with either 16-bit colour (65536 colours) or true-
colour (24 or 32 bit) and at high resolution the effect is fairly stunning. If only
256 colours are supported the shapes will remain nice and wiggly but the delicate
shading will be lost. While preparing these notes I have adjusted the program

4.5. JAVA CLASSES AND PACKAGES 113

to display a 1200 by 1200 image at best-possible resolution in 16-bit colour, and
although it takes utterly ages for the screen to refresh I think it is almost worth it!

The program that I give has a bug that you can see if you watch carefully when
it re-paints at the various different resolutions. It relates to the fact that in Java the
x-co-ordinate increases from left to right (as expected) but the y-co-ordinate is
zero at the top of the screen and largest at the bottom. Identify and correct the
behaviour that I count as a defect.
Optional: Add aBufferedImage to make the re-painting of the screen cleaner. I
might like to be able to reset the view to some standard one at the click of a mouse,
and to be able to drag with the mouse to select a sub-part of thecurrent picture for
zooming in on. Those who are feeling keen can investigate these possibilities.

There is also quite some incentive to find ways of speeding up drawing of the
images here!

(End of tickable exercise)

Fractions

Create a class similar to theComplex one but that implements rational numbers,
is fractions. You will probably want to make the internal representation a pair of
long values rather than justint , and keep everything reduced to lowest terms by
cancelling out highest common factors.

Series fortan(x)

It may be well known that

tan(x) = x+
1
3

x3 +
2
15

x5 +
17
315

x7 +
62

2835
x9 + . . .

but fewer people are happy about being able to predict what the next few coef-
ficients in the expansion are. However if we have a computer program able to
compute with rational numbers it is in fact easy to generate as many more coeffi-
cients as are desired. The coefficients satisfy a recurrenceformula

t0 = 0

t1 = 1

tn =
1
n

n−1

∑
i=0

titn−i−1

Use this to confirm the series as I have tabulated it and display the next few
terms. The result here may be derived from the fact that the derivative of tan(x)
is 1+ tan2(x), and is also related to (but rather harder than!) the discussion of
“generating functions” in the probability course.

114 CHAPTER 4. BASIC USE OF JAVA

Complex elementary functions

Perhaps you already did this when making your complete version of the complex
numbers class. . .

It might be useful to be able to construct complex numbers either by specifying
real and imaginary parts or by giving argument and modulus42. Failing any better
scheme you could distinguish between the two constructors by adding declarations

public static final int CARTESIAN = 0;
public static final int POLAR = 1;

in the Complex class and then having the constructor take an extra argument that
specifes which option is being used. It would then also make sense to provide
data access methods that make it equally easy to access the number in polar or
cartesian interpretation.

If that is done it becomes reasonably easy to support complexversions of
several of the elementary functions. Observe the identities:

√

reiθ =
√

reiθ/2

log(reiθ) = log(r)+ iθ
exp(x+ iy) = exp(x)eiy

sin(z) = (exp(iz)−exp(−iz))/2i

cos(z) = (exp(iz)+exp(−iz))/2

pq = exp(qlog(p))

The expressions for sin and cos can be inverted to find ways of writing the inverse
trigonometric functions as messy complex logarithms. And it may be seen that the
neatest way of using these formulae to implement complex-values versions of the
elementary functions really does benefit from being able to slip very comfortably
between the cartesian and polar views of the values. Implement it all.

I should observe carefully that the code you have just written is liable to be a
very long way from the last word in elementary function libraries, for the follow-
ing reasons, which are given in descending order of importance:

1. Several of the complex-valued elementary functions havebranch-cuts. For
instance the square root function has a principal value which is discontinu-
ous as you cross the negative real axis, and the various inverse trig functions
will also have cuts. Your code can not automatically be assumed to imple-
ment these cuts in the way that will be considered proper by experts in the
field. Probably the most readily accessible description of which cuts are
desirable is inCommon Lisp, the Languageby Guy Steele[21];

42Ie by giving the polar version.

4.6. INHERITANCE 115

2. Your implementation will probably suffer from arithmetic overflow (and
hence give back answers that are infinities or NaNs) substantially before
the desired result would overflow. For instance the identitygiven for cos
computes an intermediate result that is twice as big as the final answer, and
hence can suffer in this way thereby returning incorrect answers;

3. In many cases the naive use of the formula given can lead to serious loss
of numerical accuracy when values of similar magnitude are subtracted one
from the other. For instance this problem would arise in the calculation of
sin(z) for z near zero;

4. Direct use of these formulae will not even give an efficientset of recipes for
the desired functions!

however the numerical analysis to address these problems iscertainly beyond the
scope of this course.

Binary Trees

Start from theBinaryTreeOfIntegers class sketched above and extend it so
that as well as defining variables in the class it provides a set of methods to work
with them. The methods you introduce should arrange that anybinary tree built
is always structured so that all integers stored in the left sub-tree that hangs off a
node are smaller than the integer in the node itself, while all integers in the right
tree are greater (or equal). You should provide a constructor that creates such
a tree out of all the integers in an integer array, and anotherfunction that first
counts the size of a tree, then allocates an array that big andfinally copies all the
integers back into the array so that they end up in ascending order. I would fairly
strongly suggest that you design and implement the key partsof this in ML before
you move on to the Java version. Your code is an implementation of tree-sort:
you should compare it with quicksort for clarity, amount of code that has to be
written, robustness (ie are there any truly bad sorts of input it can be given) and
performance.

4.6 Inheritance

There is one more major feature of the Java class mechanism. It provides yet
further refined control over name visibility and it can oftenbe a huge help when
organising the structure of large projects. It is calledinheritanceand the idea of it
is to allow the user to define new classes as variants on existing ones. When this
happens the new class starts off with all the components and methods of the one

116 CHAPTER 4. BASIC USE OF JAVA

upon which it is based, and it counts as having defined a sub-type. It can however
define extra variables and/or methods and implement more specialised versions
of some of the methods already present in its parent class. This is what has been
happening every time we have used the wordextends , and so for instance every
applet we have written has defined a new class extending the library classApplet .
This library class implements all the major functionality for getting a window to
appear, and to get the visual effects we wanted all that was needed was to provide
our sub-class with its own version of apaint method.

There seem to be three interlocking reasons why inheritanceis important when
large programs are to be written:

1. Class libraries can be provided in forms that implement allthe generic be-
haviour of really quite complicated programs, but by makinga new program
that inherits from such a class and that overrides some of itsmethods lots
of flexibility is left for the programmer to create a system that does exactly
what they want. Prior to languages that supported inheritance there was a
severe conflict between having libraries that contained large enough com-
ponents to give large time-savings and those that were adaptable enough to
be realistically useful;

2. Class inheritance serves a linguistic purpose in Java. If you start from a sin-
gle base class it is possible to derive several other classesfrom it. All these
count as specialisations of the original one, and a variablecapable of hold-
ing a member of the base class can therefore automatically refer to instances
of any of the derived ones. This is how Java can support data-structures that
can have several variants. Furthermore the name-visibility rules in Java can
use the way in which inheritance groups classes into families to further re-
fine access to class members.

3. It often becomes possible to implement a set of basic classes first, and test
them, and then leave those alone (and hence stable) while deriving new
classes that add extra functionality. This both provides a respectable strat-
egy for organising system development, and means that thereis a significant
chance that the basic classes that are developed will be useful in the next
project;

I will try to illustrate these three points in turn.

4.6.1 Inheritance and the standard libraries

The richest and most valuable place where this happens in thelibraries relate to
applications that pop up windows. Examples given before show user code being

4.6. INHERITANCE 117

derived from a class calledApplet . One of the things that has been seen about
Applet and hence any class derived from it is that the methodpaint has a special
status, in that it is invoked whenever the screen needs to be refreshed. The fact that
by deriving a new class you get an opportunity to write your own paint method
and that in your new class your own definition takes the place of a standard one
(which probably does nothing much!) is obviously critical.If you could not alter
the re-painting behaviour of an applet the whole structure would lose its point. If
you look at the documentation for theApplet class you will find that it is listed
as having around a couple of dozen associated methods. Each of these will define
a default behaviour for an Applet and each can be replaced43 in a derived class if
some special behaviour is needed. However these two-dozen methods are very far
from being the whole story. For instancepaint is not listed among them. This is
becauseApplet is descended fromjava.awt.Panel which in turn is derived
from java.awt.Container which itself inherits fromjava.awt.Component

andjava.lang.Object . Each of these super-classes define (often many) meth-
ods of their own. The lower-down ones sometimes replace a fewof the higher
level methods with more specialised versions, but they alsotend to provide lots
of new methods of their own. Thus in this case thepaint method is defined as
an aspect of aContainer , and is only part ofApplet via inheritance. The end
effect is that something that is as easy to get started with asan Applet in fact
comes complete with perhaps hundreds of bits of pre-defined behaviour almost
any of which can be adjusted by the simple expedient of overriding some method.

Sometimes of course this arrangement whereby library facilities are structured
into hierarchies of classes means that the very simplest thing one might want to do
involves explicit construction of objects from various classes in a way that looks
less smooth. To print simple text as the output from a simple Java stand-alone
application one can invokeSystem.out.println . The long name is because
System is a class (its full name isjava.lang.System), andout is then a vari-
able in that class. The fieldout has as its typePrintStream and the class
PrintStream provides a method calledprintln . It is possible to reference the
variableout just by giving its class (without having to have a variable whose type
is that class) because it was defined as beingstatic . The recipe as typed in by
the programmer is not too bulky but the full explanation of why it works is a bit
clumsy. “Simple” input is if anything worse. There is a static variableSystem.in
which is of typeInputStream , and for an application to accept input from the
keyboard one needs to use it. However the classInputStream only provides the
most basic reading functions, and various derived classes are needed if flexible,
efficient and convenient reading is to occur. A suggested protocol for a single

43The fuller story is that any member of a class that has been marked asfinal can not be
redefined in a derived class. The use offinal thus provides the designer of a class with a way
to guarantee some aspects of class behaviour even in derivedclasses.

118 CHAPTER 4. BASIC USE OF JAVA

integer from the standard input ends up something like

BufferedReader in =
new BufferedReader(

new InputStreamReader(System.in),
1);

int n;
try
{ n = Integer.parseInt(in.readLine());
}
catch (IOException e)
{ n = -1; }
catch (NumberFormatException e)
{ n = 0; }
System.out.println("I got: " + n + "....");

This creates anInputStreamReader out of System.in , and then builds from
that aBufferedReader where here I have indicated that a buffer size of 1 should
be used. For reading directly from the keyboard a ridiculously small buffer size
means that the program gets characters as soon as they are available. If the “, 1 ”
was omitted theBufferedReader would use some default buffer size and you
would have to have keyed in that many characters before anything ever happened!
The BufferedReader class then provides areadLine method, and the string
that it returns can be interpreted as an integer by the staticmethodparseInt in
the Integer class. BothreadLine andparseInt may raise exceptions if any-
thing goes wrong, and so a proper program should be prepared to handle these.
The above tends to look very heavy-handed because “real” programs will gen-
erally want to decode much more complicated input than just the single number
shown above, and will really need to put in thecatch clauses so that they can
respond cleanly to erroneous input. Even the buffering control is really quite im-
portant — direct keyboard input may need to be unbuffered so that interaction
works well while input of large amounts of input from a file maybemuchfaster
if buffering is used.

Java in fact provides another rather larger class thanBufferedReader which
may be useful in many applications that want to accept free-format input. This is
the classjava.io.StreamTokenizer 44 which can help you read in a mixture
of numbers and words. Here is a demonstration:

import java.io. * ;

44Actually I think thatStreamTokenizer is very useful while you are getting started, but
although it can be customised quite substantially it is not flexible enough for most really serious
uses. In the Compiler Construction course in Part IB you may learn about a package called JLex
that is harder to set up but which provides enormously more power and flexibility.

4.6. INHERITANCE 119

...

StreamTokenizer in =
new StreamTokenizer(

new BufferedReader(
new InputStreamReader(System.in),
1));

in.eolIsSignificant(true); // see newlines
in.ordinaryChar(’/’); // ’/’ is not special
in.slashSlashComments(true); // ’//’ for comment
try
{ int type;
// The next line loops reading tokens until end of file.

while ((type = in.nextToken()) !=
StreamTokenizer.TT_EOF)

{ switch (type)
{

// There are a number of predefined "token types" in
// StreamTokenizer, so I process each of them.

case StreamTokenizer.TT_WORD:
System.out.println("word " + in.sval);

// If the user says "quit" then do so. NB "break" only
// exits the switch statement here.

if (in.sval.equalsIgnoreCase("quit"))
break;

continue;
// in.sval and in.nval get set when string or numeric
// tokens are parsed and contain the value.

case StreamTokenizer.TT_NUMBER:
System.out.println("number " + in.nval);
continue;

// the method lineno() tells us which line we are on.
case StreamTokenizer.TT_EOL:

System.out.println("start of line " +
in.lineno());

continue;
// quotes and doublequotes contain strings.

case ’\’’: // drop through
case ’\"’:

System.out.println("string " + in.sval);
continue;

// Other characters end up here. Eg +, - etc.
default:

120 CHAPTER 4. BASIC USE OF JAVA

System.out.println("sym " + (char)type);
continue;

}
break; // here if "quit" typed in

}
}
catch (IOException e)
{ System.out.println("IO exception");
}

The level of complexity here seems much more reasonable! Theinitial code that
sets up aStreamTokenizer is not very different from that which set up the
simpler buffered stream before, and is clearly a small overhead to pay to be able
to have Java split your input up into words and numbers. TheStreamTokenizer
provides methods that allow you to customise its behaviour so that it can recognise
one of several possible styles of comments and accept various string delimiters.
The calls

in.eolIsSignificant(true); // see newlines
in.ordinaryChar(’/’); // ’/’ is not special
in.slashSlashComments(true); // ’//’ for comment

illustrate a little of this. The first call tells the tokenizer that newlines should
be returned to the caller. By default they are counted as whitespace and so not
passed back. The second call makes a single/ into an ordinary character, where
by default it introduces a comment if followed by a second/ or a* . The final line
enables recognition of comments that are started by// . As always you need to
browse the full documentation to discover what all the otheroptions are!

Two lessons emerge. The first is that the bigger and more powerful classes
in the Java libraries may really save you time if you find out how to use them,
while direct use of very low level facilities may end up feeling pretty clumsy.
The other is that these high level facilities are often very flexible, but if you need
some feature that they do not support you may have to drop downa level. For
instanceStreamTokenizer does not know how to handle numbers expressed in
hexadecimal or octal, and it always reads numbers in typedouble which is not
good enough if what you needed was along value.

4.6.2 Name-spaces and classes

When you derive one class from another it is sometimes desirable if the methods
and fields of the base class are visible in the derived one, butin other cases it may
not be. This aspect of name visibility needs to be consideredin conjunction with
the consequences of classes falling into different packages. Java confronts all this
by defining four levels of name visibility within classes:

4.6. INHERITANCE 121

Figure 4.6: Classes and inheritance are a sort of magic.

122 CHAPTER 4. BASIC USE OF JAVA

private: is the most restrictive one. A method or variable that has been de-
clared asprivate can be referenced from within the class in which it is
defined, but not from anywhere else. In particular code that is in another
class can not see it regardless of whether the other class is in the same pack-
age as or was derived from the original one;

package:relaxes things so that code in any class that is in the same package can
reference a value. This is the default arrangement, and is indicated bynot
using any of the other visibility qualifiers. Note that the keyword package

is used at the head of a file to specify which package that classwill reside
in, and it is not valid in method or variable declarations;

protected: When a name is declared asprotected it becomes visible in
derived classes even if they are in other packages. Because during this first
course you will probably not be creating new packages yourself this case
will mostly be relevant where a library class has someprotected members
and you derive a few class from it. Your class will probably bein the default
package but despite that you will be able to access the members involved;

public: is the final case, and it makes names generally available regardless of
packages and inheritance.

It seems tidy to document the other possible qualifiers for declarations here,
even though they are not concerned with name visibility. Indeed their conse-
quences are rather mixed, and since this is a first Java courseit is not essential to
be fully comfortable with them all.

final: When a variable is declaredfinal nobody will be allowed to assign
a new value to it. When a method isfinal then it can not be overridden
in any derived class. In both cases the effect is to make the definition in its
visible form the one that can be relied upon everywhere else;

static: The default situation for items defined within classes is that the items
only come into existence when an object of the class-type is created. This
makes obvious sense for data fields. For instance after the declaration

class IntList
{ public int head;

public IntList tail;
}

it is clear that the only context in which the head and tail fields can be used
is in association with an object of typeIntList as in

4.6. INHERITANCE 123

int sum(IntList x)
{ int r = 0;

while (x != null)
{ r += x.head;

x = x.tail;
}

}

For consistency the same access rule is then applied to member functions
(ie methods) in a class. If however an item in a class has been declared
static it is as if a single globally allocated instance of the class gets cre-
ated automatically, and the field can then be referred to relative to just the
class name. For instance (a nonsense code fragment!)

class MyConsts
{ static final double ZETA2 =

1.6449340668482264365;
static final double CATALAN =

0.91596559417721901505;
static int square(int x)
{ return x * x; }

}
...
double a = MyConsts.CATALAN -

Myconsts.ZETA2 +
(double)MyConsts.square(1729);

...

abstract: Sometimes it is useful to define a base class not because it is useful
as such, but because the various other classes that get derived from it might
be. Consider the ML declaration

datatype option = A of int | B of double;

One way of producing a Java equivalent would be to start by defining a
rather vacuous class calledOption and then deriving from it two new
classes one to correspond to each of the two cases in the ML version:

abstract class Option
{}
class OptionA extends Option
{ int a;
}

124 CHAPTER 4. BASIC USE OF JAVA

class OptionB extends Option
{ double d;
}

The base class here only exists to be extended, and it would besilly to create
an object that was of that type45. The qualifierabstract prevents anybody
from creating objects of the base class. It marks things thatmust be inherited
from before meaningful use can be made of them. In cases such as this it is
often useful to discriminate as to which derived class a particular instance
belongs to. Theinstanceof operator can be used to do this. Again my
illustrative code is artificial:

Option x = new OptionA(); // or maybe OptionB?
...
if (x instanceof OptionB) ...
else ...

It is very often neater and easier to define different overridings of a com-
mon (abstract) method in the two derived classes so that the correct be-
haviour is achieved for each. If that is done46 the if statement and use of
instanceof could be replaced by a simple call to the method concerned. It
is of course not essential to make a base class in such examplesabstract ,
but doing so prevents any possible embarrassment if some code created an
instance of it in its raw and useless form, so it is generally considered to be
good style.

native: If a method is defined asnative then Java somehow expects there to
be an implementation of it that was coded in some language other than Java.
This can be used by system builders to interface Java code down to lower
level and perhaps machine-specific system calls, but will not be discussed
further in these notes.

synchronized: related to Java code where several threads of computation may
be active at once. Although the very basic aspects of this will be covered
in this course a proper treatment needs to wait until you havehad a Part IB
course on concurrent systems.

interface: The keywordinterface is not a modifier for use in class defini-
tions but a keyword whose use is very much like that ofclass . An interface

45Of course objects of typeOptionA andOptionB are also of typeOption , so what I
mean is it would be silly to gonew Option() .

46A similar stylistic issue arises in ML where user of pattern-matching in function definitions
can often reduce the number of explicitif statements that have to be written.

4.6. INHERITANCE 125

can be declared much as an abstract class is. Classes can be defined to ex-
tend other classes, but a restriction that Java applies is that a new class can
only be an extension of a single parent class. Interfaces provide an approx-
imation to being able to extend several parent classes — a newclass can
specify that itimplements one or more interfaces. When a class indicates
that it will implement an interface it has to contain (concrete) definitions of
all the (abstract) methods that the interface specifies.

At (very) long last we have covered all the magic that arose inthe initial
Hello.java program and can see what each keyword present there was indi-
cating.

4.6.3 Program development with classes

In Java, as in other Object Oriented languages, the whole shape of a large pro-
gram needs to be designed in terms of terms of the packages andclasses that will
be built. It is worth putting particularly careful thought into the way in which
hierarchies of classes will be derived from one another via inheritance.

There are two application areas that were pioneers in illustrating the benefits
and strengths of object oriented programming (which is whatthis is). It can thus
be worthwhile considering examples of these as some of the earliest ones you
work with when getting used to the idiom. The first application area was that
of simulation47, while the other was graphics and especially the display of geo-
metric figures in windows. The following example, which is taken fromJava in
a Nutshelland shows how use of several classes rather than just one may allow
the programmer to keep distinct aspects of their task separate. But doing this the
size of unit that has to be debugged is reduced, and the possibility of re-using
parts of the code later on in another project is increased. The example supposes
that a graphical design and modelling package is being written. Within it it will
keep data-structures that represent circles, squares and other shapes. For much of
its time it will work on these busily computing their areas, their circumferences,
whether they intersect and similar properties. It may also adjust their sizes and
positions. As well as performing all these calculations thecomplete package will
also have a user interface that can draw the objects. There will be options to con-
trol the colour of each individual circle (and so on) as well as to determine whether
the items are drawn just as outline figures or as filled-in shapes.

Without use of inheritance and thus without serious use of the Java class mech-
anism the code would probably have to consist of a single class, say calledShape ,
which would contain a master variable indicating what sort of shape was involved,

47Indeed the way that object-oriented C++ developed from the simpler language C was initially
specifically for use in this area.

126 CHAPTER 4. BASIC USE OF JAVA

Figure 4.7: See also the “Software Engineering” courses.

4.6. INHERITANCE 127

then other variables that could be used to specify the exact parameters of that
shape (eg its radius if it was a circle). The method functionssuch asarea would
need to dispatch on the type of the figure and do different calculations in each
case. Further code would arrange to be able to draw pictures to represent the data.
All the geometric and graphical parts of the code would be in the same class and
thus the same source file — something which would not cause trouble in tiny cases
but would become clumsy for a fully elaborated version.

With inheritance it would be natural to start with a basic class (again I will call
it Shape) which will probably beabstract . Its purpose is to allow the program
to declare variable of typeShape and then store circles, squares, stars and all
other possible sorts of shape in that single sort of variable. The methods declared
for Shape can be given as just declarations, rather than as full definitions:

public abstract class Shape
{

public abstract double area();
public abstract double circumference();

}

which makes these methods available in any object of classShape but expects
that concrete variants on the class will provide the real implementations.

For each sub-class ofShape a new class could then be derived:

class Circle extends Shape
{

protected double radius;
public Circle() { radius = 1.0; }
public area() { return Math.PI * radius * radius; }
public circumference()
{ return 2.0 * Maths.PI * radius; }
public double getRadius() { return radius; }

}

Note that this can introduce new public members that are not relevant for general
Shape quantities, but which do make sense when you know you have aCircle .

Next aninterface would be set up, defining the methods relevant for draw-
ing48 things on the screen:

48Java is an American language, and so the character of being Red, White or Blue isColor
rather thanColour . Given that the library uses this spelling it seems best to swallow nationalistic
pride and adopt it elsewhere in the code. . .

128 CHAPTER 4. BASIC USE OF JAVA

public interface Drawable
{

public void setColor(Color c);
public void draw(Graphics g);
// etc etc.

}

Now it is reasonable to derive a new class for a version of eachsort of shape but
in a form that supports the drawing operations:

class DrawableCircle extends Circle
implements Drawable

{
Color c;
public void setColor(Color c)
{ this.c = c; }
public void draw(Graphics g)
{ ... // whatever, maybe

g.drawOval(...);
}
// etc etc.

}

It is now possible to use the drawing methods as well as the data manipulation
methods in one of these ultimate data-structures.

Often when producing a derived class and overriding a methodthe newly ex-
tended method needs to use the corresponding operation fromits parent class. For
instance if a class defines a method that is used to initialiseits variables then a
derived class may add extra variables that need initial values too, but it would be
clumsy to insist that it also had to repeat all the code to setup the variables in the
base class. And indeed if some of those wereprivate or protected it might
not be able to. The solution is hidden in the keywordsuper . This is a bit like
this in that it always refers to the current object, but it views itas a member of
the immediate parent class. Thus code like

class SubClass extends MyClass
{ private int variable;

public void init()
{ super.init(); // init as a MyClass

variable = -1; // finish off as SubClass
}

}

and the wordsuper is only of relevance when extending a class and overriding
methods. In the case of some library classes and methods the documentation will

4.7. GENERICS 129

explain to you that you must use it, see for instance the method paint in the class
Container .

4.7 Generics

The material here is now for Java 1.5 and I expect my coverage of it to grow over
the next year or so. This year I will do hardly more than just mention it and let
Part IbB coverage consider filling in the gaps. This seems especiallyreasonable
since textbooks that catch up with this are still somewhat rare.

In ML you got used to having types that were polymorphic. For instance a
sort function that took a predicate and a list might have had type

(α∗α → bool)∗αlist → αlist

to indicate that the elements of the input and output lists had the same type and
the ordering predicate was compatible with that. A particular feature of ML to
recall is the availability of parameterised types such asαlist. In Java instead of
saying “type” we will say “class”, and instead of saying “polymorphic” we say
“generic”. A generic class is established by putting type variables within angle
brackets. You can then use the type variable within the classas if it were a regular
type name: small

class MyClass<E>
{

E myMethod(E arg1, int arg2)
{ MyClass<String> newvar = ...

...
}

}

With your ML experience of polymorphism you can now probablesee at once
how to use this capability to write implementations of various generic data struc-
tures (trees, lists and the like) and provide useful functions that traverse, search or
sort them. In fact that Java libraries have done a great deal of that in their so-called
Collection classes.

In ML polymorphism is all-or-nothing. If you have a type-variable α it can
stand for absolutely any ML type. To improve security you maysometimes like
to have a way of expressing more limited flexibility (eg generic over all sorts of
numbers, but not over non-numeric data). Java provides a capability using a type
wildcard written as question mark, and can limit the range ofthe wildcard using
notation like

130 CHAPTER 4. BASIC USE OF JAVA

public void sum(List<? extends Number> arg)
{ for (n:arg)

{ ... }
}

Here thesum method takes an argument that is some sort ofList 49 but it
insists that the polymorphism thatList provides has been used in a way that
means you know that all the objects in the list are some subclass onNumber.

You will use generics every time you use the Java Collection Classes. You can
use it in your own code too. There is a fair amount more that I could say about
exactly how it interacts with the type-hierarchy that classinheritance provides and
when a generic class is a sub-class of another, but I believe that the details there
do not belong in afirst Java course!

4.7.1 Exercises

Objects everywhere

The Java libraries make extensive use of classes in hierarchies (and also a more
modest number of interfaces). The arrangement in the basic set of classes is that
everythingis ultimately descended from a base class calledObject . The most
immediate consequence is that an object ofanyclass from the basic libraries may
be stored in a variable of typeObject . It is exactly as if whenever you define
a new class and do not give an explicitextends clause as part of its definition
Java just sticks in “extends Object ” for you. Of course when you extend some
other class it in turn will somehow haveObject as an ancestor-class so this way
as previously statedeveryinstance ofanyclass is anObject .

A few basic methods are defined forObject , of which perhaps the most inter-
esting at present isgetClass which returns an thing from the classClass . If x is
anyObject thenx.getClass().getName() is a string that is the name of the
class ofx ! The general parts of the Java libraries that allow you to investigate the
classes thatObject s belong to and then retrieve lists of the variables and methods
that they provide are referred to asReflection: as it were a Java program can look
at itself as if in a mirror.

Check the documentation and write Java code that accepts anObject and
prints out as detailed and as readable description of it as you reasonably can.

Note thatObject underpins the polymorphism of Java generics, but now that
generics are available programmers will useObject directly much less than they
used to.

49A Collection class that does just what you expect!

4.7. GENERICS 131

Primitive is second class?

The ability to treat things as “Objects” does not (directly)extend to the Java prim-
itive types. To work around that the libraries contain classes with names that
are rather like those of the primitive types except that theyare capitalised. Ie
Boolean , Character , Byte , Short , Integer , Long , Float andDouble . As
of the most recent revision of Java you will find that the compiler arranges to con-
vert betweenint andInteger (and the other primitive types and their associated
wrapper classes) when it believes that that will help you. The conversion naturally
involves some run-time cost so it is perhaps advisable to be aware when it hap-
pens. The sort of circumstance where it is especially convenient that this happens
is when you want to store a primitive object (eg an integer, floating point number
or character) in aHashmap or aVector (or indeed any of the collection classes).

It was then natural for the Java designers to set methods associated with these
to implement a wide range of basic conversions and tests on the values, as in
Integer.doubleValue andDouble.isNaN (and many more).

The numeric types the classesInteger etc do not inherit directly fromObject
but via a class calledNumber Eg

Number a, b;
a = 2; // new Integer(2);
b = 11.7; // new Double(11.7);

can be written as shown, but behaves as if the constructors inthe comments have
been used. If theNumber objects are used in a context where primitive num-
bers are needed (eg you try to perform arithmetic using them)the values will be
unpackaged for you.

Write a class that defines lists ofNumbers, with suitable set of facilities for
constructing such lists and a methodsum that can add up the values in a list return-
ing the result as adouble . You may need to use “x instanceof Integer ” to
sort out which flavour of number is present in some particularnode.

Some text output using Objects

SinceObject is an almost universal type it can be used to pass arbitrary data
to a function. This is in fact what happens withprintf , but one extra thing
happens there. If a method is declared with three dots after the type at the end of
its argument list, as in

PrintStream printf(String format, Object... args)
{ // whatever definition you need
}

132 CHAPTER 4. BASIC USE OF JAVA

indicates that the final argument toprintf will actually be passed as an array of
Object values. But thecalls to it will just appear to permit a variable number
of arguments, and each argument will be converted to (if a primitive type) or
interpreted as (if a class type)Object .

While this scheme can be used in your own code to support variable numbers
of arguments, and it can also be used with more restrictive types thanObject it
will almost always count as poor style since it can easily reduce type-safety and
cause confusion if you mix it with method overloading. But where it is useful it
really helps make code concise. Without it instead of writing

int i=1, j=2;
System.out.printf("%d, %d", i, j);

you would need to wrap i and j up in the typeInteger explicitly, and create an
array to pass the multiple arguments explicitly.

int i=1, j=2;
myOwnMethod("%d, %d",

new Object [] {new Integer(i), new Integer(j)});

But note very well that within the code that implements thingssuch asprintf

everything has to work understanding that the concise callsare in fact mapped by
the java compiler onto the clumsy looking code that packagedup primitive types
and makes an array.

Now seems a good time to provide a summary of more of the formatting op-
tions available withprintf , and also to note that the methodString.format

does exactly the same job of layout but returns a formatted string rather than doing
any direct printing. We have already seen"%d" for laying out integers, and know
that"%n" generates a newline.

Within a format string the character"%" introduces a format specifier. After
the percent sign a number of optional elements can appear:

• An argument index followed by a dollar sign ($). Without one of these the
values to be converted are taken one at a time from the arguments provided.
An index such as (2$) tells the formatter to use the second argument now,
even if that is out of order. Often you may want to display the same data
several times, eg in different formats. In that case (<) is very useful: it tells
the system to re-use the argument most recently dealt with;

• Some flag characters. Just what is valid here will depend on just what sort
of layout is being performed, but various punctuation marksas flags can, for
instance, force left-justification of text within a field (-), ensure that num-
bers are always displayed with an explicit sign (+), include leading zeros
(0) or be more fussy about the actual types of arguments (#). You need to
check fine details in the documentation when you use flags!

4.7. GENERICS 133

• a field-width, written as an unsigned non-zero integer. You should expect
that if this is specified that the output from the conversion will have exactly
that number of characters;

• A dot followed by a integer precision. Eg (.4). For some conversions this
sets an upper limit on the number of characters to be generated. For floating
point conversions it controls either significant figures of the number of digits
after the decimal point.

• (and finally!) a character (or in some cases a pair of characters) that in-
dicated just what sort of conversion is to be performed. Perhaps the more
important cases are the letterss , each of which is discussed briefly below!

The full set of format letters and options can be found in the online documen-
tation, but key cases are

s, S: This takes any value at all and tried to convert it] to a string. If the argu-
ment implements theFormattable interface then itsformatTo method is
used to do the conversion, otherwise its smalltoString method is used.
When you define a class of your own you may often wish to overrideor
define one or both of these methods so that you can easily printinstances
of your class. Many of the Java library classes implement these methods in
ways that at least try to be helpful. If you write a capitalS the material that
is displayed is forced into upper case. Similar effects apple for other use of
upper case format letters;

d: This is the case most often seen in these notes so far, and prints an integer. But
you can also displayBigInteger values with this (and thex) format;

x, X: Integers can be displayed in hexadecimal rather than normaldecimal no-
tation this way;

c: character

e, f, g, E, F, G: Floating point and their display involve lots of compli-
cation! The “e” formats always use scientific notation with an explicit ex-
ponent. The “f” formats use the specified precision as the number of digits
to display after the decimal point (eg it is a good thing to usefor printing
pounds and pence with"%.2f"), while “g” tries to select between those
two formats to select one that will be natural and will take upas little space
as possible.

%: If you want to print a percent sign you will need to write two ina row!

134 CHAPTER 4. BASIC USE OF JAVA

n: Unix and Windows have different ideas about what constitutes a “newline”.
The format code%nmakes allowance for that for you.

tx: Java provides an amazingly rich range of ways of formatting times and dates.
YOu can use these formats when printing objects of typeLong , Calendar

or Date . I think there is too much to list here, but a very few of the options
available are

tY year displayed as 4 digits, eg “2005”;

tA full name of day of the week, eg “Monday”;

TA as above, but upper case: “MONDAY”;

ta short name of day: “Mon”;

tM minute within the hour, as 2 digits;

tm number of the month as 2 digits, counting January as number 1;

tT time formatted for the 24-hour clock as"%tH:%tM:%tS" ;

tD date formatted as"%tm/%td/%ty" .

A bigger exercise

There are twelve shapes that can be made by joining five squares together by their
edges to get a connected unit. It is possible to pack these shapes (thepentominoes)
into a six by ten50 rectangle in a number of ways. Here is one such packing, which
will also serve to show you the shapes of all the pieces:

50also into a five by twelve or three by twenty.

4.7. GENERICS 135

The object of this exercise is to find other solutions to the puzzle.
The suggested strategy is to represent the 10 by 6 board using60 of the 64 bits

in a long . You can them treat these as if they are arranged as a rectangular array,
and then a singlelong value can represent a possible position of a piece. In this
representation the twelve pieces can be described by the array:

final long [] rawPieces =
{ 0x000001f, 0x0100407, 0x000040f, 0x0300403,

0x0401c01, 0x2008007, 0x0201c02, 0x0000c07,
0x0301808, 0x0000c0e, 0x000100f, 0x0301802

};

where the values look pretty ugly but are at least all in quitea small table. A
bulkier but perhaps cleaner way to set up the initial table ofshapes would be to
use a function such as:

long piece(String line1, String line2, String line3)
{ return (row(line1) << 2 * boardWidth) |

(row(line2) << boardWidth) |
row(line3);

}
long row(String line)
{ long r;

for (int i=0; i<line.length(); i++)
{ r <<= 1;

if (line.charAt(i) == ’X’) r |= 1;
}

}
...
piece("X ",

"XXX",
" X ");

The init method for the applet should start by setting up a table first of all
the twelve pieces normalised so that they are down in one corner of the board,
and then a larger table showing each piece in every location on the board that it
could possibly be. Doing this will involve writing code thatreflects and rotates
pieces — not especially nice when using bits packed into along — and which
avoids setting up entries that are redundant because of symmetry. The code that is
involved in getting this far is quite messy enough to keep youbusy for a while.

136 CHAPTER 4. BASIC USE OF JAVA

The overall structure of the code that searches for solutions might then be

// search(i) looks for ways of placing piece
// i on the board. The array entry maps[i][j]
// is a bitmap showing the j-th place that
// piece i could bit, and the variable "board"
// shows which parts of the board have already
// been filled. There are 12 pieces, known as
// 0 to 11.

void search(int i, long board)
{ if (i == 12)

{ // Here a solution has been found
... record it somehow ...
return;

}
for (int trial=0; trial<maps[i].length; trial++)
{ if ((maps[i][trial] & board) == 0)

{ // no overlap with existing pieces
// so put this in and next try to
// fit in piece i+1.
search(i+1, board | maps[i][trial]);

}
}

}

The first challenge would be just to count the solutions, and so the place in
the above which is incomplete could be replaced by a single statement that in-
cremented a variable. But since it is easy to usefillRect to draw filled-in
rectangles in Java it would seen natural to try to draw some ofthe solutions and
that would mean doing something distinctly harder.

The search function I have sketched tries the twelve pieces one after each
other, and at each stage considers each piece at ever position on the board where it
would still fit. A different search strategy would be to scan the board at each stage
and find the first vacant square. The program would then identify and try every
piece that could be used to fill in that square. I believe that this second search
strategy is rather closer to the one most people would use than my original one
was.

A curve to plot

Use Java to plot a picture of the following curve ast varies from 0 to 2π:

x = cos(t)(1+cos(40t))

y = sin(t)+cos(t)sin(40t)

4.7. GENERICS 137

Find a copy ofA Book of Curves, E. H. Lockwood, Cambridge 1963, and in a
similar style re-create variants on as many of the pictures as you can.

Reading hexadecimal numbers

We have seen various ways of decoding numeric input, egInteger.parseInt

and the whole set of joys associated withStreamTokenizer . You can note from
the full documentation that there is a two-argument versionof parseInt that
allows you to specify what radix the input string was supposed to be in. You
may also like to check details of the class smallScanner which has a method
nextInt that can also accept an argument indicating what radix to read in.

Now imagine that these facilities did not exist, or that for some strange reason
you could not use them. Implement your own functions that canbe given strings
as arguments and which will make it possible to convert the strings intoint and
long values, allowing for the possibility of octal or hexadecimal specifications.

Displaying floating point numbers

In versions of Java prior to 1.5/5.0 the functionality ofprintf was not available.
This exercise is to re-create some of it thereby getting a chance to feel what work
is involved in making worthwhile extensions to the existinglibraries.

The methodDouble.toString allows you to generate a printable represen-
tation of a floating point number. However compared to the floating point layout
flexibility available in many other languages it seems pathetically simple-minded.
A typical programming language will provide for three ways of printing floating
point values:

F format: here numbers are written as illustrated in the following examples

-1.000
1234567890000000000.0
0.000000005656

and even if the values are very large or very small their magnitude is indi-
cated by having suitable numbers of leading or trailing zeros. It is typically
possible to specify how many digits will be printed following the decimal
point, and to indicate the width that the whole number will bepadded to
with either leading or trailing blanks.

E format: For very large or small numbers it may be convenientto use scientific
notation. So withE format an explicit exponent will always be displayed:

138 CHAPTER 4. BASIC USE OF JAVA

-1.0e000
1.234568E018
5.656000e-009

Observe that there is always exactly one digit before the decimal point
(sometimes a scaling option is provided to allow the user to specify a differ-
ent number of digits before the point), and the exponent is always present
and probably always displayed in a way where the largest possible exponent
value could be fitted in. A “precision” specifier can indicatehow many sig-
nificant digits are to be shown, and the number will be padded with zeros
or rounded to meet that requirement. Numbers close to 1.0 tend to look a
bit ugly this way! Again it is useful to be able to place the number in a
fixed-width field, either right or left-justified.

G format: Large numbers are best shown inE format while modest size ones
do best inF. SoG is a composite scheme that looks at the value of a num-
ber and decides which of the other two formats would lead to the most
compact representation, and it then uses that. It is roughlywhat Java’s
Double.toString method provides, but again we would really like op-
tions to indicate precision and field width.

Implement functions which convert Javadouble values to strings in each of the
above formats.

I might suggest that you start by usingtoString to do the basic conversion
and then let your code restrict its worry to unpicking that string and re-formatting
the characters. If you decide you want to do the numeric to string conversion from
scratch you should be aware that preserving numeric accuracy is quite hard!

Write a test-suite that compares the strings your code generates with the ones
thatString.format produces. Then worry about NaNs, infinities, careful round-
ing and the like!

Double as bit-patterns

Double.doubleToLongBits takes adouble as an argument and returns a
long . Thelong is the internal IEEE-format bit-pattern that represents thedouble
The matching functionlongBitsToDouble accepts along and manufactures a
double in the same dubious sort of way. Investigate whether there isanydouble
value x in Java so that

(double)Double.doubleToLongBits(x) == x

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 139

Continued fractions

Any positive number can be expanded as acontinued fractionas in

x = x0 +
1

x1 + 1
x2+...

where the valuesxi are calledpartial quotientsand are all positive integers. If
the original number is rational the continued fraction terminates at some stage.
Otherwise it goes on for ever, and can be viewed as providing an alternative
to the usual decimal expansion of numbers. Instead of writing a value as say
1.414213562. . . the partial quotients would be listed [1, 2,2, 2, . . .]. Gosh in fact
for this number it looks as if the continued fraction is astonishingly regular!

The sequence of partial quotients in the expansion of a number are easy to
compute - the first is just obtained by casting the number to anint . The rest can
be obtained from the reciprocal of what you get by subtracting that value from the
original number. Write code to do this and tabulate the first dozen partial quotients
you get in the expansions of the following numbers:

√
3

(
√

5+1)/2
√

7

e= 2.71828. . .

π

4.8 Important features of the class libraries

The coverage thus far has shown the use of some small parts of the Java libraries,
but has also missed a great deal out. In this course I will not have anything like
enough time to describe everything that is available. However there are a few
bits of functionality that either seem to be generally useful enough or sufficiently
fun to be worth covering. The little bits of explanation given here are thus to be
viewed as a sampler of what Java can do for you. If you can work through all these
demonstrations and navigate the documentation of the classes that they introduce
you should have got a reasonably broad idea of the system, andin looking up the
documentation details while working on these cases you willas a side-effect be
noticing what other classes are present. I will only give themost basic possible
demonstrations of the things illustrated here. Full competent use of them can only
come with serious work on rather larger bodies of code. I willalso totally ignore

140 CHAPTER 4. BASIC USE OF JAVA

several of the newer parts of the Java class libraries, or to be more precise, I will
leave fuller details of some of these facilities and of the other ones to next year’s
“Concurrent Systems and Applications” course and/or your own private study.

4.8.1 File input and output

The character input and output shown so far has used the pre-defined “standard”
streamsSystem.in andSystem.out . Obviously in many real applications it is
necessary to access named files.

In many programming languages there is a logical (and practical) distinction
made between files that will contain text and those while willbe used to hold
binary information. Files processed as binary are thought of as sequences of 8-
bit bytes, while ones containing text model sequences of characters. In Java this
distinction has two main manifestations, one of which is somewhat frivolous but
can matter on an every-day basis in the UK while the other is ofwider importance
but will not impinge on immediate coursework:

1. Windows and some internet protocols use a pair of characters, carriage-
return and line-feed, to mark the end of a line. Unix and Linuxuse a single
character (newline). In text mode Java makes whatever adjustments are
needed so that external files adhere to platform conventions, but your Java
code sees just the character’\n’ .

2. In many parts of the world (and in particular in the Far East) text documents
need to cope with alphabets that involve many thousands of symbols. Uni-
code is designed to be able to cope with these, but there can bea variety
of ways of encoding text as streams of bytes. When working in such an
environment Java can be configures so it knows how to pack and unpack
Unicode using various of the major encoding conventions. Butobviously it
will only even try to do this when it knows that the programmerwants data
to be viewed as character-based rather than binary.

Java uses names typically based on the wordStream for binary access, and
Reader andWriter for text. So when you read the documentation expect to find
two broadly parallel sets of mechanisms, one for each style of access!

Java input and output can seem clumsy to start with because almost all of
the functions involved are able to throw exceptions, and it is expected that Java
code using them should be prepared to handle these. This is infact goodbecause
experience with earlier languages indicates that most programmers do not find
it easy or natural to put error-checks after simple I/O operations, even though
logically almost any of them could fail. For instance writing a single character

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 141

to a file could unexpectedly fail if the disc on which the file lived became full51,
or it it was on a floppy disc and the disc was removed from the drive or had a
scratch, or if there was a hardware glitch in a disc interface. Different but equally
delicate issues arise with output that goes directly to a printer, across a network to
a remote file-system, or with input from a semi-reliable device such as a bar-code
scanner. The Java use of exceptions encourages all programmers to consider I/O
failure right from the start.

There is one final complication about Java input and output that ought to be
mentioned up front. One use of Java is in applets to be embedded within web
pages, and hence sometimes fetched from remote web-sites. It could be bad if
code from an untrusted site could read and write all your files! So Java introduces
the idea of a security manager and can classify code as eithertrusted or untrusted.
Untrusted code will not be permitted to access the local filing system. The short
form way around this is to make everything you do an application not an applet:
security restrictions are then (by default) not imposed. Ifyou do need to make
applets that access disc or do other things that default controls lock out you need
to impose security on an application then you will need to findout about the
creation of custom Security Policies and signed Java code. Iwill not describe that
here.

Java provides a rich and somewhat elaborate set of capabilities, but perhaps
a good place to start will be simple reading of text files. The classFileReader
does almost everything you are liable to need: here is a minimal demonstration
that shows that you can use a method calledread to read characters, and that it
returns the integer -1 at end of file.

import java.io. * ;

public class ReadDemo
{
public static void main(String [] args)

throws IOException
{

Reader r = new FileReader("filename");
int c;
while ((c = r.read()) != -1)
{ System.out.printf(

"Char code %x is \"%<c\"%n", c);
}
r.close();

}
}

51Or the user’s quota expired.

142 CHAPTER 4. BASIC USE OF JAVA

There are a significant number of things about this small bit of sample code
that deserve further explanation, and by trying to be minimal the code is not really
very good: an improved version is given soon.

Firstly note thatFileReader is in the java.io package so we have an im-
port statement to make use if it easy. Next observe that almost all input and output
functions can raise exceptions, and this code just admits defeat and notes that its
main method might therefor fail. I view it as bad style to do this and strongly
believe that exceptions should be handled more locally.

Now FileReader is a subclass ofReader , which is the general class that
reads from character streams. So I create aFileReader using a constructor that
takes a file-name as its argument but store what I get as just aReader . This
helps stress to me and remind me that the rest of my code would be equally valid
if using some other sort ofReader , such as one that gets its input from a pipe,
from a string, from characters packed in an array, from a network connection,
by running a character decoder on a stream of bytes or otherwise. The way I do
things here supposes that the data in the file concerned is encoded in the standard
local character-set that Java has been set up for. For reading files imported from
elsewhere in the world you have to do things a more complicated way!

The read method hands back either the numeric code for a character, orthe
value -1 to denote end-of-file. It perhaps seems odd that it returns anint not a
char , but doing so allows it to hand back -1 which does not stand forany normal
character. You can of course case theint to achar any time you want to!

After having read the file you are expected to call theclose method. If you
fail to do this for an input file you may just leave some machineresources cluttered
and unless you try to open and read very many files without closing any of them
you will probably not feel any pain. However for output files it may sometimes be
that the last bit of your data is not actually sent to the file until you do theclose .
You should get into the habit of ensuring that every file you open does get closed.

A much improved version of the same code can be arrived at by handling
the possible exceptions. You may note thatFileNotFoundException is a sub-
class ofIOException which is why thethrows clause above was sufficient, but
which also allows us to see how the improved code is more precise. When you get
an exception out of Java it can often be useful to print it, in that it is liable to carry
some text that explains further what went wrong. I usefinally to guarantee that
theclose method of theReader will always be invoked.

import java.io. * ;

public class BetterReadDemo
{
public static void main(String [] args)

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 143

{
Reader r;
try
{ r = new FileReader("filename");
}
catch (FileNotFoundException e)
{ System.out.printf(e);

return;
}
int c;
try
{ while ((c = r.read()) != -1)

{ System.out.printf(
"Char code %x is \"%<c\"%n", c);

}
}
catch (IOException e)
{ System.out.printf("Reading failed (%s)%n", e);

return;
}
finally
{ r.close();
}

}
}

Output to a file is somewhat similar, and if you only ever want to write indi-
vidual characters and simple strings thenFileWriter will suffice. However you
may like to be able to useprintln andprintf when writing data to your file,
and they come in a class calledPrintWriter . Unlike the classFileWriter ,
PrintWriter hides all exceptions so you do not need to catch them, but you can
check for error using thecheckError method and you still need to ensure that
close is called.

import java.io. * ;

public class PrintDemo
{
public static void main(String [] args)
{

try
{ PrintWriter w = new PrintWriter("filename");

try

144 CHAPTER 4. BASIC USE OF JAVA

{ w.printf("Hoorah%n");
assert !w.checkError();

}
finally
{ w.close();
}

}
catch (FileNotFoundException e)
{ System.out.println("Sorry!");
}

}
}

This time you must makew a PrintWriter and not just aWriter to gain
access toprintf and so on.

If errors arise on aPrintWriter the flag marking them persists so you do not
need to usecheckError after every single print statement – every so often and
once when you have generated all that you want to end up in the file will suffice.
Although I have usedassert here I probably feel that error checking should be
done always an that something along the lines of

if (w.checkError())
throw new IOException("failure on PrintWriter");

might well be better policy.
The long-winded but more flexible way to access files is to start by creating

an instance ofjava.io.File . An object of this type can be created using either
a constructor that takes a singleString that names the file (as a complete path,
if necessary), or with a two-argument constructor where oneargument specifies
the directory to look in and the other the file-name within that directory. AFile

object supports methodsexists , canRead andcanWrite and also one called
isFile , which test for a “normal” file, ie one that is not a directory or any of the
exotic things that in Unix masquerade as sort-of-files. You can pass aFile rather
than a string when opening aFileReader or FileWriter .

Other methods available via theFile class include ones to check the length
of a file52, rename it, create new directories, list all the files in a directory and
delete files. You can also create a file by giving just a local name (eg such as
"java.tex") and callgetAbsolutePath to obtain a fully-rooted file-path that
identifies it. The exact result you get will clearly be system-dependent, and on
one computer I tried that I got back

52The length reported is liable to count in bytes, and so for text files it can well be that the length
reported differs from system to system.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 145

"e:\UNIV\notes\java\java.tex"

while on another it was

"/home/acn1/javanotes/java.tex" .

The fact that all these facilities are so conveniently supported may make Java
one of the more useful programming languages for writing file-management util-
ities. Once again if you look at Java code and compare it against other languages
for very tiny tasks and where previously you would have missed out all error
handling Java can look clumsy — but when you look at more realistic and well-
engineered examples it starts to feel much nicer.

Binary data access are useful for cases when your data really is raw data and
not composed of characters. There classes calledjava.io.FileInputStream

and (of course)FileOutputStream that take aFile or a string as an argument
and create streams. They of course throw exceptions if the files can not be opened
as requested. Once a file has been opened you should in due course call the rele-
vantclose method to tidy up.

Earlier examples have shown an extra layer of Java constructor arranging to
buffer input in the expectation that that may speed it up. I have done that here too.

Putting these together we might arrive at something like this to copy a file in
binary mode:

String fromName = "source.file";
String toName = "destination.file";
File fromFile = new File(fromName),

toFile = new File(toName);
if (!fromFile.exists() ||

!fromFile.canRead() ||
toFile.exists() ||
!toFile.canWrite())

{ System.out.println("Can not copy");
return;

}
InputStream fromStream =

new BufferedInputStream(
new FileInputStream(fromFile));

try
{ OutputStream toStream =

new BufferedOutputStream(
FileOutputStream(toFile));

try
{ for (;;)

{ toStream.write(fromStream.read());

146 CHAPTER 4. BASIC USE OF JAVA

}
}
catch (EOFException e)
{} // Use exception to break out of for loop
finally
{ toStream.close();
}

}
catch (IOException e)
{ System.out.printf("IO error " + e);
}
finally
{ fromStream.close();
}

This code is in fact not yet complete! It needs yet more try blocks to guard against
FileNotFoundException cases where the two streams are created. But it illus-
trates how theEOFException can be used to stop processing at end of file, and
demonstrates very clearly that in real file-processing applications most of what
you write will be to do with setting everything up and arranging to handle excep-
tions, while the central interesting bit of the code may be asshort as just

for (;;)
{ toStream.write(fromStream.read());
}

Overall it may seem pretty grim, but in large programs the complication will
still remain at the level of the dozen or so lines shown above,rather than growing
out of control. It is also probable that the visible pain is because writing high qual-
ity file-manipulation code is in fact nothing like as easy as earlier programming
languages have tried to make it out to be!

There is a potential down-side in Java being so very insistent that you catch
all these errors, in that it can encourage a style of cop-out that just wraps all your
code in

try
{ ...
}
catch (Exception e)
{}

where the block is set up so it catchesall sorts ofException not just the very
special ones that you know are liable to arise, and rather than doing anything it just
ignores the error. This very much defeats the purpose Java istrying to achieve! If
you are (quite reasonably!) in a rush some time at least go:

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 147

try
{ ...
}
catch (Exception e)
{ System.out.printf("Exception: %s%n", e);

System.exit(1);
}

so that the exceptions you catch are reported and make your program stop.
The above example usedBufferedInputStream which should not have

any effect at all on what your program actually does, but may have an impact
on performance when you work with big files. For binary data there are more
interesting classes that you could use just as easily: ones to compress and and de-
compress data, encryption and checksumming capabilities.For text data you can
useLineNumberReader in place ofBufferedReader and it will keep track of
which line you are on in your input. See the classesFilterInputStream and
FilterReader in the documentation for further details.

4.8.2 Big integers

The Discrete Mathematics course had an extended section where it discussed
highest common factors, modular arithmetic and eventuallythe RSA encryption
scheme. To refine your understanding of all that you could quite properly want
to code it all up. To make any pretence at all of reasonable security this means
that you need to do a lot of arithmetic on integers that are between 1024 and 1536
bits long. This sort of range of values is about what is required because there is
a serious possibility that numbers smaller than that might be factorisable by the
best current algorithms and fastest current computers. An implementation of RSA
will also need to generate a couple of primes, each with around half that number
of bits.

Java has thought of that and it provides a classjava.math.BigInteger

which does essentially everything you could need! And note that printf lets
you print these big values easily.

In this class there are half a dozen constructors. The more obvious ones con-
struct big integers from strings orbyte arrays, and avalueOf method allows you
to create a big integer from along . The two interesting constructors create ran-
dom big numbers. They both accept an argument that is an object from the class
Random which actually gives them their randomness. One creates an arbitrary
n-bit number while the other creates ann-bit number which is (almost certainly)
prime. For the second of these it is possible to tune the degree of certainty that a
prime has indeed been found by giving a “certainty” argumentthat tells the con-

148 CHAPTER 4. BASIC USE OF JAVA

structor how hard to work to check things. I might suggest that a value of 50
would be sufficient for all reasonable purposes.

I should provide a rather heavy health warning here. If you use the Java-
providedRandom class to help you create private keys or other values of cryp-
tographic significance you will be throwing away almost all the security that the
RSA method could give you, since this random number generatorcomes too close
to having a predictable behaviour. Specifically there is a chance that to arrange
to get the same “random” values that you do it may suffice for somebody to run
a similar Java program having reset their computer so that their run appears to
happen at the exact time of day that yours did. This may be hardbut is nothing
like as hard as factorising 1536-bit integers. If you ever wanted to use serious
encryption youmust instead usejava.security.SecureRandom . Anybody
really serious about security would think at length before trusting even the things
in java.security : how is it possible to tell that they do what they are supposed
to and that they do not include secret weaknesses? And even ifthey are honest it
is astonishingly easy to lose all the security you thought you had by some appar-
ently minor clumsiness in how you use your cryptographic primitives. A course
on security later in the Tripos gives much more information about all of this!

Note that some of the functionality in the Java security and encryption pack-
ages may be missing or limited unless your installation has provided some level
of assertion that you are not a national of a country that the US Government does
not like and that you are not a terrorist. But as is the way of anysuch attempt
at blocking access to technology, there are easy to find drop-in replacements not
hampered by (so many) export license issues. You might stillbe aware that good
encryption is viewed by some as something with significant security implications
and that it should not be given any opportunity to cross international borders until
you at the very very least know what all the rules are! Java itself provides ways
that those who satisfy the correct eligibility conditions can use the standard Java
libraries and obtain unlimited security, via the installation of special “JCE policy
files”.

Once you have made suitable objects of classBigInteger the library pro-
vides you with methods to add, subtract, multiply and dividethem, to even raise
one big number to a huge power modulo another number (what a give-away about
the expected use of this class!). The function that computeswhat the Discrete
Mathematics notes called a Highest Common Factor is here known as a Great-
est Common Divisor (gcd), but the change of name does not hide any change of
behaviour53.

53The java _security package provides easy to use functions for generating keys and com-
puting message digests and digital signatures. There is a standard extension to Java that supplies
encryption and further functionality: this part may be subject to export regulation and has to be
fetched and installed as a separate item from the main SDK.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 149

import java.math. * ;
import java.util. * ;
...
Random r = new Random(); // inadequate!

// use the SecureRandom class instead!!!
// Create two big primes p and q
BigInteger p =

new BigInteger(768, // length in bits
50, // only 1 in 2ˆ50 prob of non-prime
r); // random number source

BigInteger q = new BigInteger(768, 50, r);
// form their product, n, which can be public
BigInteger n = p.multiply(q);
// compute phi = (p-1) * (q-1)
BigInteger bigOne = BigInteger.ONE;
BigInteger pMinusOne = p.subtract(bigOne);
BigInteger qMinusOne = q.subtract(bigOne);
BigInteger phi = pMinusOne.multiply(qMinusOne);
// select a random exponent whose HCF with phi
// is 1.
BigInteger e;
do
{ e = new BigInteger(1536, r);
} while (!phi.gcd(e).equals(bigOne));
// now (n, e) is the public key
...
// Set up a message to encrypt
BigInteger msg =

new BigInteger("12341234"); // silly message
// Encrypt with public key. One line of code!
BigInteger k = msg.modPow(e, n);
...

The code is clearly about as short as it possibly could be. Again let me warn you
that cryptographically satisfactory random number generators are hard to come
by, and that such issues as managing the secure distributionof public keys and
keeping private ones truly private mean that security involves very much more
than just these few lines of code. But Java is clearly making iteasy to make a start
on it.

How do you know that the Authorities and not bugging your computer while
you run the above code? How do you know that no traces of the secret information
remain anywhere when you have logged off or even powered downthe computer?
The Computer Lab’s security group has a fine track-record of demonstrating that

150 CHAPTER 4. BASIC USE OF JAVA

even apparently safe computing habits leak information to asufficiently skilful
and ingenious snooper.

4.8.3 Collections

Java has an interface calledCollection and a whole range of interesting classes
derived form it. The general idea is thatCollection covers ideas like “set”,
“list” and “vector”. In some cases the elements in a collection can be ordered
(in which case the objects included must all implement theComparable inter-
face54), but might not be. Collections may be implemented as linked lists or as
vectors, but the library classes arrange that when a vector is used it will be en-
larged as necessary so that the user does not have to specify alimit to the size of
the collection too early. One sub-case of aCollection is aMap, which provides
for general ways to organize various sorts of table or dictionary. I am not pro-
viding any sample code usingCollection s in this little section since I believe
that when you browse the documentation you will find them easyto cope with.
However it may make sense for me to list more of the names of classes worth
looking at: Collection , Collections , Set , HashSet , TreeSet , Vector ,
LinkedList .

The collection classes are keyed to the Javafor statement to make it trivial to
iterate over the values in a collection: as has been seen in various of the sample
programs here.

Very typically when you create an instance of a Collection Class you will use
the generics capability to indicate the type of the objects you will keep in it, eg

Vector<String> v = new Vector<String>();

and if you do so Java will know that the values you extract willbe of the type
indicated.

4.8.4 Simple use of Threads

A thread is a stream of computation that can go on in parallel with others. The
term is used when the activities are part of a single program,and where there is
no need for security barriers to protect one thread from the next. The more gen-
eral term used when the extra overhead of protection is needed is process. Java
is one of the first languages to make a big point of having threads supported as

54An especially interesting issue here is the way that Java cancompare strings. To support the
needs of different nationalities a classCollator is provided, and methods in it can order strings
based on properLocale -specific understandings of where accented or non-English letters should
go. Alphabetic ordering with international texts is a more complicated business that almost all of
you would have imagined.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 151

a standard facility. Many systems in the past have had threads, but usually in
rather non-portable form. Almost any program that has to implement a compli-
cated windowed user interface or which accesses remote computers55 will need to
use threads so that one high priority thread can ensure that the user always gets
responses to requests, while several lower priority ones keep on with some bigger
calculation. There are very many subtleties in any program that exhibits concur-
rency. I will not describe these here, and in consequence I expect that people who
try to make substantial use of threads based on just these notes will get themselves
into deep water. There are two typical bad effects that can arise. In one the system
just locks up as a chain of threads each wait for the others to complete some task.
In the other two threads both attempt to update some data structure at around the
same time and their activities interfere, leaving data in a corrupted state. The Java
keywordsynchronized is involved in some of the resolutions of these sorts of
problem.

The example here is supposed to do not much more than to alert you to the
possibility of writing multi-threaded Java programs, and to show how easy it is.
I will start by defining a class that will encapsulate the behaviour I want in the
rather silly thread that I will use here:

class Task extends Thread
{

boolean resultShown;
String result;
int identification;
Task(int i)
{ identification = i;

resultShown = false;
}
public void run()
{ try { sleep(20+100 * identification % 77); }

catch (InterruptedException e) { return; }
result = String.valueOf(identification);

}
}

The two critical things are that my class extendsThread and that it implements
run . The methodrun will be to a thread much whatmain is to a complete
program. In this case I make my thread do something rather minimal. It goes to
sleep for an amount of time that depends on the argument that was passed to its
constructor, and it then sets one of its variables,result , to a string version of
that value. When created my task also sets a flag that I will use later on to record
whether I have picked up its result.

55Often a slow business.

152 CHAPTER 4. BASIC USE OF JAVA

To demonstrate use of threads I will create half a dozen instances of the above,
and then wait around until each has finished its work. As I notice each task com-
pleting I will pick up its result and display it. When I have done that I will set
the resultShown flag so that I do not display any result twice. I could surely
find a cleverer way of achieving that, but the solution I use here is at least quite
concise. Once all my threads have finished I will let my main program terminate.
I let my top-level class inherit fromThread just because I want to usesleep in
it so that while waiting for the sub-tasks to finish I am mostlyidle.

public class Threads extends Thread
{

static final int THREADCOUNT = 6;

public static void main(String[] args)
{

// Create and start six threads
Task [] spawn = new Task [THREADCOUNT];
for (int i = 0; i<THREADCOUNT; i++)
{ spawn[i] = new Task(i);

spawn[i].start();
}
System.out.println("All running now");
int stillGoing = THREADCOUNT;

// Scan looking for terminated threads
while (stillGoing != 0)
{ for (int i=0; i<THREADCOUNT; i++)

{ if (!spawn[i].isAlive() &&
!spawn[i].resultShown)

// print result the first time I notice a thread dead
{ System.out.println("Result from " +

i + " = " + spawn[i].result);
spawn[i].resultShown = true;
stillGoing--;

}
}
System.out.println("One scan done");

// sleep for 7 milliseconds between scans to avoid waste
try { sleep(7); }
catch (InterruptedException e) { break; }

}
System.out.println("All done");

}
}

Observe thatsleep can raise an exception if the sleeping task receives an in-

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 153

terrupt from elsewhere, and I (have to) catch this and quit. The results I obtain
follow, and you can see traces that show the main program scanning round look-
ing for threads that have finished and also you can see that thedifferent threads
terminate in some curious order. Of course a more worthwhileexample would put
real computation into each of the threads and their termination would be based on
how long that took rather than on the artificial sleeping I have used here!

java Threads
All running now
One scan done
One scan done
One scan done
Result from 0 = 0
Result from 4 = 4
One scan done
Result from 1 = 1
One scan done
One scan done
Result from 5 = 5
One scan done
Result from 2 = 2
One scan done
One scan done
One scan done
Result from 3 = 3
One scan done
All done

The reason my example is respectably simple and trouble-free is that the threads
only communicate by receiving data when first created and by delivering some-
thing back when they have finished. Inter-process communication beyond that can
be astonishingly hard to get right.

4.8.5 Network access

Java really hit the news as a language for animating your own web pages. One
part of doing this is the set of graphical operations that it supports. Another less
instantly visible but equally important thing is the ability to connect to remote
computers and retrieve data from them. The set of rules that make up HTTP56 are
what defines the World Wide Web. Standard Java libraries provide various degrees
of ability to connect using it. The small program shown here links through to a

56HyperText Transfer Protocol.

154 CHAPTER 4. BASIC USE OF JAVA

fixed location named as its fire command-line argument and displays the data
found there. This data comes out as an HTML document with lotsof tags that are
enclosed in angle brackets.

// Read file from a possibly remote web server

import java.net. * ;
import java.io. * ;

public class Webget
{

public static void main(String [] args)
{

URL target;
try
{ target = new URL(args[0]);
}
catch (MalformedURLException e)
{ return; } // Badly formed web-page address
try
{ URLConnection link = target.openConnection();

link.connect(); // connect to remote system
// Now just for fun I display size and type information
// about the document that is being fetched. Note that
// documents might be pictures or binary files as well
// as just text!

System.out.println("size = " +
link.getContentLength());

System.out.println("type = " +
link.getContentType());

// getInputStream() gives me a handle on the content, and
// I rather hope it is text. In that case I can get the
// characters that make it up from the InputStream.

Reader in = new InputStreamReader(
link.getInputStream());

int c;
// Crude echo of text from the document to the screen.
// It will have lots of HTML encoding in it, I expect.

while ((c = in.read()) != -1)
System.out.print((char)c);

}
// A handler is needed in case exceptions arise.

catch (IOException e)

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 155

{ System.out.println("IO error on link"); }
// I am lazy here and do not close anything down.
}

}

// end of Webget.java

The data stored on the CL teaching support pages in mid February 1998 started
off as follows, apart from the fact that I have split some of the lines to make the
text fit neatly on the pages of these notes. It has of course changed by now! I keep
this old material in the notes out of nostalgia.

<HTML>
<HEAD>
<TITLE>Comp.Sci. Teaching pages</TITLE>
</HEADER>
<BODY>

<H1> Computer Science teaching material on Thor</H1>

<P>

 Some Information

about Java (on this server)
...

The main message here is that accessing a remote web-site is just about as
trivial as reading from a local file.

4.8.6 Menus, scroll bars and dialog boxes

Back when Java 1.2 was released Sun finalised a whole set of windows man-
agement code that they called Swing. This extended and in places replaced earlier
windowing capabilities that were known as AWT. I believe thatby now it is proper
to use the Swing versions of things even in those cases where older AWT versions
remain available. You can tell that you are doing that when you use a lot of class
names that start with a capital “J”!

The code presented here is calledMenuApp and is a pretty minimal demon-
stration of menus! I will use this example to show how something can be both
an application and an applet. The “application” bit of course defined a method
calledmain , and this just sets up a window (frame) that can contain the applet
stuff. There is a bit of mumbo jumbo to allow the application to stop properly

156 CHAPTER 4. BASIC USE OF JAVA

when the window is closed. As usual I will show the inner bit ofthe code first –
the fragment that actually does the work:

public static void main(String[] args)
{

Menuapp window = new Menuapp();
JFrame f = new JFrame("Menu Demonstration");
f.addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent e)

{ System.exit(0);
}

});
f.getContentPane().add(window, BorderLayout.CENTER);
f.setSize(600, 400);
f.setVisible(true);

}

I should point out the syntax

new WindowAdapter()
{ public void windowClosing(WindowEvent e)

{ System.exit(0);
}

}
}

which extends the classWindowAdapter to produce a new (anonymous) class.
In this new class it overrided thewindowClosing method. It then creates an
instance of the new anonymous class. This arrangement is known as an “Inner
Class” and can be very handly when you need a small variant on some existing
class and will use it just once so that giving it a name would beover-clumsy.

The constructor forMenuapp will establish a menu bar at the top of itself,
then makes menus on that bar, and places menu items on each menu. In much
the way that mouse events were dealt with by registering a handler for them it is
necessary to implement an interface calledActionListener and tell each menu
to report via it. The report hands down anActionEvent from which it is possible
to extract the name of the menu item (and if need be which menu it was on) that
was activated. I illustrate this by showing how to pop up a dialog box for selecting
a file, although once I have the name of the file I just display that in the text area
rather than actually opening it.

I put a scrollable editable window
for the text. The version I use could in
fact support multi-colour text in mixed
fonts and with icons and other things

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 157

interleaved with the words: finding out
about that is an exercise for those of
you who feel keen. You will also find
that I have coded this using the “swing”
facilities (ie it will not compile on a
simple un-extended installation of JDK
1.1.x), and the arrangements for select-
ing a file and for making the text win-
dow scrollable relate to that. The in-
clusion ofjavax.swing classes gives
access to the relevant bits of the class
libraries. Furthermore the code can be
run as either an applet or an applica-
tion. So lots of things are being illus-
trated at once. You are not expected to
be able to follow all of them at first, but maybe the code will bea useful model
when sometime later you do need to use some of these facilities in anger. The
complete code follows:

// Demonstration of Menus and a window created
// from an application rather than an applet.
// A C Norman 1998-2000

import java.awt. * ;
import java.awt.event. * ;
import javax.swing. * ;
import javax.swing.text. * ;

public class Menuapp extends JApplet
implements ActionListener

{

// This can be run as either an application or an applet!
public static void main(String[] args)
{

Menuapp window = new Menuapp();
JFrame f = new JFrame("Menu Demonstration");
f.addWindowListener(new WindowAdapter()
{ public void windowClosing(WindowEvent e)

{ System.exit(0);
}

});
f.getContentPane().add(window,

BorderLayout.CENTER);

158 CHAPTER 4. BASIC USE OF JAVA

f.setSize(600, 400);
f.setVisible(true);

}

// All real work happens because of this
// constructor. I create a JTextPane to hold
// input & output and make some menus.

JTextPane text;
Container cc;

public Menuapp()
{

cc = getContentPane();
text = new JTextPane();
text.setEditable(true);
text.setFont(

new Font("MonoSpaced", Font.BOLD, 24));
JScrollPane scroll = new JScrollPane(text,

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

cc.add(scroll);

// Menus hang off a menu bar and contain menu items
JMenuBar bar;
JMenu mFile, mEdit, mHelp;
JMenuItem mNew, mOpen, mSave, mCut,

mPaste, mContents;

// Create a menu bar first and add it to the Frame
bar = new JMenuBar(); setJMenuBar(bar);

// Create a menu and add it to the MenuBar
mFile = new JMenu("File"); bar.add(mFile);

// Create menu items and add to menu
mNew = new JMenuItem("New"); mFile.add(mNew);
mOpen = new JMenuItem("Open"); mFile.add(mOpen);
mSave = new JMenuItem("Save"); mFile.add(mSave);

mEdit = new JMenu("Edit"); bar.add(mEdit);
mCut = new JMenuItem("Cut"); mEdit.add(mCut);
mPaste = new JMenuItem("Paste");mEdit.add(mPaste);

mHelp = new JMenu("Help Menu");

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 159

bar.add(mHelp);
mContents = new JMenuItem("Contents");
mHelp.add(mContents);

// Each menu has to be activated to be useful.
mNew.addActionListener(this);
mOpen.addActionListener(this);
mSave.addActionListener(this);
mCut.addActionListener(this);
mPaste.addActionListener(this);
mContents.addActionListener(this);

}

// When a menu item is selected this gets called,
// and getActionCommand() retrieves the text from
// the menuItem. Here I clear the area when New
// is used, and do something with Open, but otherwise
// just display a message.

public void actionPerformed(ActionEvent e)
{

String action = e.getActionCommand();
try
{ if (action.equals("New")) text.setText("");

else if (action.equals("Open")) openFile();
else
{ StyledDocument s =

text.getStyledDocument();
s.insertString(s.getLength(),

"Request was " + action + "\n", null);
}

}
catch (BadLocationException e1)
{}

}

void openFile() throws BadLocationException
{ JFileChooser d = new JFileChooser("Open a file");

if (d.showOpenDialog(cc) ==
JFileChooser.APPROVE_OPTION)

{ StyledDocument s = text.getStyledDocument();
s.insertString(s.getLength(),

"Load file \"" +
d.getSelectedFile().getAbsolutePath() +

160 CHAPTER 4. BASIC USE OF JAVA

"\"\n", null);
}

}
}

// end of Menuapp.java

You should expect that extending the above example or writing your own code
that sets up controllable visual effects will cause you to have to do rather a lot
of reading of the class library documentation to plan which classes you will de-
rive items from. Also when you have mastered the basics of GUIconstruction by
hand you will very probably want to take advantage of one of the Java develop-
ment environments that can set up frameworks for user-interfaces for you in really
convenient ways.

4.8.7 Exercises

Replacement for “ls”

On Unix the commandls lists all the files in the current directory. With a
command-line flag-R it also lists members of sub-directories. Investigate the
JavaFile class and see how much of the behaviour ofls (or the DOS/Windows
dir) you can re-create.

RSA

The code fragment above suggests how to create a public key and then how to use
it to encrypt a message once that message has been reduced to aBigInteger

of suitable size. Flesh this out with code that can use the private key to decrypt
messages, and with some scheme that can read text from the standard input (or a
file, maybe), split it up into chunks and represent each chunkas aBigInteger .

You might also want to investigate the Java Cryptographic Architecture and
find out what is involved in creating cryptographic-grade random values. You
should be made very aware that the ordinary Java random number generator does
not pretend that the values it returns to you are suitable foruse in security appli-
cations.

Then do a literature search to discover just what you are permitted to do with
an implementation of an idea that has been patented57 and also what the Secu-

57The main RSA US patent expired on the 20th September 2000, butthat does not necessar-
ily mean that all associated techniques and uses are unprotected. Also note that there are other
public key methods for both digital signatures and for encryption where the original patents have

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 161

rity Policies of various countries are about the use, importand export of strong
encryption technology.

Note again that Java provides the specification of a securitylibrary that would
do all this for you if it were not for the USA government’s export restrictions, and
if these restrictions do not apply to you you could use the Java strong security.
There are international re-implementations of this library that can be fetched and
used here. See for instancewww.openjce.org . But also be aware that exporting
code that includes strong encryption may be subject to government restriction.

Big Decimals

The classBigDecimal builds onBigInteger to provide for long precision dec-
imal fractions. When aBigDecimal is created it will behave as if it has some
specified number of digits to the right of its decimal point, but as arithmetic is
carried out there can be any number of digits generated before the decimal point.

For any numberz one can define a sequence of valuesxi by x0 = 1 and
xi+1 = (xi + z/xi)/2. This sequence will converge to

√
z, and once it gets even

reasonably close it homes in rapidly, roughly doubling the number of correct sig-
nificant values at each step. For finding square roots of numbers between 0.5 and
2 (say) the starting valuex0 = 1 will be quite tolerable.

If one wanted the square root of a number larger than 2 or smaller than 0.5
it would make sense to augment the recurrence formula by use of the identity√

4z= 2
√

z to pre-normalisez.
Implement the method and use it to create a table of square roots of the integers

from 1 to 10 all to 100 decimal places.
If you can perform high-precision arithmetic on floating point numbers you

should try the following calculation. I am going to use informal syntax with
double constants written where you will need to useBigDecimal s, and I will
use the ordinary operators to work on values not calls to suitable methods in the
BigDecimal class. I am also not going to tell you here either how many cycles
of the loop you should expect the code to obey or what the values it prints out will
look like! But I suggest that you work to (say) 1000 decimals and see what you
get.

a = 1.0;
b = 1/sqrt(2.0);
u = 0.25;
x = 1.0;
pn = 4.0;
do

also expired, and so using these can also be of interest without patent worries about deployment.
Investigate “El Gamal”.

162 CHAPTER 4. BASIC USE OF JAVA

{ p = pn;
y = a;
a = (a+b)/2.0;
b = sqrt(y * b);
u = u-x * (a-y) * (a-y);
x = 2 * x;
pn = a * a/u;
print(pn);

} while (pn < p);

When you have investigated this for yourself try looking for arithmetic-geometric
mean (and the cross-references from there!) in Hakmem.

Mandelbrot set (again)

Adjust the Mandelbrot set program, as considered in an earlier exercise, so that at
the start (maybe in aninit method?) it allocates a 400 by 400 array of integers
all initially set to 0. Change thepaint method so that it just displays colours as
recorded in this array, and have a separate thread that (a) computes values to go in
the array and (b) usesrepaint at the end of each of its resolution cycles to bring
make sure that the screen is brought fully up to date then. Theobjective here is to
arrange that each pixel is only calculated once and that thusthepaint method is
a lot quicker.

Further extension of this code would add mouse support so that (as a start) a
mouse click would cause the display to re-centre at the selected point and start
drawing again using half the previous range. Those of you whoget that far are
liable to be able to design more flexible and convenient user-driven controls than
that, I expect!

Tickable exercise 7

Tick 5 was the largest single exercise. Tick 6 was a fairly easy example of getting
an Applet working. This final exercise is intended to be a reasonably manageable
one to end off the series of Java practicals.

The illustration of network code that I gave represents a minimal way of ac-
cessing a remote file.

1. Extend it so that it can be used as

java Webget URL destination

to fetch the contents of an arbitrary web document and store it on the local
disc. If an explicit destination file is not specified your program should
display the document fetched on the screen;

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 163

2. Investigate document types and encodings and try to arrange that text doc-
uments are fetched as streams of characters while binary documents come
across the net verbatim;

3. Optional: Some files on the web are of type “zip ”, being compressed.
Java provides a set of library functions for uncompressing such files. Use
it so that when azipped file is fetched the data that arrives locally is the
decompressed form of it.

4. Very optional: A javax.swing.JEditorPane can be set up so that it
renders (a subset of) HTML for you. Using this perhaps you could go a
significant way towards implementing your own light-weightweb browser
and you might only need a fairly modest amount of Java!

(End of tickable exercise)

@@@@@

Yet further network-related code

Figure 4.8:www.arthurnorman.org !

The parts of the Java libraries that
can fetch material from remote ma-
chines understand quite well that you
will only occasionally be fetching
raw text, and that fairly often the data
to be accessed will be a picture or
a sound. Investigate the documen-
tation and sort out how to use these
facilities. An image from a local
student-run web site is shown here to
illustrate the usefulness of these fa-
cilities. Further parts of the network
classes allow you to detect (to some
extent) what sort of data is about to
be fetched from a web location so
that different sorts of data can each
be handled in the most appropriate
manner.

If you could write code that lo-
cated words enclosed in angle brack-
ets within text, and lay text out in a
window in such a way that you could

164 CHAPTER 4. BASIC USE OF JAVA

tell which word was the subject of a mouse click you might find yourself half-way
to writing your very own web browser!

A minimal text editor

The menu example already allows you to re-position the cursor and type in extra
text. I have shown how to identify files to be loaded and saved.TheTextArea

class provides methods that would implement cut and paste. Put all these together
to get a notepad-style editor.

More Fonts

The Unicode example showed that it is easy to select which font Java uses to
paint characters. The classFontMetrics then provides methods that allow you
to obtain very detailed measurements of both individual characters and rows of
them. Using all this you can get rather fine control over visual appearance. Using
however many of few of these facilities you like create a Javaapplet that displays
the wordLATEX in something like the curious layout that the designers of that
text-formatting program like to see.

Two flasks

This was a puzzle that I found in one of the huge anthologies ofmathematical
oddities:

An apothecary has two spherical flasks, which between them hold ex-
actly 9 measures of fluid. He explains this to his friend the mathema-
gician, and adds that the glass-blower who makes his flasks can make
them perfectly spherical but will only make flasks whose diameter is
an exact rational number. The mathemagician looks unimpressed and
says that the two flasks obviously have diameters 1 and 2, so their
volume is proportional to 13 + 23 = 9. Hmmm says the apothecary,
thatwouldhave worked, but I already had a pair like that. This pair of
flasks has exactly the same total capacity, still has linear dimensions
that are exact fractions but the neither flask has diameter 1.

Find a size that the smaller of his two flasks might have had.

This is clearly asking for positive solutions tox3 + y3 = 9 with the solution
being a neat fraction. In an earlier exercise you were invited to write a class to
handle fractions. Before continuing with this one you might like to ensure that
you have a version of it that usesBigInteger just to be certain that overflow
will not scupper you.

4.8. IMPORTANT FEATURES OF THE CLASS LIBRARIES 165

Here is an attack you can make on the problem. We are interested in solutions
to x3+y3 = 9 and know an initial solutionx= 1,y= 2. Imagine the cubic equation
drawn as a graph (I know it is an implicit equation, so for now Iwill be happy if
you imagine that there is a graph and do not worry about actually drawing it!). The
point (1,2) lies on the curve. Draw the tangent to the curve at(1,2). This straight
line will have an equation of the formlx+my+n = 0 for somel , m andn which
you can find after you have done a little differentiation. Nowconsider where the
straight line meets the curve. If one eliminatedy between the two equations the
result is a cubic inx, but we know thatx = 1 is one solution (because the curve
and line meet there). In fact because the line is a tangent to the curve that is a
double solution, and thus the cubic we had will necessarily have a factor(x−1)2.
If you divide that out you get alinear equation that gives you thex co-ordinate of
the other place where the tangent crosses the curve. Solve that and substitute into
the line equation to find the corresponding value ofy. The pairx, y were found by
solving what were in the end only linear equations, and so thenumbers must be at
worst fractions. This has therefore given another rationalpoint on the cubic curve.
What you get there is not a solution to the problem as posed, since one ofx and
y will end up negative. But maybe if you take a tangent at the new point that will
lead you to a third possibility and perhaps following this path you will eventually
manage to find a solution that is both rational and where both components are
positive.

Write code to try this out, and produce the tidiest fractionalsolution to the
original puzzle that you can, ie the one with smallest denominators.

166 CHAPTER 4. BASIC USE OF JAVA

Figure 4.9: Odds and Ends follow: watch what the lecturer happens to cover.

Chapter 5

Designing and testing programs in
Java

At this stage in the “Programming in Java” course I will startto concentrate more
on the “programming” part than the “Java”. This is on the basis that you have now
seen most of the Java syntax and a representative sampling ofthe libraries: now
the biggest challenge is how to use the language with confidence and competence.

In parallel with this course you get other ones onSoftware Engineering. These
present several major issues. One is that errors in softwarecan have serious conse-
quences, up to and including loss of life and the collapse of businesses. Another is
that the construction of large computer-related products will involve teams of pro-
grammers working to build and support software over many years, and this raises
problems not apparent to an individual programmer working on a private project.
A third is that formal methods can be used when defining an planning a project to
build a stable base for it to grow on, and this can be a great help. The emphasis is
on programming in the large, which is what the term “SoftwareEngineering” is
usually taken to have at its core. Overall the emphasis is on recognition of the full
life-time costs associated with software and the management strategies that might
keep these costs under control.

The remaining section of this Java course complements that perspective and
looks at the job of one person or a rather small group, workingon what may well
be a software component or a medium sized program rather thanon a mega-scale
product. The intent of this part of the course is to collect together and emphasise
some of the issues that lie behind the skill of programming. Good programmers
will probably use many of the techniques mentioned here without being especially
aware of what they are doing, but for everybody (even the mostexperienced) it can
be very useful to bring these ideas out into the open. It seemsclear to me that all
computer science professionals should gain a solid grounding carrying out small
projects before they actually embark on larger ones, even though a vision of what

167

168 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

will be needed in big projects help shape attitudes and habits.
It is at least a myth current in the Computer Laboratory that those who intend

to become (mechanical) engineers have as an early part of their training an exer-
cise where they fashion a simple cube of solid metal, and theyare judged on the
accuracy of their work. Such an activity can be part of bringing them into direct
touch with the materials that they will later be working within more elaborate
contexts. It gets them to build experience with tools and techniques (including
those of measurement and assessment). Programming in the small can serve simi-
lar important purposes for those who will go on to develop large software systems:
even when large projects introduce extra levels of complication and risk the design
issues discussed here remain vital.

One of the major views I would like to bring to the art (or craft, or science, or
engineering discipline, depending on how one likes to look at it) of programming
is an awareness of the value of an idea described by George Orwell in his book
“1984”. This isdoublethink, the ability to believe two contradictory ideas without
becoming confused. Of course one of the original pillars of doublethink was the
useful preceptIgnorance is Strength, but collections of views specifically about
the process of constructing programs. These notes will not be about the rest of
the association of computers with surveillance, NewSpeak or other efficiency-
enhancing ideas. The potentially conflicting views about programming that I want
to push relate to the prospect of a project succeeding. Try tokeep in your minds
both the ideaProgramming is incredibly difficult and this program will never work
correctly: I am going to have to spend utterly hopeless ages trying to coax it
into passing even the most minimal test casesand its optimistic other face, which
claims cheerfullyIn a couple of days I can crack the core of this problem, and
then it will only take me another few to finish off all the details. These days even
young children can all write programs. The concise way to express this particular
piece of doublethink (and please remember that you really have to believe both
part, for without the first you will make a total botch of everything, while without
the second you will be too paralysed ever to start actual coding), is

Writing programs is easy.

A rather closely related bit of doublethink alludes both to the joy of achieve-
ment when a program appears to partially work and the simultaneous bitter way in
which work with computers persistently fail. Computers showup our imperfec-
tions and frailties, which range through unwillingness to read specifications via
inability to think straight all the way to incompetence in mere mechanical typing
skills. The short-hand for the pleasure that comes from discovering one of your
own mistakes, and having spent many frustrating hours tracking down something
that is essentially trivial comes out as

169

Writing programs is fun.

A further thing that will be curious about my presentation isthat it does not
present universal and provable absolute truths. It is much more in the style of
collected good advice. Some of this is based on direct experience, other parts has
emerged as an often-unstated collective view of those who work with computers.
There are rather fewer books covering this subject than I might have expected.
There is a very long reading list posted regularly oncomp.software-eng ,
but most of it clearly assumes that by the time things get downto actually writing
programs the reader will know from experience what to do. Despite the fact that it
is more concerned with team-work rather than individual programming I want to
direct you towardsthe Mythical Man Month[7], if only for the cover illustration of
the La Brea Tar Pits1 with the vision that programmers can become trapped just as

Figure 5.1: The La Brea tar pits.

the Ice Age mammoths and so on were. Brooks worked for IBM at a time that they
were breaking ground with the ambitious nature of their operating systems. The
analogous Microsoft experience is more up to date and can be found inWriting

1You may not be aware that the tar pits are in the middle of a thoroughly built-up part of
Los Angeles, and when visiting them you can try to imagine some of the local school-children
venturing too far and getting bogged down, thus luring theirfamilies, out for a week-end picnic,
to a sticky doom.

170 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

Solid Code[18] which gives lots of advice that is clearly good way outside the
context of porting Excel between Windows and the Macintosh.If you read the
Solid Code book you will observe that it is concerned almost entirely with C, and
its examples of horrors are often conditioned by that. You should therefore let it
prompt you into thinking hard about where Java has made life safer than C and
where it has introduced new and different potential pitfalls.

For looking at programming tasks that are fairly algorithmic in style the book
by Dijkstra[10] is both challenging and a landmark. There are places where peo-
ple have collected together some of the especially neat and clever little programs
they have come across, and many of these indeed contain ideasor lessons that may
be re-cyclable. Such examples have come to be referred to as “pearls”[4][5]. Once
one has worked out what program needs to be written ideas (nowso much in the
mainstream that this book is perhaps now out of date) can be found in one of the
big presentations by some of the early proponents of structured programming[19].
Stepping back and looking at the programming process with a view to estimating
programmer productivity and the reliability of the end product, Halstead[14] in-
troduced some interesting sorts of software metrics, whichtwenty years on are
still not completely free of controversy. All these still leave me feeling that there
is a gap between books that describe the specific detail of howto use one particular
programming language, and those concerned with large scalesoftware engineer-
ing and project management. To date this gap has generally been filled by an ap-
prentice system where trainee programmers are invited to work on progressively
larger exercises and their output is graded and commented onby their superiors.
Much like it is done here! With this course I can at least provide some back-
ground thoughts that might help the apprentices start on their progression a little
more smoothly.

When I started planning a course covering this material it wasnot quite ob-
vious how much there was going to be for me to say that avoided recitations of
the blindingly obvious and that was also reasonably generally applicable. As I
started on the notes it became clear that there are actually alot of points to be
covered. To keep within the number of lectures that I have andto restrict these
notes to a manageable bulk I am therefore restricting myself(mostly) to listing
points for consideration and giving as concrete and explicit recommendations as I
can: I am not including worked examples or lots of anecdotes that illustrate how
badly things can go wrong when people set about tasks in wrong-minded ways.
But perhaps I can suggest that as you read this document you imagine it expanded
into a very much longer presentation with all that additional supporting material
and with a few exercises at the end of each section. You can also think about all
the points that I raise in the context of the various programming exercises that you
are set or other practical work that you are involved with.

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 171

5.1 Different sorts of programming tasks

Java experience illustrates very clearly that there are several very different sorts of
activity all of which are informally refereed to as “programming”. On style of use
of Java — of great commercial importance — involves understanding all of the
libraries and stringing together uses of them to implement user interfaces and to
move data around. In such cases the focus is entirely on exploiting the libraries,
on human factors and on ensuring that the code’s behaviour agrees with the man-
ual or on-line documentation that its users will work from. At another extreme
come tasks that involve the design of many new data-structures and algorithmic
innovations in their use. Often in this second style of program there will also be
significant concern over efficiency.

Given that there are different sorts of software it might be reasonable to start
with a classification of possible sorts of program. There arethree ways in which
this may help with development:

1. Different sorts of computer systems are not all equally easy to build. For
instance industrial experience has shown repeatedly that the construction of
(eg) an operating system is very much harder than building a (again eg) a
compiler even when the initial specifications and the amountof code to be
written seem very similar. Thinking about the category intowhich your par-
ticular problem falls can help you to plan time-scales and predict possible
areas of difficulty;

2. The way you go about a project can depend critically on somevery high
level aspects of the task. A fuller list of possibilities is given below, but
two extreme cases might be (a) a software component for inclusion in a
safety-critical part of an aero-space application, where development budget
and timescale are subservient to an over-riding requirement for reliability,
and (b) a small program being written for fun as a first experiment with a
new programming language, where the program will be run justonce and
nothing of any real important hands on the results. It would be silly to carry
forward either of the above two tasks using a mind-set tuned to the other:
knowing where one is on the spectrum between can help make theselection
of methodology and tools more rational;

3. I will make a point in these notes that program developmentis not some-
thing to be done in an isolated cell. It involves discussing ideas and progress
with others and becoming aware of relevant prior art. Thinking about the
broad area in which your work lies can help you focus on the resources
worth investigating. Often some of these will not be at all specific to the

172 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

immediate description of what you are suppose to achieve butwill con-
cerned with very general areas such as rapid prototyping, formal validation,
real-time responsiveness, user interfaces or whatever.

I will give my list of possible project attributes. These arein general not
mutually exclusive, and in all real cases one will find that these are not yes–no
choices but more like items to be scored from 1 to 10. I would like to think
of them as forming an initial survey that you should conduct before starting any
detailed work on your program just to set it in context. When you find one or
two of these scoring 9 or 10 out of 10 for relevance you know youhave identified
something important that ought to influence how you approachthe work. If you
find a project scores highly onlots of these items then you might consider trying
to wriggle out of having to take responsibility for it, sincethere is a significant
chance that it will be a disaster! The list here identifies potential issues, but does
not discuss ways of resolving them: in many cases the projectfeatures identified
here will just tell you which of the later sections in these notes are liable to be the
more important ones for your particular piece of work. The wording in each of
my descriptions will be intended to give some flavour of howsevereinstances of
the issue being discussed can cause trouble, so keep cheerful because usually you
will not be plunging in at the really deep end of the pool.

Ill-defined One of the most common and hardest situations to face up to is when
a computer project is not clearly specified. I am going to takethis case to
include ones where there appears to be a detailed and precisespecification
document but on close inspection the requirements as written down boil
down to “I don’t know much about computer systems but I know what I
like, so write me a program that I will like, please.” Clearly the first thing to
do in such a case is to schedule a sub-project that has the taskof obtaining a
clear and concise description of what is really required, and sometimes this
will of itself be a substantial challenge;

Safety-critical It is presumably obvious that safety-critical applications need ex-
ceptional thought and effort put into their validation. But this need for reli-
ability is far from an all-or-nothing one, in that the reputation of a software
house (or indeed the grades obtained by a student) may dependon ensuring
that systems run correctly at least most of the time, and thattheir failure
modes appear to the user to be reasonable and soft. At the other extreme
it is worth noting that in cases where robustness of code and reliability of
results are not important at all (as can sometimes be the case, despite this
seeming unreasonable) that fact can be exploited to give thewhole project a
much lighter structure and sometimes to make everything very much easier
to achieve. A useful question to ask is “Does this program have to work

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 173

correctly inall circumstances, or does it just need to work inmostcommon
cases, or indeed might it be sufficient to make it work in justonecarefully
chosen case?”

Large It is well established that as the size of a programming task increases the
amount of work that goes into it grows much more rapidly than the number
of lines of code (or whatever other simple measurement you like) does. At
various levels of task size it becomes necessary to introduce project teams,
extra layers of formal management and in general to move awayfrom any
pretence that any single individual will have a full understanding of the
whole effort. If your task and the associated time-scales call for a team of
40 programmers and you try it on your own maybe you will have difficulty
finishing it off! Estimating the exact size that a program will end up or just
how long it will take to write is of course very hard, but identifying whether
it can be done by one smart programmer in a month or if it is a bigteam
project for five years is a much less difficult call to make.

Shifting sands If either project requirements or resources can change while soft-
ware development is under way then this fact needs to be allowed for. Proba-
ble only a tiny minority of real projects will be immune from this sort of dis-
traction, since even for apparently well-specified tasks itis quite usual that
experience with the working version of the program will leadto “wouldn’t
it be nice if . . . ” ideas emerging even in the face of carefullydiscussed and
thought out early design decisions that the options now requested would not
be supportable. Remember that Shifting Sands easily turn into Tar Pits!

Figure 5.2: The museum frieze at La Brea.

Urgent When are you expected to get this piece of work done? How firm is the
deadline? If time constraints (including the way that this project will com-
pete with other things you are supposed to do) represents a real challenge it

174 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

is best to notice that early on. Note that if, while doing finaltesting on your
code, you find that it has a bug in it there may be no guarantee that you can
isolate or fix this to any pre-specified time-scale. This is because (at least
for most people!) there is hardly any limit to the subtlety ofbugs and the
amount of time and re-work needed to remove them. If the delivery date
for code is going to be rigidly enforced (as is the case with CSTfinal year
projects!) this fact may be important: even if there is plenty of the project
as a whole a rigid deadline can make it suddenly become urgentat the last
minute;

Unrealistic It is quite easy to write a project specification that sounds good, but is
not grounded in the real world. A program that modelled the stock markets
and thereby allowed you to predict how to manage your portfolio, or one to
predict winning numbers in the national lottery, or one to play world-class
chess. . . Now of course there are programs that play chess pretty well, and
lots of people have made money out of the other two projects (in one case
the statistics that one might apply ismucheasier than the other!), but the
desirability of the finished program can astonishingly often blind one to the
difficulties that would arise in trying to achieve it. In somecases a project
might be achievable in principle but is beyond either today’s technology or
this week’s budget, while in other cases the idea being considered might not
even realistic given unlimited budget and time-scales. There are of course
places where near-unreasonable big ideas can have a very valuable part to
play: in a research laboratory a vision of one of these (currently) unrealis-
tic goals can provide direction to the various smaller and better contained
projects that each take tiny steps towards the ideal. At present my favourite
example of something like this is the idea ofnanotechnologywith armies of
molecular-scale robots working together to build their ownheirs and suc-
cessors. The standard example of a real project that many (most?) realistic
observers judged to be utterly infeasible was the “Star Wars” Strategic De-
fence Initiative, but note that at that sort of level the political impact of
even starting a project may be at least as important as delivery of a working
product!

Multi-platform It is a luxury if a program only has to work on a single fixed com-
puter system. Especially as projects become larger there issubstantial extra
effort required to keep them able to work smoothly on many different sys-
tems. This problem can show up with simple issues such as word-lengths,
byte-arrangements in memory and compiler eccentricities,but it gets much
worse as one looks at windowed user interfaces, multi-mediafunctions, net-
work drivers and support for special extra plug-in hardware;

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 175

Long life-time The easiest sort of program gets written one afternoon and is
thrown away the next day. It does not carry any serious long-term support
concerns with it. However other programs (sometimes still initially written
in little more than an afternoon) end up becoming part of yourlife and get
themselves worked and re-worked every few years. In my case the program
I have that has the longest history was written in around 1972in Fortran,
based on me having seen one of that year’s Diploma dissertations and hav-
ing (partly unreasonably) convinced myself I could do better. The code was
developed on Titan, the then University main machine. I tookit to the USA
with me when I spent a year there and tried to remove the last few bugs and
make it look nicer. When the University moved up to an IBM mainframe I
ran it on that, and at a much later stage I translated it (semi automatically)
into BBC basic and ran it (very slowly) on a BBC micro. By last year I had
the code in C with significant parts of the middle of it totallyre-written, but
with still those last few bugs to find ways of working around. If I had been
able to predict when I started how long this would be of interest to me for
maybe I would have tried harder to get it right first time! Notethe radical
changes in available hardware and sensible programming language over the
lifetime of this program;

User interface For programs like modern word processors there is a real chance
that almost all of the effort and a very large proportion of the code will go
into supporting the fancy user interface, and trying to makeit as helpful
and intuitive as possible. Actually storing and editing thetext could well
be fairly straight forward. When the smoothness of a user interface is a
serious priority for a project then the challenge of definingexactly what
must happen is almost certainly severe too, and in significant projects will
involve putting test users in special usability laboratories where their eye-
movement can be tracked by cameras and their key-strokes canbe timed.
The fact that an interface provides lots of windows and pull-down menus
does not automatically make it easy to use;

Diverse usersMany commercial applications need to satisfy multiple users with
diverse needs as part of a single coherent system. This can extend to new
computer systems that need to interwork seamlessly with multiple existing
operational procedures, including existing computer packages. Some users
may be nervous of the new technology, while others may find excessive
explanation an offensive waste of their time. The larger thenumber of in-
terfaces needed and the wider the range of expectations the harder it will be
to make a complete system deliver total satisfaction;

Speed critical Increasingly these days it makes sense to buy a faster computer if

176 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

Figure 5.3: The search for speed can lead to eccentric-looking results.

some task seems to take a little longer than is comfortable. However there
remain some areas where absolute performance is a serious issue and where
getting the very best out of fixed hardware resources can givea competitive
edge. The case most in my mind at present is that of (high security) encryp-
tion, where the calculations needed are fairly demanding but where there
is real interest in keeping some control over the extra hardware costs that
user are expected to incur. If speed requirements lead to need for signifi-
cant assembly code programming (or almost equivalently to the design of
task-specific silicon) then the resource requirements of a project can jump

5.1. DIFFERENT SORTS OF PROGRAMMING TASKS 177

dramatically. If in the other hand speed is of no importance at all for some
task it may become possible to use a higher level programmingsystem,
simpler data structures and algorithms and generally save ahuge amount of
aggravation;

Real time Real-time responsiveness is characteristic of many controlapplica-
tions. It demands that certain external events be given a response within
a pre-specified interval. At first this sounds like a variant on tasks that are
just speed-critical, but the fine granularity at which performance is spec-
ified tends to influence the entire shape of software projectsand rule out
some otherwise sensible approaches. Some multi-media applications and
video games will score highly in this category, as will engine management
software for cars and flight control software for airports;

Memory critical A programming task can be made much harder if you are tight
on memory. The very idea of being memory-limited can feel silly when we
all know that it is easy to go out and buy another 64 Mbytes for (currently)
of the order of£502. But the computer in your cell-phone will have an
amount of memory selected on the basis of a painful compromise between
cost (measured in pennies), the power drain that the circuitry puts on the
battery (and hence the expected battery life) and the set of features that can
be supported. And the software developers are probably givethe memory
budget as a fixed quantity and invited to support as long a listof features as
is at all possible within it;

Add-on A completely fresh piece of software is entitled to define itsown file
formats and conventions and can generally be designed and build without
too much hindrance. But next year the extension to that original package
is needed, or the new program is one that has to work gracefully with data
from other people’s programs. When building an add-on it is painfully often
the case that the existing software base is not very well documented, and that
the attempted new use of it reveals previously unknown bugs or limitations
in the core system. Thus the effort that will need to be put into the second
package may be much greater than would have been predicted based on
experience from the first;

Embedded If the computer you are going to program is one in an electric egg-
timer (or maybe a toy racing car, or an X-ray scanner) then testing may
involve be a quite different experience from that you becomeused to when

2Last year these notes indicates 16 Mbytes for£50! I may have rounded prices up and down
somewhat but still. . .

178 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

debugging ordinary applications that run on standard work-stations. In par-
ticular it may become necessary to become something of an expert in the
hardware and electronics and also in the application area ofthe system
within which your code will be placed;

Tool-weak environment This is a follow-on from the “embedded” heading, in
that it is perhaps easiest the envisage an electric pop-up toaster where any-
thing that slowed down or enlarged the code being run would perturb system
timing enough to burn the toast, and where the target hardware is not auto-
matically equipped with printers and flashing lights that can be used to help
sense what is going on inside its CPU. For some such cases it is possible
to buy or build real-time emulators or to wire in extra probesinto a debug-
gable version of the hardware. There are other cases where either technol-
ogy or budget mean that program development has to be done with a slow
turn-around on testing and with only very limited ability todiscover what
happened when a bug surfaced. It is incredibly easy to simulate such a tool-
weak environment for yourself by just avoiding the effort associated with
becoming familiar with automated testing tools, debuggersand the like;

Novel One of the best and safest ways of knowing that a task is feasible is to
observe that somebody else did it before, and their version was at least more
or less satisfactory. The next best way is to observe that thenew task is
really rather similar to one that was carried out successfully in the past. This
clearly leads to the obvious observation that if something is being attempted
and there are no precedents to rely on then it becomes much harder to predict
how well things will work out, and the chances of nasty surprises increases
substantially.

There are two sort of program not listed above which deserve special mention.
The first is the implementation of a known algorithm. This will usually end up as
a package or a subroutine rather than a complete free-standing program, and there
are plenty of algorithms that are complicated enough that programming them is
a severe challenge. However the availability of a clear target and well specified
direction will often make such programming tasks relatively tractable. It is how-
ever important to distinguish between programming up a complete and known
algorithm (easyish) from developing and then implementinga new one, and un-
comfortably often things that we informally describe as algorithms are in fact just
strategies, and lots of difficult and inventive fine detail has to be filled into make
them realistic.

The second special sort of program is the little throw-away one, and the recog-
nition that such programs can be lashed together really fastand without any fuss

5.2. ANALYSIS AND DESCRIPTION OF THE OBJECTIVE 179

is important, since it can allow one to automate other parts of the program devel-
opment task through strategic use of such bits of jiffy code.

5.2 Analysis and description of the objective

Sometimes a programming task starts with you being presented with a complete,
precise and coherent explanation of exactly what has to be achieved. When this
is couched in language so precise that there is not possible doubt about what is
required you might like to ask why you are being asked to do anything, since
almost all you need to do is to transcribe the specification into the particular syntax
of the (specified) programming language. Several of the PartIA tickable problems
come fairly close to this pattern, and there the reason you are asked to do them
is exactly so you get practical experience with the syntax ofthe given language
and the practical details of presenting programs to the computer. But that hardly
counts as serious programming!

Assuming that we are not in one of these artificial cases, it isnecessary to
think about what one should expect to find in a specification and what does not
belong there. It is useful to discuss the sorts of language used in specifications,
and to consider who will end up taking prime responsibility for everything being
correct.

A place to start is with the observation that a specification should describe
what is wanted, rather than how the desired effect is to be achieved. This ideal can
be followed up rather rapidly by the observation that it is often amazingly difficult
to know what is really wanted, and usually quite a lot of important aspects of
the full list of requirements will be left implicit or as items where you have to
apply your own judgement. This is where it is useful to think back to the previous
section and decide what style of project was liable to be intended and where the
main pressure points are liable to be.

5.2.1 Important Questions

I have already given a check-list that should help work out what general class of
problem you are facing. The next stage is to try to identify and concentrate on
areas of uncertainty in your understanding of what has to be done. Furthermore
initial effort ought to go into understanding aspects of theproblem that are liable
to shape the whole project: there is no point in agonising over cosmetic details
until the big picture has become clear. Probably the best wayof sorting this out is
to imagine that some magic wand has been waved and it has conjured up a body
of code and documentation that (if the fairy really was a goodone!) probably
does everything you need. However as a hard-headed and slightly cynical person

180 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

you need to check it first. Deciding what you are going to look for to see if the
submitted work actually satisfied the project’s needs can let you make explicit a
lot of the previously slightly woolly expectations you might have. This viewpoint
moves you from the initial statement “The program must achieve X” a little closer
to “I must end up convinced that the program achieves X and here is the basis for
how that conviction might be carried”. Other things that might (or indeed might
not) reveal themselves at this stage are:

1. Is user documentation needed, and if so how detailed is it expected to be?
Is there any guess for how bulky the user manual will be?

2. How formal should documentation of the inner workings of the code be?

3. Was the implementation language to be used pre-specified,and if not what
aspects of the problem or environment are relevant to the choice?

4. Is the initial specification a water-tight one or does the implementer have to
make detailed design decisions along the way?

With regard to choice of programming language note that evidence from stud-
ies that have watched the behaviour of real programmers suggests that to a good
first approximation it is possible to deliver the same numberof lines of working
documented code per week almost whatever language it is written in. A very
striking consequence of this is that languages that are naturally concise and which
provide built-in support for more of the high-level things you want to do can give
major boosts to productivity.

The object of all this thought is to lead to a proper specification of the task.
Depending on circumstances this may take one of a number of possible forms:

5.2.2 Informal specifications

Documents written in English, however pedantically phrased and however volu-
minous, must be viewed as informal specifications. Those whohave a lot of spare
time might try reading the original description of the language C[16] where Ap-
pendix A is called a reference manual and might be expected toform a useful basis
for fresh implementations of the language. Superficially itlooks pretty good, but
it is only when you examine the careful (though still “informal” in the current
context) description in the official ANSI standard[22] thatit becomes clear just
how much is left unsaid in the first document. Note that ANSI C is not the same
language as that defined by Kernighan and Ritchie, and so the two documents just
mentioned can not be compared quite directly, and also be aware that spotting
and making clear places where specifications written in English are not precise

5.2. ANALYSIS AND DESCRIPTION OF THE OBJECTIVE 181

is a great skill, and one that some people enjoy exercising more than others do!
The description in section 5.18 is another rather more manageable example of an
informal textual specification. When you get to it you might like to check to see
what it tells you what to do about tabs and back-spaces, whichare clearly charac-
ters that have an effect on horizontal layout. What? It fails to mention them? Oh
dear!

5.2.3 Formal descriptions

One response to the fact that almost all informal specifications are riddled with
holes (not all of which will be important: for instance it might be taken as under-
stood by all that messages that are printed so that they look like sentences should
be properly spelt and punctuated) has been to look for ways ofusing formal de-
scription languages. The ZED language (developed at Oxford3, and sometimes
written as just Z) is one such and has at times been taught in Software Engineer-
ing courses here. The group concerned with the development of the language ML
were keen to use formal mathematically-styled descriptivemethods to define ex-
actly what ML ought to do in all possible circumstances. Later on in the CST
there are whole lecture courses on Specification and Verification and so I am not
going to give any examples here, but will content myself by observing that a good
grounding in discrete mathematics is an absolute pre-requisite for anybody think-
ing of working this way.

5.2.4 Executable specifications

One group of formal specification enthusiasts went off and developed ever more
powerful mathematical notations to help them describe tasks. Another group ob-
served that sometimes a careful description of what must be achieved looks a
bit like a program in a super-compact super-high-level programming language.
It may not look like a realistic program, in that it may omit lots of explana-
tion about how objectives should be achieved and especiallyhow they should be
achieved reasonably efficiently. This leads to the idea of anexecutable specifica-
tion, through building an implementation of the specification language. This will
permitted to run amazingly slowly, and its users will be encouraged to go all out
for clarity and correctness. To give a small idea of what thismight entail, consider
the job of specifying a procedure to sort some data. The initial informal spec-
ification might be that the output should be a re-ordering of the input such that
the values in the output be in non-descending order. An executable specification
might consist of three components. The first would create a list of all the different

3http://www.comlab.ox.ac.uk/oucl/prg.html

182 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

permutations of the input. The second would be a procedure toinspect a list and
check to see if its elements were in non-descending order. The final part would
compose these to generate all permutations then scan through them one at a time
and return the first non-descending one found. This would notbe a good practical
sorting algorithm, but could provide a basis for very transparent demonstrations
that the process shown did achieve the desired goal! It should be remembered that
an executable specification needs to be treated as such, and not as a model for how
the eventual implementation will work. A danger with the technique is that it is
quite easy for accidental or unimportant consequences of how the specification is
written to end up as part of the project requirements.

5.3 Ethical Considerations

Quite early on when considering a programming project you need to take explicit
stack of any moral or ethical issues that it raises. Earlier in the year you have
had more complete coverage of the problems of behaving professionally, so here
I will just give a quick check-list of some of the things that might give cause for
concern:

1. Infringement of other people’s intellectual property rights, be they patents,
copyright or trade secrets. Some companies will at least tryto prevent others
from creating new programs that look too much like the original. When
licensed software is being used the implications of the license agreement
may become relevant;

2. Responsibility to your employer or institution. It may be that certain sorts
of work are contrary to local policy. For instance a company might not be
willing to permit its staff to politically motivated virtual reality simulations
using company resources, and this University has views about the commer-
cial use of academic systems;

3. A computing professional has a responsibility to give honest advice to their
“customer” when asked about the reasonableness or feasibility of a project,
and to avoid taking on work that they know they are not qualified to do;

4. It can be proper to take a considered stance against the development of
systems that are liable to have a seriously negative impact on society as a
whole. I have known some people who consider this reason to avoid any
involvement with military or defence-funded computing, while others will
object to technology that seems especially liable to make tracking, surveil-
lance or eavesdropping easier. Those of you with lurid imaginations can no

5.4. HOW MUCH OF THE WORK HAS BEEN DONE ALREADY? 183

doubt envisage plenty more applications of computers that might be seen as
so undesirable that one should if necessary quit a job ratherthan work on
them.

5.4 How much of the work has been done already?

The points that I have covered so far probably do not feel as ifthey really help you
get started when faced with a hard-looking programming task, although I believe
that working hard to make sure you really understand the specification you are
faced with is in fact always a very valuable process. From nowonwards I move
closer to the concrete and visible parts of the programming task. The first question
to ask here is “Do I actually have to do this or has it been done before?”

There are three notable cases where something has been done before but it is
still necessary to do it again. Student exercises are one of these, and undue reliance
on the efforts of your predecessors is gently discouraged. Sometimes a problem
has been solved before, but a solution needs to be re-createdwithout reference to
the original version because the original is encumbered with awkward commer-
cial4 restrictions or is not locally available. The final cause forre-implementation
is if the previous version of the program concerned was a failure and so much of a
mess that any attempt to rely on it would start the new projectoff in wrong-minded
directions.

Apart from these cases the best way to write any program at allis to adopt,
adapt and improve as much existing technology as you can! This can range from
making the very second program that you ever write a variation on that initial
“Hello World” example you were given through to exploiting existing large soft-
ware libraries. The material that can be reclaimed may be as minor as a bunch of
initial comments saying who you (the author) are and including space to describe
what the program does. It might just be some stylised “import” statements needed
at the head of almost any program you write. If you need a tree structure in today’s
program do you have one written last week which gives you the data type defini-
tion and some of the basic operations on trees? Have you been provided with a
collection of nice neat sample programs (or do you have a bookor CD ROM with
some) that can help? Many programming languages are packaged with a fairly
extensive collection of chunks of sample code.

Most programming languages come with standardised libraries that (almost al-
ways) mean there is no need for you to write your own sorting procedure or code to
convert floating point values into or out of textual form. In many important areas

4Remember that if the restriction is in the form of a patent then no amount of re-implementation
frees you from obligations to the patent-owner, and in othercases you may need to be able to give a
very clear demonstration that your new version really has been created completely independently.

184 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

there will be separate libraries that contain much much moreextensive collections
of facilities. For instance numerical libraries (eg the onefrom NAG) are where
you should look for code to solve sets of simultaneous equations or to maximise
a messy function of several variables. When you need to implement a windowed
interface with pull-down menus and all that sort of stuff again look to existing
library code to cope with much of the low-level detail for you. Similarly for data
compression, arbitrary precision integer arithmetic, image manipulation. . .

Observing that there is a lot of existing support around doesnot make the
problem of program construction go away: knowing what existing code is avail-
able is not always easy, and understanding both how to use it and what constraints
must be accepted if it is used can be quite a challenge. For instance with the NAG
(numerical) library it may take beginners quite a while before they discover that
E04ACF (say, and not one of the other half-dozen closely related routines) is the
name of the function they need to call and before they understand exactly what
arguments to pass to it.

As well as existing pre-written code (either in source or library form) that
can help along with a new project there are also packages thatwrite significant
bodies of code for you, basing what they do one on either a compact descriptive
input file or interaction with the user through some clever interface. The well-
established examples of this are the toolsyacc andlex that provide a convenient
and reliable way of creating parsers. Current users of Microsoft’s Visual C++
system will be aware of the so-called “Wizards” that it provides that help create
code to implement the user interface you want, and there are other commercial
program generators in this and a variety of business application areas. To use one
of these you first have to know of its availability, and then learn how to drive it:
both of these may involve an investment of time, but with luckthat will be re-paid
with generous interest even on your first real use. In some cases the correct use
of a program generation tool is to accept its output uncritically, while on other
occasions the proper view is to collect what it creates, study it and eventually
adjust the generated code until you can take direct responsibility for subsequent
support. Before deciding which to do you need to come to a judgement about the
stability and reliability of the program generator and how often you will need to
adjust your code by feeding fresh input in to the very start.

Another way in which existing code can be exploited is when new code is
written so that it converts whatever input it accepts into the input format for some
existing package, one that solves a sufficiently related problem that this makes
some sense. For instance it is quite common to make an early implementation
of a new programming language work by translating the new language into some
existing one and then feeding the translated version into anexisting compiler. For
early versions of ML the existing language was Lisp, while for Modula 3 some
compilers work by converting the Modula 3 source into C. Doingthis may result

5.5. WHAT SKILLS AND KNOWLEDGE ARE AVAILABLE? 185

in a complete compiler that is slower and bulkier than might otherwise be the case,
but it can greatly reduce the effort in building it.

5.5 What skills and knowledge are available?

Figure 5.4: Nancy Silverton’s bakery is in La Brea near the tarpits, and her book
(Bread from the La Brea Bakery)is unutterably wonderful. I like her chocolate-
cherry loaf. This photo is if the racks in her shop. Not much about Java I agree
but baking good bread is at least as important to know about ascomputing.

A balance needs to be drawn between working through a programming project
using only the techniques and tools that you already know andpushing it forward
using valuable but unfamiliar new methods. Doing somethingnew may slow you
down substantially, but an unwillingness to accept that toll may lead to a very
pedestrian style of code development using only a limited range of idioms. There
is a real possibility that short-term expediency can be in conflict with longer term
productivity. Examples where this may feel a strain includeuse of formal meth-
ods, new programming languages and program generation tools. The main point
to be got across here is that almost everything to do with computers changes every
five years or so, and so all in the field need to invest some of their effort in con-
tinual personal re-education so that their work does not look too much as if it has
been chipped out using stone axes. The good news is that although detailed tech-
nology changes the skills associated with working through asignificant project
should grow with experience, and the amount of existing codethat an old hand
will have to pillage may be quite large, and so there is a reasonable prospect for
a long term future for those with skills in software design and construction. Re-
member that all the books on Software Engineering tell us that the competence of

186 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

the people working on a project can make more difference to its success than any
other single factor.

It is useful to have a conscious policy of collecting knowledge about what
can be done and where to find the fine grubby details. For example the standard
textbook[9] contains detailed recipes for solving all sorts of basic tasks. Only
rarely will any one of these be the whole of a program you need to write, but quite
often a larger task will be able to exploit one or more of them.These and many of
the other topics covered in the CST are there because there is at least a chance that
they may occasionally be useful! It is much more important toknow what can be
done than how to do it, because thehowcan always be looked up when you need
it.

5.6 Design of methods to achieve a goal

Perhaps the biggest single decision to be made when startingthe detailed design
of a program is where to begin. The concrete suggestions thatI include here are to
some extent caricatures; in reality few real projects will follow any of them totally
but all should be recognisable as strategies. The crucial issue is that it will not be
possible to design or write the whole of a program at once so itis necessary to
split the work into phases or chunks.

5.6.1 Top-Down Design

In Top Down Design work on a problem starts by writing a “program” that is just
one line long. Its text is:

{ solveMyProblem(); }

where of course the detailed punctuation may be selected to match the program-
ming language being used. At this stage it is quite reasonable to be very informal
about syntax. A next step will be to find some way of partitioning the whole task
into components. Just how these components will be brought into existence is at
present left in the air, however if we split things up in too unreasonable a way we
will run into trouble later on. For many simple programs the second stage could
look rather like:

/ * My name, today’s date, purpose of program * /
import Standard-libraries;
{

/ * declare variables here * /
data = readInData();
results = calculate(data);

5.6. DESIGN OF METHODS TO ACHIEVE A GOAL 187

displayResults(results);
}

The ideal is that the whole development of the program shouldtake place in
baby-sized steps like this. At almost every stage there willbe a whole collection
of worrying-looking procedures that remain undefined and not yet thought about,
such asCalculate above. It is critical not to worry too much about these,
because each time a refinement is made although the number of these unresolved
problems may multiply the expected difficulty of each will reduce. Well it had
better, since all the ones that you introduce should be necessary steps towards
the solution of your whole original task, and it makes sense to expect parts to be
simpler than the whole.

After a rather few steps in the top-down development processone should ex-
pect to have a fully syntactically correct main program thatwill not need any
alterations later as the low level details of the proceduresthat it calls get sorted
out. And each of the components that remain to be implementedshould have
a clearly understood purpose (for choice that should be written down) and each
such component should be clearly separated from all the others. That is not to
say that the component procedures might not call each other or rely on what they
each can do, but the internal details of any one component should not matter to
any other. This last point helps focus attention on interfaces. In my tiny example
above the serious interfaces are represented by the variablesdata andresults
which pass information from one part of the design to the next. Working out ex-
actly what must be captured in these interfaces would be generally need to be done
fairly early on. After enough stages of elaboration the bitsleft over from top-down
design are liable to end up small enough that you just code them up without need
to worry: anything that is trivial you code up, anything thatstill looks murky you
just apply one more expansion step to. With luck eventually the process ends.

There are two significant worries about top-down design. These are “How
do I know how to split the main task up?” and “But I can’t test me code until
everything is finished!”. Both of these are proper concerns.

Splitting a big problem up involves finding a strategy for solving it. Even
though this can be quite hard, it is almost always easier to invent a high-level idea
for how to solve a problem than it is to work through all the details, and this is
what top-down programming is all about. In many cases sketching on a piece of
paper what you would do if you had to solve the problem by hand (rather than
by computer) can help. Quite often the partition of a problemyou make may end
up leading your design into some uncomfortable dead end. In that case you need
to look back and see which steps in your problem refinement represented places
where you had real choice and which ones were pretty much inevitable. It is then
necessary to go back to one of the stages where a choice was possible and to re-
think things in the light of your new understanding. To make this process sensible

188 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

you should refuse to give up fleshing out one particular version of a top-down
design until you are in a position to give a really clear explanation of why the
route you have taken represents failure, because without this understanding you
will not know how far back you need to go in the re-planning. Asan example
of what might go wrong, the code I sketched earlier here wouldend up being
wrongly structured if user interaction was needed, and thatinteraction might be
based on evaluation of partial results. To make that sort of interface possible it
might be necessary to re-work the design as (say)

/ * My name, today’s date, purpose of program * /
import Standard-libraries;
{

/ * declare variables here * /
/ * set empty data and results * /
while not finished do
{

extra = readInMoreData();
if (endOfUserInput(extra)) finished = true;
else
{

data = combine(data, extra);
results = upDateResults(results, data);
displaySomething(results);

}
}
displayFinalResults(results);

}

which is clearly getting messier! And furthermore my earlier and shorter version
looked generally valid for lots of tasks, while this one would need careful extra
review depending on the exact for of user interaction required.

There is a huge amount to be said in favour of being able to testa program as
it is built. Anybody who waits right to the end will have a dreadful mix of errors
at all possible levels of abstraction to try to disentagle. At first sight it seems that
top-down design precludes any early testing. This pessimism is not well founded.
The main way out is to writestubsof code that fill in for all the parts of your
program that have not yet been written. A stub is a short and simple piece of
code that takes the place of something that will later on be much more messy. It
does whatever is necessary to simulate some minimal behaviour that will make
it possible to test the code around it. Sometimes a stub will just print a warning
message and stop when it gets called! On other occasions one might make a stub
print out its parameters and wait for human intervention: itthen reads something
back in, packages it up a bit and returns it as a result. The human assistant actually

5.6. DESIGN OF METHODS TO ACHIEVE A GOAL 189

did all the clever work.
There are two other attitudes to take to top-down design. Oneof these is to

limit it to designrather than implementation. Just use it to define a skeletal shape
for your code, and then make the coding and testing a separateactivity. Obviously
this only makes sense when you have enough confidence that youcan be sure that
the chunks left to be coded will in fact work out well. The finalview is to think
of top-down design as an ideal to be retrofitted to any projectonce it is complete.
Even if the real work on a project went in fits and starts with lots of false trails
and confusion, there is a very real chance that it can be rationalised afterwards and
explained top-down. If that is done then it is almost certainthat a clear framework
has been built for anybody who needs to make future changes tothe program.

5.6.2 Bottom-Up Implementation

Perhaps you are uncertain about exactly what your program isgoing to do or how
it will solve its central problems. Perhaps you want to make sure that every line
of code you ever write is documented, tested and validated todeath before you
move on from it and certainly before you start relying on it. Well these concerns
lead you towards a bottom-up development strategy. The ideahere is to identify
a collection of smallish bits of functionality that will (almost) certainly be needed
as part of your complete program, and to start by implementing these. This avoids
having to thing about the hard stuff for a while. For instancea compiler-writer
might start by writing code to read in lines of program and discard comments,
or to build up a list of all the variable names seen. Somebody starting to write a
word processor might begin with pattern-matching code ready for use in search-
and-replace operations. In almost all large projects thereare going to be quite a
few fundamental units of code that are obviously going to be useful regardless of
the high level structure you end up with.

The worry with bottom-up construction is that it does not correspond to having
any overall vision of the final result. That makes it all to easy to end up with a
collection of ill-co-ordinated components that do not quite fit together and that do
not really combine to solve the original problem. At the veryleast I would suggest
a serious bout of top-down design effort be done before any bottom-up work to
try to put an overall framework into place. There is also a clear prospect that some
of the units created during bottom-up work may end up not being necessary after
all so the time spend on them was wasted.

An alternative way of thinking about bottom-up programmingcan soften the
impact of these worries. It starts by viewing a programming language not just as a
collection of fragments of syntax, but as a range of ways of structuring data and of
performing operations upon it. The fact that some of these operations happen to be
hard-wired into the language (as integer arithmetic usually is) while others exist as

190 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

collections of subroutines (floating point arithmetic on 3000-digit numbers would
normally be done that way) is of secondary importance. Considered this way each
time you define a new data type or write a fresh procedure you have extended and
customised your programming language by giving it support for something new.
Bottom-up programming can then be seen as gradually buildinglayer upon layer
of extra support into your language until it is rich in the operations most important
in your problem area. Eventually one then hopes that the taskthat at first had
seemed daunting becomes just half a dozen lines in the extended language. If
some of the procedures built along the way do not happen to be used this time,
they may well come in handy the next time you have to write a program in the
same application area, so the work they consumed has not really been wasted
after all. The language Lisp is notable for having sustaineda culture based on this
idea of language extension.

5.6.3 Data Centred Programming

Both top-down and bottom-up programming tend to focus on whatyour program
looks like and the way in which it is structured into procedures. An alternative is
to concentrate not on the actions performed by the code but onthe way in which
data is represented and the history of transformations thatany bit of data will be
subject to. These days this idea is often considered almost synonymous with an
Object Oriented approach where the overall design of the class structure for a pro-
gram is the most fundamental feature that it will have. Earlier (and pre-dating the
widespread use of Object Oriented languages) convincing arguments for design
based on the entities that a program must manipulate or modelcome from Jackson
Structured Programming and Design[8]. More recently SSADM[3] has probably
become one of the more widespread design and specification methodologies for
commercial projects.

5.6.4 Iterative Refinement

My final strategy for organising the design of a complete program does not even
expect to complete the job in one session. It starts by askinghow the initial prob-
lem can be restricted or simplified to make it easier to address. And perhaps it
will spot how the most globally critical design decisions for the whole program
could me made in two or three different ways, with it hard to tell in advance which
would work out best in the end. The idea is then to start with code for a scruffy
mock-up of a watered down version of the desired program using just one of these
sets of design decisions. The time and effort needed to writea program grows
much faster then linearly with the size of the program: the natural (but less obvi-
ous) consequence of this is that writing a small program can bemuch quicker and

5.7. HOW DO WE KNOW IT WILL WORK? 191

easier than completing the full version. It may in some casesmake sense even to
write several competing first sketches of the code. When the first sketch version
is working it is possible to step back and evaluate it, to see if its overall shape is
sound. When it has been adjusted until it is structurally correct, effort can go into
adding in missing features and generally upgrading it untilit eventually gets trans-
formed into the beautiful butterfly that was really wanted. Of all the methods that
I have described this is the one that comes closest to allowing for “experimental”
programming. The discipline to adhere to is that experiments are worthy of that
tag if the results from them can be evaluated and if somethingcan thus be learned
from them.

5.6.5 Which of the above is best?

The “best” technique for getting a program written will depend on its size as well
as its nature. I think that puritanical adherence to any of the above would be unrea-
sonable, and I also believe that inspiration and experience(and good taste) have
important roles to play. However if pushed into an opinion I will vote for present-
ing a design or a program (whether already finished or still under construction)
as if it were prepared top-down, with an emphasis on the earlydesign of what
information must be represented and where it must pass from one part of the code
to another.

5.7 How do we know it will work?

Nobody should ever write a program unless they have good reason to believe that
it ought to work. It is of course proper to recognise that it will not work, because
typographic errors and all sorts of oversights will ensure that. But the code should
have been written so that in slightly idealised world where these accidental imper-
fections do not exist it would work perfectly. Blind and enthusiastic hope is not
sufficient to make programs behave well, and so any proper design needs to have
lurking behind it the seeds of a correctness proof. In easy-going times this can re-
main untended as little comments that can just remind you of your thinking. When
a program starts to get troublesome it can be worth growing these comments into
short essays that explain what identities are being preserved intact across regions
of code, why your loops are guaranteed to terminate and what assumptions about
data are important, and why. In yet more demanding circumstances it can become
necessary to conduct formal validation procedures for code.

The easiest advice to give here is that before you write even half a dozen
lines of code you should write a short paragraph of comment that explains what
the code is intended to achieve and why your method will work.The comment

192 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

should usually not explainhow it works (the code itself is all about “how”), but
why. To try to show that I (at least sometimes!) follow this advice here is a short
extract from one of my own5 programs. . .

/ *
* Here is a short essay on the interaction between flags

* and properties. It is written because the issue appears

* to be delicate, especially in the face of a scheme that

* I use to speed things up.

* (a) If you use FLAG, REMFLAG and FLAGP with some

* indicator then that indicator is known as a flag.

* (b) If you use PUT, REMPROP and GET with an indicator

* then what you have is a property.

* (c) Providing the names of flags and properties are

* disjoint no difficulty whatever should arise.

* (d) If you use PLIST to gain direct access to property

* lists then flags are visible as pairs (tag . t) and

* properties as (tag . value).

* (e) Using RPLACx operations on the result of PLIST may

* cause system damage. It is considered illegal.

* Also changes made that way may not be matched in

* any accelerating caches that I keep.

* (f) After (FLAG ’(id) ’tag) [when id did not previously

* have any flags or properties] a call (GET ’id ’tag)

* will return t.

* (g) After (PUT ’id ’tag ’thing) a call (FLAGP ’id

* ’tag) will return t whatever the value of "thing".

* A call (GET ’id ’tag) will return the saved value

* (which might be nil). Thus FLAGP can be thought of

* as a function that tests if a given property is

* attached to a symbol.

* (h) As a consequence of (g) REMPROP and REMFLAG are

* really the same operation.

* /

Lisp_Object get(Lisp_Object a, Lisp_Object b)
{

Lisp_Object pl, prev, w, nil = C_nil;
int n;

/ *

5This happens to be written in C rather than Java, but since most of it is comment maybe that
does not matter too much.

5.7. HOW DO WE KNOW IT WILL WORK? 193

* In CSL mode plists are structured like association

* lists, and NOT as lists with alternate tags and values.

* There is also a bitmap that can provide a fast test for

* the presence of a property...

* /
if (!symbolp(a))
{

#ifdef RECORD_GET
record_get(b, NO);
errexit();

#endif
return onevalue(nil);

}
... etc etc

The exact details of what I am trying to do are not important here, but the evidence
of mind-clearing so that there is a chance to get the code correct first time is. Note
how little the comment before the procedure has to say about low-level implemen-
tation details, but how much about specifications, assumptions and limitations.

I would note here that typing a program in is generally one of the least time-
consuming parts of the whole programming process, and thesedays disc storage is
pretty cheap, and thus various reasons which in earlier daysmay have discouraged
layout and explanation in code no longer apply.

Before trying code and as a further check that it ought to work it can be useful
to “walk through” the code. In other words to pretend to be a computer executing
it and see if you follow the paths and achieve the results thatyou were supposed
to. While doing this it can be valuable to think about which paths through the
code are common and which are not, since when you get to testing it may be that
the uncommon paths do not get exercised very much unless you take special steps
to cause them to be activated.

The “correctness” that you will be looking for can be at several different lev-
els. A partially correct program is one that can never give an incorrect answer.
This sounds pretty good until you recognise that there is a chance that it may just
get stuck in a loop and thereby never give any answer at all! Itis amazingly often
much easier to justify that a program is partially correct than to go the whole hog
and show it is correct, ie that not only is it partially correct but that it will always
terminate. Beyond even the requirements of correctness willbe performance de-
mands: in some cases a program will need not only to deliver the right answers
but to meet some sort of resource budget. Especially if the performance target is
specified as being for performance that is good “on the average” it can be dread-
fully hard to prove, and usually the only proper way to start is by designing and
justifying algorithms way before any mention of actual programming arises.

194 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

A final thing to check for is the possibility that your code canbe derailed by
unhelpful erroneous input. For instance significant security holes in operating
systems have in the past been consequences of trusted modules of code being too
trusting of their input, and them getting caught out by (eg) input lines so long that
internal buffers overflowed thereby corrupting adjacent data.

The proper mind-set to settle in to while designing and starting to implement
code is pretty paranoid: you want the code to deliver either acorrect result or a
comprehensible diagnostic whenever anything imaginable goes wrong in either
the data presented to it or its own internal workings. This last statement leads
to a concrete suggestion: make sure that the code can test itself for sanity and
correctness every so often and insert code that does just that. The assertions that
you insert will form part of your argument for why the programis supposed to
work, and can help you (later on) debug when it does not.

5.8 While you are writing the program

Please remember to get up and walk around, to stretch, drink plenty of water,
sit up straight and all the other things mentioned at the Learning Day as relevant
occupational health issues. My experience is that it is quite hard to do effective
programming in 5 minute snippets, but that after a few hours constant work pro-
ductivity decreases. A pernicious fact is that you may not notice this decrease at
the time, in that the main way in which a programmer can becomeunproductive
is by putting more bugs into a program. It is possible to keep churning out lines of
code all through the night, but there is a real chance that thetime you will spend
afterwards trying to mend the last few of them will mean that the long session did
not really justify itself.

In contrast to programming where long sessions can do real damage (because
of the bugs that can be added by a tired programmer) I have sometimes found that
long sessions have been the only way I can isolate bugs. Provided I can discipline
myself not to try to correct anything but the very simplest bug while I am tired
a long stretch can let me chase bugs in a painstakingly logical way, and this is
sometimes necessary when intuitive bug-spotting fails.

Thus my general advice about the concrete programming task would be to
schedule your time so you can work in bursts of around an hour per session, and
that you should plan your work so that as much as possible of everything you
do can be tested fairly enthusiastically while it is fresh inyour mind. A natural
corollary of this advice is that projects should always be started in plenty of time,
and pushed forward consistently so that no last-minute panic can arise and force
sub-optimal work habits.

5.9. DOCUMENTING A PROGRAM OR PROJECT 195

5.9 Documenting a program or project

Student assessed exercises are expected to be handed in complete with a brief
report describing what has been done. Larger undergraduateprojects culminate in
the submission of a dissertation, as do PhD studies. All commercial programming
activities are liable to need two distinct layers of documentation: one for the user
and one for the people who will support and modify the productin the future.
All these facts serve to remind us that documentation is an intrinsic part of any
program.

Two overall rules can guide the writing of good documentation. The first is
to consider the intended audience, and think about what theyneed to know and
how your document can be structured to help them find it. The second is to keep a
degree of consistency and order to everything: documents with a coherent overall
structure are both easier to update and to browse than sets ofidiosyncratic jottings.

To help with the first of these, here are some potential stylesof write-up that
might be needed:

1. Comments within the code to remind yourself or somebody whois already
familiar with the program exactly what is going on at each point in it;

2. An overview of the internal structure and organisation ofthe whole program
so that somebody who does not already know it can start to find their way
around;

3. Documentation intended to show how reliable a program is,concentrating
on discussions of ways in which the code has been built to be resilient in the
face of unusual combinations of circumstance;

4. A technical presentation of a program in a form suitable for publication in a
journal or at a conference, where the audience will consist of people expert
in the general field but not aware of exactly what your contribution is;

5. An introductory user manual, intended to make the programusable even by
the very very nervous;

6. A user reference manual, documenting clearly and precisely all of the op-
tions and facilities that are available;

7. On-line help for browsing by the user while they are tryingto use the pro-
gram;

8. A description of the program suitable for presentation tothe venture capi-
talists who are considering investing in the next stage of its development.

196 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

It seems inevitable that the above list is not exhaustive, but my guess is that
most programs could be presented in any one of the given ways,and the resulting
document would be quite different in each case. It is not thatone or the other of
these styles is inherently better or more important than another, more that if you
write the wrong version you will either not serve your readerwell or you will find
that you have had to put much more effort into the documentation than was really
justified.

A special problem about documentation is that of when it should be written.
For small projects at least it will almost always be producedonly after the program
has been (at least nearly) finished. This can be rationalisedby claiming “how can
I possibly document it before it exists?”

I will argue here for two ideals. The first is that documentation ought to fol-
low on from design and specification work, but precede detailed programming.
The second is that the text of the documentation should live closely linked to the
developing source code. The reasoning behind the first of these is that writing
the text can really help to ensure that the specification of the code has been fully
thought through, and once it is done it provides an invaluable stable reference to
keep the detailed programming on track. The second point recognises some sort
of realism, and that all sorts of details of just what a program does will not be
resolved until quite late in the implementation process. For instance the exact
wording of messages that are printed will often not be decided until then, and it
will certainly be hard to prepare sample transcripts from the use of the program
ahead of its completion6. Thus when the documentation has been written early it
will need completing when some of these final details get settled and correcting
when the code is corrected or extended. The most plausible way of making it
feasible to keep code and description in step is to keep them together. The con-
cept of Literate Programming[17] pursues this goal. A program is represented as
a composite file that can be processed in (at least) two different ways. One way
“compiles” it to create typeset-quality human readable documentation, while the
other leaves just statements in some quite ordinary programming language ready
to be fed into a compiler. This goes beyond just having copious comments in the
code in two ways. Firstly it expects that the generated documentation should be
able to exploit the full range of modern typography and that it can include pic-
tures or diagrams where relevant. It is supposed to end up as cleanly presented
and readable as any fully free-standing document could everbe. Secondly Literate
Programming recognises that the ordering and layout of the program that has to
be compiled may not be the same as that in the ideal manual, andso the disentan-
gling tool needs to be able to rearrange bits of text in a fairly flexible way so that
description can simultaneously be thought of as close to thecode it relates to and

6Even though these samples can be planned and sketched early.

5.10. HOW DO WE KNOW IT DOES WORK? 197

to the section in the document where it belongs. This idea wasinitially developed
as part of the project to implement the TEX typesetting program that is being used
to prepare these lecture notes.

5.10 How do we know it does work?

Figure 5.5: Many people think that their work is over well before it actually is.

A conceptual difficulty that many people suffer from is a confusion between
whether a program should work and whether it does. A program should work if
it has been designed so that there are clear and easily explained reasons why it
can achieve what it should. Sometimes the term “easily explained” may conceal
the mathematical proof of the correctness of an algorithm, but at least in theory it

198 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

would be possible to talk anybody through the justification.As to programs that
actually do work, well the reality seems to be that the only ones of these that you
will ever see will be no more than around 100 lines long: empirically any program
much longer than that will remain flawed even after extensivechecking. Proper
Oriental rugs will always have been woven with a deliberate mistake in them,
in recognition of the fact that only Allah is perfect. Experience has shown very
clearly indeed that in the case of writing programs we all have enough failings
that there is no great need to insert extra errors — there willbe plenty inserted
however hard we try to avoid them. Thus (at least at the present state of the art)
there is no such thing as a (non-trivial) program that works.

If, however, a programshouldwork (in the above sense) then the residual
errors in it will be ones that can be corrected without disturbing the concepts
behind it or its overall structure. I would like to think of such problems as “little
bugs”. The fact that they are little does not mean that they might not be important,
in that missing commas or references to the wrong variable can cause aeroplanes
to crash just as convincingly as can errors at a more conceptual level. But the
big effort must have been to get to a first testable version of your code with only
little bugs left in it. What is then needed is a testing strategy to help locate as
many of these as possible. Note of course that testing can only ever generate
evidence for the presence of a bug: in general it can not proveabsence. But
careful and systematic testing is something we still need whenever there has been
human involvement in the program construction process7.

The following thoughts may help in planning a test regime:

1. Even obvious errors in output can be hard to notice. Perhaps human society
has been built up around a culture of interpreting slightly ambiguous input
in the “sensible” way, and certainly we are all very used to seeing what we
expect to see even when presented with something rather different. By the
time you see this document I will have put some effort into checking its
spelling, punctuation, grammar and general coherence, andI hope that you
will not notice or be upset by the residual mistakes. But anybody who has
tried serious proof-reading will be aware that blatant mistakes can emerge
even when a document has been checked carefully several times;

2. If you are checking your own code and especially if you knowyou can
stop work once it is finished then you have a clear incentivenot to notice
mistakes. Even if a mistake you find is not going to cause you tohave to
spend time fixing it it does represent you having found yet another instance
of your own lack of attention, and so it may not be good for yourego;

7Some see this observation as a foundation for hope for the future

5.10. HOW DO WE KNOW IT DOES WORK? 199

3. It is very desirable to make a clear distinction between the job of testing a
program to identify the presence of bugs and the separate activity of correct-
ing things. It can be useful to take the time to try to spot as many mistakes
as you can before changing anything at all;

4. A program can contain many more bugs and oddities than yourworst night-
mares would lead you to believe!

5. Testing strategies worked out as part of the initial design of a program are
liable to be better than ones invented only once code has beencompleted;

6. It can be useful to organise explicit test cases for extreme conditions that
your program may face (eg sorting data where all the numbers to be sorted
have the same value), and to collect test cases that cause each path through
your code to be exercised. It is easy to have quite a large barrage of test
cases but still have some major body of code unvisited.

7. Regressions tests are a good thing. These are test cases that grow up during
project development, and at each stage after any change is made all of them
are re-run, and the output the produce is checked. When any error is de-
tected a new item in the regression suite is prepared so that there can remain
a definite verification that the error does not re-appear at some future stage.
Automating the application of regression tests is a very good thing, since
otherwise laziness can too easily cause one to skip running them;

8. When you find one bug you may find that its nature gives you ideas for other
funny cases to check. You should try to record your thoughts so that you do
not forget this insight;

9. Writing extra programs to help you test your main body of code is often a
good investment in time. On especially interesting scheme is to generate
pseudo-random test cases. I have done that while testing a polynomial fac-
torising program and suffered randomly-generated tests ofa C compiler I
was involved with, and in each case the relentless random coverage of cases
turned out to represent quite severe stress;

10. You do not know how many bugs your code has in it, so do not know when
to stop looking. One theoretical way to attack this worry would be to get
some fresh known bugs injected into your code before testing, and then see
what proportion of the bugs found were the seeded-in ones andwhich had
been original. That may allow you to predict the total bug level remaining.

Having detected some bugs there are several possible thingsto do. One is to sit
tight and hope that nobody else notices! Another is to document the deficiencies

200 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

at the end of your manual. The last is to try to correct some of them. The first
two of these routes are more reasonable than might at first seem proper given that
correcting bugs so very often introduces new ones.

In extreme cases it may be that the level of correctness that can be achieved
by bug-hunting will be inadequate. Sometimes it may then be possible to attempt
a formal proof of the correctness of your code. In all realistic circumstances this
will involve using a large and complicated proof assistant program to help with all
the very laborious details involved. Current belief is that it will be very unusual
for bugs in the implementation of this tool to allow you to endup with a program
that purports to be proved but which in fact still contains mistakes!

5.11 Is it efficient?

I have made this a separate section from the one on detecting the presence of
errors because performance effects are only rarely the result of simple oversights.
Let me start by stressing the distinction between a program that is expensive to
run (eg the one that computesπ to 20,000,000,000 decimal places) and ones that
are inefficient (eg one that takes over half a second to compute π correct to four
places). The point being made is that unless you have a realistic idea of how long a
task ought to take it is hard to know if your program is taking areasonable amount
of time. And similarly for memory requirements, disc I/O or any other important
resource. Thus as always we are thrown back to design and specification time
predictions as our only guideline, and sometimes even thesewill be based on little
more than crude intuition.

If a program runs fast enough for reasonable purposes then there may be no
benefit in making it more efficient however much scope for improvement there is.
In such cases avoid temptation. It is also almost always by far best to concentrate
on getting code correct first and only worry about performance afterwards, taking
the view that a wrong result computed faster is still wrong, and correct results may
be worth waiting for.

When collecting test cases for performance measurements it may be useful
to think about whether speed is needed in every single case orjust in most cases
when the program is run. It can also be helpful to look at how costs are expected to
(and do) grow as larger and larger test cases are attempted. For most programming
tasks it will be possible to make a trade between the amount oftime a program
takes to run and the amount of memory it uses. Frequently thisshows up in a
decision as to whether some value should be stored away in case it is needed
later or whether any later user should re-calculate it. Recognising this potential
trade-off is part of performance engineering.

For probably the majority of expensive tasks there will be one single part of the

5.12. IDENTIFYING ERRORS 201

entire program that is responsible for by far the largest amount of time spent. One
would have expected that it would always be easy to predict ahead of time where
that would be, but it is not! For instance when an early TITAN Fortran compiler
was measured in an attempt to discover how it could be speededup it was found
that over half of its entire time was spent in a very short loopof instructions that
were to do with discarding trailing blanks from the end of input lines. Once the
programmers knew that it was easy to do something about it, but one suspects
they were expecting to find a hot-spot in some more arcane partof the code. It
is thus useful to see if the languages and system you use provide instrumentation
that makes it easy to collect information to reveal which parts of your code are
most critical. If there are no system tools to help you you maybe able to add in
time-recording statements to your code so it can collect itsown break-down to
show what is going on. Cunning optimisation of bits of code that hardly ever get
used is probably a waste of effort.

Usually the best ways to gain speed involve re-thinking datastructures to pro-
vide cheap and direct support for the most common operations. This can some-
times mean replacing a very simple structure by one that has huge amounts of al-
gorithmic complexity (there are examples of such cases in the Part IB Complexity
course and the Part II one on Advanced Algorithms). In almostall circumstances
a structural improvement that gives a better big-O growth rate for some critical
cost is what you should seek.

In a few cases the remaining constant factor improvement in speed may still
be vital. In such cases it may be necessary to re-write fragments of your code in
less portable ways (including the possibility of use of machine code) or do other
things that tend to risk the reliability of your package. Thetotal effort needed to
complete a program can increase dramatically as the last fewpercent in absolute
performance gets squeezed out.

5.12 Identifying errors

Section 5.7 was concerned with spotting the presence of errors. Here I want to talk
about working out which part of your code was responsible forthem. The sections
are kept separate to help you to recognise this, and hence to allow you to separate
noticing incorrect behaviour from spotting mistakes in your code. Of course if,
while browsing code, you find a mistake you can work on from it to see if it can
ever cause the program to yield wrong results, and this studyof code is one valid
error-hunting activity. But even in quite proper programs itis possible to have
errors that never cause the program to misbehave in any way that can be noticed.
For instance the mistake might just have a small effect on theperformance of
some not too important subroutine, or it may be an illogicality that could only

202 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

be triggered into causing real trouble by cases that some earlier line of code had
filtered out.

You should also recognise that some visible bugs are not so much due to any
single clear-cut error in a program but to an interaction between several parts of
your code each of which is individually reasonable but whichin combination fail.
Most truly serious disasters caused by software failure arise because of compli-
cated interactions between multiple “improbable” circumstances.

The first thing to try to locate the cause of an error is to startfrom the original
test case that revealed it and to try to refine that down to givea minimal clear-cut
demonstration of the bad behaviour. If this ends up small enough it may then be
easy to trace through and work out what happened.

Pure thought and contemplation of your source code is then needed. Decide
what Sherlock Holmes would have made of it! Run your compilersin whatever
mode causes them to give as many warning messages as they are capable of, and
see if any of those give valuable clues. Check out theassert facility and place
copious assertions in your program that verify that all the high level expectations
you have are satisfied.

If this fails the next thought is to arrange to get a view on theexecution of
your code as it makes its mistake. Even when clever language-specific debuggers
are available it will often be either necessary or easiest todo this by extra print
statements into your code so it can display a trace of its actions. There is a great
delicacy here. The trace needs to be detailed enough to allowyou to spot the first
line in it where trouble has arisen, but concise enough to be manageable. My
belief is that one should try to judge things so that the traceoutput from a failing
test run is about two pages long.

There are those who believe that programs will end up with thebest reliability
if they start off written in as fragile way as possible. Code should always make as
precise a test as possible, and should frequently include extra cross checks which,
if failed, cause it to give up. The argument is that this way a larger number of
latent faults will emerge in early testing, and the embeddedassertions can point
the programmer directly to the place where an expectation failed to be satisfied,
which is at least a place to start working backwards from in a hunt for the actual
bug.

5.12. IDENTIFYING ERRORS 203

Figure 5.6: Effective debugging calls for great skill.

204 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

With many sorts of bugs it can be possible to home in on the difficulty by some
sort of bisection search. Each test run should be designed tohalve the range of
code within which the error has been isolated.

Some horrible problems seem to vanish as soon as you enable any debugging
features in your code or as soon as you insert extra print statements into it. These
can be amazingly frustrating! They may represent your use ofan unsafe language
and code that writes beyond the limit of an array, or they could involve reliance on
the unpredictable value of an un-initialised variable. Sometimes such problems
turn out to be bugs in the compiler you are using, not in your own code. I believe
that I have encountered trouble of some sort (often fairly minor, but trouble nev-
ertheless) with every C compiler I have ever used, and I have absolute confidence
that no other language has attained perfection in this regard. So sometimes trying
your code on a different computer or with a different compiler will either give you
a new diagnostic that provides the vital clue, or will behavedifferently thereby
giving scope for debugging-by-comparison.

Getting into a panic and trying random changes to your code has no proper
part to play either in locating or identifying bugs.

5.13 Corrections and other changes

With a number of bugs spotted and isolated the time comes to extirpate them. The
ideal should be that when a bug is removed it should be removedtotally and it
should never ever be able to come back. Furthermore its friends and offspring
should be given the same treatment at the same time, and of course no new mis-
takes should be allowed to creep in while the changes are being made. This last
is often taken for granted, but when concentrating on one particular bug it is all
too easy to lose sight of the overall pattern of code and even introduce more new
bugs than were being fixed in the first case. Regression testingis at least one line
of defence that one should have against this, but just takingthe correction slowly
and thinking through all its consequences what is mostly wanted. Small bugs (in
the sense discussed earlier) that are purely local in scope give fewest problems.
However sometimes testing reveals a chain of difficulties that must eventually be
recognised as a sign that the initial broad design of the program had been incor-
rect, and that the proper correction strategy does not involve fixing the problems
one at a time but calls for an almost fresh start on the whole project. I think that
would be the proper policy for the program in section 5.18, and that is part of why
the exercise there asks you to identify bugs but not to correct them.

Upgrading a program to add new features is at least as dangerous as correcting
bugs, but in general any program that lasts for more than a year or so will end up
with a whole raft of alterations having been made to it. Thesecan very easily

5.14. PORTABILITY OF SOFTWARE 205

damage its structure and overall integrity, and the effect can be thought of as a
form of software rotthat causes old code to decay. Of course software rot would
not arise if a program never needed correcting and never needed upgrading, but
in that case the program was almost certainly not being used and was fossilised
rather than rotting. Note that for elderly programs the person who makes correc-
tions is never the original program author (even if they havethe same name and
birthday, the passage of time has rendered them different).This greatly increases
the prospect of a would-be correction causing damage.

All but the most frivolous code should be kept under the control of some source
management tool (perhapsrcs) that can provide an audit trail so that changes can
be tracked. In some cases a discussion of a bug that has now been removed might
properly remain as a comment in the main source code, but muchmore often a
description of what was found to be wrong and what was changedto mend it
belongs in a separate project log. After all if the bug reallyhas been removed who
has any interest in being reminded of the mistake that it represented?

Whenever a change is made to a program, be it a bug-fix or an upgrade, there
is a chance that some re-work will be needed in documentation, help files, sample
logs and of course the comments. Once again the idea of literate programming
comes to the fore in suggestion that all these can be kept together.

5.14 Portability of software

Most high level languages make enthusiastic claims that programs written in them
will be portable from one brand of computer to another, just as most make claims
that their compilers are “highly optimising”. Java makes especially strong claims
on this front, and its owners try rather hard to prevent anybody from diverging
from a rigid standard. However even in this case there are differences between
Java 1.0 and 1.1 (and no doubt 1.2) that may cause trouble to the unwary.

In reality achieving portability for even medium sized programs is not as easy
as all that. To give a gross example of a problem not addressedat all by program-
ming language or standard library design, a Macintosh comesas standard with
a mouse with a single button, while most Unix X-windows systems have three-
button mice. In one sense the difference is a frivolity, but at another it invites a
quite substantial re-think of user interface design. At theuser interface level a de-
sign that makes good use of a screen with 640 by 480 pixels and 16 or 256 colours
(as may be the best available on many slightly elderly computers) may look silly
on a system with very much higher resolution and more colours.

For most programming languages you will find that implementations provided
by different vendors do not quite match. Even with the most standardised lan-
guages hardly any compiler supplier will manage to hold backfrom providing

206 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

some private extra goodies that help distinguish them from their competitors. Such
extras will often be things that it is very tempting to make use of. Around 1997-8
a good example of such a feature is “Active-X” which Microsoft is promoting. To
use such a feature tends to lock you to one vendor or platform,while to ignore it
means that you can not benefit from the advantages that it brings. By now you will
know what my suggested response to conflicts like this will be. Yes, it is to make
your decisions explicitly and consciously rather than by default, to make them in
view of stated ideas about what the users of your code will need, and to include
all the arguments you use to support your decision in your design portfolio.

There are frequently clever but non-portable tricks that can lead to big perfor-
mance gains in code but at cost in portability. Sometimes theproper response to
these is to have two versions of the program, one slow but veryportable and the
other that takes full advantage of every trick available on some platform that is
especially important to you.

5.15 Team-work

Almost all of this course is about programming in the small, with a concentration
on the challenges facing a lone programmer. It is still useful to think for a while
how to handle the transition from this state into a large-team corporate mentality.
One of the big emotional challenges in joining a team relatesto the extent to
which you end up “owning” the code you work on. It is very easy to get into a
state where you believe (perhaps realistically) that you are the only person who
can properly do anything to the code you write. It is also easyto become rather
defensive about your own work. A useful bit of jargon that refers to breaking out
of these thought patterns isego-free programming. In this ideal you step back and
consider the whole project as the thing you are contributingto, not just the part
that you are visibly involved in implementing. It may also beuseful to recognise
that code will end up with higher quality if understanding ofit is shared between
several people, and that bugs can be viewed as things to be found and overcome
and never as personal flaws in the individual who happened to write that fragment
of code.

When trying to design code or find a difficult bug it can be very valuable to
explain your thoughts to somebody else. It may be that they need not say much
more than er and um, and maybe they hardly need to listen (but you probably need
to believe that they are). By agreeing that you will listen to their problems at a
later stage this may be a habit you can start right now with oneor a group of your
contemporaries.

Reading other people’s code (with their permission, of course) and letting
them read yours can also help you settle on a style or idiom that works well for

5.16. LESSONS LEARNED 207

you. It can also help get across the merits of code that is welllaid out and where
the comments are actually helpful to the reader.

If you get into a real group programming context, it may make sense to con-
sider partitioning the work in terms of function, for instance system architect,
programmer, test case collector, documentation expert,. .. rather than trying to dis-
tribute the management effort and split the programming into lots of little mod-
ules, but before you do anything too rash read some more bookson software engi-
neering so that once again you can make decisions in an informed and considered
way.

5.16 Lessons learned

One of the oft-repeated observations about the demons of large-scale software
construction is thatthere is no silver bullet. In other words we can not expect to
find a single simple method that, as if by magic, washes away all our difficulties.
This situation also applies for tasks that are to be carried out by an individual
programmer or a very small team. No single method gives a key that makes it
possible to sit down and write perfect programs without effort. The closest I can
come to an idea for something that is generally valuable is experience – experience
on a wide range of programming projects in several differentlanguages and with
various different styles of project. This can allow you to spot features of a new
task that have some commonalty with one seen before. This is,however, obviously
no quick fix. The suggestions I have been putting forward hereare to try to make
your analysis of what you are trying to achieve as explicit inyour mind as possible.
The various sections in these notes provide headings that may help you organise
your thoughts, and in general I have tried to cover topics in an order that might
make sense in real applications. Of course all the details and conclusions will be
specific to your problem, and nothing I can possibly say here can show you how
to track down your own very particular bug or confusion! I have to fall back on
generalities. Keep thinking rather than trying random changes to your code. Try
to work one step at a time. Accept that errors are a part of the human condition,
and however careful you are your code will end up with them.

But always remember the two main slogans:

Programming is easy

and

Programming is fun.

208 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

5.17 Final Words

Do I follow my own advice? Hmmm I might have known you would askthat!
Well most of what I have written about here is what I try to do, but I am not
especially formal about any of it. I only really go overboardabout design and
making documentation precede implementation when starting some code that I
expect to give me special difficulty. I have never got into theswing of literate
programming, and suspect that I like the idea more than the reality. And I some-
times spend many more hours on a stretch at a keyboard than I maybe ought to. If
this course and these notes help you think about the process of programming and
allow you to make more conscious decisions about the style you will adopt then
I guess I should be content. And if there is one very short way Iwould like to
encapsulate the entire course, it would be the recommendation that you make all
the decisions and thoughts you have about programming as open and explicit as
possible.
Good luck!

5.18 Challenging exercises

Some of you may already consider yourselves to be seasoned programmers able
to cope with even quite large and complicated tasks. In whichcase I do not you to
feel this course is irrelevant, and so I provide here at the end of the notes some pro-
gramming problems which I believe are hard enough to represent real challenges,
even though the code that eventually has to be written will not be especially long.
There is absolutely no expectation that anybody will actually complete any of
these tasks, or even find good starting points. However theseexamples may help
give you concrete cases to try out the analysis and design ideas I have discussed:
identifying the key difficulties and working out how to partition the problems into
manageable chunks. In some cases the hardest part of a properplan would be the
design of a good enough testing strategy. The tasks described here are all both
reasonably compact and fairly precisely specified. I have fought most of these
myself and found that producing solutions that were neat andconvincing as well
as correct involved thought as well as more coding skill. There are no prizes and
no ticks, marks or other bean-counter’s credit associated with attempting these
tasks, but I would be jolly interested to see what any of you can come up with,
provided it can be kept down to no more than around 4 sides of paper.

5.18. CHALLENGING EXERCISES 209

MULDIV

The requirement here is to produce a piece of code that accepts four integers and
computes(a∗ b+ c)/d and also the remainder from the division. It should be
assumed that the computer on which this code is to be run has 32-bit integers, and
that integer arithmetic including shift and bitwise mask operations are available,
but the difficulty in this exercise arises becausea∗ b will be up to 64-bits long
and so it can not be computed directly. “Solutions” that use (eg) the direct 64-bit
integer capabilities of a DEC Alpha workstation are not of interest!

It should be fairly simple to implementmuldiv if efficiency where not an
issue. To be specific this would amount to writing parts of a package that did
double-length integer arithmetic. Here the additional expectation is that speed
does matter, and so the best solution here will be one that makes the most effec-
tive possible use of the 32-bit arithmetic that is available. Note also that code of
this sort can unpleasantly easily harbour bugs, for instance due to some integer
overflow of an intermediate result, that only show up in very rare circumstances,
and that the pressure to achieve the best possible performance pushes towards code
that comes very close to the limits of the underlying 32-bit arithmetic. Thought
will be needed when some or all of the input values are negative. The desired be-
haviour is one where the calculated quotient was rounded towards zero, whatever
its sign.

Overlapping Triangles

A point in theX–Y plane can be specified by giving its co-ordinates(x,y). A
triangle can then be defined by giving three points. Given twotriangles a number
of possibilities arise: they may not overlap at all or they may meet in a point or
a line segment, or they may overlap so that the area where theyoverlap forms a
triangle, a quadrilateral, a pentagon or a hexagon. Write code that discovers which
of these cases arises, returning co-ordinates that describe the overlap (if any).

A point to note here is that any naive attempt to calculate thepoint where
two lines intersect can lead to attempts to divide by zero if the lines are parallel.
Near-parallel lines can lead to division by very small numbers, possibly leading
to subsequent numeric overflow. Such arithmetic oddities must not be allowed to
arise in the calculations performed.

Matrix transposition

One way of representing anmby n matrix in a computer is to have a single vector
of lengthmnand place the array elementai, j at offsetmi+ j in the vector. Another
would be to store the same element at offseti + n j. One of these representation

210 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

means that items in the same row of the matrix live close together, the other that
items in the same column are adjacent.

In some calculations it can make a significant difference to speed which of
these layouts is used. This is especially true for computerswith virtual memory.
Sometimes one part of a calculation would call for one layout, and a later part
would prefer the other.

The task here is therefore to take integersm andn and a vector of lengthmn,
and rearrange the values stored in the vector so that if they start off in one of as
one representation of a matrix they end up as the other. Because the matrix should
be assumed to be quite large you are not allowed to use any significant amount of
temporary workspace (you can not just allocate a fresh vector of lengthmn and
copy the data into it in the new order — you may assume you may use extra space
of aroundm+n if that helps, but not dramatically more than that).

If the above explanation of the problem8 feels out of touch with today’s com-
puter uses, note how the task relates to taking anmby n matrix representing a pic-
ture and shuffling the entries to get the effect of rotating the image by 90 degrees.
Just that in the image processing case you may be working withdata arranged in
sub-word-sized bite-fields, say at 4 bits per pixel.

Sprouts

The following is a description of a game9 to be played by two players using a
piece of paper. The job of the project here is to read in a description of a position
in the game and make a list of all the moves available to the next player. This
would clearly be needed as part of any program that played thegame against
human opposition, but the work needed here does not have to consider any issues
concerning the evaluation of positions or the identification of good moves.

The game starts with some number of marks made on a piece of paper, each
mark in the form of a capital ‘Y’. Observe that each junction has exactly three
little edges jutting from it. A move is made by a player identifying two free edges
and drawing a line between them. The line can snake around things that have been
drawn before as much as the player making the move likes, but it must not cross
any line that was drawn earlier. The player finishes the move by drawing a dot
somewhere along the new line and putting the stub of a new edgejutting out from
it in one of the two possible directions. Or put a different but equivalent way, the
player draws a new ‘Y’ and joins two of its legs up to existing stubs with lines that
do not cross any existing lines. The players make moves alternately and the first
player unable to make a further legal move will be the loser.

8This is an almost standard classical problem and if you dig far enough back in the literature
you will find explanations of a solution. If you thought to do that for yourself, well done!

9Due to John Conway

5.18. CHALLENGING EXERCISES 211

A variation on the game has the initial state of the game just dots (not ‘Y’
shapes) and has each player draw a new dot on each edge they create, but still
demands that no more that three edges radiate from each dot. The difference
is that in one case a player can decide which side of a new line any future line
must emerge from. I would be equally happy whichever versionof the game
was addressed by a program, provided the accompanying documentation makes it
clear which has been implemented!

The challenge here clearly largely revolves around finding away to describe
the figures that get drawn. If you want to try sprouts out as a game between people
before automating it, I suggest you start with five or six starting points.

ML development environment

The task here is not to write a program, but just to sketch out the specification
of one. Note clearly that an implementation of the task askedabout here would
be quite a lot of work and I do not want to provide any encouragement to you to
attempt all that!

In the Michaelmas Term you were introduced to the language ML, and invited
to prepare and test various pieces of test code using a version running under Mi-
crosoft Windows. You probably used the regular Windows “notepad” as a little
editor so you could change your code and then paste back corrected versions of
it into the ML window. Recall that once you have defined a function or value in
ML that definition remains fixed for ever, and so if it is incorrect you probably
need to re-type not only it but everything you entered after it. All in all the ML
environment you used was pretty crude (although I am proud ofthe greek letters
in the output it generates), and it would become intolerablefor use in medium or
large-scale projects. Design a better environment, and append to your descrip-
tion of it a commentary about which aspects of it represent just a generically nice
programmer’s work-bench and which are motivated by the special properties of
ML.

An example from the literature

The following specification is given as a paragraph of reasonably readable English
text, and there is then an associated program written in Java. This quite small
chunk of code can give you experience of bug-hunting: pleasedo not look up the
original article in CACM10 until you have spent some while working through the
code checking how it works and finding some of the mistakes. Inprevious years
when I have presented this material to our students they did almost as well as the
professional programmers used in the original IBM study, butthey still found only

10Communications of the ACM, vol 21, no 9, 1978.

212 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

a pathetically small proportion of the total number of knownbugs! I am aware that
the Java transcription of this program has changed its behaviour from the original
PL/I version and the intermediate C one. I do not believe thatthe changes are a
case of bugs evaporating in the face of Java, but some may be transcription errors
I have made. But since the object of this exercise is that you locate bugs, whatever
their source, this does not worry me much, and I present the example as it now
stands, oddities and all.

Figure 5.7: Picture courtesy Shamila Corless.

5.18. CHALLENGING EXERCISES 213

Formatting program for text input. Converted from
the original PL/I version which is in a paper by Glen
Myers, CACM vol 21 no 9, 1978

(a) This program compiles correctly: it is believed
not to contain either syntax errors or abuses of
the Java library.

(b) A specification is given below. You are to imagine
that the code appended was produced by somebody who
had been provided with the specification and asked
to produce an implementation of the utility as
described. But they are not a very good programmer!

(c) Your task is one of quality control - it is to
check that the code as given is in agreement with
the specification.
If any bugs or mis-features are discovered they
should be documented but it will be up to the
original programmer to correct them. If there are
bugs it is desirable that they all be found.

(d) For the purposes of this study, a bug or a
mis-feature is some bad aspect of the code that
could be visible to users of the binary version of
the code. Ugly or inefficient code is deemed not
to matter, but even small deviations from the
letter of the specification and the things sensibly
implicit in it do need detecting.

(e) Let me repeat point (a) again just to stress it -
the code here has had its syntax carefully checked
and uses the Java language and library in a legal
straightforward way, so searching for bugs by
checking fine details of the Java language
specification is not expected to be productive.
I have put in comments to gloss use of library
functions to help those who do not have them all
at their finger-tips. The code may be clumsy in
places but I do not mind that!
I have tried to keep layout of the code neat and
consistent. There are few comments "because the
original programmer who wrote the code delivered
it in that state".

214 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

/ *** ******
* Specification *
* ============= *
* *
* Given an input text consisting of words separated by *
* blanks or new-line characters, the program formats it *
* into a line-by-line form such that (1) each output *
* line has a maximum of 30 characters, (2) a word in *
* the input text is placed on a single output line, and *
* (3) each output line is filled with as many words as *
* possible. *
* *
* The input text is a stream of characters, where the *
* characters are categorised as break or nonbreak *
* characters. A break character is a blank, a new-line *
* character (&), or an end of text character (/). *
* New-line characters have no special significance; *
* they are treated as blanks by the program. & and / *
* should not appear in the output. *
* *
* A word is defined as a nonempty sequence of non-break *
* characters. A break is a sequence of one or more *
* break characters. A break in the input is reduced to *
* a single blank or start of new line in the output. *
* *
* The input text is a single line entered from a *
* simple terminal with an fixed 80 character screen *
* width. When the program is invoked it waits for the *
* user to provide input. The user types the input line, *
* followed by a / (end of text) and a carriage return. *
* The program then formats the text and displays it on *
* the terminal. *
* *
* If the input text contains a word that is too long to *
* fit on a single output line, an error message is *
* typed and the program terminates. If the end-of-text *
* character is missing, an error message is issued and *
* the user is given a chance to type in a corrected *
* version of the input line. *
* *
* (end of specification) *
*** ***** /

5.18. CHALLENGING EXERCISES 215

import java.io. * ;

public class Buggy
{

final static int LINESIZE = 31;

public static void main(String [] args)
{

int k,
bufpos,
fill,
maxpos = LINESIZE;

char cw,
blank = ’ ’,
linefeed = ’$’,
eotext = ’/’;

boolean moreinput = true;
char [] buffer = new char [LINESIZE];
bufpos = 0;
fill = 0;
while (moreinput)
{ cw = gchar();

if (cw == blank || cw == linefeed || cw == eotext)
{

if (cw == eotext) moreinput = false;
if ((fill + 1 + bufpos) <= maxpos)
{ pchar(blank);

fill = fill + 1;
}
else
{ pchar(linefeed);

fill = 0;
}
for (k = 0; k < bufpos; k++) pchar(buffer[k]);
fill = fill + bufpos;
bufpos = 0;

}
else if (bufpos == maxpos)
{ moreinput = false;

System.out.println("Word to long");
}

216 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

else
{ bufpos = bufpos + 1;

buffer[bufpos-1] = cw;
}

}
pchar(linefeed);
return;

}

// I use B as a shorthand for the character ’ ’.
final static char B = ’ ’;

final static int ILENGTH = 80;

// Make suitable array with initial contents Z
// then a load of blanks.
static char [] buffer = {

’Z’,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B,
B,B,B,B,B,B,B,B,B,B};

// bcount is defined here so that it keeps its values
// across several calls to gchar().
static int bcount = 1;

static char gchar()
{

char [] inbuf = new char [ILENGTH];
char eotext = ’/’;
char c;
if (buffer[0] == ’Z’)
{ getrecord(inbuf);

5.18. CHALLENGING EXERCISES 217

// indexOf returns the index of a position where the given
// character is present in a string, or -1 if it is not
// found.

if (new String(inbuf).indexOf((int) eotext) == -1)
{ System.out.println("No end of text mark");

buffer[1] = eotext;
}
else for (int j=0; j<ILENGTH; j++)

buffer[j] = inbuf[j];
}
c = buffer[bcount-1];
bcount = bcount + 1;
return c;

}

// a static ouput buffer, again blank-filled.
static char [] outline =
{ B,

B,B,B,B,B,B,B,B,B,B,B
};

// i indicates which place in outline pchar should
// put the next character at.
static int i = 1;

static void pchar(char c)
{

int linefeed = ’$’;
if (c == linefeed)
{ System.out.println(outline);

for (int j=0; j<LINESIZE; j++)
outline[j] = B;

i = 1;
}
else
{ outline[i-1] = c;

i = i + 1;
}

}

218 CHAPTER 5. DESIGNING AND TESTING PROGRAMS IN JAVA

// Get access to keyboard input. No tricks here!
static BufferedReader in =

new BufferedReader(
new InputStreamReader(System.in),
1);

static void getrecord(char [] b)
{

String s;
try
{ s = in.readLine();
}
catch (IOException e)
{ s = " ";
}
for (int i = 0; i < ILENGTH; i++)
{ if (i < s.length()) b[i] = s.charAt(i);

else b[i] = ’ ’;
}

}

}

/ * End of file * /

Chapter 6

A representative application

The purpose of this chapter is not to form part of the official examinable course,
but to provide you with some extended samples of Java so that you can see the
various facilities working together and so you can considerhow the code ought
to have been written to make it as clear and robust as possible. Note that I do
not guarantee that my code is a paragon of clarity, and although the example
here is much larger than the ones that have gone before it has still been trimmed
fairly close to the bone to make it as small and perhaps comprehensible as I could
manage.

6.1 A Lisp interpreter

This final example for these notes is as large and complicatedas any of the others
here — but most of the Java features it uses are ones that have been seen before.
It is an implementation of a very much cut-down version of theprogramming lan-
guage Lisp. In this language, which is one of the oldest programming languages
that is still in use today, and a version of which is used to customise theemacs ed-
itor, all syntax is indicated with explicit parentheses. The programs that one writes
are very much like ML ones, except that Lisp does not have either the syntax and
operators of ML nor the type-checking. While I do not want to divert this Java
course into one on Lisp I will give a brief example of the sort of program that can
be used to test my Minilisp. It defines a function to reverse lists and demonstrates
its use.

(defun reverse (x)
(rev1 x nil))

(defun rev1 (a b)
(cond

219

220 CHAPTER 6. A REPRESENTATIVE APPLICATION

((eq a nil) b)
(t (rev1 (cdr a) (cons (car a) b)))))

(reverse ’(a b c d))

To find out about Lisp in its modern and very large form you could check
out Common Lisp — the Language[21] however the Minilisp here perhaps makes
better sense with reference to theLisp 1.5 manual[13], which is amazingly ancient
now but which has the huge advantage of brevity. Of course theCommon Lisp
manual was written by Guy Steele who participated in writingthe Java language
reference — so as well as Lisp being a very direct ancestor of ML it can also be
seen as having had noticable input into Java1. Another reason for including an
implementation of it here.

I have in fact extended the tiny Lisp shown here into a full-scale one that is
capable of running programs that are many tens of thousands of lines long. The
write-up of that work is in “Further evaluation of Java for Symbolic Calculation”,
Proc. ISSAC 00, St Andrews, Scotland, August 2000.

1The “Flavours” package developed for Lisp at MIT was one of the earlier programming sys-
tems that encouraged object oriented design, supported inheritance and worked to make large-scale
programming practical. CLOS (Common Lisp Object System) isthe major internationally stan-
dardised model for dynamic object-oriented programming.

6.1. A LISP INTERPRETER 221

Now for the implementation. Making sense of it is liable to bea substantial strug-
gle for most of you, but I hope that the fact that I can fit an implementation of a
programming language into these notes is at least interesting!

// Minilisp
//
// Basic and utterly tiny Lisp system coded
// in Java by Arthur Norman, 1998.
//
// In spirit much like an older BCPL then C
// version of the same thing!
//
// Supports
// quote, cond, defun
// atom, eq, car, cdr, cons
// has fragments of code waiting to be extended
// to do rather more.

import java.io. * ;

// Lisp has a single inclusive data-type, which I call
// LispObject here. It has sub-types that are symbols,
// numbers, strings and lists. Here I give just two
// methods (print and eval) that may be used on anything.

abstract class LispObject
{

public abstract void print();
public abstract LispObject eval(Environment env);

}

// A "cons" is an ordered pair. In ML terms it would be
// a bit like (’a * ’b)

class Cons extends LispObject
{
// The left and right parts of a pair are called
// CAR and CDR

public LispObject car, cdr;
Cons(LispObject car, LispObject cdr)
{ this.car = car; this.cdr = cdr; }

222 CHAPTER 6. A REPRESENTATIVE APPLICATION

// Function calls are written as lists (fn a1 a2 ...)
public LispObject eval(Environment env)
{ int n = 0;

for (LispObject a=cdr;
a instanceof Cons;
a = ((Cons)a).cdr) n++;

LispObject [] args = new LispObject [n];
n = 0;
for (LispObject a=cdr;

a instanceof Cons;
a = ((Cons)a).cdr) args[n++] = ((Cons)a).car;

// Now I have unpicked the actual arguments into a vector
if (car instanceof Symbol)
{ Symbol f = (Symbol)car;

// "special" functions are for QUOTE, CONS and DEFUN. They
// do not evaluate their arguments

if (f.special != null)
return f.special.op(args, env);

// All other functions have their arguments evaluated.
for (int i=0; i<n; i++)

args[i] = args[i].eval(env);
// Call the function!

return f.fn.op(args);
}

// return NIL if I do not otherwise know what to do
else return Minilisp.nil;

}
// Lists print as (a b c ...)
// and if a list ends in NIL then it is displayed with
// just a ")" at the end, otherwise the final atom is
// shown after a "."

public void print()
{ LispObject x = this;

String delim = "(";
while (x instanceof Cons)
{ System.out.print(delim);

delim = " ";
((Cons)x).car.print();
x = ((Cons)x).cdr;

}

6.1. A LISP INTERPRETER 223

if (x != Minilisp.nil)
{ System.out.print(" . ");

x.print();
}
System.out.print(")");

}
}

// I do not do a lot with strings here.
class LispString extends LispObject
{

public String string;
LispString(String s)
{ this.string = s; }
public LispObject eval(Environment env)
{ return this; }
public void print()
{ System.out.print("\"" + string + "\"");
}

}

class Symbol extends LispObject
{

public String pname; // print name
public LispObject plist; // property list (unused)
Symbol obListNext; // chaining of symbols
public LispFunction fn; // function (if any)
public SpecialFunction special; // special fn (if any)

// intern() looks up a Java String and find the Lisp
// symbol with that name. It creates it if needbe.

public static Symbol intern(String name,
LispFunction fn, SpecialFunction special)

{ Symbol p;
for (p=Minilisp.obList; p!=null; p=p.obListNext)
{ if (p.pname.equals(name)) return p;
}

224 CHAPTER 6. A REPRESENTATIVE APPLICATION

// not found on "object-list" (oblist), so create it
p = new Symbol();
p.pname = name;
p.plist = Minilisp.nil;
p.obListNext = Minilisp.obList;
Minilisp.obList = p;
p.fn = fn != null ? fn : new Undefined(name);
p.special = special;
return p;

}
// The symbols NIL and T are special - they evaluate
// to themselves. All others get looked up in an
// environment that stores current values of local vars.

public LispObject eval(Environment env)
{ if (this == Minilisp.nil ||

this == Minilisp.lispTrue) return this;
return env.eval(this);

}
public void print()
{ System.out.print(pname);
}

}

// An environment is a chain of Bindings terminated with
// a NullEnvironment. Each binding holds information of
// the form
// variable = value

abstract class Environment
{

public abstract LispObject eval(Symbol name);
}

class NullEnvironment extends Environment
{

public LispObject eval(Symbol name)
{ System.out.println("Undefined variable: " +

name.pname);
System.exit(1);
return null;

}
}

6.1. A LISP INTERPRETER 225

class Binding extends Environment
{

public Symbol name;
public LispObject value;
public Environment next;
Binding(Symbol name, LispObject val, Environment next)
{ this.name = name;

this.value = val;
this.next = next;

}
public LispObject eval(Symbol x)
{ if (x == name) return value;

else return next.eval(x);
}

}

// I do not do a lot with numbers here!
class LispNumber extends LispObject
{

public int value;
LispNumber(int value)
{ this.value = value; }
public LispObject eval(Environment env)
{ return this; }
public void print()
{ System.out.print(value);
}

}

// Each built-in function is created wrapped in a class
// that is derived from LispFunction.

abstract class LispFunction
{

public abstract LispObject op(LispObject [] args);
}

226 CHAPTER 6. A REPRESENTATIVE APPLICATION

class Undefined extends LispFunction
{

String name;
Undefined(String name)
{ this.name = name; }
public LispObject op(LispObject [] args)
{ System.out.println("Undefined function " + name);

System.exit(1); // throw?
return null;

}
}

// If a symbol has an interpreted definition its
// associated function is this job, which knows how to
// extract the saved definition and activate it.

class Interpreted extends LispFunction
{

LispObject a, b;
Environment env;
Interpreted(LispObject a, // formal args

LispObject b, // body
Environment env) // environment

{ this.a = a;
this.b = b;
this.env = env;

}
public LispObject op(LispObject [] args)
{ LispObject a1 = a;

int i = 0;
Environment e = env;
while (a1 instanceof Cons)
{ e = new Binding(

(Symbol)((Cons)a1).car, args[i++], e);
a1 = ((Cons)a1).cdr;

}
return b.eval(e);

}
}

6.1. A LISP INTERPRETER 227

// Similar stuff, but for "special functions"

abstract class SpecialFunction
{

public abstract LispObject op(LispObject [] args,
Environment env);

}

// (quote xx) evaluates to just xx

class QuoteSpecial extends SpecialFunction
{

public LispObject op(LispObject [] args,
Environment env)

{ return args[0];
}

}

// (cond (p1 e1) if p1 then e1
// (p2 e2) else if p2 then e2
// (p3 e3)) else if p3 then e3
// else nil

class CondSpecial extends SpecialFunction
{

public LispObject op(LispObject [] args,
Environment env)

{ for (int i=0; i<args.length; i++)
{ Cons x = (Cons)args[i];

LispObject predicate = x.car;
LispObject consequent = ((Cons)x.cdr).car;
if (predicate.eval(env) != Minilisp.nil)

return consequent.eval(env);
}
return Minilisp.nil;

}
}

228 CHAPTER 6. A REPRESENTATIVE APPLICATION

// (defun name (a1 a2 a3) body-of-function)

class DefunSpecial extends SpecialFunction
{

public LispObject op(LispObject [] args,
Environment env)

{ Symbol name = (Symbol)args[0];
LispObject vars = args[1];
LispObject body = args[2];
name.fn = new Interpreted(vars, body, env);
return name;

}
}

// like ML "fun car (a :: b) = a;"

class CarFn extends LispFunction
{

public LispObject op(LispObject [] args)
{ return ((Cons)(args[0])).car;
}

}

// like ML "fun cdr (a :: b) = b;"

class CdrFn extends LispFunction
{

public LispObject op(LispObject [] args)
{ return ((Cons)(args[0])).cdr;
}

}

// like ML "fun atom (a :: b) = false | atom x = true;"

class AtomFn extends LispFunction
{

public LispObject op(LispObject [] args)
{ return args[0] instanceof Cons ? Minilisp.nil :

Minilisp.lispTrue;;
}

}

6.1. A LISP INTERPRETER 229

// (eq a b) is true if a and b are the same thing

class EqFn extends LispFunction
{

public LispObject op(LispObject [] args)
{ return args[0]==args[1] ? Minilisp.lispTrue :

Minilisp.nil;
}

}

// like ML "fun cons a b = a :: b;"

class ConsFn extends LispFunction
{

public LispObject op(LispObject [] args)
{ return new Cons(args[0], args[1]);
}

}

// (stop) exist from this Lisp.

class StopFn extends LispFunction
{

public LispObject op(LispObject [] args)
{ System.exit(0);

return null;
}

}

// The top-level class has a bunch of input
// and management code.

public class Minilisp
{

public static Symbol nil, lispTrue,
obList, lambda, cond, quote, defun;

static StreamTokenizer input;
static int inputType;
static boolean inputValid;

230 CHAPTER 6. A REPRESENTATIVE APPLICATION

static void initInput()
{ input = // Get stream & establish syntax

new StreamTokenizer(
new BufferedReader(

new InputStreamReader(System.in),
1));

input.eolIsSignificant(false);
input.ordinaryChar(’/’);
input.commentChar(’;’);
input.ordinaryChar(’\’’);
input.quoteChar(’\"’);
input.ordinaryChar(’.’); // disable floating point
input.lowerCaseMode(true);
inputValid = false;

}

// read a single parenthesised expression.
// Supports ’xx as a short-hand for (quote xx)
// which is what most Lisps do.

// Formal syntax:
// read => SYMBOL | NUMBER | STRING
// => ’ read
// => (tail
// tail =>)
// => . read)
// => read readtail

static LispObject read() throws IOException
{

LispObject r;
if (!inputValid)
{ inputType = input.nextToken();

inputValid = true;
}
switch (inputType)
{

case StreamTokenizer.TT_EOF:
throw new IOException("End of file");

case StreamTokenizer.TT_WORD:
r = Symbol.intern(input.sval, null, null);
inputValid = false;
return r;

6.1. A LISP INTERPRETER 231

case StreamTokenizer.TT_NUMBER:
r = new LispNumber((int)input.nval);
inputValid = false;
return r;

case ’\"’: // String
r = new LispString(input.sval);
inputValid = false;
return r;

case ’\’’:
inputValid = false;
r = read();
return new Cons(quote, new Cons(r, nil));

case ’(’:
inputValid = false;
return readTail();

case ’)’:
case ’.’:

inputValid = false;
return nil;

default:
r = Symbol.intern(

String.valueOf((char)inputType), null, null);
inputValid = false;
return r;

}
}

static LispObject readTail() throws IOException
{

LispObject r;
if (!inputValid)
{ inputType = input.nextToken();

inputValid = true;
}
switch (inputType)
{

case ’.’:
inputValid = false;
r = read();
if (!inputValid)
{ inputType = input.nextToken();

inputValid = true;
}

232 CHAPTER 6. A REPRESENTATIVE APPLICATION

if (inputType == ’)’) inputValid = false;
return r;

case StreamTokenizer.TT_EOF:
throw new IOException("End of file");

case ’)’:
inputValid = false;
return nil;

default:r = read();
return new Cons(r, readTail());

}
}

// set up fixed definitions

static void initSymbols()
{

obList = null;
nil = Symbol.intern("nil", null, null);
nil.plist = nil;
Symbol.intern("car", new CarFn(), null);
Symbol.intern("cdr", new CdrFn(), null);
Symbol.intern("cons", new ConsFn(), null);
Symbol.intern("atom", new AtomFn(), null);
Symbol.intern("eq", new EqFn(), null);
Symbol.intern("stop", new StopFn(), null);
lispTrue = Symbol.intern("t", null, null);

// lambda is ready for extension of this code
lambda = Symbol.intern("lambda", null, null);
cond = Symbol.intern("cond", null,

new CondSpecial());
quote = Symbol.intern("quote", null,

new QuoteSpecial());
defun = Symbol.intern("defun", null,

new DefunSpecial());
}

public static void main(String [] args)
{

initInput();
initSymbols();
System.out.println("Arthur’s Minilisp...");

6.1. A LISP INTERPRETER 233

try
{

// this is s READ-EVAL-PRINT loop
for (int i=1;;i++)
{ System.out.print(i + ": ");

// Ensure that the prompt gets displayed.
System.out.flush();
LispObject r = read();
LispObject v = r.eval(new NullEnvironment());
System.out.print("Value: ");
v.print();
System.out.println("");

}
}
catch (IOException e)
{ System.out.println("IO exception");
}

System.out.println("End of Lisp run. Thank you");

}

}

// End of Minilisp.java

6.1.1 Exercises

ML to Lisp

Find a Lisp 1.5 manual and/or study the Minilisp code, and then see how many
ML list-processing functions you can convert into Lisp and run on the Java imple-
mentation. You have already seenreverse , so the next thing to try isappend . It
would probably be possible to coax the ML exercise on transitive closures through
Minilisp!

Add a few more functions

Show that you have understood what is going on in the Minilispcode by adding in
support for arithmetic, specifically functions to add, subtract, multiply and divide
numbers, and to compare them for inequality and “less-than”.

234 CHAPTER 6. A REPRESENTATIVE APPLICATION

Emacs Lisp

Now you have at least minimal exposure to Lisp, investigate the way it is used
in theemacs editor to allow users to create new language-specific editing modes,
indentation and colour conventions.

WeirdX

Visit the web-sitehttp://www.jcraft.com/weirdx/ and fetch yourself a
copy of the source of the WeirdX X-windows server. It is around 25000 lines
of Java! Do not fetch or examine in any way the related but commercial product
called WiredX. Inspect the associated GNU public license carefully: it gives you
permission to work on the source but imposes an obligation tomake the source
version of any adjustments available to the world at no cost.If you are happy with
the GNU rules2 investigate the behaviour of WeirdX and look for ways to

1. Identify and remove bugs;

2. Make it implement the latest X-windows specification morefully;

3. Enhance its performance;

4. Put a proper and copious number of comments into the code (!);

5. Ensure that it implements all possible facilities to reduce the security vul-
nerabilities that X-windows often opens up;

6. Make a careful comparison between the behaviour and capabilities of the
improved WeirdX and other commercial and free X servers. Create a nicely
structured wish-list for future enhancements.

As you make and test changes arrange to make your improvements available to
the the world: seehttp://sourceforge.net/projects/weirdx/ . In case
you had not spotted, this is not a small exercise for an individual to attack lightly:
it is a substantial challenge that calls for a lot of study waybeyond core Java and
if you decide to try it I suggest you form a small group to work in. Please let me
know of any progress.

2For an extended discussion of the GNU public license and “free” software in general, see
“The Cathedral and the Bazaar” by Eric Raymond[20]. Some of the explanation there makes very
good sense, some seems to me to be silly!

Chapter 7

What you do NOT know yet

These days anybody arranging a lecture course is expected tothink in terms of
aims, objectives and learning outcomes. In particular it isdeemed important to
consider carefully what will be known by students who have taken the course. I
want to take a contrary view: that what is most important to understand is what
you will not know just because you have attended this course and done all the
exercises. I view a recognition of ones limitations as vitalboth for any individual’s
personal integrity and as something that is essential if they are to be productive in
any work environment. So let me start with:

After one course you are not a Java expert. . .

To a large extent you only become an expert in any sort of programming after
you have built up a substantial body of experience working onboth individual and
group projects. Most people can only gain the paranoia aboutbugs and documen-
tation that is really needed via personal involvement in projects that fail horribly!
Most people only gain a proper paranoid attitude to overall system design via per-
sonal involvement in projects that collapse through being inadequately specified,
ill-planned or where project management is not strong enough. The Computer Sci-
ence Tripos provides courses on Software Engineering that document examples of
software disasters and explain the state of the art in avoiding trouble. Despite this
most people view the horror stories as things that happen to “other people” until
it is too late.

Java is an object oriented language. Proper use of it involves obtaining full
leverage from the package, class and inheritance features it provides. This course
has taken the attitude that Object Oriented Design is something that can not be
fully appreciated until you are able to write a range of smallprograms comfort-
ably. So once you have mastered this material it will be proper to re-start Java
from the beginning concentrating on starting the design by planning a class hier-
archy. This has to include careful thought aboutprivate , protected etc class

235

236 CHAPTER 7. WHAT YOU DO NOT KNOW YET

members, and it can involve formal schemes to document structures.
I have explained what packages are, but not discussed the practicalities of

using lots of different packages for your own code. For smallprograms this is
OK, but larger scale work will put more pressure on this side of things.

The Java libraries that support windows have been introduced in a very sketchy
way here. That is because there is a huge amount to understand, and it would not
even start to fit in the time available within the Part IA course. All the issues
of getting pages laid out, controlling multiple windows, organising cut-and-paste
operations and so on take a lot of learning. The most that can be hoped is that this
course has given you a starting point to work from.

When a Java applet is run using a web browser it is subject to a variety of
security limitations. This is so that when some remote user loads a web page
that runs your Java code you can not then steal or destroy information on their
computer. There is an elaborate scheme involving signatures and permissions that
makes it possible for applets to be granted additional privilege, without giving
them total access. Such issues will be important for large-scale Java projects.

Network access and concurrency are both areas where a programmer needs
to absorb quite a lot of additional understanding before they can use Java (or any
other language) in a fully satisfactory manner. It is easy toend up with systems
that can either gum up in deadlock or have different threads create inconsistent
results, and proper recovery after one thread fails or one network link times out
is not at all easy to arrange. The operating systems threads later in the CST have
much to say about the issues and pitfalls involved. The way inwhich Java can
interface to databases may appear straightforward, but competent design of the
database itself needs specialist understanding.

While Java is a pretty respectable general purpose language there are plenty of
areas where simple use of pure Java will prove inadequate. Sometimes however
it will still make sense to implement either the bulk of a program or perhaps just
the user-interface in Java, with some other components in another language. This
raises issues of inter-language working, and serious design challenges in the area
of the inter-language interface.

During this course you have been encouraged to usejavac as your Java com-
piler. For real projects it is almost certain that much more elaborate tools would
be used. These would include ones to manage a chain of versions of code, tools to
generate stylised code for some bits of a user interface, anda variety of debugging
and performance analysis packages.

Actually hardly any programmer, however experienced, willbe a full expert
on all of the above matters. . .

. . . but at least you have taken the first step!

Chapter 8

Model Examination Questions

Some of these are ones I have invented, some have been submitted by members
of the class, while yet more are adjustments of previous examination questions
modified to fit into a Java context. They may not all be normalised for precision
of wording or difficulty, but should give you something to tryyour skills on. I
neither confirm nor deny the possibility that variants on some of these may appear
in this or a future year’s real examination paper. . .

Note also that for the Computer Science Part IA papers there can be full-sized
(ie around 30 mins) questions, half size (around 15 mins) andtiny (about 1 minute)
questions, and some of these fit or could readily be modified tofit several of these
categories.

8.1 Java vs ML

Compare and contrast Java with ML under the following headings

1. Primitive data types;

2. Support for arrays;

3. Support for lists and trees;

4. Functions applicable to several different data-types;

5. Complexity of syntax.

[4 marks per section]

237

238 CHAPTER 8. MODEL EXAMINATION QUESTIONS

8.2 Matrix Class

Design aMatrix class for doing operations onn×n matrices.
The class should include functions for performing matrix multiplication, ad-

dition, and multiplication by scalars (and all matrices maybe supposed to have
elements that are typedouble).

To what extent should other classes have rights to modify individual matrix
elements? Justify your answer.

8.3 Hash Tables

Java allows you to declare arrays with any sort of content — for instanceint ,
double , String or Object , but the value used to index the array is restricted
to being anint . In some applications programmers want structures that behave
like arrays whose subscripts are of typeString . One way of doing this is to
use a structure known as ahash table: Given an index value of typeString an
integer is computed using ahash function. The Java methodhashCode in class
String computes a suitable value. Theint value computed depends only on the
contents of theString , but different strings can be expected to lead to integers
that are uniformly distributed across the whole range that integers cover. This
hash value is reduced modulo the size of a fixed ordinary array, this (almost) lets
the originalString act as an index. The problem that arises is that it could be
that two differentString values hash onto the same location in the array.

This concern can be overcome by making the entries in the array linked lists
of (key, value) pairs, so that the original indexString will match one of the
keystrings and then the associatedvalue is what is stored with it. The method
equals(String s) in classString returns aboolean telling if one string is
equal to another. Storing into a hash table will involve adding a new (key, value)
pair to one of the lists.

Design appropriate data structures and classes for such a table in the case
where the values to be stored are themselves of typeString . Use the following
method signatures in a class calledHashTable :

void put(String key, String value) throws Duplicate;
String get(String key) throws Missing;

where you may assume that the exceptions have already been defined elsewhere.
Note: The Java class-libraries provide a class calledHashMap that does all this

for you! The exercise here in coding it for yourself not something the ordinary
Java programmer ever needs to do!

8.4. COMPASS ROSE 239

8.4 Compass Rose

A Java program to draw compass
roses is needed. In the example
shown the line pointing North is 6
units long, that pointing South is 5,
East and West 4, NE, SE, SW and
NW 3 and NNE, ENE and so on 2
and the rest 1 unit. In general if the
line pointing North isn units long
there will be 2n−1 radial lines in all in
the complete rose. You may assume
that in your Java applet the method
paint will be called when an image
is to be displayed, and it gets passed
an argument of typeGraphics . The
classGraphics has a method called
drawLine that draws a line from
one point to another given four inte-
ger argumentsx1, y1, x2 andy2.

Write two versions of the com-
pass rose applet. The first should use
recursion on the lengthn of a line,
while the second should be iterative.
In the second case it may be useful
to write an auxiliary method that calculates the highest power of two that divides
exactly into a given number.

The length of the North line should be specified as afinal variable in the
class.

8.5 Language Words

In the context of Java, and given that this whole question is supposed to last 30
minutes, explain the following:

• package

• class

• import

• public

240 CHAPTER 8. MODEL EXAMINATION QUESTIONS

• protected

• interface

• static

8.6 Exception abuse

Show how Java exceptions can be used in conjunction with afor loop

1. to simulate the effect of abreak; statement;

2. to simulate the effect of acontinue; statement.

8.7 Queues

A priority queue maintains a list of pairs, each consisting of a priority (an integer)
and a name (aString), sorted into increasing order of priority. Three operations
are required — one that just creates an empty queue, and then one calledinsert

that takes an integer and a string as its arguments and placesthem in the correct
position in the list. Finally a methodnext takes no arguments. It removes the
first pair from the list and returns its text string. It shouldthrow an exception if
the queue is empty when it is called.

Give the definition of a Java class that implements the queue object.

8.8 Loops

Describe the features of Java for controlling the repeated execution of a block of
code.

Show how general uses offor , while anddo could all be emulated using
only loops that start ofwhile (true) .

8.9 Snap

Two identical packs of ordinary playing cards (52 differentcards per pack) are
shuffled and places face downwards on a table. Two players then play a game
of Snap. Each is allocated one pack, and in each turn in the game one card is
turned up. The two upturned cards (one in front of each player) are compared.
If the cards match asnap-turnis declared. A game ends when all 52 cards have
been compared. Being computer scientists rather than five year olds these players

8.10. PARTITIONS 241

just record snap-turns and do not pick up or otherwise disturb the cards when one
occurs!

Write a Java program which will simulate the game for the purposes of deter-
mining the probability of there being at least one snap-turnin a game. You may
assume the existence of a random number generator but must state the properties
of it that you rely on.

8.10 Partitions

Write a program in Java which, given two integer inputsj andk will output the
combinations ofk things partitions intok groups. For instance ifj = 5 andk = 3
the output would be

(5, 0, 0)
(4, 1, 0)
(3, 2, 0)
(3, 1, 1)
(2, 2, 1)

8.11 Laziness

A Java class as follows has been defined

abstract class NextFunction
{

public int next(int n);
}

class Lazy
{

int head;
Lazy tailOrNull;
NextFunction next;
public Lazy(int head, NextFunction next)
{ this.head = head;

this.tailOrNull = null;
this.next = next;

}
public int first() { return head; }
public Lazy tail()
{ if (tailOrNull != null) return tailOrNull;

tailOrNull = new Lazy(next(head), next);

242 CHAPTER 8. MODEL EXAMINATION QUESTIONS

return tailOrNull;
}

}

The idea is to use this to represent lazy lists. In fact the small trick in the
tail function that checks if the successor to a node has already been computed
makes this a good representation. Derive a sub-class fromNextFunction that
overrides thenext method with one that allows you to create a lazy list of inte-
gers(1,2,3,...) . Write code that, when given a lazy list, will print the firstn
integers in it.

Adapt the code so as to create a function that can accept a lazylist and generate
a new lazy list from it that holds values which are the squaresof the ones in
the original list. Thus if passed my first lazy list as an argument this one would
generate(1,4,9,...) .

8.12 Cryptarithmetic

Write a Java program which can solve cryptarithmetic puzzlesin the format of the
sum of two words. For example given the input

SEND
+MORE

MONEY

the program would output

9567
+1085

10652

NB Each letter has to represent a different digit.

8.13 Bandits

In Snoresville in small-town America, there are N bandits, and only one sher-
iff, Sheriff Dozy, who likes to do the minimum amount of work possible. He
knows quite a lot about each of them, to the extent that he knows precisely which
bandits each bandit knows. Soon, $200,000 worth of gold willbe deposited in
Snoresville’s main bank; a very tempting target for the local thieves. Dozy knows
that the defences and procedures are more than good enough toresist attack by

8.13. BANDITS 243

one bandit, and that they can even resist attack by N/3 bandits. He wonders if
some sub-set of the collection of local bandits will manage to gang together to
grab the gold.

1
01 N = 5
111
0101
10011

The friendship data for the bandits can be repre-
sented in the following way: A ‘1’ indicates a friend-
ship with another bandit. If one bandit is known
then he also knows of the bandit who knows him, i.e.
friendship is mutual. Each line ends with a ‘1’ because
each bandit knows himself, obviously. Explain why
the triangular table given is all that’s needed to detail
all the friendships, and show how it can be expanded
into a square to give the friendship data with a row for
each bandit. [2 marks]

Given a global data structure defined as anN by N matrix (int [][]gang),
filled initially with zeros, and whereN is the largest number of bandits to consider,
give two Java procedures:

1. generate() : This should input from the keyboard an integern, and a
floating-pointp. Check thatn is in the range 0< n≤ N, and thatp is a valid
probability between 0 and 1. The procedure should then randomly generate
a triangular table as above, such that the probability of anyof the points
being ‘1’ is p, except for each bandit with himself which should always be
‘1’.

2. square() : This should take the triangular table now ingang from the
generate function and transform it into a square table as discussed earlier. It
should then display the block in a tabular form. [6 marks]

3. A group of bandits is only possible when each bandit knows every other
bandit in the group. In the example given above, what is the group with
largest cardinality? [1 mark]

4. Examine the following pieces of code; the procedurecompare and a frag-
ment of code to show how it is called.

Calling Fragment:

for (i=0;i<n;i++)
{ compare(i,gang[i]);

for(j=0;j<n;j++)
{ gang[i][j]=0;

gang[j][i]=0;
}

244 CHAPTER 8. MODEL EXAMINATION QUESTIONS

}

Main example

int maxgroup[N];
int max=0;
/ *

* NOTE: current[N] is one array of the array of

* arrays gang[N][N]

* /
void compare(int i, int current[N])
{ for (int j=0; j<n; j++) current[j] &= gang[i][j];

for (int k=i+1; k<n; k++)
{ if (current[k]==1)

{ compare(k,current);
current[k]=0;

}
}
if (count(current)>max)
{ max=0;

for (int k=0; k<n; k++)
{ if (current[k]==1) maxgroup[max++]=k;
}

}
}

5. Explain in detail what the functioncompare does, and how it works, paying
special attention to the recursive nature of the procedure and the actions of
the calling fragment, and giving a functioncount which returns the number
of ‘1’s in the array current. [8 marks]

6. Outline a functionmain to bring all this together and for eachN in the range
2 to 20 calculate an average, over 10 tries, of the cardinality, givenp = 0.5,
and display the smallestN for which the cardinality is less thanN/3. This
is the critical number of bandits for the gold safety, and forsheriff Dozy not
to lose his job. [3 marks]

8.14 Exception

Describe some circumstances where it is useful for functions to return errors as
exception, and some where it is not. Give an example of an algorithm which is
simplified by the use of exceptions.

8.15. FEATURES 245

8.15 Features

Write brief notes onfour of the following aspects of Java. In some cases it may be
appropriate to compare what Java does in the situation with other programming
languages such as ML.

1. Using the same name for several different functions;

2. Data types where a single type has several variants;

3. Programs that live in several source files;

4. Inheritance and abstract classes;

5. The degree to which code will behave the same when run on different com-
puters.

8.16 More features

Forfiveof the following Java features write a very short code fragment (it does not
have to be complete, and perhaps 2 or 3 lines will suffice in most of the cases) that
illustrates the syntax involved. In each case explain briefly what your example
achieves.

1. Declaration of constants;

2. Casts between class types;

3. The two styles of comment;

4. Catching an exception;

5. Theswitch statement, including adefault label;

6. Summing all theBigInteger values that are in an array;

7. The classObject .

246 CHAPTER 8. MODEL EXAMINATION QUESTIONS

8.17 Debate

A grand debate is being planned by a society that has among itsmembers a large
number of computer professionals and working programmers.Arthur will pro-
pose a motion “That this house considers ML to be a much betterprogramming
language than Java”, while Larry will lead the opposition under the banner “Java
is the language for any programmer who seeks employment and hence who can
truly be referred to asworking”. Organise the points in support of the two lan-
guages that each proponent will use to justify their position, and identify areas
where they are liable to find common ground.

You are not expected to reach a definite conclusion about which way the vote
will go at the end of the debate: your job is just to collect andorganise the argu-
ments so that comparing and contrasting the merits of the twolanguage becomes
easy.

8.18 Design

You have been invited to start a project to build a program that will check ML pro-
grams to see if they have missing punctuation marks or other mistakes, so that this
check can be performed before the ML code is forwarded for full execution. So
far all you know about what is wanted is the above. Without concerning yourself
with fine detail of how the checking will be implemented, identify and discuss:

1. questions you might want to ask the client organisation about its needs be-
fore deciding on any more details of your design;

2. choices or options available to you when making a detailedproject plan;

3. ways of partitioning the whole job into a handful of separate modules that
could be implemented more or less independently;

4. plans for testing the code you write and determining whether, when notion-
ally finished, it has met its objectives.

8.19 Filter (Coffee?)

The structure of a binary tree containing integers at just some of its leaves could
have been given by the ML typeT defined as follows

datatype T = X | N of int | D of T * T;

8.20. PARSE TREES 247

Define a Java class or set of classes that can be used to represent trees in the
same general form. Then add a methodfilter which uses an integerk and a
tree. Its job is to simplify trees by using the rule that and sub-node (typeN in the
ML declaration) where the integer stored isk gets turned into anX leaf. Then any
node(X,t) , or (t,X) [ie nodes of the ML typeD where one of the sub-trees is
anX] get turned into justt .

Thus for instance ifk = 0 the initial tree((0,0),((2,0),3)) would sim-
plify to just (2,3)

8.20 Parse trees

What does it mean for a Java class to beabstract ?
A Java program includes the following class declarations:

abstract Class Node
{

public int eval();
}
Class Num extends Node
{

int value;
public Num(int value) { this.value = value; }
...

}
Class Op extends Node
{

String sym;
Node left;
Node right;
public Op(String sym, Node left, Node right)
{ this.sym=sym; this.left=left; this.right=right; }
...

}

The objective of the programmer who wrote this was to be able to write assign-
ments such as

test = new Op(" * ", new Num(4),
new Op("-", new Num(7), new Num(2)));

The variabletest is of typeNode which can cover either of the two concrete
cases ofOp(representing a dyadic operator together with its two operands) orNum

248 CHAPTER 8. MODEL EXAMINATION QUESTIONS

(a number). Thus the above assignment sets up a representation of the expression
4∗ (7−2).

The abstract classNode declares a methodeval() . Fill in the dots in the
other two classes with code that overrides this so that calling theeval method on
aNode returns the value of the arithmetic expression is represents, supposing that
the only operators that will be used are plus, minus and times.

8.21 Big Addition

Java comes with a classBigInteger that represents potentially huge numbers.
Suppose it did not, or for some reason you were prohibited from using it but still
needed to work with large positive integers. To fit your needsyou will define a
new class calledBig that stores integers as arrays ofbyte values, where each byte
holds a single decimal digit from the number being used, withthe least significant
digit held at position 0 in the array.

Write a definition of such a class including in it methods to create a big integer
from anint (provided thatint is positive), to add twoBig values together and
to convert from abig to a String ready for printing. You need not implement
any other methods unless they are needed by the ones mentioned here.

8.22 Lists in Java

A list in Java can be represented as a sequence of links. Each link is an object
containing one value in the list and a reference to the rest ofthe list following the
link. A null reference indicates the end of the list.

Write a Java class that can represent such lists, where the items stored in lists
are of typeObject . Provide your implementation with two static public methods
that append lists. The first of these should be calledappend and should take two
arguments, its result should be the concatenation of the twolists and neither input
should be disturbed. The second should be calledconc and should have the same
interface, but it should work by altering the final referencein the first list to point
it towards the second, and it should thus not need to usenew at all.

8.23 Pound, Shillings and Ounces

The Imperial system for Sterling currency was based on thepound, shilling and
penny(plural pence). There were 12 pence in a shilling and 20 shillings in a
pound. A Java class that could store amounts in this format might be

8.24. DETAILS 249

class LSD
{

boolean negative;
int pounds;
int shillings;
int pence;
LSD(boolean m, int l, int s, int d)
{ ... }
...

Adjust or finish off the constructor so that it raises an exception of class
BadInput (which may be supposed to have been defined already) if the input is
invalid, ie unless the number of pence is from 0 to 11 and the number of shillings
from 0 to 19, and the specified number of pounds is positive.

Now you need to provide atoString method in the class that converts cur-
rency into textual form. The following table shows the desired effect when a
number of pence is first converted toLSDand then to a string:

0 ⇒ zero
1 ⇒ 1 penny

10 ⇒ 10 pence
60 ⇒ 5 shillings
80 ⇒ 6 shillings and 8 pence

252 ⇒ 1 pound and 1 shilling
479 ⇒ 1 pound, 19 shillings and 11 pence

1201 ⇒ 5 pounds and 1 penny
2400 ⇒ 10 pounds
-252 ⇒ minus 1 pounds and 1 shilling

Credit will be given for a clearly explained, concise and tidily presented solution.
Minor syntax or punctuation errors in the Java code will not count heavily against
you.

8.24 Details

Give a brief explanation of each of the following aspects of Java

1. The difference between>> and>>>;

2. The possibility that in some program the test(a == a) might return the
valuefalse for some variablea;

3. The keywordsfinal andfinally ;

250 CHAPTER 8. MODEL EXAMINATION QUESTIONS

4. The expression"three" + 3 and other expressions of a generally similar
nature;

5. The meaning of or errors in (whichever case is relevant!)

...
int [10] a;
for (int i=1; i<=10; ++i)

a[i] = 1-a[i];
...

8.25 Name visibility

A complete Java program may use the same name for several different methods or
variables. Java has a number of features that allow the user to prevent such re-use
of names from causing chaos. Describe there under the headings:

1. Scope rules within individual functions; [6]

2. Visibility of method names within classes, and the effects of inheritance; [8]

3. Avoiding ambiguity when referring to the names of classes. [6]

8.26 Several Small Tasks

Write fragments of Java definitions, declarations or code to achieve each of the
following effects. You are not expected to show the whole test of a complete
program — just the parts directly important for the task described, and you may
describe in words rather than Java syntax any supporting definitions or context that
you will want to rely on. Clarity of explanation will viewed asat least as important
as syntactic accuracy in the marking scheme. It is also understood that names of
methods from the standard Java class libraries are things that programmers check
in on-line documentation while writing code, so if you need to use any of these
you do not need to get their names or exact argument-format correct provided
that you (a) describe clearly what you are doing and (b) your use is correct at an
overview level:

1. Take along argument calledx and compute thelong value obtained by
writing the 64 bits ofx in the opposite order; [6]

8.27. SOME TINY QUESTIONS 251

2. Define a class that would be capable of representing simplelinked lists,
where each list-node contains a string. You should show how to traverse
such lists, build them and how to reverse a list. In the case ofthe list revers-
ing code please provide two versions, one of which creates the reversed list
by changing pointers in the input list, and another which leaves the original
list undamaged and allocates fresh space for the reversed version; [8]

3. Cause a line to appear in a the window of an applet running from the bottom
left of the window towards the top right. Your line should remain visible if
the user obscures and then re-displays the window, but you can assume that
the size of the windows concerned will be fixed at 100 by 100 units. [6]

8.27 Some Tiny Questions

1. List the eight Java primitive data types.

2. What result will be printed if the following fragment of Java code is exe-
cuted? Why?

double d = 6.6;
try
{ d = 1.0 / 0.0;
}
finally
{ System.out.println("d = " + d);
}

252 CHAPTER 8. MODEL EXAMINATION QUESTIONS

Figure 8.1: Remember: programming is fun!

Chapter 9

Java 1.5 or 5.0 versus previous
versions

The Java course from 2005 onwards uses a version of Java (and its libraries) that
support a range of things that earlier release did not. The commentary about these
features here is not part of the examinable content of the course, but may help
those who want their code to be backwards compatible, and mayhelp supervisors
understand how features new in 1.5 are relevant in an introductory Java course.

9.1 An enhancedfor loop

New Java allows direct iteration over either arrays or collection types using syntax
along the lines of

for (Type s : arrayOrCollection) use(s)

With previous versions you would need

for (int i=0; i<array.length; i++) use(array[i])

for arrays, or the yet more clumsy

for (Iterator i=collection.iterator(); i.hasNext();)
{ Type s = (Type)i.next();

use(s);
}

There are special delicacies to watch with the use of nested iterations if you
use the old versions, and a strong interaction with the generics feature described
next.

253

254 CHAPTER 9. JAVA 1.5 OR 5.0 VERSUS PREVIOUS VERSIONS

9.2 Generics

Most of the examples that use collections in these notes decorate the type dec-
larations of the collections to show what they contain. For instance there could
be use ofHashMap<String,String> for a HashMap that will only be used
with strings as both they keys and values it stores. With these decorations code
is naturally type-safe. Older Java does not support this. The result is that instead
all generic structures use the fall-backObject type. When data is retrieved from
then the Java type-checker does not know what sort ofObject is being used, and
so casts, involving run-time checks, have to be used.

9.3 assert

Theassert keyword came in with Java 1.4. For use with any earlier version of
Java you must remove them all. Please ensure that your code isfully debugged
first!

9.4 Static imports

If your new code includes a line such asimport java.Math.PI and you then
use the constantPI in your code you will need to remove the import statement
and use the longer nameMath.PI everywhere that you reference it.

9.5 Auto-boxing

With both collections and theprintf facility listed later, you can use the built
in types (eg integers and reals, characters and booleans) without having to worry
too much about special consequences of them being primitivebuilt-in types rather
than part of the Java class system. In older versions of Java this is not the case,
and you need to make much more explicit use of the wrapper classesInteger ,
Double and so on. The effect is much messier code in places! The term “auto-
boxing” refers to the fact that these wrapper classes are still used, and use of a
constructornew Integer(1) is referred to as “boxing” the integer up.

9.6 Enumerations

In Java 1.5 you may have usedenum to introduce a collection of distinct names,
and you may then have used these enumeration values in switchstatements. Be-

9.7. PRINTF 255

fore Java 1.5 you could either use an explicit encoding as integers (which does
not protect you from type errors) or some more elaborate scheme that uses the
class system to protect details of the implementation. In any case the effect is
significantly more clumsy than the new scheme.

9.7 printf

When you look at many existing Java books and sample codes you will see print-
ing done using the idiom

System.out.println("The result is" + i);

where these notes have written something more like

System.out.printf(
"The result is %d (or %<x in hex)%n", i);

These notes have preferred the second if only because the format string item
%dmakes explicit what type of item is being displayed, and so there is an extra
check on internal consistency in your code. Format conversions provide amazing
(and sometimes complicated) levels of refinement in controlling just how simple
information such as numbers are to be laid out. Replicating that control using
the facilities from previous Java releases is tedious and leads to fairly bulky and
unreadable mess.

9.8 Scanner

If you needed to split an input file into words or wanted to readin a simple column
of numbers you may have usedScanner . Beware because it is new and you
would need to do things by hand to if backwards compatibilitywas essential. In
big programsScanner may not matter but I find it jolly handy in all sorts of small
examples.

9.9 Variable numbers of arguments for methods

The smallVarargs facility is something you should probably not often use di-
rectly in your own code, but it is exploited byprintf and friends. The old way
of achieving a similar effect is to make your function acceptan array of items, and
construct a new array to pass arguments in each call you make to it.

256 CHAPTER 9. JAVA 1.5 OR 5.0 VERSUS PREVIOUS VERSIONS

9.10 Annotations

Java 1.5 provides a general framework for adding annotations to your code in a
way that is expected to make it easy for program management tools to extract
them. This is a relative of the notation/ ** that inserts “document comments”
that javadoc can extract. The scheme is not mentioned in this course beyond
the fact that the new-style annotations are introduced by a name preceded by
an at-sign (@), and new styles of annotation can be declared using the keyword
@interface . Any code that has this syntax will need it removed for use with
earlier versions of Java. This will not change the behaviourof the code itself
in any way, but would have an effect on how it could interact with annotation-
processing tools (see the Java documentation for the command apt). For those
who want to investigate further it might be useful to note that the Java reflection
mechanisms can detect when a method defined in a class has beenannotated. A
lot of the time you will not use annotations, but when you do they may be a huge
help and you would hate to go back to a system without them.

9.11 Enhanced concurrency control

For exampleConcurrentHashMap , EnumSet.

Many of the above features interact together so that the savings of using them
combined are even greater than using them one at a time. A consequence of
that is that giving them up would be even more painful than youmight at first
expect. I fully expect to see many of them becoming the standard idiom for Java
programmers in the very near-term future.

Bibliography

[1] Abramowitz and Stegun.Handbook of Mathematical Functions (with for-
mulas, graphs and mathematical tables). Dover, 1965.

[2] David Barnes and Michael K̈olling. Objects First with Java: a Practical
Introduction using BlueJ. Prentice Hall/Pearson, 2 edition, 2005.

[3] Colin Bentley. Introducing SSADM 4+. NCC Blackwell, and also see
http://www.blackwellpublishers.co.uk/ssadmfil.htm , 1996.

[4] Jon Bentley.Programming Pearls. Addison-Wesley, 1986.

[5] Jon Bentley.MoreProgramming Pearls. Addison-Wesley, 1988.

[6] Judy Bishop.Java Gently. Addison Wesley, 3 edition, 2001.

[7] Fred Brookes.The Mythical Man Month. Addison Wesley, 2 edition, 1996.

[8] J. Cameron.JSP and JSD: The Jackson Approach to Software Development.
IEEE Computer Society Press, 1989.

[9] Leiserson Cormen and Rivest.An Introduction to Algorithms. MIT and
McGraw-Hill, 1990.

[10] E. W. Dijkstra.A Discipline of Programming. Prentice-Hall, 1976.

[11] Bruce Eckel.Thinking in Java. Prentice Hall, 1998.

[12] Christopher Essex, Matt Davison, and Christian Schulsky. Numerical mon-
sters.SIGSAM Journal, 34(4):16–32, December 2000.

[13] John McCarthy et al.The Lisp 1.5 Programmer’s manual. MIT Press, 1965.

[14] M. H. Halstead. Elements of Software Science. Elsevier North Holland,
1977.

[15] Henry S Warren Jr.The Hacker’s Delight. Addison Wesley, 2003.

257

258 BIBLIOGRAPHY

[16] Brian W. Kernighan and Dennis M. Richie.The C programming language.
Prentice-Hall, 1978.

[17] Donald E. Knuth. Literate Programming. CSLI Lecture Notes and CUP,
1992.

[18] Steve Maguire.Writing Solid Code. Microsoft Press, 1993.

[19] C.A.R. Hoare O.-J. Dahl, E.W. Dijkstra.Structured Programming. Aca-
demic Press, 1972.

[20] Eric S Raymond.The Cathedral and the Bazaar. O’ Reilly, 1999.

[21] Guy Steele.Common Lisp the Language. Digital Press, 1990.

[22] X3J11. ANSI X3.159, ISO/IEC 9899:1990. American National Standards
Institute, International Standards Organisation, 1990.

Index

3n+1, 90
π, 47
++ and --, 71

abstract, 123
Annotations, 256
Applet, 37
Applet + application, 157
appletviewer, 42
array.length, 62
Arrays, 61
Assert, 254
assert, 88
Auto-boxing, 254
AWT, 155

BigInteger, 98, 147
Binary files, 145
Binary trees, 115
Book-list, 18
Bottom-up implementation, 189
BufferedImage, 57
BufferedReader, 118
Buggy sample code, 211
byte, short, int and long, 52

Capital letters, 65
catch, 87
char, 56
Character escapes, 56
Checking assertions, 88
close a file, 142
Code layout, 33
Collection classes, 150

Colouring by syntax, 38
Colours for drawing, 45
Command-line arguments, 61
Compiling a Java program, 34
Complex numbers, 108
Constructors, 107
Continued fractions, 139
cos, 47
crypto jurisdiction policy files, 148

Default visibility, 122
Designing and testing, 167
Dip. Comp. Sci., 16
Documentation comments, 33
Documenting, 195
Doubles as bit-patterns, 138
Dutch national flag, 67

Eight queens, 81
Emacs, 29, 34
encryption and checksums, 147
Enhancedfor loop, 253
Enumerations, 254
Exam questions, 237
Extended Euclinean algorithm, 84

File access, 140
File object, 144
FileReader, 141
FileWriter, 143
final, 89, 122
finally, 87
float and double, 54
Forests of trees, 79

259

260 INDEX

Game of Life, 80
Generics, 254
getClipBounds, 112
Global Font Lock, 38
goto, 51

Hacker’s Delight, 76
Hakmem, 76
Hello World, 28, 31
Hexadecimal, 54
Hilbert matrix, 68
HTML, 42

IEEE floating point standard, 54
import, 102
import static, 47
Infinities, 54
Inheritance, 115
Initialised arrays, 62
inner class, 156
InputStreamReader, 118
Integer overflow, 52
interface, 124

JApplet, 37
Java 1.5, 253
Java Bean, 106
JLex, 118

Legendre polynomials, 95
line numbers, 147
Lisp in Java, 219
Long integer constants, 53

Mandelbrot set, 110
Menus etc, 155
Mouse co-ordinates, 39
Mouse events, 39
MULDIV, 209
Mystery big decimal, 161

Nancy Silverton, 185
native, 124

Nested scopes, 100
Network programming, 153
new, 63
Newline character, 56
Not a Number, 54

Object, 130
Object as a class, 130
Object oriented, 125
Obtaining Java, 24
Octal, 54
Oz the Werewolf, 11

package, 101
Packages and jar files, 110
paint, 46
parseInt, 118
Pentominoes, 134
Pollard rho, 96
Polynomial manipulation, 93
Portability, 205
printf, 255
Printing floating point values, 56
PrintWriter, 143
private, 122
protected, 122
public, 122
public and private, 101
Puzzle with two flasks, 164

Quicksort, 91

Random numbers, 148
RC4 encryption, 69
read characters, 141
Reflection, 130
Reserved words, 49
Rounding errors, 67
RSA encryption, 160
RSI, 194
Running a simple program, 34

Scanner, 255

INDEX 261

Send more money, 242
set and get methods, 105
Shift operators, 72
Sieve for primes, 77
sin, 47
Sorting, 92
Sprouts, 210
static, 122
static import, 254
StreamTokenizer, 118
String concatenation, 61
Supervisor’s guide, 16
Swing, 155
switch statements, 85
synchronized, 124

tan(x): series, 113
Tar Pits, 169
Ten recommendations, 13
Text editing, 164
this, 108
Threads, 150
throw, 88
Tickable exercise 1, 24
Tickable exercise 2, 43
Tickable exercise 3, 65
Tickable exercise 4, 90
Tickable exercise 5, 93
Tickable exercise 6, 110
Tickable exercise 7, 162
Top-down design, 186
Transpose a matrix, 209
try, 87
Turtle graphics, 46
Two’s complement, 53

Unicode, 57

Varargs, 255
Visibility qualifiers, 120

Walk-through, 193

Webget, 162
Weirdx, 234
Wolves and caribou, 109
Writing programs is easy, 168
Writing programs is fun, 168

Y co-ordinate, 47

zip and unzip files, 147

