
Foundations of Computer Science

Computer Science Tripos Part IA

Lawrence C Paulson
Computer Laboratory
University of Cambridge

lp15@cam.ac.uk

Copyright c© 2005 by Lawrence C. Paulson

Contents

1 Introduction 1

2 Recursive Functions 14

3 O Notation: Estimating Costs in the Limit 25

4 Lists 36

5 More on Lists 46

6 Sorting 56

7 Datatypes and Trees 65

8 Dictionaries and Functional Arrays 78

9 Queues and Search Strategies 87

10 Functions as Values 97

11 List Functionals 108

12 Polynomial Arithmetic 118

13 Sequences, or Lazy Lists 128

14 Elements of Procedural Programming 138

15 Linked Data Structures 149

I Foundations of Computer Science 1

This course has two objectives. First (and obvious) is to teach program-
ming. Second is to present some fundamental principles of computer science,
especially algorithm design. Most students will have some programming ex-
perience already, but there are few people whose programming cannot be
improved through greater knowledge of basic principles. Please bear this
point in mind if you have extensive experience and �nd parts of the course
rather slow.

The programming in this course is based on the language ML and mostly
concerns the functional programming style. Functional programs tend to
be shorter and easier to understand than their counterparts in conventional
languages such as C. In the space of a few weeks, we shall be able to cover
most of the forms of data structures seen in programming. The course also
covers basic methods for estimating e�ciency.

Learning Guide. Suggestions for further reading, discussion topics, ex-
ercises and past exam questions appear at the end of each lecture. Extra
reading is mostly drawn from my book ML for the Working Programmer
(second edition), which also contains many exercises. You can �nd relevant
exam questions in the Part IA papers from 1998 onwards. (Earlier papers
pertain to a predecessor of this course.)

Thanks to David Allsopp, Stuart Becker, Gavin Bierman, Silas Brown,
David Cottingham, Daniel Hulme, Frank King, Joseph Lord, James Mar-
getson, David Morgan and Frank Stajano for pointing out errors in these
notes. Please inform me of further errors and of passages that are particu-
larly hard to understand. If I use your suggestion, I'll acknowledge it in the
next printing.

Reading List

My own book is not based on these notes, but there is some overlap. The
Hansen/Rischel and Ullman books are good alternatives. The Little MLer
is a rather quirky tutorial on recursion and types. See Introduction to Algo-
rithms for O-notation.

• Paulson, Lawrence C. (1996). ML for the Working Programmer. Cam-
bridge University Press (2nd ed.).

• Hansen, Michael and Rischel, Hans (1999) Introduction to Program-
ming Using SML. Addison-Wesley.

• Ullman, Je�rey D. (1998) Elements of ML97 Programming. Prentice
Hall.

• Mattias Felleisen and Daniel P. Friedman (1998). The Little MLer.
MIT Press.

• Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest (1990).
Introduction to Algorithms. MIT Press.

I Foundations of Computer Science 2

Slide 101

Computers: a child can use them; NOBODY can fully understand them!

We can master complexity through levels of abstraction.

Focus on 2 or 3 levels at most!

Recurring issues :

• what services to provide at each level

• how to implement them using lower-level services

• the interface: how the two levels should communicate

A basic concept in computer science is that large systems can only be
understood in levels, with each level further subdivided into functions or
services of some sort. The interface to the higher level should supply the
advertised services. Just as important, it should block access to the means
by which those services are implemented. This abstraction barrier allows
one level to be changed without a�ecting levels above. For example, when
a manufacturer designs a faster version of a processor, it is essential that
existing programs continue to run on it. Any di�erences between the old
and new processors should be invisible to the program.

Modern processors have elaborate speci�cations, which still sometimes
leave out important details. In the old days, you then had to consult the
circuit diagrams.

I Foundations of Computer Science 3

Slide 102

Example I: Dates

Abstract level: names for dates over a certain range

Concrete level: typically 6 characters: YYMMDD

Date crises caused by INADEQUATE internal formats:

• Digital’s PDP-10: using 12-bit dates (good for at most 11 years)

• 2000 crisis: 48 bits could be good for lifetime of universe!

Lessons :

• Information can be represented in many ways.

• Get it wrong, and you will be sorry!

Digital Equipment Corporation's date crisis occurred in 1975. The PDP-
10 was a 36-bit mainframe computer. It represented dates using a 12-bit
format designed for the tiny PDP-8. With 12 bits, one can distinguish 212 =
4096 days or 11 years.

The most common industry format for dates uses six characters: two
for the year, two for the month and two for the day. The most common
�solution� to the year 2000 crisis is to add two further characters, thereby
altering �le sizes. Others have noticed that the existing six characters consist
of 48 bits, already su�cient to represent all dates over the projected lifetime
of the universe:

248 = 2.8× 1014 days = 7.7× 1011 years!

Mathematicians think in terms of unbounded ranges, but the represen-
tation we choose for the computer usually imposes hard limits. A good pro-
gramming language like ML lets one easily change the representation used
in the program. But if �les in the old representation exist all over the place,
there will still be conversion problems. The need for compatibility with older
systems causes problems across the computer industry.

I Foundations of Computer Science 4

Slide 103

Example II: Floating-Point Numbers

Computers have integers like 1066 and reals like 1.066× 103.

A floating-point number is represented by two integers.

Both types come in different precisions: their range and accuracy.

The concept of DATA TYPE comprises

• how a value is represented inside the computer, and

• the suite of operations given to programmers.

Floating point numbers are what you get on any pocket calculator. In-
ternally, a �oat consists of two integers: the mantissa (fractional part) and
the exponent. Complex numbers, consisting of two reals, might be provided.
We have three levels of numbers already!

Most computers give us a choice of precisions, too. In 32-bit precision,
integers typically range from 231 − 1 (namely 2,147,483,647) to −231; reals
are accurate to about six decimal places and can get as large as 1035 or so.
For reals, 64-bit precision is often preferred. How do we keep track of so
many kinds of numbers? If we apply �oating-point arithmetic to an integer,
the result is unde�ned and might even vary from one version of a chip to
another.

Early languages like Fortran required variables to be declared as integer
or real and prevented programmers from mixing both kinds of number in
a computation. Nowadays, programs handle many di�erent kinds of data,
including text and symbols. Modern languages use the concept of data type
to ensure that a datum undergoes only those operations that are meaningful
for it.

Inside the computer, all data are stored as bits. Determining which type
a particular bit pattern belongs to is impossible unless some bits have been
set aside for that very purpose (as in languages like Lisp and Prolog). In
most languages, the compiler uses types to generate correct machine code,
and types are not stored during program execution.

I Foundations of Computer Science 5

Slide 104

Some Abstraction Levels in a Computer

programmer

high-level language

operating system

device drivers, . . .

machine language

registers & processors

gates

silicon

These are just some of the levels that might be identi�ed in a computer.
Most large-scale systems are themselves divided into levels. For example,
a management information system may consist of several database systems
bolted together more-or-less elegantly.

This is the programmer's view. The user sees a di�erent hierarchy, de-
termined by the separate application programs, the operating system, and
the visible hardware such as the screen and DVD-writer. Home comput-
ers are possible because the user's view can be so much simpler than the
programmer's.

Communications protocols used on the Internet encompass several layers.
Each layer has a di�erent task, such as making unreliable links reliable (by
trying again if a transmission is not acknowledged) and making insecure
links secure (using cryptography). It sounds complicated, but the necessary
software can be found on many personal computers.

In this course, we focus almost entirely on programming in a high-level
language: ML.

I Foundations of Computer Science 6

Slide 105

What is Programming?

• to describe a computation so that it can be done mechanically :

—Expressions compute values.

—Commands cause effects.

• to do so efficiently , in both coding & execution

• to do so CORRECTLY, solving the right problem

• to allow easy modification as needs change

• to give LARGE programs a rational structure that others can

comprehend and extend

Programming in-the-small concerns the writing of code to do simple,
clearly de�ned tasks. Programs provide expressions for describing mathe-
matical formulae and so forth. (This was the original contribution of For-
tran, the formula translator. Commands describe how control should
�ow from one part of the program to the next.

As we code layer upon layer in the usual way, we eventually �nd ourselves
programming in-the-large: joining large modules to solve some possibly ill-
de�ned task. It becomes a challenge if the modules were never intended to
work together in the �rst place.

Programmers need a variety of skills:

• to communicate requirements, so they solve the right problem

• to analyze problems, breaking them down into smaller parts

• to organize solutions sensibly, so that they can be understood and
modi�ed

• to estimate costs, knowing in advance whether a given approach is
feasible

• to use mathematics to arrive at correct and simple solutions

We shall look at all these points during the course, though programs will be
too simple to have much risk of getting the requirements wrong.

I Foundations of Computer Science 7

Slide 106

Abstraction in Programming

• Application Programming Interfaces, or APIs (Windows, Mac) :

—controlled access to operating systems facilities, etc.

• Modules (ML and many post-1980 languages) :

—controlled access to a body of code

• Abstract Data Types, or ADTs (various early languages) :

—controlled access to a hidden data structure

• Classes and objects: (Java, C++, Smalltalk, . . .)

—intermixed data structures and code

—built into elaborate hierarchies

Each of these mechanisms has a common purpose: to provide services to
programmers while hiding the details of how those services are implemented.
Forcing programmers to use a standard interface helps to ensure that the
system will still work if the implementation changes.

Software that refers to the Windows APIs can be expected to run on
many di�erent versions of Windows that have major internal di�erences. An
API might provide routines to delete a �le or to draw a menu.

Programming languages have used various mechanisms to allow one part
of the program to provide APIs to other parts. Modules encapsulate a body
of code, allowing outside access only through a programmer-de�ned interface.
Abstract Data Types are a simpler version of this concept, which implement
a single concept such as dates or �oating-point numbers.

Object-oriented programming is the latest and most complicated approach
to modularity. Classes de�ne concepts, and they can be built upon other
classes. Operations can be de�ned that work in appropriately specialized
ways on a family of related classes. Objects are instances of classes and hold
the data that is being manipulated.

This course does not cover Standard ML's sophisticated module system,
which can do many of the same things as classes. You will learn all about
objects in the Java course.

I Foundations of Computer Science 8

Slide 107

Floating-Point, Revisited

Results are ALWAYS wrong—do we know how wrong?

Von Neumann doubted whether its benefits outweighed its COSTS!

Lessons :

• Innovations are often derided as luxuries for lazy people.

• Their HIDDEN COSTS can be worse than the obvious ones.

• luxuries often become necessities.

Floating-point is the basis for numerical computation: indispensable for
science and engineering. Now read this [4, page 97]

It would therefore seem to us not at all clear whether the modest

advantages of a �oating binary point o�set the loss of memory capacity

and the increased complexity of the arithmetic and control circuits.

Von Neumann was one of the greatest �gures in the early days of computing.
How could he get it so wrong? It happens again and again:

• Time-sharing (supporting multiple interactive sessions, as on thor) was
for people too lazy to queue up holding decks of punched cards.

• Automatic storage management (usually called garbage collection) was
for people too lazy to do the job themselves.

• Screen editors were for people too lazy to use line-oriented editors.

To be fair, some innovations became established only after hardware advances
reduced their costs.

Floating-point arithmetic is used, for example, to design aircraft�but
would you �y in one? Code can be correct assuming exact arithmetic but
deliver, under �oating-point, wildly inaccurate results. The risk of error
outweighs the increased complexity of the circuits: a hidden cost!

As it happens, there are methods for determining how accurate our an-
swers are. A professional programmer will use them.

I Foundations of Computer Science 9

Slide 108

Why Program in ML?

It is interactive.

It has a flexible notion of data type.

It hides the underlying hardware: no crashes.

Programs can easily be understood mathematically.

It distinguishes naming something from UPDATING MEMORY.

It manages storage for us.

ML is the outcome of years of research into programming languages. It
is unique among languages to be de�ned using a mathematical formalism
(an operational semantics) that is both precise and comprehensible. Several
commercially supported compilers are available, and thanks to the formal
de�nition, there are remarkably few incompatibilities among them.

Because of its connection to mathematics, ML programs can be designed
and understood without thinking in detail about how the computer will run
them. Although a program can abort, it cannot crash: it remains under the
control of the ML system. It still achieves respectable e�ciency and pro-
vides lower-level primitives for those who need them. Most other languages
allow direct access to the underlying machine and even try to execute illegal
operations, causing crashes.

The only way to learn programming is by writing and running programs.
If you have a computer, install ML on it. I recommend Moscow ML,1 which
runs on PCs, Macintoshes and Unix and is fast and small. It comes with
extensive libraries and supports the full language except for some aspects of
modules, which are not covered in this course. Moscow ML is also available
under PWF.

Cambridge ML is an alternative. It provides a Windows-based interface
(due to Arthur Norman), but the compiler itself is the old Edinburgh ML,
which is slow and buggy. It supports an out-of-date version of ML: many of
the examples in my book [13] will not work.

1http://www.dina.kvl.dk/~sestoft/mosml.html

I Foundations of Computer Science 10

Slide 109

The Area of a Circle: A = πr2

val pi = 3.14159;

> val pi = 3.14159 : real

pi * 1.5 * 1.5;

> val it = 7.0685775 : real

fun area (r) = pi * r * r;

> val area = fn : real -> real

area 2.0;

> val it = 12.56636 : real

The �rst line of this simple ML session is a value declaration. It makes
the name pi stand for the real number 3.14159. (Such names are called iden-
ti�ers.) ML echoes the name (pi) and type (real) of the declared identi�er.

The second line computes the area of the circle with radius 1.5 using the
formula A = πr2. We use pi as an abbreviation for 3.14159. Multiplication
is expressed using *, which is called an in�x operator because it is written
between its two operands.

ML replies with the computed value (about 7.07) and its type (again
real). Strictly speaking, we have declared the identi�er it, which ML pro-
vides to let us refer to the value of the last expression entered at top level.

To work abstractly, we should provide the service �compute the area of
a circle,� so that we no longer need to remember the formula. So, the third
line declares the function area. Given any real number r, it returns another
real number, computed using the area formula; note that the function has
type real->real.

The fourth line calls function area supplying 2.0 as the argument. A
circle of radius 2 has an area of about 12.6. Note that the brackets around
a function's argument are optional, both in declaration and in use.

The function uses pi to stand for 3.14159. Unlike what you may have
seen in other programming languages, pi cannot be �assigned to� or otherwise
updated. Its meaning within area will persist even if we issue a new val

declaration for pi afterwards.

I Foundations of Computer Science 11

Slide 110

Integers; Multiple Arguments & Results

fun toSeconds (mins, secs) = secs + 60 * mins;

> val toSeconds = fn : int * int -> int

fun fromSeconds s = (s div 60, s mod 60);

> val fromSeconds = fn : int -> int * int

toSeconds (5,7);

> val it = 307 : int

fromSeconds it;

> val it = (5, 7) : int * int

Given that there are 60 seconds in a minute, how many seconds are
there in m minutes and s seconds? Function toSeconds performs the trivial
calculation. It takes a pair of arguments, enclosed in brackets.

We are now using integers. The integer sixty is written 60; the real
sixty would be written 60.0. The multiplication operator, *, is used for
type int as well as real: it is overloaded. The addition operator, +, is
also overloaded. As in most programming languages, multiplication (and
division) have precedence over addition (and subtraction): we may write

secs+60*mins instead of secs+(60*mins)

The inverse of toSeconds demonstrates the in�x operators div and mod,
which express integer division and remainder. Function fromSeconds returns
a pair of results, again enclosed in brackets.

Carefully observe the types of the two functions:

toSeconds : int * int -> int

fromSeconds : int -> int * int

They tell us that toSeconds maps a pair of integers to an integer, while
fromSeconds maps an integer to a pair of integers. In a similar fashion, an
ML function may take any number of arguments and return any number of
results, possibly of di�erent types.

I Foundations of Computer Science 12

Slide 111

Summary of ML’s numeric types

int : the integers

• constants 0 1 ~1 2 ~2 0032 . . .

• infixes + - * div mod

real : the floating-point numbers

• constants 0.0 ~1.414 3.94e~7 . . .

• infixes + - * /

• functions Math.sqrt Math.sin Math.ln . . .

The underlined symbols val and fun are keywords: they may not be used
as identi�ers. Here is a complete list of ML's keywords.

abstype and andalso as case datatype do else end eqtype exception

fn fun functor handle if in include infix infixr let local

nonfix of op open orelse raise rec

sharing sig signature struct structure

then type val where while with withtype

The negation of x is written ~x rather than -x, please note. Most lan-
guages use the same symbol for minus and subtraction, but ML regards all
operators, whether in�x or not, as functions. Subtraction takes a pair of
numbers, but minus takes a single number; they are distinct functions and
must have distinct names. Similarly, we may not write +x.

Computer numbers have a �nite range, which if exceeded gives rise to an
Over�ow error. Some ML systems can represent integers of arbitrary size.

If integers and reals must be combined in a calculation, ML provides
functions to convert between them:

real : int -> real convert an integer to the corresponding real

floor : real -> int convert a real to the greatest integer not exceeding it

ML's libraries are organized using modules, so we use compound identi-
�ers such as Math.sqrt to refer to library functions. In Moscow ML, library
units are loaded by commands such as load"Math";. There are thousands of
library functions, including text-processing and operating systems functions
in addition to the usual numerical ones.

I Foundations of Computer Science 13

For more details on ML's syntax, please consult a textbook. Mine [13]
and Wikström's [16] may be found in many College libraries. Ullman [15],
in the Computer Lab library, is also worth a look.

Learning guide. Related material is in ML for the Working Programmer ,
pages 1�47, and especially 17�32.

Exercise 1.1 One solution to the year 2000 bug involves storing years as
two digits, but interpreting them such that 50 means 1950 and 49 means
2049. Comment on the merits and demerits of this approach.

Exercise 1.2 Using the date representation of the previous exercise, code
ML functions to (a) compare two years (b) add/subtract some given number
of years from another year. (You may need to look ahead to the next lecture
for ML's comparison operators.)

II Foundations of Computer Science 14

Slide 201

Raising a Number to a Power

fun npower(x,n) : real =

if n=0

then 1.0

else x * npower(x, n-1);

> val npower = fn : real * int -> real

Mathematical Justification (for x 6= 0):

x0 = 1

xn+1 = x× xn.

The function npower raises its real argument x to the power n, a non-
negative integer. The function is recursive: it calls itself. This concept
should be familiar from mathematics, since exponentiation is de�ned by the
rules shown above. The ML programmer uses recursion heavily.

For n ≥ 0, the equation xn+1 = x× xn yields an obvious computation:

x3 = x× x2 = x× x× x1 = x× x× x× x0 = x× x× x.

The equation clearly holds even for negative n. However, the corresponding
computation runs forever:

x−1 = x× x−2 = x× x× x−3 = · · ·

Now for a tiresome but necessary aside. In most languages, the types of
arguments and results must always be speci�ed. ML is unusual in providing
type inference: it normally works out the types for itself. However, sometimes
ML needs a hint; function npower has a type constraint to say its result is
real. Such constraints are required when overloading would otherwise make
a function's type ambiguous. ML chooses type int by default or, in earlier
versions, prints an error message.

Despite the best e�orts of language designers, all programming languages
have trouble points such as these. Typically, they are compromises caused
by trying to get the best of both worlds, here type inference and overloading.

II Foundations of Computer Science 15

Slide 202

An Aside: Overloading

Functions defined for both int and real :

• operators ~ + - *

• relations < <= > >=

The type checker requires help! — a type constraint

fun square (x) = x * x; AMBIGUOUS

fun square (x:real) = x * x; Clear

Nearly all programming languages overload the arithmetic operators. We
don't want to have di�erent operators for each type of number! Some lan-
guages have just one type of number, converting automatically between dif-
ferent formats; this is slow and could lead to unexpected rounding errors.

Type constraints are allowed almost anywhere. We can put one on any
occurrence of x in the function. We can constrain the function's result:

fun square x = x * x : real;

fun square x : real = x * x;

ML treats the equality test specially. Expressions like

if x=y then ...

are �ne provided x and y have the same type and equality testing is possible
for that type.1

Note that x <> y is ML for x 6= y.

1All the types that we shall see for some time admit equality testing. Moscow ML

allows even equality testing of reals, which is forbidden in the latest version of the ML

library. Some compilers may insist that you write Real.==(x,y).

II Foundations of Computer Science 16

Slide 203

Conditional Expressions and Type bool

if b then x else y

not (b) negation of b

p andalso q ≡ if p then q else false

p orelse q ≡ if p then true else q

A Boolean-valued function!

fun even n = (n mod 2 = 0);

> val even = fn : int -> bool

A characteristic feature of the computer is its ability to test for condi-
tions and act accordingly. In the early days, a program might jump to a
given address depending on the sign of some number. Later, John McCarthy
de�ned the conditional expression to satisfy

(if true then x else y) = x

(if false then x else y) = y

ML evaluates the expression if B then E1 else E2 by �rst evaluating B.
If the result is true then ML evaluates E1 and otherwise E2. Only one of
the two expressions E1 and E2 is evaluated! If both were evaluated, then
recursive functions like npower above would run forever.

The if-expression is governed by an expression of type bool, whose two
values are true and false. In modern programming languages, tests are not
built into �conditional branch� constructs but have an independent status.

Tests, or Boolean expressions, can be expressed using relational opera-
tors such as < and =. They can be combined using the Boolean operators
for negation (not), conjunction (andalso) and disjunction (orelse). New
properties can be declared as functions, e.g. to test whether an integer is
even.

Note. The andalso and orelse operators evaluate their second operand
only if necessary. They cannot be de�ned as functions: ML functions evalu-
ate all their arguments. (In ML, any two-argument function can be turned
into an in�x operator.)

II Foundations of Computer Science 17

Slide 204

Raising a Number to a Power, Revisited

fun power(x,n) : real =

if n=1 then x

else if even n then power(x * x, n div 2)

else x * power(x * x, n div 2)

Mathematical Justification:

x1 = x

x2n = (x2)n

x2n+1 = x× (x2)n.

For large n, computing powers using xn+1 = x × xn is too slow to be
practical. The equations above are much faster:

212 = 46 = 163 = 16× 2561 = 16× 256 = 4096.

Instead of n multiplications, we need at most 2 lg n multiplications, where
lg n is the logarithm of n to the base 2.

We use the function even, declared previously, to test whether the expo-
nent is even. Integer division (div) truncates its result to an integer: dividing
2n + 1 by 2 yields n.

A recurrence is a useful computation rule only if it is bound to terminate.
If n > 0 then n is smaller than both 2n and 2n + 1. After enough recursive
calls, the exponent will be reduced to 1. The equations also hold if n ≤ 0,
but the corresponding computation runs forever.

Our reasoning assumes arithmetic to be exact ; fortunately, the calculation
is well-behaved using �oating-point.

II Foundations of Computer Science 18

Slide 205

Expression Evaluation

E0 ⇒ E1 ⇒ · · · ⇒ En ⇒ v

Sample evaluation for power :

power(2, 12) ⇒ power(4, 6)

⇒ power(16, 3)

⇒ 16× power(256, 1)

⇒ 16× 256 ⇒ 4096.

Starting with E0, the expression Ei is reduced to Ei+1 until this process
concludes with a value v. A value is something like a number that cannot
be further reduced.

We write E ⇒ E′ to say that E is reduced to E′. Mathematically, they
are equal: E = E′, but the computation goes from E to E′ and never the
other way around.

Evaluation concerns only expressions and the values they return. This
view of computation may seem to be too narrow. It is certainly far removed
from computer hardware, but that can be seen as an advantage. For the
traditional concept of computing solutions to problems, expression evaluation
is entirely adequate.

Computers also interact with the outside world. For a start, they need
some means of accepting problems and delivering solutions. Many computer
systems monitor and control industrial processes. This role of computers
is familiar now, but was never envisaged at �rst. Modelling it requires a
notion of states that can be observed and changed. Then we can consider
updating the state by assigning to variables or performing input/output,
�nally arriving at conventional programs (familiar to those of you who know
C, for instance) that consist of commands.

For now, we remain at the level of expressions, which is usually termed
functional programming.

II Foundations of Computer Science 19

Slide 206

Example: Summing the First n Integers

fun nsum n =

if n=0 then 0

else n + nsum (n-1);

> val nsum = fn: int -> int

nsum 3 ⇒3 + nsum 2

⇒3 + (2 + nsum 1)

⇒3 + (2 + (1 + nsum 0))

⇒3 + (2 + (1 + 0)) ⇒ . . . ⇒ 6

The function call nsumn computes the sum 1 + · · · + n rather naïvely,
hence the initial n in its name. The nesting of parentheses is not just an
artifact of our notation; it indicates a real problem. The function gathers
up a collection of numbers, but none of the additions can be performed until
nsum 0 is reached. Meanwhile, the computer must store the numbers in an
internal data structure, typically the stack. For large n, say nsum 10000, the
computation might fail due to stack over�ow.

We all know that the additions can be performed as we go along. How
do we make the computer do that?

II Foundations of Computer Science 20

Slide 207

Iteratively Summing the First n Integers

fun summing (n,total) =

if n=0 then total

else summing (n-1, n + total);

> val summing = fn : int * int -> int

summing (3, 0) ⇒summing (2, 3)

⇒summing (1, 5)

⇒summing (0, 6) ⇒ 6

Function summing takes an additional argument: a running total. If n
is zero then it returns the running total; otherwise, summing adds to it and
continues. The recursive calls do not nest; the additions are done immedi-
ately.

A recursive function whose computation does not nest is called iterative
or tail-recursive. Many functions can be made iterative by introducing an
argument analogous to total, which is often called an accumulator.

The gain in e�ciency is sometimes worthwhile and sometimes not. The
function power is not iterative because nesting occurs whenever the exponent
is odd. Adding a third argument makes it iterative, but the change compli-
cates the function and the gain in e�ciency is minute; for 32-bit integers,
the maximum possible nesting is 30 for the exponent 231 − 1.

II Foundations of Computer Science 21

Slide 208

Recursion Versus Iteration: Some Comments

Iterative normally refers to a loop—coded using while , for instance.

Tail-recursion is efficient only if the compiler detects it.

Mainly it saves space, though iterative code can run faster.

DON’T make programs iterative unless the gain is significant.

• People fought to give recursion to programmers: first, in Algol-60.

• Your code may turn into a mess!

A classic book by Abelson and Sussman [1] used iterative to mean tail-
recursive. It describes the Lisp dialect known as Scheme. Iterative functions
produce computations resembling those that can be done using while-loops
in conventional languages.

Many algorithms can be expressed naturally using recursion, but only
awkwardly using iteration. There is a story that Dijkstra sneaked recursion
into Algol-60 by inserting the words �any other occurrence of the procedure
name denotes execution of the procedure�. By not using the word �recursion�,
he managed to slip this amendment past sceptical colleagues.

Obsession with tail recursion leads to a coding style in which functions
have many more arguments than necessary. Write straightforward code �rst,
avoiding only gross ine�ciency. If the program turns out to be too slow,
tools are available for pinpointing the cause. Always remember KISS (Keep
It Simple, Stupid).

I hope you have all noticed by now that the summation can be done even
more e�ciently using the arithmetic progression formula

1 + · · ·+ n = n(n + 1)/2.

II Foundations of Computer Science 22

Slide 209

Computing Square Roots: Newton-Raphson

xi+1 =
a/xi + xi

2
fun nextApprox (a,x) = (a/x + x) / 2.0;

> nextApprox = fn : real * real -> real

nextApprox (2.0, 1.5);

> val it = 1.41666666667 : real

nextApprox (2.0, it);

> val it = 1.41421568627 : real

nextApprox (2.0, it);

> val it = 1.41421356237 : real

Now, let us look at a di�erent sort of algorithm. The Newton-Raphson
method is a highly e�ective means of �nding roots of equations. It is used in
numerical libraries to compute many standard functions, and in hardware,
to compute reciprocals.

Starting with an approximation x0, compute new ones x1, x2, . . . , using
a formula obtained from the equation to be solved. Provided the initial guess
is su�ciently close to the root, the new approximations will converge to it
rapidly.

The formula shown above computes the square root of a. The ML session
demonstrates the computation of

√
2. Starting with the guess x0 = 1.5, we

reach by x3 the square root in full machine precision. Continuing the session
a bit longer reveals that the convergence has occurred, with x4 = x3:

nextApprox (2.0, it);

> val it = 1.41421356237 : real

it*it;

> val it = 2.0 : real

II Foundations of Computer Science 23

Slide 210

A Square Root Function

fun findRoot (a, x, epsilon) =

let val nextx = (a/x + x) / 2.0

in

if abs(x-nextx) < epsilon * x then nextx

else findRoot (a, nextx, epsilon)

end;

fun sqrt a = findRoot (a, 1.0, 1.0E~10);

> sqrt = fn : real -> real

sqrt 64.0;

> val it = 8.0 : real

The function findRoot applies Newton-Raphson to compute the square
root of a, starting with the initial guess x, with relative accuracy ε. It
terminates when successive approximations are within the tolerance εx, more
precisely, when |xi − xi+1| < εx.

This recursive function di�ers fundamentally from previous ones like
power and summing. For those, we can easily put a bound on the number
of steps they will take, and their result is exact. For findRoot, determin-
ing how many steps are required for convergence is hard. It might oscillate
between two approximations that di�er in their last bit.

Observe how nextx is declared as the next approximation. This value
is used three times but computed only once. In general, let D in E end

declares the items in D but makes them visible only in the expression E.
(Recall that identi�ers declared using val cannot be assigned to.)

Function sqrt makes an initial guess of 1.0. A practical application of
Newton-Raphson gets the initial approximation from a table. Indexed by say
eight bits taken from a, the table would have only 256 entries. A good initial
guess ensures convergence within a predetermined number of steps, typically
two or three. The loop becomes straight-line code with no convergence test.

II Foundations of Computer Science 24

Learning guide. Related material is in ML for the Working Programmer ,
pages 48�58. The material on type checking (pages 63�67) may interest the
more enthusiastic student.

Exercise 2.1 Code an iterative version of the function power.

Exercise 2.2 Try using xi+1 = xi(2 − xia) to compute 1/a. Unless the
initial approximation x0 is good, it might not converge at all. (Pierre Jouet
and Stefan Renold note that if a > 0 then the sequence converges if and only
if 0 < x0 < 2/a.)

Exercise 2.3 Functions npower and power both have type constraints,
but only one of them actually needs it. Try to work out which function does
not needs its type constraint merely by looking at its declaration.

III Foundations of Computer Science 25

Slide 301

A Silly Square Root Function

fun nthApprox (a,x,n) =

if n=0

then x

else (a / nthApprox(a,x,n-1) +

nthApprox(a,x,n-1))

/ 2.0;

The function calls itself 2n times!

Bigger inputs mean higher costs—but what’s the growth rate?

The purpose of nthApprox is to compute xn from the initial approxima-
tion x0 using the Newton-Raphson formula xi+1 = (a/xi +xi)/2. Repeating
the recursive call�and therefore the computation�is obviously wasteful.
The repetition can be eliminated using let val...in E end. Better still
is to call the function nextApprox, utilizing an existing abstraction.

Fast hardware does not make good algorithms unnecessary. On the con-
trary, faster hardware magni�es the superiority of better algorithms. Typ-
ically, we want to handle the largest inputs possible. If we buy a machine
that is twice as powerful as our old one, how much can the input to our
function be increased? With nthApprox, we can only go from n to n + 1.
We are limited to this modest increase because the function's running time
is proportional to 2n. With the function npower, de�ned in Lect. 2, we can
go from n to 2n: we can handle problems twice as big. With power we can
do much better still, going from n to n2.

Asymptotic complexity refers to how costs grow with increasing inputs.
Costs usually refer to time or space. Space complexity can never exceed time
complexity, for it takes time to do anything with the space. Time complexity
often greatly exceeds space complexity.

This lecture considers how to estimate various costs associated with a pro-
gram. A brief introduction to a di�cult subject, it draws upon the excellent
texts Concrete Mathematics [6] and Introduction to Algorithms [5].

III Foundations of Computer Science 26

Slide 302

Some Illustrative Figures

complexity 1 second 1 minute 1 hour gain

n 1000 60,000 3,600,000 ×60

n lg n 140 4,893 200,000 ×41

n2 31 244 1,897 ×8

n3 10 39 153 ×4

2n 9 15 21 +6

complexity = milliseconds needed for an input of size n

This table (excerpted from Aho et al. [2, page 3]) illustrates the e�ect
of various time complexities. The left-hand column indicates how many
milliseconds are required to process an input of size n. The other entries
show the maximum size of n that can be processed in the given time (one
second, minute or hour).

The table illustrates how how large an input can be processed as a func-
tion of time. As we increase the computer time per input from one second to
one minute and then to one hour, the size of the input increases accordingly.

The top two rows (complexities n and n lg n) increase rapidly: for n, by
a factor of 60. The bottom two start out close together, but n3 (which grows
by a factor of 3.9) pulls well away from 2n (whose growth is only additive).
If an algorithm's complexity is exponential then it can never handle large
inputs, even if it is given huge resources. On the other hand, suppose the
complexity has the form nc, where c is a constant. (We say the complexity
is polynomial.) Doubling the argument then increases the cost by a constant
factor. That is much better, though if c > 3 the algorithm may not be
considered practical.

Exercise 3.1 Add a column to the table with the heading 60 hours.

III Foundations of Computer Science 27

Slide 303

Comparing Algorithms

Look at the most significant term.

Ignore constant factors:

• They are seldom important.

• They depend on ephemeral details such as computer brand.

Example: consider n2 instead of 3n2 + 34n + 433.

The cost of a program is usually a complicated formula. Often we should
consider only the most signi�cant term. If the cost is n2 + 99n + 900 for an
input of size n, then the n2 term will eventually dominate, even though 99n
is bigger for n < 99. The constant term 900 may look big, but as n increases
it rapidly becomes insigni�cant.

Constant factors in costs are often ignored. For one thing, they seldom
make a di�erence: 100n2 will be better than n3 in the long run. Only if the
leading terms are otherwise identical do constant factors become important.
But there is a second di�culty: constant factors are seldom reliable. They
depend upon details such as which hardware, operating system or program-
ming language is being used. By ignoring constant factors, we can make
comparisons between algorithms that remain valid in a broad range of cir-
cumstances.

In practice, constant factors sometimes matter. If an algorithm is too
complicated, its costs will include a large constant factor. In the case of mul-
tiplication, the theoretically fastest algorithm catches up with the standard
one only for enormous values of n.

III Foundations of Computer Science 28

Slide 304

O Notation (And Friends)

f(n) = O(g(n)) provided |f(n)| ≤ c|g(n)|

• for some constant c

• and all sufficiently large n.

f(n) = O(g(n)) means g is an upper bound on f

f(n) = Ω(g(n)) means g is an lower bound on f

f(n) = Θ(g(n)) means g gives exact bounds on f

The `Big O' notation is commonly used to describe e�ciency�to be pre-
cise, asymptotic complexity. It concerns the limit of a function as its argu-
ment tends to in�nity. It is an abstraction that meets the informal criteria
that we have just discussed.

In the de�nition, su�ciently large means there is some constant n0 such
that |f(n)| ≤ c|g(n)| for all n greater than n0. The role of n0 is to ignore
�nitely many exceptions to the bound, such as the cases when 99n exceeds n2.
The notation also ignores constant factors such as c. We may use a di�erent
c and n0 with each f .

The standard notation f(n) = O(g(n)) is misleading: this is no equation.
Please use common sense. From f(n) = O(n) and f ′(n) = O(n) we cannot
infer f(n) = f ′(n).

Note that f(n) = O(g(n)) gives an upper bound on f in terms of g. To
specify a lower bound, we have the dual notation

f(n) = Ω(g(n)) ⇐⇒ |f(n)| ≥ c|g(n))|

for some constant c and all su�ciently large n. The conjunction of f(n) =
O(g(n)) and f(n) = Ω(g(n)) is written f(n) = Θ(g(n)).

People often use O(g(n)) as if it gave a tight bound, confusing it with
Θ(g(n)). Since O(g(n)) gives an upper bound, if f(n) = O(n) then also
f(n) = O(n2). Tricky examination questions exploit this fact.

III Foundations of Computer Science 29

Slide 305

Simple Facts About O Notation

O(2g(n)) is the same as O(g(n))

O(log10 n) is the same as O(lnn)

O(n2 + 50n + 36) is the same as O(n2)

O(n2) is contained in O(n3)

O(2n) is contained in O(3n)

O(log n) is contained in O(
√

n)

O notation lets us reason about the costs of algorithms easily.

• Constant factors such as the 2 in O(2g(n)) drop out: we can use
O(g(n)) with twice the value of c in the de�nition.

• Because constant factors drop out, the base of logarithms is irrelevant.

• Insigni�cant terms drop out. To see that O(n2 +50n +36) is the same
as O(n2), consider the value of n0 needed in f(n) = O(n2 + 50n + 36).
Using the law (n + k)2 = n2 + 2nk + k2, it is easy to check that using
n0 + 25 for n0 and keeping the same value of c gives f(n) = O(n2).

If c and d are constants (that is, they are independent of n) with 0 < c < d
then

O(nc) is contained in O(nd)
O(cn) is contained in O(dn)

O(log n) is contained in O(nc)

To say that O(cn) is contained in O(dn) means that the former gives a tighter
bound than the latter. For example, if f(n) = O(2n) then f(n) = O(3n)
trivially, but the converse does not hold.

III Foundations of Computer Science 30

Slide 306

Common Complexity Classes

O(1) constant

O(log n) logarithmic

O(n) linear

O(n log n) quasi-linear

O(n2) quadratic

O(n3) cubic

O(an) exponential (for fixed a)

Logarithms grow very slowly, so O(log n) complexity is excellent. Because
O notation ignores constant factors, the base of the logarithm is irrelevant!

Under linear we might mention O(n log n), which occasionally is called
quasi-linear, and which scales up well for large n.

An example of quadratic complexity is matrix addition: forming the sum
of two n× n matrices obviously takes n2 additions. Matrix multiplication is
of cubic complexity, which limits the size of matrices that we can multiply
in reasonable time. An O(n2.81) algorithm exists, but it is too complicated
to be of much use, even though it is theoretically better.

An exponential growth rate such as 2n restricts us to small values of n.
Already with n = 20 the cost exceeds one million. However, the worst case
might not arise in normal practice. ML type-checking is exponential in the
worst case, but not for ordinary programs.

III Foundations of Computer Science 31

Slide 307

Sample Costs in O Notation

function time space

npower , nsum O(n) O(n)

summing O(n) O(1)

n(n + 1)/2 O(1) O(1)

power O(log n) O(log n)

nthApprox O(2n) O(n)

Recall (Lect. 2) that npower computes xn by repeated multiplication
while nsum naïvely computes the sum 1 + · · ·+ n. Each obviously performs
O(n) arithmetic operations. Because they are not tail recursive, their use of
space is also O(n). The function summing is a version of nsum with an accu-
mulating argument; its iterative behaviour lets it work in constant space. O
notation spares us from having to specify the units used to measure space.

Even ignoring constant factors, the units chosen can in�uence the result.
Multiplication may be regarded as a single unit of cost. However, the cost of
multiplying two n-digit numbers for large n is itself an important question,
especially now that public-key cryptography uses numbers hundreds of digits
long.

Few things can really be done in constant time or stored in constant space.
Merely to store the number n requires O(log n) bits. If a program cost is
O(1), then we have probably assumed that certain operations it performs
are also O(1)�typically because we expect never to exceed the capacity of
the standard hardware arithmetic.

With power, the precise number of operations depends upon n in a com-
plicated way, depending on how many odd numbers arise, so it is convenient
that we can just write O(log n). An accumulating argument could reduce its
space cost to O(1).

III Foundations of Computer Science 32

Slide 308

Solving Simple Recurrence Relations

T (n): a cost we want to bound using O notation

Typical base case: T (1) = 1

Some recurrences:

T (n + 1) = T (n) + 1 linear

T (n + 1) = T (n) + n quadratic

T (n) = T (n/2) + 1 logarithmic

To analyze a function, inspect its ML declaration. Recurrence equations
for the cost function T (n) can usually be read o�. Since we ignore constant
factors, we can give the base case a cost of one unit. Constant work done in
the recursive step can also be given unit cost; since we only need an upper
bound, this unit represents the larger of the two actual costs. We could use
other constants if it simpli�es the algebra.

For example, recall our function nsum:

fun nsum n =

if n=0 then 0 else n + nsum (n-1);

Given n + 1, it performs a constant amount of work (an addition and sub-
traction) and calls itself recursively with argument n. We get the recurrence
equations T (0) = 1 and T (n + 1) = T (n) + 1. The closed form is clearly
T (n) = n + 1, as we can easily verify by substitution. The cost is linear.

This function, given n + 1, calls nsum, performing O(n) work. Again
ignoring constant factors, we can say that this call takes exactly n units.

fun nsumsum n =

if n=0 then 0 else nsum n + nsumsum (n-1);

We get the recurrence equations T (0) = 1 and T (n + 1) = T (n) + n. It is
easy to see that T (n) = (n− 1) + · · ·+ 1 = n(n− 1)/2 = O(n2). The cost is
quadratic.

The function power divides its input n into two, with the recurrence
equation T (n) = T (n/2) + 1. Clearly T (2n) = n + 1, so T (n) = O(log n).

III Foundations of Computer Science 33

Slide 309

Recurrence for nthApprox : O(2n)

T (0) = 1

T (n + 1) = 2T (n) + 1

Explicit solution: T (n) = 2n+1 − 1

T (n + 1) = 2T (n) + 1

= 2(2n+1 − 1) + 1 induction hypothesis

= 2n+2 − 1

Now we analyze the function nthApprox given at the start of the lecture.
The two recursive calls are re�ected in the term 2T (n) of the recurrence. As
for the constant e�ort, although the recursive case does more work than the
base case, we can choose units such that both constants are one. (Remember,
we seek an upper bound rather than the exact cost.)

Given the recurrence equations for T (n), let us solve them. It helps if we
can guess the closed form, which in this case obviously is something like 2n.
Evaluating T (n) for n = 0, 1, 2, 3, . . . , we get 1, 3, 7, 15, Obviously
T (n) = 2n+1 − 1, which we can easily prove by induction on n. We must
check the base case:

T (0) = 21 − 1 = 1

In the inductive step, for T (n + 1), we may assume our equation in order to
replace T (n) by 2n+1 − 1. The rest is easy.

We have proved T (n) = O(2n+1 − 1), but obviously 2n is also an upper
bound: we may choose the constant factor to be two. Hence T (n) = O(2n).

The proof above is rather informal. The orthodox way of proving f(n) =
O(g(n)) is to follow the de�nition of O notation. But an inductive proof of
T (n) ≤ c2n, using the de�nition of T (n), runs into di�culties: this bound is
too loose. Tightening the bound to T (n) ≤ c2n−1 lets the proof go through.

Exercise 3.2 Try the proof suggested above. What does it say about c?

III Foundations of Computer Science 34

Slide 310

An O(n log n) Recurrence

T (1) = 0

T (n) = 2T (n/2) + n

Proof that T (n) ≤ n lg n:

T (n) ≤ 2(n/2) lg(n/2) + n

= n(lg n− 1) + n

= n lg n− n + n

= n lg n

This recurrence equation arises when a function divides its input into
two equal parts, does O(n) work and also calls itself recursively on each.
Such balancing is bene�cial. Instead dividing the input into unequal parts
of sizes 1 and n − 1 gives the recurrence T (n + 1) = T (n) + n, which has
quadratic complexity.

Shown on the slide is the result of substituting the closed form T (n) =
cn lg n into the original equations. This is another proof by induction. The
last step holds provided c ≥ 1.

Something is wrong, however. The base case fails: if n = 1 then cn lg n =
0, which is not an upper bound for T (1). We could look for a precise closed
form for T (n), but it is simpler to recall that O notation lets us ignore a
�nite number of awkward cases. Choosing n = 2 and n = 3 as base cases
eliminates n = 1 entirely from consideration. The constraints T (2) ≤ 2c lg 2
and T (3) ≤ 3c lg 3 can be satis�ed for c ≥ 2. So T (n) = O(n log n).

Incidentally, in these recurrences n/2 stands for integer division. To be
precise, we should indicate truncation to the next smaller integer by writing
bn/2c. One-half of an odd number is given by b(2n+1)/2c = n. For example,
b2.9c = 2, and bnc = n if n is an integer.

III Foundations of Computer Science 35

Learning guide. For a deeper treatment of complexity, you might look at
Chapter 2 of Introduction to Algorithms [5].

Exercise 3.3 Find an upper bound for the recurrence given by T (1) = 1
and T (n) = 2T (n/2) + 1. You should be able to �nd a tighter bound than
O(n log n).

Exercise 3.4 Prove that the recurrence

T (n) =

{
1 if 1 ≤ n < 4
T (dn/4e) + T (b3n/4c) + n if n ≥ 4

is O(n log n). The notation dxe means truncation to the next larger integer;
for example, d3.1e = 4.

IV Foundations of Computer Science 36

Slide 401

Lists

[3,5,9];

> [3, 5, 9] : int list

it @ [2,10];

> [3, 5, 9, 2, 10] : int list

rev [(1,"one"), (2,"two")];

> [(2, "two"), (1, "one")] : (int * string) list

A list is an ordered series of elements; repetitions are signi�cant. So
[3,5,9] di�ers from [5,3,9] and from [3,3,5,9].

All elements of a list must have the same type. Above we see a list of
integers and a list of (integer, string) pairs. One can also have lists of lists,
such as [[3], [], [5,6]], which has type int list list.

In the general case, if x1, . . . , xn all have the same type (say τ) then the
list [x1, . . . , xn] has type (τ)list.

Lists are the simplest data structure that can be used to process col-
lections of items. Conventional languages use arrays, whose elements are
accessed using subscripting: for example, A[i] yields the ith element of the
array A. Subscripting errors are a known cause of programmer grief, how-
ever, so arrays should be replaced by higher-level data structures whenever
possible.

The in�x operator @, called append, concatenates two lists. Also built-in
is rev, which reverses a list. These are demonstrated in the session above.

IV Foundations of Computer Science 37

Slide 402

The List Primitives

The two kinds of list

nil or [] is the empty list

x:: l is the list with head x and tail l

List notation

[x1, x2, . . . , xn] ≡ x1

head

:: (x2 :: · · · (xn :: nil))︸ ︷︷ ︸
tail

The operator ::, called cons (for `construct'), puts a new element on to
the head of an existing list. While we should not be too preoccupied with
implementation details, it is essential to know that :: is an O(1) operation.
It uses constant time and space, regardless of the length of the resulting
list. Lists are represented internally with a linked structure; adding a new
element to a list merely hooks the new element to the front of the existing
structure. Moreover, that structure continues to denote the same list as it
did before; to see the new list, one must look at the new :: node (or cons
cell) just created.

Here we see the element 1 being consed to the front of the list [3,5,9]:

::→· · · ::→ ::→ ::→nil
↓ ↓ ↓ ↓
1 3 5 9

Given a list, taking its �rst element (its head) or its list of remaining elements
(its tail) also takes constant time. Each operation just follows a link. In the
diagram above, the �rst ↓ arrow leads to the head and the leftmost→ arrow
leads to the tail. Once we have the tail, its head is the second element of the
original list, etc.

The tail is not the last element; it is the list of all elements other than
the head!

IV Foundations of Computer Science 38

Slide 403

Getting at the Head and Tail

fun null [] = true

| null (x::l) = false;

> val null = fn : ’a list -> bool

fun hd (x::l) = x;

> Warning: pattern matching is not exhaustive

> val hd = fn : ’a list -> ’a

tl [7,6,5];

> val it = [6, 5] : int list

There are three basic functions for inspecting lists. Note their polymor-
phic types!

null : 'a list -> bool is a list empty?

hd : 'a list -> 'a head of a non-empty list

tl : 'a list -> 'a list tail of a non-empty list

The empty list has neither head nor tail. Applying either operation to
nil is an error�strictly speaking, an exception. The function null can be
used to check for the empty list before applying hd or tl.

To look deep inside a list one can apply combinations of these functions,
but this style is hard to read. Fortunately, it is seldom necessary because of
pattern-matching.

The declaration of null above has two clauses: one for the empty list
(for which it returns true) and one for non-empty lists (for which it returns
false).

The declaration of hd above has only one clause, for non-empty lists.
They have the form x::l and the function returns x, which is the head. ML
prints a warning to tell us that calling the function could raise exception
Match, which indicates failure of pattern-matching.

The declaration of tl is omitted because it is similar to hd. Instead,
there is an example of applying tl.

IV Foundations of Computer Science 39

Slide 404

Computing the Length of a List

fun nlength [] = 0

| nlength (x::xs) = 1 + nlength xs;

> val nlength = fn: ’a list -> int

nlength[a, b, c] ⇒ 1 + nlength[b, c]

⇒ 1 + (1 + nlength[c])

⇒ 1 + (1 + (1 + nlength[]))

⇒ 1 + (1 + (1 + 0))

⇒ . . . ⇒ 3

Most list processing involves recursion. This is a simple example; patterns
can be more complex.

Observe the use of a vertical bar (|) to separate the function's clauses.
We have one function declaration that handles two cases. To understand its
role, consider the following faulty code:

fun nlength [] = 0;

> Warning: pattern matching is not exhaustive

> val nlength = fn: 'a list -> int

fun nlength (x::xs) = 1 + nlength xs;

> Warning: pattern matching is not exhaustive

> val nlength = fn: 'a list -> int

These are two declarations, not one. First we declare nlength to be a func-
tion that handles only empty lists. Then we redeclare it to be a function
that handles only non-empty lists; it can never deliver a result. We see that
a second fun declaration replaces any previous one rather than extending it
to cover new cases.

Now, let us return to the declaration shown on the slide. The length
function is polymorphic: it applies to all lists regardless of element type!
Most programming languages lack such �exibility.

Unfortunately, this length computation is naïve and wasteful. Like nsum
in Lect. 2, it is not tail-recursive. It uses O(n) space, where n is the length
of its input. As usual, the solution is to add an accumulating argument.

IV Foundations of Computer Science 40

Slide 405

Efficiently Computing the Length of a List

fun addlen (n, []) = n

| addlen (n, x::xs) = addlen (n+1, xs);

> val addlen = fn: int * ’a list -> int

addlen(0, [a, b, c]) ⇒ addlen(1, [b, c])

⇒ addlen(2, [c])

⇒ addlen(3, [])

⇒ 3

Patterns can be as complicated as we like. Here, the two patterns are
(n,[]) and (n,x::xs).

Function addlen is again polymorphic. Its type mentions the integer
accumulator.

Now we may declare an e�cient length function. It is simply a wrapper
for addlen, supplying zero as the initial value of n.

fun length xs = addlen(0,xs);

> val length = fn : 'a list -> int

The recursive calls do not nest: this version is iterative. It takes O(1) space.
Obviously its time requirement is O(n) because it takes at least n steps to
�nd the length of an n-element list.

IV Foundations of Computer Science 41

Slide 406

Append: List Concatenation

fun append([], ys) = ys

| append(x::xs, ys) = x :: append(xs,ys);

> val append = fn: ’a list * ’a list -> ’a list

append([1, 2, 3], [4]) ⇒ 1 :: append([2, 3], [4])

⇒ 1 :: (2 :: append([3], [4]))

⇒ 1 :: (2 :: (3 :: append([], [4])))

⇒ 1 :: (2 :: (3 :: [4])) ⇒ [1, 2, 3, 4]

Here is how append might be declared, ignoring the details of how @ is
made an in�x operator.

This function is also not iterative. It scans its �rst argument, sets up a
string of `cons' operations (::) and �nally does them.

It uses O(n) space and time, where n is the length of its �rst argument.
Its costs are independent of its second argument.

An accumulating argument could make it iterative, but with consider-
able complication. The iterative version would still require O(n) space and
time because concatenation requires copying all the elements of the �rst list.
Therefore, we cannot hope for asymptotic gains; at best we can decrease
the constant factor involved in O(n), but complicating the code is likely to
increase that factor. Never add an accumulator merely out of habit.

Note append's polymorphic type. Two lists can be joined if their element
types agree.

IV Foundations of Computer Science 42

Slide 407

Reversing a List in O(n2)

fun nrev [] = []

| nrev(x::xs) = (nrev xs) @ [x];

> val nrev = fn: ’a list -> ’a list

nrev[a, b, c] ⇒ nrev[b, c] @ [a]

⇒ (nrev[c] @ [b]) @ [a]

⇒ ((nrev[] @ [c]) @ [b]) @ [a]

⇒ (([] @ [c]) @ [b]) @ [a] ⇒ . . . ⇒ [c, b, a]

This reverse function is grossly ine�cient due to poor usage of append,
which copies its �rst argument. If nrev is given a list of length n > 0, then
append makes n − 1 conses to copy the reversed tail. Constructing the list
[x] calls cons again, for a total of n calls. Reversing the tail requires n− 1
more conses, and so forth. The total number of conses is

0 + 1 + 2 + · · ·+ n = n(n + 1)/2.

The time complexity is therefore O(n2). Space complexity is only O(n)
because the copies don't all exist at the same time.

IV Foundations of Computer Science 43

Slide 408

Reversing a List in O(n)

fun revApp ([], ys) = ys

| revApp (x::xs, ys) = revApp (xs, x::ys);

> val revApp = fn: ’a list * ’a list -> ’a list

revApp([a, b, c], []) ⇒ revApp([b, c], [a])

⇒ revApp([c], [b, a])

⇒ revApp([], [c, b, a])

⇒ [c, b, a]

Calling revApp (xs,ys) reverses the elements of xs and prepends them
to ys. Now we may declare

fun rev xs = revApp(xs,[]);

> val rev = fn : 'a list -> 'a list

It is easy to see that this reverse function performs just n conses, given an
n-element list. For both reverse functions, we could count the number of
conses precisely�not just up to a constant factor. O notation is still useful
to describe the overall running time: the time taken by a cons varies from
one system to another.

The accumulator y makes the function iterative. But the gain in com-
plexity arises from the removal of append. Replacing an expensive operation
(append) by a series of cheap operations (cons) is called reduction in strength,
and is a common technique in computer science. It originated when many
computers did not have a hardware multiply instruction; the series of prod-
ucts i × r for i = 0, . . . , n could more e�ciently be computed by repeated
addition. Reduction in strength can be done in various ways; we shall see
many instances of removing append.

Consing to an accumulator produces the result in reverse. If that forces
the use of an extra list reversal then the iterative function may be much
slower than the recursive one.

IV Foundations of Computer Science 44

Slide 409

Lists, Strings and Characters

character constants #"A" #"\"" . . .

string constants "" "B" "Oh, no!" . . .

explode (s) list of the characters in string s

implode (l) string made of the characters in list l

size (s) number of chars in string s

s1^s2 concatenation of strings s1 and s2

Strings are provided in most programming languages to allow text pro-
cessing. At a bare minimum, numbers must be converted to or from a textual
representation. Programs issue textual messages to users and analyze their
responses. Strings are essential in practice, but they bring up few issues
relevant to this course.

The functions explode and implode convert between strings and lists of
characters. In a few programming languages, strings simply are lists of char-
acters, but this is poor design. Strings are an abstract concept in themselves.
Treating them as lists leads to clumsy and ine�cient code.

Similarly, characters are not strings of size one, but are a primitive con-
cept. Character constants in ML have the form #"c", where c is any charac-
ter. For example, the comma character is #",".

In addition to the operators described above, the relations < <= > >=

work for strings and yield alphabetic order (more precisely, lexicographic
order with respect to ASCII character codes).

IV Foundations of Computer Science 45

Learning guide. Related material is in ML for the Working Programmer ,
pages 69�80.

Exercise 4.1 Code a recursive function to compute the sum of a list's
elements. Then code an iterative version and comment on the improvement
in e�ciency.

V Foundations of Computer Science 46

Slide 501

List Utilities: take and drop

Removing the first i elements

fun take ([], _) = []

| take (x::xs, i) = if i>0

then x :: take(xs, i-1)

else [];

fun drop ([], _) = []

| drop (x::xs, i) = if i>0 then drop(xs,i-1)

else x::xs;

This lecture examines more list utilities, illustrating more patterns of
recursion, and concludes with a small program for making change.

The functions take and drop divide a list into parts, returning or dis-
carding the �rst i elements.

xs = [x0, . . . , xi−1︸ ︷︷ ︸
take(xs, i)

, xi, . . . , xn−1︸ ︷︷ ︸
drop(xs, i)

]

Applications of take and drop will appear in future lectures. Typically, they
divide a collection of items into equal parts for recursive processing.

The special pattern variable _ appears in both functions. This wildcard
pattern matches anything. We could have written i in both positions, but
the wildcard reminds us that the relevant clause ignores this argument.

Function take is not iterative, but making it so would not improve its
e�ciency. The task requires copying up to i list elements, which must take
O(i) space and time.

Function drop simply skips over i list elements. This requires O(i) time
but only constant space. It is iterative and much faster than take. Both
functions use O(i) time, but skipping elements is faster than copying them:
drop's constant factor is smaller.

Both functions take a list and an integer, returning a list of the same
type. So their type is 'a list * int -> 'a list.

V Foundations of Computer Science 47

Slide 502

Linear Search

find x in list [x1, . . . , xn] by comparing with each element

obviously O(n) TIME

simple & general

ordered searching needs only O(log n)

indexed lookup needs only O(1)

Linear search is the obvious way to �nd a desired item in a collection:
simply look through all the items, one at a time. If x is in the list, then it
will be found in n/2 steps on average, and even the worst case is obviously
O(n).

Large collections of data are usually ordered or indexed so that items can
be found in O(log n) time, which is exponentially better than O(n). Even
O(1) is achievable (using a hash table), though subject to the usual proviso
that machine limits are not exceeded.

E�cient indexing methods are of prime importance: consider Web search
engines. Nevertheless, linear search is often used to search small collections
because it is so simple and general, and it is the starting point for better
algorithms.

V Foundations of Computer Science 48

Slide 503

Types with Equality

The membership test has a strange polymorphic type.

fun member(x, []) = false

| member(x, y::l) = (x=y) orelse member(x,l);

> val member = fn : ’’a * ’’a list -> bool

Here, ”a stands for any equality type.

Equality testing is OK for integers but NOT for functions.

All the list functions we have encountered up to now have been polymor-
phic, working for lists of any type. Function member uses linear search to
report whether or not x occurs in l. Its polymorphism is restricted to the
so-called equality types. These include integers, strings, booleans, and tuples
or lists of other equality types.

Equality testing is not available for every type, however. Functions are
values in ML, and there is no way of comparing two functions that is both
practical and meaningful. Abstract types can be declared in ML, hiding
their internal representation, including its equality test. Equality is not even
allowed for type real, though some ML systems ignore this. We shall discuss
function values and abstract types later.

If a function's type contains equality type variables, such as �a, �b, then
it uses polymorphic equality testing.

V Foundations of Computer Science 49

Slide 504

Equality Polymorphism

fun inter([], ys) = []

| inter(x::xs, ys) =

if member(x,ys) then x::inter(xs, ys)

else inter(xs, ys);

> val inter = fn: ’’a list * ’’a list -> ’’a list

ML notices that inter uses equality indirectly, by member.

ML will OBJECT if we apply these functions to non-equality types.

Function inter computes the `intersection' of two lists, returning the list
of elements common to both. It calls member. The equality type variables
propagate: the intersection function also has them even though its use of
equality is indirect. Trying to apply member or inter to a list of functions
causes ML to complain of a type error. It does so at compile time: it detects
the errors by types alone, without executing the o�ending code.

Equality polymorphism is a contentious feature. Some researchers com-
plain that it makes ML too complicated and leads programmers to use linear
search excessively. The functional programming language Haskell general-
izes the concept, allowing programmers to introduce new classes of types
supporting any desired collection of operations.

V Foundations of Computer Science 50

Slide 505

Building a List of Pairs

fun zip (x::xs,y::ys) = (x,y) :: zip(xs,ys)

| zip _ = [];

[x1, . . . , xn]
[y1, . . . , yn]

}
7−→ [(x1, y1), . . . , (xn, yn)]

The wildcard pattern (_) catches empty lists.

THE PATTERNS ARE TRIED IN ORDER.

A list of pairs of the form [(x1, y1), . . . , (xn, yn)] associates each xi with yi.
Conceptually, a telephone directory could be regarded as such a list, where xi

ranges over names and yi over the corresponding telephone number. Linear
search in such a list can �nd the yi associated with a given xi, or vice versa�
very slowly.

In other cases, the (xi, yi) pairs might have been generated by applying
a function to the elements of another list [z1, . . . , zn].

The functions zip and unzip build and take apart lists of pairs: zip

pairs up corresponding list elements and unzip inverts this operation. Their
types re�ect what they do:

zip : ('a list * 'b list) -> ('a * 'b) list

unzip : ('a * 'b) list -> ('a list * 'b list)

If the lists are of unequal length, zip discards surplus items at the end of
the longer list. Its �rst pattern only matches a pair of non-empty lists. The
second pattern is just a wildcard and could match anything. ML tries the
clauses in the order given, so the �rst pattern is tried �rst. The second only
gets arguments where at least one of the lists is empty.

V Foundations of Computer Science 51

Slide 506

Building a Pair of Results

fun unzip [] = ([],[])

| unzip ((x,y)::pairs) =

let val (xs,ys) = unzip pairs

in (x::xs, y::ys)

end;

fun revUnzip ([], xs, ys) = (xs,ys)

| revUnzip ((x,y)::pairs, xs, ys) =

revUnzip(pairs, x::xs, y::ys);

Given a list of pairs, unzip has to build two lists of results, which is
awkward using recursion. The version shown about uses the local declaration
let D in E end, where D consists of declarations and E is the expression
that can use them.

Note especially the declaration

val (xs,ys) = unzip pairs

which binds xs and ys to the results of the recursive call. In general, the
declaration val P = E matches the pattern P against the value of expres-
sion E. It binds all the variables in P to the corresponding values.

Here is version of unzip that replaces the local declaration by a function
(conspair) for taking apart the pair of lists in the recursive call. It de�nes
the same computation as the previous version of zip and is possibly clearer,
but not every local declaration can be eliminated as easily.

fun conspair ((x,y), (xs,ys)) = (x::xs, y::ys);

fun unzip [] = ([],[])

| unzip(xy::pairs) = conspair(xy, unzip pairs);

Making the function iterative yields revUnzip above, which is very sim-
ple. Iteration can construct many results at once in di�erent argument posi-
tions. Both output lists are built in reverse order, which can be corrected by
reversing the input to revUnzip. The total costs will probably exceed those
of unzip despite the advantages of iteration.

V Foundations of Computer Science 52

Slide 507

An Application: Making Change

fun change (till, 0) = []

| change (c::till, amt) =

if amt<c then change(till, amt)

else c :: change(c::till, amt-c)

> Warning: pattern matching is not exhaustive

> val change = fn : int list * int -> int list

• The recursion terminates when amt = 0.

• Tries the largest coin first to use large coins.

• The algorithm is greedy, and it CAN FAIL!

The till has unlimited supplies of coins. The largest coins should be tried
�rst, to avoid giving change all in pennies. The list of legal coin values, called
till, is given in descending order, such as 50, 20, 10, 5, 2 and 1. (Recall that
the head of a list is the element most easily reached.) The code for change
is based on simple observations.

• Change for zero consists of no coins at all. (Note the pattern of 0 in
the �rst clause.)

• For a nonzero amount, try the largest available coin. If it is small
enough, use it and decrease the amount accordingly.

• Exclude from consideration any coins that are too large.

Although nobody considers making change for zero, this is the simplest way
to make the algorithm terminate. Most iterative procedures become simplest
if, in their base case, they do nothing. A base case of one instead of zero is
often a sign of a novice programmer.

The function can terminate either with success or failure. It fails by
raising exception Match. The exception occurs if no pattern matches, namely
if till becomes empty while amount is still nonzero.

Unfortunately, failure can occur even when change can be made. The
greedy `largest coin �rst' approach is to blame. Suppose we have coins of
values 5 and 2, and must make change for 6; the only way is 6 = 2 + 2 + 2,
ignoring the 5. Greedy algorithms are often e�ective, but not here.

V Foundations of Computer Science 53

Slide 508

ALL Ways of Making Change

fun change (till, 0) = [[]]

| change ([], amt) = []

| change (c::till, amt) =

if amt<c then change(till, amt)

else

let fun allc [] = []

| allc(cs::css) = (c::cs)::allc css

in allc (change(c::till, amt-c)) @

change(till, amt)

end;

Let us generalize the problem to �nd all possible ways of making change,
returning them as a list of solutions. Look at the type: the result is now a
list of lists.

> change : int list * int -> int list list

The code will never raise exceptions. It expresses failure by returning an
empty list of solutions: it returns [] if the till is empty and the amount is
nonzero.

If the amount is zero, then there is only one way of making change; the
result should be [[]]. This is success in the base case.

In nontrivial cases, there are two sources of solutions: to use a coin (if
possible) and decrease the amount accordingly, or to remove the current coin
value from consideration.

The function allc is declared locally in order to make use of c, the
current coin. It adds an extra c to all the solutions returned by the recursive
call to make change for amt-c.

Observe the naming convention: cs is a list of coins, while css is a list
of such lists. The trailing `s' is suggestive of a plural.

V Foundations of Computer Science 54

Slide 509

ALL Ways of Making Change — Faster!

fun change(till, 0, chg, chgs) = chg::chgs

| change([], amt, chg, chgs) = chgs

| change(c::till, amt, chg, chgs) =

if amt<0 then chgs

else change(c::till, amt-c, c::chg,

change(till, amt, chg, chgs))

We’ve added another accumulating parameter!

Repeatedly improving simple code is called stepwise refinement .

Two extra arguments eliminate many :: and append operations from
the previous slide's change function. The �rst, chg, accumulates the coins
chosen so far; one evaluation of c::chg replaces many evaluations of allc.
The second, chgs, accumulates the list of solutions so far; it avoids the need
for append. This version runs several times faster than the previous one.

Making change is still extremely slow for an obvious reason: the number
of solutions grows rapidly in the amount being changed. Using 50, 20, 10, 5,
2 and 1, there are 4366 ways of expressing 99.

We shall revisit the `making change' task later to illustrate exception-
handling.

Our three change functions illustrate a basic technique: program devel-
opment by stepwise re�nement. Begin by writing a very simple program and
add requirements individually. Add e�ciency re�nements last of all. Even
if the simpler program cannot be included in the next version and has to be
discarded, one has learned about the task by writing it.

V Foundations of Computer Science 55

Learning guide. Related material is in ML for the Working Programmer ,
pages 82-107, though you may want to skip some of the harder examples.

Exercise 5.1 How does this version of zip di�er from the one above?

fun zip (x::xs,y::ys) = (x,y) :: zip(xs,ys)

| zip ([], []) = [];

Exercise 5.2 What assumptions do the `making change' functions make
about the variables till, c and amt? Illustrate what could happen if some
of these assumptions were violated.

Exercise 5.3 Show that the number of ways of making change for n (ig-
noring order) is O(n) if there are two legal coin values. What if there are
three, four, . . . coin values?

VI Foundations of Computer Science 56

Slide 601

Sorting: Arranging Items into Order

a few applications:

• fast search

• fast merging

• finding duplicates

• inverting tables

• graphics algorithms

Sorting is perhaps the most deeply studied aspect of algorithm design.
Knuth's series The Art of Computer Programming devotes an entire volume
to sorting and searching [9]! Sedgewick [14] also covers sorting. Sorting has
countless applications.

Sorting a collection allows items to be found quickly. Recall that linear
search requires O(n) steps to search among n items. A sorted collection
admits binary search, which requires only O(log n) time. The idea of binary
search is to compare the item being sought with the middle item (in position
n/2) and then to discard either the left half or the right, depending on the
result of the comparison. Binary search needs arrays or trees, not lists; we
shall come to binary search trees later.

Two sorted �les can quickly be merged to form a larger sorted �le. Other
applications include �nding duplicates: after sorting, they are adjacent.

A telephone directory is sorted alphabetically by name. The same infor-
mation can instead be sorted by telephone number (useful to the police) or
by street address (useful to junk-mail �rms). Sorting information in di�erent
ways gives it di�erent applications.

Common sorting algorithms include insertion sort, quicksort, mergesort
and heapsort. We shall consider the �rst three of these. Each algorithm has
its advantages.

As a concrete basis for comparison, runtimes are quoted for DECstation
computers. (These were based on the MIPS chip, an early RISC design.)

VI Foundations of Computer Science 57

Slide 602

How Fast Can We Sort?

typically count comparisons C(n)

there are n! permutations of n elements

each comparison distinguishes two permutations

2C(n) ≥ n!,

therefore C(n) ≥ log(n!) ≈ n log n− 1.44n

The usual measure of e�ciency for sorting algorithms is the number of
comparison operations required. Mergesort requires only O(n log n) compar-
isons to sort an input of n items. It is straightforward to prove that at this
complexity is the best possible [2, pages 86�7]. There are n! permutations
of n elements and each comparison distinguishes two permutations. The
lower bound on the number of comparisons, C(n), is obtained by solving
2C(n) ≥ n!; therefore C(n) ≥ log(n!) ≈ n log n− 1.44n.

In order to compare the sorting algorithms, we use the following source
of pseudo-random numbers [12]:

local val a = 16807.0 and m = 2147483647.0

in fun nextrandom seed =

let val t = a*seed

in t - m * real(floor(t/m)) end

and truncto k r = 1 + floor((r / m) * (real k))

end;

We bind the identi�er rs to a list of 10,000 random numbers.

fun randlist (n,seed,seeds) =

if n=0 then (seed,seeds)

else randlist(n-1, nextrandom seed, seed::seeds);

val (seed,rs) = randlist(10000, 1.0, []);

Never mind how this works, but note that generating statistically good ran-
dom numbers is hard. Much e�ort has gone into those few lines of code.

VI Foundations of Computer Science 58

Slide 603

Insertion Sort

Insert does n/2 comparisons on average

fun ins (x:real, []) = [x]

| ins (x:real, y::ys) =

if x<=y then x::y::ys

else y::ins(x,ys);

Insertion sort takes O(n2) comparisons on average

fun insort [] = []

| insort (x::xs) = ins(x, insort xs);

174 seconds to sort 10,000 random numbers

Items from the input are copied one at a time to the output. Each new
item is inserted into the right place so that the output is always in order.

We could easily write iterative versions of these functions, but to no
purpose. Insertion sort is slow because it does O(n2) comparisons (and a
lot of list copying), not because it is recursive. Its quadratic runtime makes
it nearly useless: it takes 174 seconds for our example while the next-worst
�gure is 1.4 seconds.

Insertion sort is worth considering because it is easy to code and illus-
trates the concepts. Two e�cient sorting algorithms, mergesort and heapsort,
can be regarded as re�nements of insertion sort.

The type constraint :real resolves the overloading of the <= operator;
recall Lect. 2. All our sorting functions will need a type constraint some-
where. The notion of sorting depends upon the form of comparison being
done, which in turn determines the type of the sorting function.

VI Foundations of Computer Science 59

Slide 604

Quicksort: The Idea

• choose a pivot element, a

• Divide: partition the input into two sublists:

– those at most a in value

– those exceeding a

• Conquer using recursive calls to sort the sublists

• Combine the sorted lists by appending one to the other

Quicksort was invented by C. A. R. Hoare, who has just moved from
Oxford to Microsoft Research, Cambridge. Quicksort works by divide and
conquer, a basic algorithm design principle. Quicksort chooses from the
input some value a, called the pivot. It partitions the remaining items into
two parts: those ≤ a, and those > a. It sorts each part recursively, then puts
the smaller part before the greater.

The cleverest feature of Hoare's algorithm was that the partition could be
done in place by exchanging array elements. Quicksort was invented before
recursion was well known, and people found it extremely hard to understand.
As usual, we shall consider a list version based on functional programming.

VI Foundations of Computer Science 60

Slide 605

Quicksort: The Code

fun quick [] = []

| quick [x] = [x]

| quick (a::bs) =

let fun part (l,r,[]) : real list =

(quick l) @ (a :: quick r)

| part (l, r, x::xs) =

if x<=a then part(x::l, r, xs)

else part(l, x::r, xs)

in part([],[],bs) end;

0.74 seconds to sort 10,000 random numbers

Our ML quicksort copies the items. It is still pretty fast, and it is much
easier to understand. It takes roughly 0.74 seconds to sort rs, our list of
random numbers.

The function declaration consists of three clauses. The �rst handles the
empty list; the second handles singleton lists (those of the form [x]); the
third handles lists of two or more elements. Often, lists of length up to �ve
or so are treated as special cases to boost speed.

The locally declared function part partitions the input using a as the
pivot. The arguments l and r accumulate items for the left (≤ a) and right
(> a) parts of the input, respectively.

It is not hard to prove that quicksort does n log n comparisons, in the
average case [2, page 94]. With random data, the pivot usually has an
average value that divides the input in two approximately equal parts. We
have the recurrence T (1) = 1 and T (n) = 2T (n/2) + n, which is O(n log n).
In our example, it is about 235 times faster than insertion sort.

In the worst case, quicksort's running time is quadratic! An example is
when its input is almost sorted or reverse sorted. Nearly all of the items
end up in one partition; work is not divided evenly. We have the recurrence
T (1) = 1 and T (n + 1) = T (n) + n, which is O(n2). Randomizing the input
makes the worst case highly unlikely.

VI Foundations of Computer Science 61

Slide 606

Append-Free Quicksort

fun quik([], sorted) = sorted

| quik([x], sorted) = x::sorted

| quik(a::bs, sorted) =

let fun part (l, r, []) : real list =

quik(l, a :: quik(r,sorted))

| part (l, r, x::xs) =

if x<=a then part(x::l, r, xs)

else part(l, x::r, xs)

in part([],[],bs) end;

0.53 seconds to sort 10,000 random numbers

The list sorted accumulates the result in the combine stage of the quick-
sort algorithm. We have again used the standard technique for eliminating
append. Calling quik(xs,sorted) reverses the elements of xs and prepends
them to the list sorted.

Looking closely at part, observe that quik(r,sorted) is performed �rst.
Then a is consed to this sorted list. Finally, quik is called again to sort the
elements of l.

The speedup is signi�cant. An imperative quicksort coded in Pascal
(taken from Sedgewick [14]) is just slightly faster than function quik. The
near-agreement is surprising because the computational overheads of lists ex-
ceed those of arrays. In realistic applications, comparisons are the dominant
cost and the overheads matter even less.

VI Foundations of Computer Science 62

Slide 607

Merging Two Lists

Merge joins two sorted lists

fun merge([],ys) = ys : real list

| merge(xs,[]) = xs

| merge(x::xs, y::ys) =

if x<=y then x::merge(xs, y::ys)

else y::merge(x::xs, ys);

Generalises Insert to two lists

Does at most m + n− 1 comparisons

Merging means combining two sorted lists to form a larger sorted list. It
does at most m+n comparisons, where m and n are the lengths of the input
lists. If m and n are roughly equal then we have a fast way of constructing
sorted lists; if n = 1 then merging degenerates to insertion, doing much work
for little gain.

Merging is the basis of several sorting algorithms; we look at a divide-
and-conquer one. Mergesort is seldom found in conventional programming
because it is hard to code for arrays; it works nicely with lists. It divides the
input (if non-trivial) into two roughly equal parts, sorts them recursively,
then merges them.

Function merge is not iterative; the recursion is deep. An iterative version
is of little bene�t for the same reasons that apply to append (Lect. 4).

VI Foundations of Computer Science 63

Slide 608

Top-down Merge sort

fun tmergesort [] = []

| tmergesort [x] = [x]

| tmergesort xs =

let val k = length xs div 2

in merge(tmergesort (take(xs, k)),

tmergesort (drop(xs, k)))

end;

O(n log n) comparisons in worst case

1.4 seconds to sort 10,000 random numbers

Mergesort's divide stage divides the input not by choosing a pivot (as
in quicksort) but by simply counting out half of the elements. The conquer
stage again involves recursive calls, and the combine stage involves merging.
Function tmergesort takes roughly 1.4 seconds to sort the list rs.

In the worst case, mergesort does O(n log n) comparisons, with the same
recurrence equation as in quicksort's average case. Because take and drop

divide the input in two equal parts (they di�er at most by one element), we
always have T (n) = 2T (n/2) + n.

Quicksort is nearly 3 times as fast in the example. But it risks a quadratic
worst case! Merge sort is safe but slow. So which algorithm is best?

We have seen a top-down mergesort. Bottom-up algorithms also exist.
They start with a list of one-element lists and repeatedly merge adjacent
lists until only one is left. A re�nement, which exploits any initial order
among the input, is to start with a list of increasing or decreasing runs of
input items.

VI Foundations of Computer Science 64

Slide 609

Summary of Sorting Algorithms

Optimal is O(n log n) comparisons

Insertion sort : simple to code; too slow (quadratic) [174 secs]

Quicksort : fast on average; quadratic in worst case [0.53 secs]

Mergesort : optimal in theory; often slower than quicksort [1.4 secs]

MATCH THE ALGORITHM TO THE APPLICATION

Quicksort's worst case cannot be ignored. For large n, a complexity of
O(n2) is catastrophic. Mergesort has an O(n log n) worst case running time,
which is optimal, but it is typically slower than quicksort for random data.

Non-comparison sorting deserves mentioning. We can sort a large number
of small integers using their radix representation in O(n) time. This result
does not contradict the comparison-counting argument because comparisons
are not used at all. Linear time is achievable only if the greatest integer is
�xed in advance; as n goes to in�nity, increasingly many of the items are the
same. It is a simple special case.

Many other sorting algorithms exist. We have not considered the prob-
lem of sorting huge amounts of data using external storage media such as
magnetic tape.

Learning guide. Related material is in ML for the Working Programmer ,
pages 108�113.

VII Foundations of Computer Science 65

Slide 701

An Enumeration Type

datatype vehicle = Bike

| Motorbike

| Car

| Lorry;

• We have declared a new type, namely vehicle ,

• . . . along with four new constants.

• They are the constructors of the datatype.

The datatype declaration adds a new type to our ML session. Type
vehicle is as good as any built-in type and even admits pattern-matching.
The four new identi�ers of type vehicle are called constructors.

We could represent the various vehicles by the numbers 0�3. However, the
code would be hard to read and even harder to maintain. Consider adding
Tricycle as a new vehicle.If we wanted to add it before Bike, then all the
numbers would have to be changed. Using datatype, such additions are
trivial and the compiler can (at least sometimes) warn us when it encounters
a function declaration that doesn't yet have a case for Tricycle.

Representing vehicles by strings like "Bike", "Car", etc., is also bad.
Comparing string values is slow and the compiler can't warn us of mis-
spellings like "MOtorbike": they will make our code fail.

Most programming languages allow the declaration of types like vehicle.
Because they consist of a series of identi�ers, they are called enumeration
types. Other common examples are days of the week or colours. The compiler
chooses the integers for us; type-checking prevents us from confusing Bike

with Red or Sunday.

VII Foundations of Computer Science 66

Slide 702

Declaring a Function on Vehicles

fun wheels Bike = 2

| wheels Motorbike = 2

| wheels Car = 4

| wheels Lorry = 18;

> val wheels = fn : vehicle -> int

• Datatype constructors can be used in patterns.

• Pattern-matching is fast, even complicated nested patterns.

The beauty of datatype declarations is that the new types behave as if
they were built into ML. Type-checking catches common errors, such as
mixing up di�erent datatypes in a function like wheels, as well as missing
and redundant patterns.

Note: ML does not always catch misspelt constructors. If one appears
as the last pattern, it might be taken as a variable name. My book gives an
example [13, page 131].

VII Foundations of Computer Science 67

Slide 703

A Datatype with Constructor Functions

datatype vehicle = Bike

| Motorbike of int

| Car of bool

| Lorry of int;

• Constructor functions (like Lorry) make distinct values.

• Different kinds of vehicle can belong to one list:

[Bike, Car true, Motorbike 450];

ML generalizes the notion of enumeration type to allow data to be asso-
ciated with each constructor. The constructor Bike is a vehicle all by itself,
but the other three constructors are functions for creating vehicles.

Since we might �nd it hard to remember what the various int and bool

components are for, it is wise to include comments in complex declarations.
In ML, comments are enclosed in the brackets (* and *). Programmers
should comment their code to explain design decisions and key features of
the algorithms (sometimes by citing a reference work).

datatype vehicle = Bike

| Motorbike of int (*engine size in CCs*)

| Car of bool (*true if a Reliant Robin*)

| Lorry of int; (*number of wheels*)

The list shown on the slide represents a bicycle, a Reliant Robin and a large
motorbike. It can be almost seen as a mixed-type list containing integers
and booleans. It is actually a list of vehicles; datatypes lessen the impact of
the restriction that all list elements must have the same type.

VII Foundations of Computer Science 68

Slide 704

A Finer Wheel Computation

fun wheels Bike = 2

| wheels (Motorbike _) = 2

| wheels (Car robin) =

if robin then 3 else 4

| wheels (Lorry w) = w;

> val wheels = fn : vehicle -> int

This function consists of four clauses:

• A Bike has two wheels.

• A Motorbike has two wheels.

• A Reliant Robin has three wheels; all other cars have four.

• A Lorry has the number of wheels stored with its constructor.

There is no overlap between the Motorbike and Lorry cases. Although
Motorbike and Lorry both hold an integer, ML takes the constructor into
account. A Motorbike is distinct from any Lorry.

Vehicles are one example of a concept consisting of several varieties with
distinct features. Most programming languages can represent such concepts
using something analogous to datatypes. (They are sometimes called union
types or variant records, whose tag �elds play the role of the constructors.)

VII Foundations of Computer Science 69

Slide 705

Nested Pattern-Matching

fun greener (_, Bike) = false

| greener (Bike, _) = true

| greener (_, Motorbike _) = false

| greener (Motorbike _, _) = true

| greener (_, Car _) = false

| greener (Car _, _) = true

| greener (_, Lorry _) = false;

note wildcards in patterns

order of evaluation is crucial!

For another example of pattern-matching, here is a function to compare
vehicles for environmental friendliness. A Bike is greener than a Motorbike,
which is greener than a Car, which is greener than a Lorry. The code shown
above is complicated and relies heavily on ML's order of evaluation. Noth-
ing is greener than a Bike; a Bike is greener than everything else; nothing
left (Bikes have been dealt with) is greener than a Motorbike, etc. The
alternating trues and falses make the code hard to read.

Clearer is to list all the true cases and let one wildcard catch all the false
ones. But what happens in this style if we add a few more constructors?

fun greener (Bike, Motorbike _) = true

| greener (Bike, Car _) = true

| greener (Bike, Lorry _) = true

| greener (Motorbike _, Car _) = true

| greener (Motorbike _, Lorry _) = true

| greener (Car _, Lorry _) = true

| greener _ = false;

Clauses that depend upon the order of evaluation are not true equations. If
there are many constructors, the best way of comparing them is by mapping
both to integers and comparing those (using <).

The point to take from this example is that patterns may combine
datatype constructors with tuples, lists, numbers, strings, etc. There is no
limit on the size of patterns or the number of clauses in a function declara-
tion. Most ML systems perform pattern-matching e�ciently.

VII Foundations of Computer Science 70

Slide 706

Error Handling: Exceptions

What if a FAULT occurs during a computation?

• (Arithmetic overflow or division by zero are hard to predict.)

Exception-handling lets us recover gracefully.

• Raising an exception abandons the current computation.

• Handling the exception attempts an alternative computation.

• The raising and handling can be far apart in the code.

• Errors of different sorts can be handled separately.

Exceptions are necessary because it is not always possible to tell in ad-
vance whether or not a a search will lead to a dead end or whether a numerical
calculation will encounter errors such as over�ow or divide by zero. Rather
than just crashing, programs should check whether things have gone wrong,
and perhaps attempt an alternative computation (perhaps using a di�er-
ent algorithm or higher precision). A number of modern languages provide
exception handling.

VII Foundations of Computer Science 71

Slide 707

Exceptions in ML

exception Failure; Declaring
exception NoChange of int;

raise Failure Raising
raise (NoChange n)

E handle P1 => E1 | ... | Pn => En Handling

Each exception declaration introduces a distinct sort of exception, which
can be handled separately from others. Exception names are constructors
of the special datatype exn. This is a peculiarity of ML that lets exception-
handlers use pattern-matching. Note that exception Failure is just an error
indication, while NoChange n carries further information: the integer n.

The e�ect of raise E is to abort function calls repeatedly until encoun-
tering a handler that matches E. The matching handler can only be found dy-
namically (during execution); contrast with how ML associates occurrences
of identi�ers with their matching declarations, which does not require run-
ning the program.

One criticism of ML's exceptions is that�unlike the Java language �
nothing in a function declaration indicates which exceptions it might raise.
One alternative to exceptions is to instead return a value of datatype option.

datatype 'a option = NONE | SOME of 'a;

NONE signi�es error, while SOME x returns the solution x. This approach
looks clean, but the drawback is that many places in the code would have to
check for NONE.

VII Foundations of Computer Science 72

Slide 708

Making Change with Exceptions

exception Change;

fun change (till, 0) = []

| change ([], amt) = raise Change

| change (c::till, amt) =

if amt<0 then raise Change

else (c :: change(c::till, amt-c))

handle Change => change(till, amt) ;

> val change = fn : int list * int -> int list

In Lect. 5 we considered the problem of making change. The greedy
algorithm presented there could not express 6 using 5 and 2 because it always
took the largest coin. Returning the list of all possible solutions avoids that
problem rather expensively: we only need one solution.

Using exceptions, we can code a backtracking algorithm: one that can
undo past decisions if it comes to a dead end. The exception Change is
raised if we run out of coins (with a non-zero amount) or if the amount goes
negative. We always try the largest coin, but enclose the recursive call in an
exception handler, which undoes the choice if it goes wrong.

Carefully observe how exceptions interact with recursion. The exception
handler always undoes the most recent choice, leaving others possibly to be
undone later. If making change really is impossible, then eventually excep-
tion Change will be raised with no handler to catch it, and it will be reported
at top level.

VII Foundations of Computer Science 73

Slide 709

Binary Trees, a Recursive Datatype

datatype ’a tree = Lf

| Br of ’a * ’a tree * ’a tree

1�

2� 3�

4� 5�

Br(1, Br(2, Br(4, Lf, Lf),

Br(5, Lf, Lf)),

Br(3, Lf, Lf))

A data structure with multiple branching is called a tree. Trees can
represent mathematical expressions, logical formulae, computer programs,
the phrase structure of English sentences, etc.

Binary trees are nearly as fundamental as lists. They can provide e�cient
storage and retrieval of information. In a binary tree, each node is empty
(Lf), or is a branch (Br) with a label and two subtrees.

Lists themselves could be declared using datatype:

datatype 'a list = nil

| cons of 'a * 'a list

We could even declare :: as an in�x constructor. The only thing we could
not de�ne is the [. . .] notation, which is part of the ML grammar.

VII Foundations of Computer Science 74

Slide 710

Basic Properties of Binary Trees

fun count Lf = 0 # of branch nodes
| count(Br(v,t1,t2)) = 1 + count t1 + count t2

fun depth Lf = 0 length of longest path
| depth(Br(v,t1,t2)) = 1 +

max(depth t1, depth t2)

count (t) ≤ 2depth (t) − 1

Functions on trees are expressed recursively using pattern-matching.
Both functions above are analogous to length on lists. Here is a third
measure of a tree's size:

fun leaves Lf = 1

| leaves (Br(v,t1,t2)) = leaves t1 + leaves t2;

This function is redundant because of a basic fact about trees, which can be
proved by induction: for every tree t, we have leaves(t) = count(t)+1. The
inequality shown on the slide also has an elementary proof by induction.

A tree of depth 20 can store 220−1 or approximately one million elements.
The access paths to these elements are short, particularly when compared
with a million-element list!

VII Foundations of Computer Science 75

Slide 711

Traversing Trees (3 Methods)

fun preorder Lf = []

| preorder(Br(v,t1,t2)) =

[v] @ preorder t1 @ preorder t2;

fun inorder Lf = []

| inorder(Br(v,t1,t2)) =

inorder t1 @ [v] @ inorder t2;

fun postorder Lf = []

| postorder(Br(v,t1,t2)) =

postorder t1 @ postorder t2 @ [v];

Tree traversal means examining each node of a tree in some order. D.
E. Knuth has identi�ed three forms of tree traversal: preorder, inorder and
postorder [10]. We can code these `visiting orders' as functions that convert
trees into lists of labels. Algorithms based on these notions typically perform
some action at each node; the functions above simply copy the nodes into
lists.

Consider the tree

A

/ \

B C

/ \ / \

D E F G

• preorder visits the label �rst (`Polish notation'), yielding ABDECFG

• inorder visits the label midway, yielding DBEAFCG

• postorder visits the label last (`Reverse Polish'), yielding DEBFGCA

VII Foundations of Computer Science 76

Slide 712

Efficiently Traversing Trees

fun preord (Lf, vs) = vs

| preord (Br(v,t1,t2), vs) =

v :: preord (t1, preord (t2, vs));

fun inord (Lf, vs) = vs

| inord (Br(v,t1,t2), vs) =

inord (t1, v::inord (t2, vs));

fun postord (Lf, vs) = vs

| postord (Br(v,t1,t2), vs) =

postord (t1, postord (t2, v::vs));

Unfortunately, the functions shown on the previous slide are quadratic in
the worst case: the appends in the recursive calls are ine�cient. To correct
that problem, we (as usual) add an accumulating argument. Observe how
each function constructs its result list and compare with how appends were
eliminated from quicksort in Lect. 6.

One can prove equations relating each of these functions to its counterpart
on the previous slide. For example,

inord(t, vs) = inorder(t)@vs

VII Foundations of Computer Science 77

Learning guide. Related material is in ML for the Working Programmer ,
pages 123�147.

Exercise 7.1 Show that the functions preorder, inorder and postorder

all require O(n2) time in the worst case, where n is the size of the tree.

Exercise 7.2 Show that the functions preord, inord and postord all take
linear time in the size of the tree.

VIII Foundations of Computer Science 78

Slide 801

Dictionaries

• lookup : find an item in the dictionary

• update : store an item in the dictionary

• delete : remove an item from the dictionary

• empty : the null dictionary

• Missing : exception for errors in lookup and delete

Our abstract type supports these operations

. . . but hides the implementation!

A dictionary is a data structure that associates values to certain iden-
ti�ers, called keys. When choosing the internal representation for a data
structure, it is essential to specify the full set of operations that must be
supported. Seldom is one representation best for all possible applications of
a data structure; each will support some operations well and others badly.

We consider simple dictionaries that support only update (associating
a value with an identi�er) and lookup (searching for the value associated
with an identi�er). Other operations that could be considered are delete
(removing an association) and merge (combining two dictionaries). Since
we are programming in a functional style, update will not modify the data
structure. Instead, it will return a modi�ed data structure. This can be done
e�ciently if we are careful to avoid excessive copying.

Lookup and delete fail unless they �nd the desired key. We use ML's
exceptions to signal failure.

Modern programming languages provide a means of declaring abstract
types that export well-de�ned operations while hiding low-level implemen-
tation details such as the data structure used to represent dictionaries. ML
provides modules for this purpose, but this course does not cover them. (The
Java course covers modularity.) Therefore, we shall simply declare the dictio-
nary operations individually at top level. We shall encounter many versions
of lookup, for example, that ought to be packaged in separate modules to
prevent clashes.

VIII Foundations of Computer Science 79

Slide 802

Association Lists: Lists of Pairs

exception Missing;

fun lookup ([], a) = raise Missing

| lookup ((x,y)::pairs, a) =

if a=x then y else lookup(pairs, a);

> val lookup = fn : (’’a * ’b) list * ’’a -> ’b

fun update(l, b, y) = (b,y)::l

PROBLEMS: Linear search is slow. The lists get too long!

A list of pairs is the most obvious representation for a dictionary.
Lookup is by linear search, which we know to be prohibitively slow: O(n).

Association lists are only usable if there are few keys of interest, always
near the front. However, note lookup's type: association lists work for any
equality type. This generality is their main advantage.

To enter a new (key, value) association, simply put a new pair into the
list. This takes constant time, which is the best we could hope for. But the
space requirement is huge. It is linear in the number of updates, not in the
number of distinct keys, because obsolete entries are never deleted. To delete
old entries would require �rst �nding them, increasing the update time from
O(1) to O(n).

Function lookup is traditionally called assoc after a similar function in
the language Lisp, which played a historic role in the de�nition of the Lisp
evaluator.

VIII Foundations of Computer Science 80

Slide 803

Binary Search Trees

A dictionary associates values (here, numbers) with keys

James, 5

Gordon, 4

Edward, 2

Thomas, 1

Percy, 6Henry, 3

Binary search trees are an important application of binary trees. They
work for keys that have a total ordering, such as strings. Each branch of the
tree carries a (key, value) pair; its left subtree holds smaller keys; the right
subtree holds greater keys. If the tree remains reasonably balanced, then
update and lookup both take O(log n) for a tree of size n. These times hold
in the average case; given random data, the tree is likely to remain balanced.

At a given node, all keys in the left subtree are smaller (or equal) while
all trees in the right subtree are greater.

An unbalanced tree has a linear access time in the worst case. Examples
include building a tree by repeated insertions of elements in increasing or
decreasing order; there is a close resemblance to quicksort. Building a binary
search tree, then converting it to inorder, yields a sorting algorithm called
treesort.

Self-balancing trees, such as Red-Black trees, attain O(log n) in the worst
case. They are complicated to implement.

VIII Foundations of Computer Science 81

Slide 804

Lookup: Seeks Left or Right

exception Missing of string;

fun lookup (Br ((a,x),t1,t2), b) =

if b < a then lookup(t1, b)

else if a < b then lookup(t2, b)

else x

| lookup (Lf, b) = raise Missing b;

> val lookup = fn : (string * ’a) tree * string

> -> ’a

Guaranteed O(log n) access time if the tree is balanced!

Lookup in the binary search tree goes to the left subtree if the desired
key is smaller than the current one and to the right if it is greater. It raises
exception Missing if it encounters an empty tree.

Since an ordering is involved, we have to declare the functions for a
speci�c type, here string. Now exception Missing mentions that type: if
lookup fails, the exception returns the missing key. The exception could
be eliminated using type option of Lect. 7, using the constructor NONE for
failure.

VIII Foundations of Computer Science 82

Slide 805

Update

fun update (Lf, b:string, y) = Br((b,y), Lf, Lf)

| update (Br((a,x),t1,t2), b, y) =

if b<a

then Br ((a,x), update(t1,b,y), t2)

else

if a<b

then Br ((a,x), t1, update(t2,b,y))

else (* a=b*) Br ((a,y),t1,t2);

Also O(log n): it copies the path only, not whole subtrees!

The update operation is a nice piece of functional programming. It
searches in the same manner as lookup, but the recursive calls reconstruct
a new tree around the result of the update. One subtree is updated and
the other left unchanged. The internal representation of trees ensures that
unchanged parts of the tree are not copied, but shared. (Lect. 15 will discuss
using references to create linked structures.) Therefore, update copies only
the path from the root to the new node. Its time and space requirements,
for a reasonably balanced tree, are both O(log n).

The comparison between b and a allows three cases:

• smaller : update the left subtree; share the right

• greater : update the right subtree; share the left

• equal : update the label and share both subtrees

Note: in the function de�nition, (*a=b*) is a comment. Comments in ML
are enclosed in the brackets (* and *).

VIII Foundations of Computer Science 83

Slide 806

Arrays

A conventional array is an indexed storage area.

• It is updated in place by the command A[k] := x

• The concept is inherently imperative: updating is an action.

A functional Array is a finite map from integers to data.

• Updating is copying in update(A,k,x)

• The new array equals A except at position k .

Can we do updates efficiently?

The elements of a list can only be reached by counting from the front.
Elements of a tree are reached by following a path from the root. An ar-
ray hides such structural matters; its elements are uniformly designated by
number. Immediate access to arbitrary parts of a data structure is called
random access.

Arrays are the dominant data structure in conventional programming
languages. The ingenious use of arrays is the key to many of the great
classical algorithms, such as Hoare's original quicksort (the partition step)
and Warshall's transitive-closure algorithm.

The drawback is that subscripting is a chief cause of programmer error.
That is why arrays play little role in this introductory course.

Functional arrays are described below in order to illustrate another way
of using trees to organize data. Here is a summary of our dictionary data
structures in order of decreasing generality and increasing e�ciency:

• Linear search: Most general, needing only equality on keys, but ine�-
cient: linear time.

• Binary search: Needs an ordering on keys. Logarithmic access time in
the average case, linear in the worst case.

• Array subscripting : Least general, requiring keys to be integers, but
even worst-case time is logarithmic.

VIII Foundations of Computer Science 84

Slide 807

Functional Arrays as Binary Trees

The path to an element follows the binary code for its subscript.

2�

4� 6�

8� 12� 10� 14�

3�

5� 7�

9� 13� 11� 15�

1�

This simple representation (credited to W. Braun) ensures that the tree
is balanced. Complexity of access is always O(log n), which is optimal. For
actual running time, access to conventional arrays is much faster: it requires
only a few hardware instructions. Array access is often taken to be O(1),
which (as always) presumes that hardware limits are never exceeded.

The lower bound for array indices is one. The upper bound starts at zero
(which signi�es the empty array) and can grow without limit. This data
structure can be used to implement arrays that grow and shrink by adding
and deleting elements at either end.

VIII Foundations of Computer Science 85

Slide 808

The Lookup Function

exception Subscript;

fun sub (Lf, _) = raise Subscript (*Not found!*)

| sub (Br(v,t1,t2), k) =

if k=1 then v

else if k mod 2 = 0

then sub (t1, k div 2)

else sub (t2, k div 2);

The lookup function, sub, divides the subscript by 2 until 1 is reached.
If the remainder is 0 then the function follows the left subtree, otherwise the
right. If it reaches a leaf, it signals error by raising exception Subscript.

Array access can also be understand in terms of the subscript's binary
code. Because the subscript must be a positive integer, in binary it has a
leading one. Discard this one and reverse the remaining bits. Interpreting
zero as left and one as right yields the path from the root to the subscript.

Popular literature often explains the importance of binary as being led
by hardware: because a circuit is either on or o�. The truth is almost the
opposite. Designers of digital electronics go to a lot of trouble to suppress
the continuous behaviour that would naturally arise. The real reason why
binary is important is its role in algorithms: an if-then-else decision leads
to binary branching.

Data structures, such as trees, and algorithms, such as mergesort, use
binary branching in order to reduce a cost from O(n) to O(log n). Two is
the smallest integer divisor that achieves this reduction. (Larger divisors are
only occasionally helpful, as in the case of B-trees, where they reduce the
constant factor.) The simplicity of binary arithmetic compared with decimal
arithmetic is just another instance of the simplicity of algorithms based on
binary choices.

VIII Foundations of Computer Science 86

Slide 809

The Update Function

fun update (Lf, k, w) =

if k = 1 then Br (w, Lf, Lf)

else raise Subscript (*Gap in tree!*)

| update (Br(v,t1,t2), k, w) =

if k = 1 then Br (w, t1, t2)

else if k mod 2 = 0

then Br (v, update(t1, k div 2, w), t2)

else Br (v, t1, update(t2, k div 2, w))

The update function, update, also divides the subscript repeatedly by
two. When it reaches a value of one, it has identi�ed the element position.
Then it replaces the branch node by another branch with the new label.

A leaf may be replaced by a branch, extending the array, provided no
intervening nodes have to be generated. This su�ces for arrays without gaps
in their subscripting. (The data structure can be modi�ed to allow sparse
arrays, where most subscript positions are unde�ned.) Exception Subscript

indicates that the subscript position does not exist and cannot be created.
This use of exceptions is not easily replaced by NONE and SOME.

Note that there are two tests involving k = 1. If we have reached a leaf;
it returns a branch, extending the array by one. If we are still at a branch
node, then the e�ect is to update an existing array element.

A similar function can shrink an array by one.

Learning guide. Related material is in ML for the Working Programmer ,
pages 148�159.

IX Foundations of Computer Science 87

Slide 901

Breadth-First v Depth-First Tree Traversal

binary trees as decision trees

Look for solution nodes

• Depth-first : search one subtree in full before moving on

• Breadth-first: search all nodes at level k before moving to k + 1

Finds all solutions — nearest first!

Preorder, inorder and postorder tree traversals all have something in
common: they are depth-�rst. At each node, the left subtree is entirely
traversed before the right subtree. Depth-�rst traversals are easy to code
and can be e�cient, but they are ill-suited for some problems.

Suppose the tree represents the possible moves in a puzzle, and the pur-
pose of the traversal is to search for a node containing a solution. Then
a depth-�rst traversal may �nd one solution node deep in the left subtree,
when another solution is at the very top of the right subtree. Often we want
the shortest path to a solution.

Suppose the tree is in�nite. (The ML datatype tree contains only �nite
trees, but ML can represent in�nite trees by means discussed in Lect. 13.)
Depth-�rst search is almost useless with in�nite trees, for if the left subtree
is in�nite then it will never reach the right subtree.

A breadth-�rst traversal explores the nodes horizontally rather than ver-
tically. When visiting a node, it does not traverse the subtrees until it has
visited all other nodes at the current depth. This is easily implemented by
keeping a list of trees to visit. Initially, this list consists of one element: the
entire tree. Each iteration removes a tree from the head of the list and adds
its subtrees after the end of the list.

IX Foundations of Computer Science 88

Slide 902

Breadth-First Tree Traversal — Using Append

fun nbreadth [] = []

| nbreadth (Lf :: ts) = nbreadth ts

| nbreadth (Br(v,t,u) :: ts) =

v :: nbreadth(ts @ [t,u])

Keeps an enormous queue of nodes of search

Wasteful use of append

25 SECS to search depth 12 binary tree (4095 labels)

Breadth-�rst search can be ine�cient, this naive implementation espe-
cially so. When the search is at depth d of the tree, the list contains all the
remaining trees at depth d, followed by the subtrees (all at depth d + 1) of
the trees that have already been visited. At depth 10, the list could already
contain 1024 elements. It requires a lot of space, and aggravates this with a
gross misuse of append. Evaluating ts@[t,u] copies the long list ts just to
insert two elements.

IX Foundations of Computer Science 89

Slide 903

An Abstract Data Type: Queues

• qempty is the empty queue

• qnull tests whether a queue is empty

• qhd returns the element at the head of a queue

• deq discards the element at the head of a queue

• enq adds an element at the end of a queue

Breadth-�rst search becomes much faster if we replace the lists by queues.
A queue represents a sequence, allowing elements to be taken from the head
and added to the tail. This is a First-In-First-Out (FIFO) discipline: the
item next to be removed is the one that has been in the queue for the longest
time. Lists can implement queues, but append is a poor means of adding
elements to the tail.

Our functional arrays (Lect. 8) are suitable, provided we augment them
with a function to delete the �rst array element. (See ML for the Working
Programmer, page 156.) Each operation would take O(log n) time for a queue
of length n.

We shall describe a representation of queues that is purely functional,
based upon lists, and e�cient. Operations take O(1) time when amortized :
averaged over the lifetime of a queue.

A conventional programming technique is to represent a queue by an
array. Two indices point to the front and back of the queue, which may wrap
around the end of the array. The coding is somewhat tricky. Worse, the
length of the queue must be given a �xed upper bound.

IX Foundations of Computer Science 90

Slide 904

Efficient Functional Queues: Idea

Represent the queue x1 x2 . . . xm yn . . . y1

by any pair of lists

([x1, x2, . . . , xm], [y1, y2, . . . , yn])

Add new items to rear list

Remove items from front list ; if empty move rear to front

Amortized time per operation is O(1)

Queues require e�cient access at both ends: at the front, for removal, and
at the back, for insertion. Ideally, access should take constant time, O(1).
It may appear that lists cannot provide such access. If enq(q,x) performs
q@[x], then this operation will be O(n). We could represent queues by
reversed lists, implementing enq(q,x) by x::q, but then the deq and qhd

operations would be O(n). Linear time is intolerable: a series of n queue
operations could then require O(n2) time.

The solution is to represent a queue by a pair of lists, where

([x1, x2, . . . , xm], [y1, y2, . . . , yn])

represents the queue x1x2 . . . xmyn . . . y1.
The front part of the queue is stored in order, and the rear part is stored

in reverse order. The enq operation adds elements to the rear part using
cons, since this list is reversed; thus, enq takes constant time. The deq

and qhd operations look at the front part, which normally takes constant
time, since this list is stored in order. But sometimes deq removes the last
element from the front part; when this happens, it reverses the rear part,
which becomes the new front part.

Amortized time refers to the cost per operation averaged over the lifetime
of any complete execution. Even for the worst possible execution, the average
cost per operation turns out to be constant; see the analysis below.

IX Foundations of Computer Science 91

Slide 905

Efficient Functional Queues: Code

datatype ’a queue = Q of ’a list * ’a list

fun norm(Q([],tls)) = Q(rev tls, [])

| norm q = q

fun qnull(Q([],[])) = true | qnull _ = false

fun enq(Q(hds,tls), x) = norm(Q(hds, x::tls))

fun deq(Q(x::hds, tls)) = norm(Q(hds, tls))

The datatype of queues prevents confusion with other pairs of lists.
The empty queue, omitted to save space on the slide, has both parts

empty.

val qempty = Q([],[]);

The function norm puts a queue into normal form, ensuring that the front
part is never empty unless the entire queue is empty. Functions deq and enq

call norm to normalize their result.
Because queues are in normal form, their head is certain to be in their

front part, so qhd (also omitted from the slide) looks there.

fun qhd(Q(x::_,_)) = x

Let us analyse the cost of an execution comprising (in any possible order) n
enq operations and n deq operations, starting with an empty queue. Each
enq operation will perform one cons, adding an element to the rear part.
Since the �nal queue must be empty, each element of the rear part gets
transferred to the front part. The corresponding reversals perform one cons
per element. Thus, the total cost of the series of queue operations is 2n cons
operations, an average of 2 per operation. The amortized time is O(1).

There is a catch. The conses need not be distributed evenly; reversing
a long list could take up to n − 1 of them. Unpredictable delays make the
approach unsuitable for real-time programming, where deadlines must be
met.

IX Foundations of Computer Science 92

Slide 906

Aside: The case Expression

fun wheels v =

case v of Bike => 2

| Motorbike _ => 2

| Car robin =>

if robin then 3 else 4

| Lorry w => w;

The case expression has the form

case E of P1 => E1 | · · · | Pn => En

It tries the patterns one after the other. When one matches, it evaluates the
corresponding expression. It behaves precisely like the body of a function
declaration. We could have de�ned function wheels (from Lect. 7) as shown
above.

A program phrase of the form P1 => E1 | · · · | Pn => En is called a
Match. A match may also appear after an exception handler (Lect. 7) and
with fn-notation to expression functions directly (Lect. 10).

IX Foundations of Computer Science 93

Slide 907

Breadth-First Tree Traversal — Using Queues

fun breadth q =

if qnull q then []

else

case qhd q of

Lf => breadth (deq q)

| Br(v,t,u) =>

v :: breadth(enq(enq(deq q, t), u))

0.14 secs to search depth 12 binary tree (4095 labels)

200 times faster!

This function implements the same algorithm as nbreadth but uses a
di�erent data structure. It represents queues using type queue instead of
type list.

To compare their e�ciency, I applied both functions to the full binary
tree of depth 12, which contains 4095 labels. The function nbreadth took
30 seconds while breadth took only 0.15 seconds: faster by a factor of 200.

For larger trees, the speedup would be greater. Choosing the right data
structure pays handsomely.

IX Foundations of Computer Science 94

Slide 908

Iterative deepening: Another Exhaustive Search

Breadth-first search examines O(bd) nodes:

1 + b + · · ·+ bd =
bd+1 − 1

b− 1
b = branching factor

d = depth

Recompute nodes at depth d instead of storing them

Time factor is b/(b− 1) if b > 1; complexity is still O(bd)

Space required at depth d drops from bd to d

Breadth-�rst search is not practical for big problems: it uses too much
space. Consider the slightly more general problem of searching trees whose
branching factor is b (for binary trees, b = 2). Then breadth-�rst search
to depth d examines (bd+1 − 1)/(b − 1) nodes, which is O(bd), ignoring the
constant factor of b/(b − 1).) Since all nodes that are examined are also
stored, the space and time requirements are both O(bd).

Depth-�rst iterative deepening combines the space e�ciency of depth-�rst
with the `nearest-�rst' property of breadth-�rst search. It performs repeated
depth-�rst searches with increasing depth bounds, each time discarding the
result of the previous search. Thus it searches to depth 1, then to depth 2,
and so on until it �nds a solution. We can a�ord to discard previous results
because the number of nodes is growing exponentially. There are bd+1 nodes
at level d + 1; if b ≥ 2, this number actually exceeds the total number of
nodes of all previous levels put together, namely (bd+1 − 1)/(b− 1).

Korf [11] shows that the time needed for iterative deepening to reach
depth d is only b/(b − 1) times that for breadth-�rst search, if b > 1. This
is a constant factor; both algorithms have the same time complexity, O(bd).
In typical applications where b ≥ 2 the extra factor of b/(b − 1) is quite
tolerable. The reduction in the space requirement is exponential, from O(bd)
for breadth-�rst to O(d) for iterative deepening.

IX Foundations of Computer Science 95

Slide 909

Another Abstract Data Type: Stacks

• empty is the empty stack

• null tests whether a stack is empty

• top returns the element at the top of a stack

• pop discards the element at the top of a stack

• push adds an element at the top of a stack

A stack is a sequence such that items can be added or removed from the
head only. A stack obeys a Last-In-First-Out (LIFO) discipline: the item
next to be removed is the one that has been in the queue for the shortest
time. Lists can easily implement stacks because both cons and hd a�ect
the head. But unlike lists, stacks are often regarded as an imperative data
structure: the e�ect of push or pop is to change an existing stack, not return
a new one.

In conventional programming languages, a stack is often implemented by
storing the elements in an array, using a variable (the stack pointer) to count
them. Most language processors keep track of recursive function calls using
an internal stack.

IX Foundations of Computer Science 96

Slide 910

A Survey of Search Methods

1. Depth-first : use a stack (efficient but incomplete)

2. Breadth-first : use a queue (uses too much space!)

3. Iterative deepening : use (1) to get benefits of (2)

(trades time for space)

4. Best-first : use a priority queue (heuristic search)

The data structure determines the search!

Search procedures can be classi�ed by the data structure used to store
pending subtrees. Depth-�rst search stores them on a stack, which is implicit
in functions like inorder, but can be made explicit. Breadth-�rst search
stores such nodes in a queue.

An important variation is to store the nodes in a priority queue, which
is an ordered sequence. The priority queue applies some sort of ranking
function to the nodes, placing higher-ranked nodes before lower-ranked ones.
The ranking function typically estimates the distance from the node to a
solution. If the estimate is good, the solution is located swiftly. This method
is called best-�rst search.

The priority queue can be kept as a sorted list, although this is slow.
Binary search trees would be much better on average, and fancier data struc-
tures improve matters further.

Learning guide. Related material is in ML for the Working Programmer ,
pages 258�263. For priority queues, see 159�164.

X Foundations of Computer Science 97

Slide 1001

Functions as Values

In ML, functions can be

• passed as arguments to other functions,

• returned as results,

• put into lists, trees, etc.,

• but not tested for equality.

Functions represent algorithms and infinite data structures.

Progress in programming languages can be measured by what abstrac-
tions they admit. Conditional expressions (descended from conditional jumps
based on the sign of some numeric variable) and parametric types such as
α list are examples. The idea that functions could be used as values in
a computation arose early, but it took some time before the idea was fully
realized. Many programming languages let functions be passed as arguments
to other functions, but few take the trouble needed to allow functions to be
returned as results.

In mathematics, a functional or higher-order function is a function that
transforms other functions. Many functionals are familiar from mathematics,
such as integral and di�erential operators of the calculus. To a mathemati-
cian, a function is typically an in�nite, uncomputable object. We use ML
functions to represent algorithms. Sometimes they represent in�nite collec-
tions of data given by computation rules.

Functions cannot be compared for equality. The best we could do, with
reasonable e�ciency, would be to test identity of machine addresses. Two
separate occurrences of the same function declaration would be regarded
as unequal because they would be compiled to di�erent machine addresses.
Such a low-level feature has no place in a language like ML.

X Foundations of Computer Science 98

Slide 1002

Functions Without Names

fn x => E is the function f such that f(x) = E

The function (fn n => n * 2) is a doubling function.

(fn n => n * 2);

> val it = fn : int -> int

(fn n => n * 2) 17;

> val it = 34 : int

If functions are to be regarded as computational values, then we need
a notation for them. The fn-notation expresses a function value without
giving the function a name. (Some people pronounce fn as `lambda' because
it originated in the λ-calculus.) It cannot express recursion. Its main purpose
is to package up small expressions that are to be applied repeatedly using
some other function.

The expression (fn n => n*2) has the same value as the identi�er
double, declared as follows:

fun double n = n*2

The fn-notation allows pattern-matching, like case expressions and ex-
ception handlers, to express functions with multiple clauses:

fn P1 => E1 | ... | Pn => En

This rarely-used expression abbreviates the local declaration

let fun f(P1) = E1 | ... | f(Pn) = En

in f end

For example, the following declarations are equivalent:

val not = (fn false => true | true => false)

fun not false = true

| not true = false

X Foundations of Computer Science 99

Slide 1003

Curried Functions

A curried function returns another function as its result.

val prefix = (fn a => (fn b => a^b));

> val prefix = fn: string -> (string -> string)

prefix yields functions of type string -> string .

Each of these refers to some value of the argument a.

The fn-notation lets us package n*2 as the function (fn n => n*2), but
what if there are several variables, as in (n*2+k)? If the variable k is de�ned
in the current context, then

fn n => n*2+k

is still meaningful. To make a function of two arguments, we may use pattern-
matching on pairs, writing

fn (n,k) => n*2+k

A more interesting alternative is to nest the fn-notation:

fn k => (fn n => n*2+k)

Applying this function to the argument 1 yields another function,

fn n => n*2+1

which, when applied to 3, yields the result 7.
The example on the slide is similar but refers to the expression a^b,

where ^ is the in�x operator for string concatenation.

X Foundations of Computer Science 100

Slide 1004

Using a Curried Function

Let’s give one of these functions the name promote .

val promote = prefix "Professor ";

> val promote = fn: string -> string

promote "Mop";

> "Professor Mop" : string

Or we can apply prefix to two arguments at once:

(prefix "Doctor ") "Who";

> val "Doctor Who" : string

Function promote binds the �rst argument of prefix to the string
"Professor "; the resulting function pre�xes that title to any string to
which it is applied.

Note: The parentheses may be omitted in (fn a => (fn b => E)).
They may also be omitted in (prefix "Doctor ") "Who".

X Foundations of Computer Science 101

Slide 1005

Shorthand for Curried Functions

A function-returning function is just a function of two arguments.

This syntax is nicer than nested fn binders:

fun prefix a b = a^b;

> val prefix = ... as before

val dub = prefix "Sir ";

> val dub = fn: string -> string

Curried functions allows partial application (to the first argument).

The n-argument curried function f is conveniently declared using the
syntax

fun f x1 ...xn = ...

and applied using the syntax f E1 ...En.
We now have two ways�pairs and currying�of expressing functions of

multiple arguments. Currying allows partial application, which is useful
when �xing the �rst argument yields a function that is interesting in its
own right. An example from mathematics is the de�nite integral

∫ y

x
f(z) dz,

where �xing x = x0 yields a function in y alone.
Though the function hd (which returns the head of a list) is not curried,

it may be used with the curried application syntax in some expressions:

hd [dub, promote] "Hamilton";

> val "Sir Hamilton" : string

Here hd is applied to a list of functions, and the resulting function (dub) is
then applied to the string "Hamilton". The idea of executing code stored in
data structures reaches its full development in object-oriented programming,
as found in languages like Java and C++.

X Foundations of Computer Science 102

Slide 1006

Partial Application: A Curried Insertion Sort

fun insort lessequal =

let fun ins (x, []) = [x]

| ins (x, y::ys) =

if lessequal (x,y) then x::y::ys

else y :: ins (x,ys)

fun sort [] = []

| sort (x::xs) = ins (x, sort xs)

in sort end;

> val insort = fn : (’a * ’a -> bool)

> -> (’a list -> ’a list)

The sorting functions of Lect. 6 are coded to sort real numbers. They
can be generalized to an arbitrary ordered type by passing the ordering
predicate (≤) as an argument.

Functions ins and sort are declared locally, referring to lessequal.
Though it may not be obvious, insort is a curried function. Given its �rst
argument, a predicate for comparing some particular type of items, it returns
the function sort for sorting lists of that type of items.

X Foundations of Computer Science 103

Slide 1007

Examples of Generic Sorting

insort (op<=) [5,3,9,8];

> val it = [3, 5, 8, 9] : int list

insort (op<=) ["bitten","on","a","bee"];

> val it = ["a", "bee", "bitten", "on"]

> : string list

insort (op>=) [5,3,9,8];

> val it = [9, 8, 5, 3] : int list

Note: op<= stands for the <= operator regarded as a value. Although
in�xes are functions, normally they can only appear in expressions such as
n<=9. The op syntax lets us write op<=(n,9), but on the slide we use op<=
to pass the comparison operator to function insort.

To exploit sorting to its full extent, we need the greatest �exibility in
expressing orderings. There are many types of basic data, such as integers,
reals and strings. On the overhead, we sort integers and strings. The op-
erator <= is overloaded, working for types int, real and string. The list
supplied as insort's second argument resolves the overloading ambiguity.

Passing the relation ≥ for lessequal gives a decreasing sort. This is no
coding trick; it is justi�ed in mathematics. If ≤ is a partial ordering then so
is ≥.

There are many ways of combining orderings. Most important is the
lexicographic ordering, in which two keys are used for comparisons. It is
speci�ed by (x′, y′) < (x, y) ⇐⇒ x′ < x ∨ (x′ = x ∧ y′ < y). Often part
of the data plays no role in the ordering; consider the text of the entries in
an encyclopedia. Mathematically, we have an ordering on pairs such that
(x′, y′) < (x, y) ⇐⇒ x′ < x.

These ways of combining orderings can be expressed in ML as functions
that take orderings as arguments and return other orderings as results.

X Foundations of Computer Science 104

Slide 1008

A Summation Functional

Sums the values of f(i) for 1 ≤ i ≤ m.

fun sum f 0 = 0.0

| sum f m = f(m) + sum f (m-1);

> val sum = fn: (int -> real) -> (int -> real)

sum (fn k => real (k * k)) 5;

> val it = 55.0 : real

sum f m =
m∑

i=1

f(i)

Above we see that 1 + 4 + 9 + 16 + 25 = 55.
Numerical programming languages, such as Fortran, allow functions to be

passed as arguments in this manner. Classical applications include numerical
integration and root-�nding.

Thanks to currying, ML surpasses Fortran. Not only can f be passed
as an argument to sum, but the result of doing so can itself be returned
as another function. Given an integer argument, that function returns the
result of summing values of f up to the speci�ed bound.

X Foundations of Computer Science 105

Slide 1009

Nesting the Summation Functional

sum (fn i=>

sum (fn j=>h(i,j))

n =
mX

i=1

nX
j=1

h(i, j)

)

m

sum (sum f) m =
m∑

i=1

i∑
j=1

f(j)

These examples demonstrate how fn-notation expresses dependence on
bound variables, just as in ordinary mathematics. The functional sum can
be repeated like the traditional Σ sign.

Let us examine the �rst example in detail:

• h(i,j) depends upon the variables i and j

• fn j=>h(i,j) depends upon i alone, yielding a function over j

• sum (fn j=>h(i,j)) n depends upon i and n, summing the function
over j mentioned above

• fn i => sum · · · n depends upon n alone, yielding a function over i

The expression as a whole depends upon the three variables f, m and n.
Functionals, currying and fn-notation yield a language for expressions

that is grounded in mathematics, concise and powerful.

X Foundations of Computer Science 106

Slide 1010

Historical Remarks

Frege (1893): if functions are values, we need unary

functions only

Schöfinkel (1924): with the right combinators , we don’t need

variables!

Church (1936): the λ-calculus & unsolvable problems

Landin (1964-6): ISWIM: a language based on the λ-calculus

Turner (1979): combinators as an implementation technique

The idea that functions could be regarded as values in themselves gained
acceptance in the 19th century. Frege's mammoth (but ultimately doomed)
logical system was based upon this notion. Frege discovered what we now
call Currying: that having functions as values meant that functions of several
arguments could be formalized using single-argument functions only.

Another logician, Schön�nkel, rediscovered this fact and developed com-
binators as a means of eliminating variables from expressions. Given K and
S such that Kxy = x and Sxyz = xz(yz), any functional expression could
be written without using bound variables. Currying is named after Haskell
B. Curry, who made deep investigations into the theory of combinators.

Alonzo Church's λ-calculus gave a simple syntax, λ-notation, for express-
ing functions. It is the direct precursor of ML's fn-notation. It was soon
shown that his system was equivalent in computational power to Turing
machines, and Church's thesis states that this de�nes precisely the set of
functions that can be computed e�ectively.

The λ-calculus had a tremendous in�uence on the design of functional
programming languages. McCarthy's Lisp was something of a false start; it
interpreted variable binding incorrectly, an error that stood for some 20 years.
However, Landin sketched out the main features of functional languages.
Turner made the remarkable discovery that combinators (hitherto thought
to be of theoretical value only) could an e�ective means of implementing
functional languages that employed lazy evaluation.

X Foundations of Computer Science 107

Learning guide. Related material is in ML for the Working Programmer ,
pages 171�179. Chapter 9 contains an introduction to the λ-calculus, whch
will be covered in the second-year course Foundations of Functional Pro-
gramming.

Exercise 10.1 Write an ML function to combine two orderings lexico-
graphically. Explain how it allows function insort to sort a list of pairs,
using both components in the comparisons.

Exercise 10.2 Code an iterative version of sum, a curried function of three
arguments. Does it matter whether the accumulator is the �rst, second or
third argument?

Exercise 10.3 Explain the second example of sum on the overhead. What
is (sum f)?

XI Foundations of Computer Science 108

Slide 1101

map: the ‘Apply to All’ Functional

fun map f [] = []

| map f (x::xs) = (f x) :: map f xs

> val map = fn: (’a -> ’b) -> ’a list -> ’b list

map (fn s => s ^ "ppy") ["Hi", "Ho"];

> val it = ["Hippy", "Hoppy"] : string list

map (map double) [[1], [2,3]];

> val it = [[2], [4, 6]] : int list list

The functional map applies a function to every element of a list, returning
a list of the function's results. �Apply to all� is a fundamental operation
and we shall see several applications of it in this lecture. We again see the
advantages of fn-notation, currying and map. If we did not have them, the
�rst example on the slide would require a preliminary function declaration:

fun sillylist [] = []

| sillylist (s::ss) = (s ^ "ppy") :: sillylist ss;

An expression containing several applications of functionals�such as our
second example�can abbreviate a long series of declarations. Sometimes
this coding style is cryptic, but it can be clear as crystal. Treating functions
as values lets us capture common program structures once and for all.

In the second example, double is the obvious integer doubling function:

fun double n = n*2;

Note that map is a built-in ML function. Standard ML's library includes,
among much else, many list functions.

XI Foundations of Computer Science 109

Slide 1102

Example: Matrix Transpose

a b c

d e f

T

=

a d

b e

c f

fun hd (x::_) = x;

fun tl (_::xs) = xs;

fun transp ([]::_) = []

| transp rows = (map hd rows) ::

(transp (map tl rows))

Amatrix can be viewed as a list of rows, each row a list of matrix elements.
This representation is not especially e�cient compared with the conventional
one (using arrays). Lists of lists turn up often, though, and we can see how
to deal with them by taking familiar matrix operations as examples. ML for
the Working Programmer goes as far as Gaussian elimination, which presents
surprisingly few di�culties.

The transpose of the matrix
(

a b c
d e f

)
is

(
a d
b e
c f

)
, which in ML corresponds

to the following transformation on lists of lists:

[[a,b,c], [d,e,f]] 7→ [[a,d], [b,e], [c,f]]

The workings of function transp are simple. If rows is the matrix to be
transposed, then map hd extracts its �rst column and map tl extracts its
second column:

map hd rows 7→ [a,d]

map tl rows 7→ [[b,c], [e,f]]

A recursive call transposes the latter matrix, which is then given the column
[a,d] as its �rst row.

The two functions expressed using map would otherwise have to be de-
clared separately.

XI Foundations of Computer Science 110

Slide 1103

Review of Matrix Multiplication

(
A1 · · · Ak

)
·

B1

...

Bk

 =
(
A1B1 + · · ·+ AkBk

)

The right side is the vector dot product ~A · ~B

Repeat for each row of A and column of B

The dot product of two vectors is

(a1, . . . , ak) · (b1, . . . , bk) = a1b1 + · · ·+ akbk.

A simple case of matrix multiplication is when A consists of a single row
and B consists of a single column. Provided A and B contain the same
number k of elements, multiplying them yields a 1 × 1 matrix whose single
element is the dot product shown above.

If A is an m× k matrix and B is a k× n matrix then A×B is an m× n
matrix. For each i and j, the (i, j) element of A × B is the dot product of
row i of A with column j of B.

2 0
3 −1
0 1
1 1

 (
1 0 2
4 −1 0

)
=

2 0 4
−1 1 6
4 −1 0
5 −1 2

The (1,1) element above is computed by

(2, 0) · (1, 4) = 2× 1 + 0× 4 = 2.

Coding matrix multiplication in a conventional programming language
usually involves three nested loops. It is hard to avoid mistakes in the sub-
scripting, which often runs slowly due to redundant internal calculations.

XI Foundations of Computer Science 111

Slide 1104

Matrix Multiplication in ML

Dot product of two vectors—a curried function

fun dotprod [] [] = 0.0

| dotprod(x::xs)(y::ys) = x * y + dotprod xs ys

Matrix product

fun matprod(Arows,Brows) =

let val cols = transp Brows

in map (fn row => map (dotprod row) cols)

Arows

end

The transp Brows converts B into a list of columns. It yields a list,
whose elements are the columns of B. Each row of A × B is obtained by
multiplying a row of A by the columns of B.

Because dotprod is curried, it can be applied to a row of A. The resulting
function is applied to all the columns of B. We have another example of
currying and partial application.

The outer map applies dotprod to each row of A. The inner map, using
fn-notation, applies dotprod row to each column of B. Compare with the
version in ML for the Working Programmer, page 89, which does not use map
and requires two additional function declarations.

In the dot product function, the two vectors must have the same length.
Otherwise, exception Match is raised.

XI Foundations of Computer Science 112

Slide 1105

The ‘Fold’ Functionals

fun foldl f (e, []) = e

| foldl f (e, x::xs) = foldl f (f(e,x), xs)

fun foldr f ([], e) = e

| foldr f (x::xs, e) = f(x, foldr f (xs,e))

They do recursion down a list :

foldl ⊕ : (e, [x1, . . . , xn]) 7−→ (· · · (e⊕ x1)⊕ · · ·)⊕ xn

foldr ⊕ : ([x1, . . . , xn], e) 7−→ x1 ⊕ (· · · ⊕ (xn ⊕ e) · · ·)

These functionals start with an initial value e. They combine it with the
list elements one at a time, using the function ⊕. While foldl takes the list
elements from left to right, foldr takes them from right to left. Here are
their types:

> val foldl = fn: ('a * 'b -> 'a) -> 'a * 'b list -> 'a

> val foldr = fn: ('a * 'b -> 'b) -> 'a list * 'b -> 'b

Obvious applications or foldl or foldr are to add or multiply a list of
numbers. Many recursive functions on lists can be expressed concisely. Some
of them follow common idioms and are easily understood. But you can easily
write incomprehensible code, too.

The relationship between foldr and the list datatype is particularly close.
Here is the list [1,2,3,4] in its internal format:

::→ ::→ ::→ ::→nil
↓ ↓ ↓ ↓
1 2 3 4

Compare with the expression computed by foldr(⊕, e). the �nal nil is re-
placed by e; the conses are replaced by ⊕.

⊕→⊕→⊕→⊕→ e
↓ ↓ ↓ ↓
1 2 3 4

XI Foundations of Computer Science 113

Slide 1106

Defining List Functions Using foldl /r

foldl op+ (0,xs) sum

foldr op:: (xs,ys) append

foldl (foldl op+) (0,ls) sum of sums!

foldl (fn(e,x) => e+1) (0,xs) length

foldl (fn(e,x)=>x::e) ([],xs) reverse

The sum of a list's elements is formed by starting with zero and adding
each list element in turn. Using foldr would be less e�cient, requiring linear
instead of constant space. Note that op+ turns the in�x addition operator
into a function that can be passed to other functions such as foldl. Append
is expressed similarly, using op:: to stand for the cons function.

The sum-of-sums computation is space-e�cient : it does not form an
intermediate list of sums. Moreover, foldl is iterative. Carefully observe
how the inner foldl expresses a function to add a number of a list; the
outer foldl applies this function to each list in turn, accumulating a sum
starting from zero.

The nesting in the sum-of-sums calculation is typical of well-designed
fold functionals. Similar functionals can be declared for other data struc-
tures, such as trees. Nesting these functions provides a convenient means of
operating on nested data structures, such as trees of lists.

The length computation might be regarded as frivolous. A trivial function
is supplied using fn-notation; it ignores the list elements except to count
them. However, this length function takes constant space, which is better
than naïve versions such as nlength (Lect. 4). Using foldl guarantees an
iterative solution with an accumulator.

XI Foundations of Computer Science 114

Slide 1107

List Functionals for Predicates

fun exists p [] = false

| exists p (x::xs) = (p x) orelse exists p xs;

> exists: (’a -> bool) -> (’a list -> bool)

fun filter p [] = []

| filter p (x::xs) =

if p x then x :: filter p xs

else filter p xs;

> filter: (’a -> bool) -> (’a list -> ’a list)

(A predicate is a boolean-valued function.)

The functional exists transforms a predicate into a predicate over lists.
Given a list, exists p tests whether or not some list element satis�es p

(making it return true). If it �nds one, it stops searching immediately,
thanks to the behaviour of orelse; this aspect of exists cannot be obtained
using the fold functionals.

Dually, we have a functional to test whether all list elements satisfy the
predicate. If it �nds a counterexample then it, too, stops searching.

fun all p [] = true

| all p (x::xs) = (p x) andalso all p xs;

> all: ('a -> bool) -> ('a list -> bool)

The filter functional is related to map. It applies a predicate to all the
list elements, but instead of returning the resulting values (which could only
be true or false), it returns the list of elements satisfying the predicate.

XI Foundations of Computer Science 115

Slide 1108

Applications of the Predicate Functionals

fun member(y,xs) =

exists (fn x => x=y) xs;

fun inter(xs,ys) =

filter (fn x => member(x,ys)) xs;

Testing whether two lists have no common elements

fun disjoint(xs,ys) =

all (fn x => all (fn y => x<>y) ys) xs;

> val disjoint = fn: ’’a list * ’’a list -> bool

Again, by way of example, we consider applications of the predicate func-
tionals. Lecture 5 presented the function member, which tests whether a
speci�ed value can be found as a list element, and inter, which returns the
�intersection� of two lists: the list of elements they have in common.

But remember: the purpose of list functionals is not to replace the dec-
larations of popular functions, which probably are available already. It is to
eliminate the need for separate declarations of ad-hoc functions. When they
are nested, like the calls to all in disjoint above, the inner functions are
almost certainly one-o�s, not worth declaring separately.

XI Foundations of Computer Science 116

Slide 1109

Tree Functionals

fun maptree f Lf = Lf

| maptree f (Br(v,t1,t2)) =

Br(f v, maptree f t1, maptree f t2);

> val maptree = fn

> : (’a -> ’b) -> ’a tree -> ’b tree

fun fold f e Lf = e

| fold f e (Br(v,t1,t2)) =

f (v, fold f e t1, fold f e t2);

> val fold = fn

> : (’a * ’b * ’b -> ’b) -> ’b -> ’a tree -> ’b

The ideas presented in this lecture generalize in the obvious way to trees
and other datatypes, not necessarily recursive ones.

The functional maptree applies a function to every label of a tree, return-
ing another tree of the same shape. Analogues of exists and all are trivial
to declare. On the other hand, filter is hard because removing the �ltered
labels changes the tree's shape; if a label fails to satisfy the predicate, there
is no obvious way to include the result of �ltering both subtrees.

The easiest way of declaring a fold functional is as shown above. The
arguments f and e replace the constructors Br and Lf, respectively. This
functional can be used to add a tree's labels, but it requires a three-argument
addition function. To avoid this inconvenience, fold functionals for trees can
implicitly treat the tree as a list. For example, here is a fold function related
to foldr, which processes the labels in inorder:

fun infold f (Lf, e) = e

| infold f (Br(v,t1,t2), e) = infold f (t1, f (v, infold f (t2, e)));

Its code is derived from that of the function inord of Lect. 7 by generalizing
cons to the function f.

Our primitives themselves can be seen as a programming language. This
truth is particularly obvious in the case of functionals, but it holds of pro-
gramming in general. Part of the task of programming is to extend our
programming language with notation for solving the problem at hand. The
levels of notation that we de�ne should correspond to natural levels of ab-
straction in the problem domain.

XI Foundations of Computer Science 117

Learning guide. Related material is in ML for the Working Programmer ,
pages 182�190.

Exercise 11.1 Without using map, currying, etc., write a function that
is equivalent to map (map double). The obvious solution requires declaring
two recursive functions. Try to get away with only one by exploiting nested
pattern-matching.

Exercise 11.2 Express the functional map using foldr.

Exercise 11.3 Declare an analogue of map for type option:

datatype 'a option = NONE | SOME of 'a;

Exercise 11.4 Recall the making change function of Lect. 5:

fun change ...

| change (c::till, amt) =

if ...

else

let fun allc [] = []

| allc(cs::css) = (c::cs)::allc css

in allc (change(c::till, amt-c)) @

change(till, amt)

end;

Function allc applies the function `cons a c' to every element of a list.
Eliminate it by declaring a curried cons function and applying map.

XII Foundations of Computer Science 118

Slide 1201

Computer Algebra

symbolic arithmetic on polynomials, trig functions, . . .

closed-form or power-series solutions, not NUMERICAL ones

rational arithmetic instead of FLOATING-POINT

For scientific and engineering calculations

Univariate polynomials anxn + · · ·+ a0x
0

Example of data representation and algorithms in practice

This lecture illustrates the treatment of a hard problem: polynomial
arithmetic. Many operations could be performed on polynomials, so we shall
have to simplify the problem drastically. We shall only consider functions to
add and multiply polynomials in one variable. These functions are neither
e�cient nor accurate, but at least they make a start. Beware: e�cient,
general algorithms for polynomials are complicated enough to boggle the
mind.

Although computers were originally invented for performing numerical
arithmetic, scientists and engineers often prefer closed-form solutions to
problems. A formula is more compact than a table of numbers, and its
properties�the number of crossings through zero, for example�can be de-
termined exactly.

Polynomials are a particularly simple kind of formula. A polynomial
is a linear combination of products of certain variables. For example, a
polynomial in the variables x, y and z has the form

∑
ijk aijk xiyjzk, where

only �nitely many of the coe�cients aijk are non-zero. Polynomials in one
variable, say x, are called univariate. Even restricting ourselves to univariate
polynomials does not make our task easy.

This example demonstrates how to represent a non-trivial form of data
and how to exploit basic algorithmic ideas to gain e�ciency.

XII Foundations of Computer Science 119

Slide 1202

Data Representation Example: Finite Sets

represent by repetition-free lists

representations not unique:

{3, 4}
↙ ↘

[3, 4] [4, 3]

INVALID representations? [3, 3] represents no set

ML operations must preserve the representation

Representation must promote efficiency : try ordered lists?

ML does not provide �nite sets as a data structure. We could represent
them by lists without repetitions. Finite sets are a simple example of data
representation. A collection of abstract objects (�nite sets) is represented
using a set of concrete objects (repetition-free lists). Every abstract object
is represented by at least one concrete object, maybe more than one, for
{3, 4} can be represented by [3, 4] or [4, 3]. Some concrete objects, such as
[3, 3], represent no abstract object at all.

Operations on the abstract data are de�ned in terms of the representa-
tions. For example, the ML function inter (Lect. 5) implements the abstract
intersection operation ∩ provided inter(l, l′) represents A∩A′ for all lists l
and l′ that represent the sets A and A′. It is easy to check that inter pre-
serves the representation: its result is repetition-free provided its arguments
are.

Making the lists repetition-free makes the best possible use of space.
Time complexity could be improved. Forming the intersection of an m-
element set and an n-element set requires �nding all the elements they have
in common. It can only be done by trying all possibilities, taking O(mn)
time. Sets of numbers, strings or other items possessing a total ordering
should be represented by ordered lists. The intersection computation then
resembles merging and can be performed in O(m + n) time.

Some deeper issues can only be mentioned here. For example, �oating-
point arithmetic implements real arithmetic only approximately.

XII Foundations of Computer Science 120

Slide 1203

A Data Structure for Polynomials

polynomial anxn + · · ·+ a0x
0 as list [(n, an), . . . , (0, a0)]

REAL coefficients (should be rational)

Sparse representation (no zero coefficients)

Decreasing exponents

x500 − 2 as [(500, 1), (0,−2)]

The univariate polynomial anxn + · · · + a0x
0 might be represented by

the list of coe�cients [an, . . . , a0]. This dense representation is ine�cient if
many coe�cients are zero, as in x500− 2. Instead we use a list of (exponent,
coe�cient) pairs with only nonzero coe�cients: a sparse representation.

Coe�cients should be rational numbers: pairs of integers with no common
factor. Exact rational arithmetic is easily done, but it requires arbitrary-
precision integer arithmetic, which is too complicated for our purposes. We
shall represent coe�cients by the ML type real, which is far from ideal.
The code serves the purpose of illustrating some algorithms for polynomial
arithmetic.

Polynomials will have the ML type (int*real)list, representing the
sum of terms, each term given by an integer exponent and real coe�cient.
To promote e�ciency, we not only omit zero coe�cients but store the pairs
in decreasing order of exponents. The ordering allows algorithms resembling
mergesort and allows at most one term to have a given exponent.

The degree of a non-zero univariate polynomial is its largest exponent. If
an 6= 0 then anxn + · · · + a0x

0 has degree n. Our representation makes it
trivial to compute a polynomial's degree.

For example, [(500,1.0), (0,~2.0)] represents x500 − 2. Not every
list of type (int*real)list is a polynomial. Our operations may assume
their arguments to be valid polynomials and are required to deliver valid
polynomials.

XII Foundations of Computer Science 121

Slide 1204

Specifying the Polynomial Operations

• poly is the type of univariate polynomials

• makepoly makes a polynomial from a list

• destpoly returns a polynomial as a list

• polysum adds two polynomials

• polyprod multiplies two polynomials

• polyquorem computes quotient and remainder

An implementation of univariate polynomials might support the opera-
tions above, which could be summarized as follows:

type poly

val makepoly : (int*real)list -> poly

val destpoly : poly -> (int*real)list

val polysum : poly -> poly -> poly

val polyprod : poly -> poly -> poly

val polyquorem : poly -> poly -> poly * poly

This tidy speci�cation can be captured as an ML signature. A bundle of
declarations meeting the signature can be packaged as an ML structure.
These concepts promote modularity, letting us keep the higher abstraction
levels tidy. In particular, the structure might have the name Poly and its
components could have the short names sum, prod, etc.; from outside the
structure, they would be called Poly.sum, Poly.prod, etc. This course does
not discuss ML modules, but a modular treatment of polynomials can be
found in my book [13]. Modules are essential for building large systems.

Function makepoly could convert a list to a valid polynomial, while
destpoly could return the underlying list. For many abstract types, the
underlying representation ought to be hidden. For dictionaries (Lect. 8), we
certainly do not want an operation to return a dictionary as a binary search
tree. Our list-of-pairs representation, however, is suitable for communicating
polynomials to the outside world. It might be retained for that purpose even
if some other representation were chosen to facilitate fast arithmetic.

XII Foundations of Computer Science 122

Slide 1205

Polynomial addition

fun polysum [] us = us : (int * real)list

| polysum ts [] = ts

| polysum ((m,a)::ts) ((n,b)::us) =

if m>n then

(m,a) :: polysum ts ((n,b)::us)

else if n>m then

(n,b) :: polysum us ((m,a)::ts)

else (* m=n*) if a+b=0.0 then

polysum ts us

else (m, a+b) :: polysum ts us;

Our representation allows addition, multiplication and division to be per-
formed using the classical algorithms taught in schools. Their e�ciency can
sometimes be improved upon. For no particular reason, the arithmetic func-
tions are all curried.

Addition involves adding corresponding coe�cients from the two poly-
nomials. Preserving the polynomial representation requires preserving the
ordering and omitting zero coe�cients.1

The addition algorithm resembles merging. If both polynomials are non-
empty lists, compare their leading terms. Take the term with the larger
exponent �rst. If the exponents are equal, then create a single term, adding
their coe�cients; if the sum is zero, then discard the new term.

1Some ML compilers insist upon Real.==(a+b,0.0) instead of a+b=0.0 above.

XII Foundations of Computer Science 123

Slide 1206

Polynomial multiplication (1st try)

fun termprod (m,a) (n,b) term× term

= (m+n, a * b) : (int * real);

fun polyprod [] us = [] poly× poly

| polyprod ((m,a)::ts) us =

polysum (map (termprod(m,a)) us)

(polyprod ts us);

BAD MERGING; 16 seconds to square (x + 1)400

Multiplication of polynomials is also straightforward provided we do not
care about e�ciency; the schoolbook algorithm su�ces. To cross-multiply
the terms, function polyprod forms products term by term and adds the
intermediate polynomials.

We see another application of the functional map: the product of the
term (m,a) with the polynomial ts is simply

map (termprod(m,a)) ts

XII Foundations of Computer Science 124

Slide 1207

Polynomial multiplication (2nd try)

fun polyprod [] us = []

| polyprod [(m,a)] us = map (termprod(m,a)) us

| polyprod ts us =

let val k = length ts div 2

in polysum (polyprod (take(ts,k)) us)

(polyprod (drop(ts,k)) us)

end;

4 seconds to square (x + 1)400

The function polyprod is too slow to handle large polynomials. In tests,
it required about 16 seconds and numerous garbage collections to compute
the square of (x+1)400. (Such large computations are typical of symbolic al-
gebra.) The ine�ciency is due to the merging (in polysum) of lists that di�er
greatly in length. For instance, if ts and us consist of 100 terms each, then
(termpolyprod (e,c) us) has only 100 terms, while (polyprod ts us)

could have as many as 10,000. Their sum will have at most 10,100 terms;
a growth of only 1%. Merging copies both lists; if one list is much shorter
than the other, then it e�ectively degenerates to insertion.

A faster algorithm is inspired by mergesort (Lect. 6). Divide one of the
polynomials into equal parts, using take and drop. Compute two products
of roughly equal size and merge those. If one polynomial consists of a single
term, multiply it by the other polynomial using map as above. This algorithm
performs many fewer merges, and each merge roughly doubles the size of the
result.

Other algorithms can multiply polynomials faster still.

XII Foundations of Computer Science 125

Slide 1208

Polynomial division

fun polyquorem ts ((n,b)::us) =

let fun quo [] qs = (rev qs, [])

| quo ((m,a)::ts) qs =

if m<n then (rev qs, (m,a)::ts)

else

quo (polysum ts

(map (termprod(m-n, ~a/b)) us))

((m-n, a/b) :: qs)

in quo ts [] end;

Let us turn to functions for computing polynomial quotients and remain-
ders. The function polyquorem implements the schoolbook algorithm for
polynomial division, which is actually simpler than long division. It returns
the pair (quotient, remainder), where the remainder is either zero or of lesser
degree than the divisor.

The functions polyquo and polyrem return the desired component of the
result, using the ML selectors #1 and #2:

fun polyquo ts us = #1(polyquorem ts us)

and polyrem ts us = #2(polyquorem ts us);

Aside: if k is any positive integer constant, then #k is the ML function to
return the kth component of a tuple. Tuples are a special case of ML records,
and the # notation works for arbitrary record �elds.

For example, let us divide x2 + 1 by x + 1:

polyquorem [(2,1.0),(0,1.0)] [(1,1.0),(0,1.0)];

> val it = ([(1, 1.0), (0, ~1.0)], [(0, 2.0)])

This pair tells us that the quotient is x− 1 and the remainder is 2. We can
easily verify that (x + 1)(x− 1) + 2 = x2 − 1 + 2 = x2 + 1.

XII Foundations of Computer Science 126

Slide 1209

The Greatest Common Divisor

fun polygcd [] us = us

| polygcd ts us = polygcd (polyrem us ts) ts;

needed to simplify rational functions such as

x2 − 1
x2 − 2x + 1

(
=

x + 1
x− 1

)
strange answers

TOO SLOW

Rational functions are polynomial fractions like (x + 1)/(x − 1). E�-
ciency demands that a fraction's numerator and denominator should have
no common factor. We should divide the both polynomials by their greatest
common divisor (GCD).

We can compute GCDs using Euclid's Algorithm, as shown above. Un-
fortunately, its behaviour for polynomials is rather perverse. It gives the
GCD of x2 + 2x + 1 and x2 − 1 as −2x − 2, and that of x2 + 2x + 1 and
x5 + 1 as 5x + 5; both GCDs should be x + 1. This particular di�culty
can be solved by dividing through by the leading coe�cient, but Euclid's
Algorithm turns out to be too slow. An innocuous-looking pair of arguments
leads to computations on gigantic integers, even when the �nal GCD is just
one! (That is the usual outcome: most pairs of polynomials have no common
factor.)

The problem of computing the GCD of polynomials is central to the
�eld of computer algebra. Extremely complex algorithms are employed. A
successful implementation makes use of deep mathematics as well as skilled
programming. Many projects in advanced technology require this same com-
bination of abilities.

XII Foundations of Computer Science 127

Learning guide. Related material is in ML for the Working Programmer ,
pages 114�121.

Exercise 12.1 Code the set operations of membership test, subset test,
union and intersection using the ordered-list representation.

Exercise 12.2 Give a convincing argument that polysum and polyprod

preserve the three restrictions on polynomials.

Exercise 12.3 How would you prove that polysum correctly computes the
sum of two polynomials? Hint: write a mathematical (not ML) function to
express the polynomial represented by a list. Which properties of polynomial
addition does polysum assume?

Exercise 12.4 Show that the complexity of polysum is O(m + n) when
applied to arguments consisting of m and n terms, respectively.

Exercise 12.5 Give a more rigorous analysis of the asymptotic complexity
of the two versions of polynomial multiplication. (This could be di�cult.)

Exercise 12.6 If coe�cients may themselves be univariate polynomials
(in some other variable), then we regain the ability to represent polynomials
in any number of variables. For example, y2 + xy is a univariate polynomial
in y whose coe�cients are 1 and the polynomial x. De�ne this representation
in ML and discuss ideas for implementing addition and multiplication.

XIII Foundations of Computer Science 128

Slide 1301

A Pipeline

Producer → Filter → · · · → Filter → Consumer

Produce sequence of items

Filter sequence in stages

Consume results as needed

Lazy lists join the stages together

Two types of program can be distinguished. A sequential program accepts
a problem to solve, processes for a while, and �nally terminates with its
result. A typical example is the huge numerical simulations that are run on
supercomputers. Most of our ML functions also �t this model.

At the other extreme are reactive programs, whose job is to interact with
the environment. They communicate constantly during their operation and
run for as long as is necessary. A typical example is the software that con-
trols many modern aircraft. Reactive programs often consist of concurrent
processes running at the same time and communicating with one another.

Concurrency is too di�cult to consider in this course, but we can model
simple pipelines such as that shown above. The Producer represents one
or more sources of data, which it outputs as a stream. The Filter stages
convert the input stream to an output stream, perhaps consuming several
input items to yield a single output item. The Consumer takes as many
elements as necessary.

The Consumer drives the pipeline: nothing is computed except in re-
sponse to its demand for an additional datum. Execution of the Filter stages
is interleaved as required for the computation to go through. The program-
mer sets up the data dependencies but has no clear idea of what happens
when. We have the illusion of concurrent computation.

The Unix operating system provides similar ideas through its pipes that
link processes together. In ML, we can model pipelines using lazy lists.

XIII Foundations of Computer Science 129

Slide 1302

Lazy Lists — or Streams

Lists of possibly INFINITE length

• elements computed upon demand

• avoids waste if there are many solutions

• infinite objects are a useful abstraction

In ML : implement laziness by delaying evaluation of the tail

Lazy lists have practical uses. Some algorithms, like making change, can
yield many solutions when only a few are required. Sometimes the original
problem concerns in�nite series: with lazy lists, we can pretend they really
exist!

We are now dealing with in�nite, or at least unbounded, computations.
A potentially in�nite source of data is processed one element at a time, upon
demand. Such programs are harder to understand than terminating ones
and have more ways of going wrong.

Some purely functional languages, such as Haskell, use lazy evaluation
everywhere. Even the if-then-else construct can be a function, and all lists
are lazy. In ML, we can declare a type of lists such that evaluation of the
tail does not occur until demanded. Delayed evaluation is weaker than lazy
evaluation, but it is good enough for our purposes.

The traditional word stream is reserved in ML parlance for input/output
channels. Let us call lazy lists sequences.

XIII Foundations of Computer Science 130

Slide 1303

Lazy Lists in ML

The empty tuple () and its type unit

Delayed version of E is fn()=> E

datatype ’a seq = Nil sequences
| Cons of ’a * (unit -> ’a seq);

fun head (Cons(x,_)) = x;

fun tail (Cons(_,xf)) = xf();

Cons(x, xf) has head x and tail function xf

The primitive ML type unit has one element, which is written (). This
element may be regarded as a 0-tuple, and unit as the nullary Cartesian
product. (Think of the connection between multiplication and the number 1.)

The empty tuple serves as a placeholder in situations where no informa-
tion is required. It has several uses:

• It may appear in a data structure. For example, a unit-valued dictio-
nary represents a set of keys.

• It may be the argument of a function, where its e�ect is to delay eval-
uation.

• It may be the argument or result of a procedure. (See Lect. 14.)

The empty tuple, like all tuples, is a constructor and is allowed in patterns:

fun f () = ...

In particular, fn() => E is the function that takes an argument of type
unit and returns the value of E as its result. Expression E is not evaluated
until the function is called, even though the only possible argument is ().
The function simply delays the evaluation of E.

XIII Foundations of Computer Science 131

Slide 1304

The Infinite Sequence k, k + 1, k + 2,. . .

fun from k = Cons(k, fn()=> from(k+1));

> val from = fn : int -> int seq

from 1;

> val it = Cons(1, fn) : int seq

tail it;

> val it = Cons(2, fn) : int seq

tail it;

> val it = Cons(3, fn) : int seq

Function from constructs the in�nite sequence of integers starting from k.
Execution terminates because of the fn enclosing the recursive call. ML
displays the tail of a sequence as fn, which stands for some function value.
Each call to tail generates the next sequence element. We could do this
forever.

This example is of little practical value because the cost of computing a
sequence element will be dominated by that of creating the dummy function.
Lazy lists tend to have high overheads.

XIII Foundations of Computer Science 132

Slide 1305

Consuming a Sequence

fun get(0,xq) = []

| get(n,Nil) = []

| get(n,Cons(x,xf)) = x :: get(n-1,xf());

> val get = fn : int * ’a seq -> ’a list

Get the first n elements as a list

xf() forces evaluation

The function get converts a sequence to a list. It takes the �rst n ele-
ments; it takes all of them if n < 0, which can terminate only if the sequence
is �nite.

In the third line of get, the expression xf() calls the tail function, de-
manding evaluation of the next element. This operation is called forcing the
list.

XIII Foundations of Computer Science 133

Slide 1306

Sample Evaluation

get(2, from 6)

⇒ get(2, Cons(6, fn()=>from(6+1)))

⇒ 6 :: get(1, from(6+1))

⇒ 6 :: get(1, Cons(7, fn()=>from(7+1)))

⇒ 6 :: 7 :: get(0, Cons(8, fn()=>from(8+1)))

⇒ 6 :: 7 :: []

⇒ [6,7]

Here we ask for two elements of the in�nite sequence. In fact, three ele-
ments are computed: 6, 7 and 8. Our implementation is slightly too eager. A
more complicated datatype declaration could avoid this problem. Another
problem is that if one repeatedly examines some particular list element using
forcing, that element is repeatedly evaluated. In a lazy programming lan-
guage, the result of the �rst evaluation would be stored for later reference.
To get the same e�ect in ML requires references [13, page 327].

We should be grateful that the potentially in�nite computation is kept
�nite. The tail of the original sequence even contains the unevaluated ex-
pression 6+1.

XIII Foundations of Computer Science 134

Slide 1307

Joining Two Sequences

fun appendq (Nil, yq) = yq

| appendq (Cons(x,xf), yq) =

Cons(x, fn()=> appendq(xf(), yq));

A fair alternative. . .

fun interleave (Nil, yq) = yq

| interleave (Cons(x,xf), yq) =

Cons(x, fn()=> interleave(yq, xf()));

Most list functions and functionals have analogues on sequences, but
strange things can happen. Can an in�nite list be reversed?

Function appendq is precisely the same idea as append (Lect. 4): it con-
catenates two sequences. If the �rst argument is in�nite, then appendq never
gets to its second argument, which is lost. Concatenation of in�nite sequences
is not terribly interesting.

The function interleave avoids this problem by exchanging the two
arguments in each recursive call. It combines the two lazy lists, losing no
elements. Interleaving is the right way to combine two potentially in�nite
information sources into one.

In both function declarations, observe that each xf() is enclosed within
a fn()=>.... Each force is enclosed within a delay. This practice makes the
functions lazy. A force not enclosed in a delay, as in get above, runs the risk
of evaluating the sequence in full.

XIII Foundations of Computer Science 135

Slide 1308

Functionals for Lazy Lists

filtering

fun filterq p Nil = Nil

| filterq p (Cons(x,xf)) =

if p x

then Cons(x, fn()=>filterq p (xf()))

else filterq p (xf());

The infinite sequence x, f(x), f(f(x)),. . .

fun iterates f x =

Cons(x, fn()=> iterates f (f x));

The functional filterq demands elements of xq until it �nds one sat-
isfying p. (Recall filter, Lect. 11.) It contains a force not protected by a
delay. If xq is in�nite and contains no satisfactory element, then filterq

runs forever.
The functional iterates generalizes from. It creates the next element

not by adding one but by calling the function f.

XIII Foundations of Computer Science 136

Slide 1309

Numerical Computations on Infinite Sequences

fun next a x = (a/x + x) / 2.0;

Close enough?

fun within (eps:real) (Cons(x,xf)) =

let val Cons(y,yf) = xf()

in if abs(x-y) <= eps then y

else within eps (Cons(y,yf))

end;

Square Roots!

fun root a = within 1E~6 (iterates (next a) 1.0)

Calling iterates (next a) x0) generates the in�nite series of approx-
imations to the square root of a for the Newton-Raphson method. As dis-
cussed in Lect. 2, the in�nite series x0, (a + x0)/2, . . . converges to

√
a.

Function within searches down the lazy list for two points whose di�er-
ence is less than eps. It tests their absolute di�erence. Relative di�erence
and other `close enough' tests can be coded. Such components can be used
to implement other numerical functions directly as functions over sequences.
The point is to build programs from small, interchangeable parts.

Function root uses within, iterates and next to apply the Newton-
Raphson method with a tolerance of 10−6 and an (awful) initial approxima-
tion of 1.0.

This treatment of numerical computation has received some attention in
the research literature; a recurring example is Richardson extrapolation [7, 8].

XIII Foundations of Computer Science 137

Learning guide. Related material is in ML for the Working Programmer ,
pages 191�212.

Exercise 13.1 Code an analogue of map for sequences.

Exercise 13.2 Consider the list function concat, which concatenates a
list of lists to form a single list. Can it be generalized to concatenate a
sequence of sequences? What can go wrong?

fun concat [] = []

| concat (l::ls) = l @ concat ls;

Exercise 13.3 Code a function to make change using lazy lists. (This is
di�cult.)

XIV Foundations of Computer Science 138

Slide 1401

Procedural Programming

Procedural programs can change the machine state.

They can interact with its environment.

They use control structures like branching, iteration and procedures.

They use data abstractions of the computer’s memory:

• references to memory cells

• arrays: blocks of memory cells

• pointer structures and linked lists (next lecture)

Procedural programming is programming in the traditional sense of the
word. A program state is repeatedly transformed by the execution of com-
mands or statements. A state change might be local to the machine and
consist of updating a variable or array. A state change might consist of
sending data to the outside world. Even reading data counts as a state
change, since this act normally removes the data from the environment.

Procedural programming languages provide primitive commands and con-
trol structures for combining them. The primitive commands include as-
signment, for updating variables, and various input/output commands for
communication. Control structures include if and case constructs for con-
ditional execution, and repetitive constructs such as while. Programmers
can package up their own commands as procedures taking arguments. The
need for such `subroutines' was evident from the earliest days of comput-
ing; they represent one of the �rst examples of abstraction in programming
languages.

ML makes no distinction between commands and expressions. ML pro-
vides built-in functions to perform assignment and communication. They
may be used with if and case much as in conventional languages. ML func-
tions play the role of procedures. ML programmers normally follow a func-
tional style for most internal computations and use imperative features only
for communication with the outside world.

XIV Foundations of Computer Science 139

Slide 1402

ML Primitives for References

τ ref type of references to type τ

ref E create a reference

initial contents = the value of E

! P return the current contents of reference P

P := E update the contents of P to the value of E

The slide presents the ML primitives, but most languages have analogues
of them, often heavily disguised. We need a means of creating references (or
allocating storage), getting at the current contents of a reference cell, and
updating that cell.

The function ref creates references (also called pointers or locations).
Calling ref allocates a new location in the machine store. Initially, this loca-
tion holds the value given by expression E. Although ref is an ML function,
it is not a function in the mathematical sense. For example, ref(0)=ref(0)
evaluates to false.

The function !, when applied to a reference, returns its contents. This
operation is called dereferencing. Clearly ! is not a mathematical function;
its result depends upon the store.

The assignment P:=E evaluates expression P , which must return a ref-
erence p, and E. It stores at address p the value of E. Syntactically, := is a
function and P:=E is an expression, even though it updates the store. Like
many functions that change the state, it returns the value () of type unit.

If τ is some ML type, then τ ref is the type of references to cells that
can hold values of τ . Please do not confuse the type ref with the function
ref. This table of the primitive functions and their types might be useful:

ref 'a -> 'a ref

! 'a ref -> 'a

op := 'a ref * 'a -> unit

XIV Foundations of Computer Science 140

Slide 1403

A Simple Session

val p = ref 5; create a reference

> val p = ref 5 : int ref

p := !p + 1; now p holds 6

val ps = [ref 77, p];

> val ps = [ref 77, ref 6] : int ref list

hd ps := 3; updating an integer ref

ps; contents of the refs?

> val it = [ref 3, ref 6] : int ref list

The �rst line declares p to hold a reference to an integer, initially 5. Its
type is int ref, not just int, so it admits assignment. Assignment never
changes val bindings: they are immutable. The identi�er p will always
denote the reference mentioned in its declaration unless superseded by a new
usage of p. Only the contents of the reference is mutable.

ML displays a reference value as ref v, where value v is the contents.
This notation is readable but gives us no way of telling whether two references
holding the same value are actually the same reference. To display a reference
as a machine address has obvious drawbacks!

In the �rst assignment, the expression !p yields the reference's current
contents, namely 5. The assignment changes the contents of p to 6. Most
languages do not have an explicit dereferencing operator (like !) because
of its inconvenience. Instead, by convention, occurrences of the reference
the left-hand side of the := denote locations and those on the right-hand
side denote the contents. A special `address of' operator may be available
to override the convention and make a reference on the right-hand side to
denote a location. Logically, this is a mess, but it makes programs shorter.

The list ps is declared to hold a new reference (initially containing 77)
as well as p. Then the new reference is updated to hold 3. The assignment
to hd ps does not update ps, only the contents of a reference in that list.

XIV Foundations of Computer Science 141

Slide 1404

Iteration: the while Command

while B do C

fun length xs =

let val lp = ref xs list of uncounted elements

and np = ref 0 accumulated count

in

while not (null (!lp)) do

(lp := tl (!lp);

np := 1 + !np);

!np value returned

end;

Once we can change the state, we need to do so repeatedly. Recursion can
serve this purpose, but having to declare a procedure for every loop is clumsy,
and compilers for conventional languages seldom exploit tail-recursion.

Early programming languages provided little support for repetition. The
programmer had to set up loops using goto commands, exiting the loop using
another goto controlled by an if. Modern languages provide a confusing jum-
ble of looping constructs, the most fundamental of which is while B do C.
The boolean expression B is evaluated, and if true, command C is executed
and the command repeats. If B evaluates to false then the while command
terminates, perhaps without executing C even once.

ML's only looping construct is while, which returns the value (). Also
important is the construct (E1;...;En), which evaluates the expressions
E1 to En in the order given and returns the value of En. The values of the
other expressions are discarded; their purpose is to change the state. The
function length declares references to hold the list under examination (lp)
and number of elements counted so far (np). While the list is non-empty, we
skip over one more element (by setting it to its tail) and count that element.

The body of the while loop above consists of two assignment commands,
executed one after the other. The while command is followed by the expres-
sion !np to return computed length as the function's result. This semicolon
need not be enclosed in parentheses because it is bracketed by in and end.

XIV Foundations of Computer Science 142

Slide 1405

Private, Persistent References

fun makeAccount (initBalance: int) =

let val balance = ref initBalance

fun withdraw amt =

if amt > !balance

then !balance

else (balance := !balance - amt;

!balance)

in withdraw

end;

> val makeAccount = fn : int -> (int -> int)

As you may have noticed, ML's programming style looks clumsy com-
pared with that of languages like C. ML omits the defaults and abbrevia-
tions they provide to shorten programs. However, ML's explicitness makes
it ideal for teaching the �ne points of references and arrays. ML's references
are more �exible than those found in other languages.

The function makeAccount models a bank. Calling the function with a
speci�ed initial balance creates a new reference (balance) to maintain the
account balance and returns a function (withdraw) having sole access to that
reference. Calling withdraw reduces the balance by the speci�ed amount and
returns the new balance. You can pay money in by withdrawing a negative
amount. The if-construct prevents the account from going overdrawn (it
could raise an exception).

Look at the (E1; E2) construct in the else part above. The �rst expres-
sion updates the account balance and returns the trivial value (). The second
expression, !balance, returns the current balance but does not return the
reference itself: that would allow unauthorized updates.

This example is based on one by Dr A C Norman.

XIV Foundations of Computer Science 143

Slide 1406

Two Bank Accounts

val student = makeAccount 500;

> val student = fn : int -> int

val director = makeAccount 400000;

> val director = fn : int -> int

student 5; (* coach fare *)

> val it = 495 : int

director 50000; (* Jaguar *)

> val it = 350000 : int

Each call to makeAccount returns a copy of withdraw holding a fresh in-
stance of the reference balance. As with a real bank pass-book, there is no
access to the account balance except via the corresponding withdraw func-
tion. If that function is discarded, the reference cell becomes unreachable;
the computer will eventually reclaim it, just as banks close down dormant
accounts.

Here we see two people managing their accounts. For better or worse,
neither can take money from the other.

We could generalize makeAccount to return several functions that jointly
manage information held in shared references. The functions might be pack-
aged using ML records, which are discussed elsewhere [13, pages 32�36].
Most procedural languages do not properly support the concept of private
references, although object-oriented languages take them as a basic theme.

XIV Foundations of Computer Science 144

Slide 1407

Variables: ML Versus Conventional Languages

The need to write !p to get at the contents of p

The ability to write just p for the address of p

The ability to store a private reference cells (like balance) in

functions—simulating object-oriented programming

Assignment syntax V := E instead of V = E

The dearth of useful control structures: only while and case

Conventional syntax for variables and assignments has hardly changed
since Fortran, the �rst high-level language. In conventional languages, vir-
tually all variables can be updated. We declare something like p: int, men-
tioning no reference type even if the language provides them. If we do not
specify an initial value, we may get whatever bits were previously at that
address. Illegal values arising from uninitialized variables can cause errors
that are almost impossible to diagnose.

Dereferencing operators (like ML's !) are especially unpopular, because
they clutter the program text. Many programming languages make derefer-
encing implicit (that is, automatic).

XIV Foundations of Computer Science 145

Slide 1408

ML Primitives for Arrays

τ Array.array type of arrays of type τ

Array.tabulate(n, f) create a n-element array

A[i] initially holds f(i)

Array.sub(A, i) return the contents of A[i]

Array.update(A, i, E) update A[i] to the value of E

ML arrays are like references that hold n elements instead of one. The
elements of an n-element array are designated by the integers from 0 to n−
1. The ith array element is usually written A[i]. If τ is a type then τ
Array.array is the type of arrays (of any size) with elements from τ .

Calling Array.tabulate(n,f) creates an array of the size speci�ed by
expression n, allocating the necessary storage. Initially, element A[i] holds
the value of f(i) for i = 0, . . . , n− 1.

Calling Array.sub(A,i) returns the contents of A[i].
Calling Array.update(A,i,E) modi�es the array by storing the value

of E as the new contents of A[i]; it returns () as its value.
Why is there no function returning a reference to A[i]? Such a function

could replace both Array.sub and Array.update, but allowing references to
individual array elements would complicate storage management.

An array's size is speci�ed in advance to facilitate storage management.
Typically another variable records how many elements are actually in use.
The unused elements constitute wasted storage; if they are never initialized
to legal values (they seldom are), then they can cause no end of trouble.
When the array bound is reached, either the program must abort or the
array must expand, typically by copying into a new one that is twice as big.

XIV Foundations of Computer Science 146

Slide 1409

Array Example: Block Move

fun insert (A,kp,x) =

let val ip = ref (!kp)

in

while !ip>0 do

(Array.update(A, !ip, (* A[i] := A[i-1] *)

Array.sub(A, !ip-1));

ip := !ip-1);

Array.update(A, 0, x);

kp := !kp+1

end;

The main lesson to draw from this example is that arrays are harder to
use than lists. Insertion sort and quick sort �t on a slide when expressed
using lists (Lect. 6). The code above, roughly the equivalent of x::xs, was
originally part of an insertion function for array-based insertion sort. ML's
array syntax does not help. In a conventional language, the key assignment
might be written

A[ip] := A[ip-1]

To be fair, ML's datatypes and lists require a sophisticated storage manage-
ment system and their overheads are heavy. Often, for every byte devoted
to actual data, another byte must be devoted to link �elds, as discussed in
Lect. 15.

Function insert takes an array A whose elements indexed by zero to!kp-1
are in use. The function moves each element to the next higher subscript
position, stores x in position zero and increases the bound in kp.

We have an example of what in other languages are called reference pa-
rameters. Argument A has type 'a Array.array, while kp has type int

ref. The function acts through these parameters only.
In the C language, there are no arrays as normally understood, merely a

convenient syntax for making address calculations. As a result, C is one of
the most error-prone languages in existence. The vulnerability of C software
was dramatically demonstrated in November 1988, when the Internet Worm
brought the network down.

XIV Foundations of Computer Science 147

Slide 1410

Arrays: ML Versus Conventional Languages

advantages

• Array subscripts are checked! (Unlike C)

• Read-only arrays are available.

DISADVANTAGES

• clumsy syntax, especially for updating

• and even worse for arrays of arrays

USE ARRAYS WITH CARE, BECAUSE THEY COMPLICATE PROGRAMS.

ML provides immutable arrays, called vectors, which lack an update op-
eration. The operation Vector.tabulate can be used to trade storage for
runtime. Creating a table of function values is worthwhile if the function is
computationally expensive.

Here is a table of the main array functions, with their types.

Array.array int * 'a -> 'a Array.array

Array.tabulate int * (int -> 'a) -> 'a Array.array

Array.sub 'a Array.array * int -> 'a

Array.update 'a Array.array * int * 'a -> unit

References give us new ways of expressing programs, and arrays give us
e�cient access to the hardware addressing mechanism. But neither funda-
mentally increases the set of algorithms that we can express� unlike com-
munication primitives�and they can make programs harder to understand.
No longer can we describe program execution in terms of reduction, as we
did in Lect. 2. They can also make storage management more expensive.
They should therefore be used with care.

ML's arrays are much safer than C's, however. In C, an array is nothing
more than an address indicating the start of a storage area. Nothing indicates
the size of the area or where it ends. This �aw in C is largely to blame for the
ubiquitous security loopholes caused by bu�er overruns. In a bu�er overrun
attack, the hacker sends more data than the receiving program expects,
overrunning the area of storage set aside to hold it. He eventually overwrites
the program itself, replacing it with the hacker's chosen code.

XIV Foundations of Computer Science 148

Learning guide. Related material is in ML for the Working Programmer ,
pages 313�326. A brief discussion of ML's comprehensive input/output fa-
cilities, which are not covered in this course, is on pages 340�356.

Exercise 14.1 Comment, with examples, on the di�erences between an
int ref list and an int list ref.

Exercise 14.2 Write a version of function power (Lect. 2) using while

instead of recursion.

Exercise 14.3 What is the e�ect of while (C1; B) do C2?

Exercise 14.4 Arrays of multiple dimensions are represented in ML by
arrays of arrays. Write functions to (a) create an n×n identity matrix, given
n, and (b) to transpose an m× n matrix.

Exercise 14.5 Function insert copies elements from A[i− 1] to A[i], for
i = k, . . . , 1. What happens if instead it copies elements from A[i] to A[i+1],
for i = 0, . . . , k − 1?

XV Foundations of Computer Science 149

Slide 1501

References to References

3 5 9 ·

NESTED BOXES v pointers

3� 5� 9�9�9�9� Nil�

7�

References can be imagined to be boxes whose contents can be changed.
But the box metaphor becomes unworkable when the contents of the box
can itself be a box: deep nesting is too di�cult to handle. A more �exible
metaphor is the pointer. A reference points to some object; this pointer
can be moved to any other object of the right type. The slide depicts a
representation of the list [3,5,9], where the �nal pointer to Nil is about to be
redirected to a cell containing the element 7. ML forbids such redirection for
its built-in lists, but we can declare linked lists whose link �elds are mutable.

XV Foundations of Computer Science 150

Slide 1502

Linked, or Mutable, Lists

datatype ’a mlist = Nil

| Cons of ’a * ’a mlist ref ;

Tail can be REDIRECTED

Creating a linked list:

fun mlistOf [] = Nil

| mlistOf (x::l) = Cons (x, ref (mlistOf l));

> val mlistOf = fn : ’a list -> ’a mlist

A mutable list is either empty (Nil) or consists of an element paired with
a pointer to another mutable list. Removing the ref from the declaration
above would make the datatype exactly equivalent to built-in ML lists. The
reference in the tail allows links to be changed after their creation.

To get references to the elements themselves, we can use types of the form
'a ref mlist. (We have seen type int ref list in Lect. 14.) So there is
no need for another ref in the datatype declaration.

Function mlistOf converts ordinary lists to mutable lists. Its call to ref

creates a new reference cell for each element of the new list.
Most programming languages provide reference types designed for build-

ing linked data structures. Sometimes the null reference, which points to
nothing, is a prede�ned constant called NIL. The run-time system allocates
space for reference cells in a dedicated part of storage, called the heap, while
other (mutable) variables are allocated on the stack. In contrast, ML treats
all references uniformly.

ML lists are represented internally by a linked data structure that is
equivalent to mlist. The representation allows the links in an ML list to
be changed. That such changes are forbidden is a design decision of ML to
encourage functional programming. The list-processing language Lisp allows
links to be changed.

XV Foundations of Computer Science 151

Slide 1503

Extending a List to the Rear

fun extend (mlp, x) =

let val last = ref Nil

in mlp := Cons (x, last);

last new final reference

end;

> val extend = fn

> : ’a mlist ref * ’a -> ’a mlist ref

Extending ordinary ML lists to the rear is hugely expensive: we must
evaluate an expression of the form xs@[x], which is O(n) in the size of xs.
With mutable lists, we can keep a pointer to the �nal reference. To extend
the list, update this pointer to a new list cell. Note the new �nal reference
for use the next time the list is extended.

Function extend takes the reference mlp and an element x. It assigns to
mlp and returns the new reference as its value. Its e�ect is to update mlp to
a list cell containing x.

XV Foundations of Computer Science 152

Slide 1504

Example of Extending a List

val mlp = ref (Nil: string mlist);

> val mlp = ref Nil : string mlist ref

extend (mlp, "a");

> val it = ref Nil : string mlist ref

extend (it, "b");

> val it = ref Nil : string mlist ref

mlp;

> ref(Cons("a", ref(Cons("b", ref Nil))))

We start things o� by creating a new pointer to Nil, binding it to mlp.
Two calls to extend add the elements "a" and "b". Note that the �rst
extend call is given mlp, while the second call is given the result of the �rst,
namely it.

Finally, we examine mlp. It no longer points to Nil but to the mutable
list ["a","b"].

XV Foundations of Computer Science 153

Slide 1505

Destructive Concatenation

fun joining (mlp, ml2) =

case !mlp of

Nil => mlp := ml2

| Cons(_,mlp1) => joining (mlp1, ml2);

fun join (ml1, ml2) =

let val mlp = ref ml1 temporary reference

in joining (mlp, ml2);

!mlp

end;

Function join performs destructive concatenation. It updates the �nal
pointer of one mutable list to point to some other list rather than to Nil.
Contrast with ordinary list append, which copies its �rst argument. Append
takes O(n) time and space in the size of the �rst list, while destructive
concatenation needs only constant space.

Function joining does the real work. Its �rst argument is a pointer that
should be followed until, when Nil is reached, it can be made to point to
list ml2. The function looks at the contents of reference mlp. If it is Nil,
then the time has come to update mlp to point to ml2. But if it is a Cons

then the search continues using reference in the tail.
Function join starts the search o� with a temporary reference to its �rst

argument. This trick saves us from having to test whether or not ml1 is Nil;
the test in joining either updates the reference or skips down to the `proper'
reference in the tail. Tricks of this sort are quite useful when programming
with linked structures.

The functions' types tell us that joining takes two mutable lists and (at
most) performs some action, since it can only return (), while join takes two
lists and returns another one.

joining : 'a mlist ref * 'a mlist -> unit

join : 'a mlist * 'a mlist -> 'a mlist

XV Foundations of Computer Science 154

Slide 1506

Side-Effects

val ml1 = mlistOf ["a"];

> val ml1 = Cons("a", ref Nil) : string mlist

val ml2 = mlistOf ["b","c"];

> val ml2 = Cons("b", ref(Cons("c", ref Nil)))

join(ml1,ml2);

ml1; IT’S CHANGED!?

> Cons("a",

> ref(Cons("b", ref(Cons("c", ref Nil)))))

In this example, we bind the mutable lists ["a"] and ["b","c"] to the
variables ml1 and ml2. ML's method of displaying reference values lets us
easily read o� the list elements in the data structures.

Next, we concatenate the lists using join. (There is no room to display
the returned value, but it is identical to the one at the bottom of the slide,
which is the mutable list ["a","b","c"].)

Finally, we inspect the value of ml1. It looks di�erent; has it changed?
No; it is the same reference as ever. The contents of a cell reachable from
it has changed. Our interpretation of its value of a list has changed from
["a"] to ["a","b","c"].

This behaviour cannot occur with ML's built-in lists because their inter-
nal link �elds are not mutable. The ability to update the list held in ml1

might be wanted, but it might also come as an unpleasant surprise, especially
if we confuse join with append. A further surprise is that

join(ml2,ml3)

also a�ects the list in ml1: it updates the last pointer of ml2 and that is now
the last pointer of ml1 too.

XV Foundations of Computer Science 155

Slide 1507

A Cyclic List

val ml = mlistOf [0,1];

> val ml = Cons(0, ref(Cons(1, ref Nil)))

join(ml,ml);

> Cons(0,

> ref(Cons(1,

> ref(Cons(0,

> ref(Cons(1,...)))))))

What has happened? Calling join(ml,ml) causes the list ml to be chased
down to its �nal link, which is made to point to . . . ml!

If an object contains, perhaps via several links, a pointer leading back
to itself, we have a cycle. A cyclic chain of pointers can be disastrous if
it is created unexpectedly. Cyclic data structures are di�cult to navigate
without looping and are especially di�cult to copy. Naturally, they don't
suit the box metaphor for references! Cyclic data structures do have their
uses. A circular list can be used to rotate among a �nite number of choices
fairly. A dependency graph describes how various items depend upon other
items; such dependencies can be cyclic.

XV Foundations of Computer Science 156

Slide 1508

Destructive Reverse: The Idea

a�

b�

c�

Nil�

argument�

a�

b�

c�

Nil�

result�

List reversal can be tricky to work out from �rst principles, but the code
should be easy to understand.

Reverse for ordinary lists copies the list cells while reversing the order
of the elements. Destructive reverse re-uses the existing list cells while re-
orienting the links. It works by walking down the mutable list, noting the
last two mutable lists encountered, and redirecting the second cell's link �eld
to point to the �rst. Initially, the �rst mutable list is Nil, since the last link
of the reversed must point to Nil.

Note that we must look at the reversed list from the opposite end! The
reversal function takes as its argument a pointer to the �rst element of the
list. It must return a pointer to the �rst element of the reversed list, which
is the last element of the original list.

XV Foundations of Computer Science 157

Slide 1509

A Destructive Reverse Function

fun reversing (prev, ml) =

case ml of

Nil => prev start of reversed list

| Cons(_,mlp2) =>

let val ml2 = !mlp2 next cell

in mlp2 := prev; re-orient

reversing (ml, ml2)

end;

> reversing: ’a mlist * ’a mlist -> ’a mlist

fun drev ml = reversing (Nil, ml);

The function reversing redirects pointers as described above. The func-
tion needs only constant space because it is tail recursive and does not
call ref (which would allocate storage). The pointer redirections can be
done in constant space because each one is local, independent of other point-
ers. It does not matter how long the list is.

Space e�ciency is a major advantage of destructive list operations. It
must be set against the greater risk of programmer error. Code such as
the above may look simple, but pointer redirections are considerably harder
to write than functional list operations. The reduction model does not ap-
ply. We cannot derive function de�nitions from equations but must think
explicitly in terms of the e�ects of updating pointers.

XV Foundations of Computer Science 158

Slide 1510

Example of Destructive Reverse

val ml = mlistOf [3, 5, 9];

> val ml =

> Cons(3, ref(Cons(5, ref(Cons(9, ref Nil)))))

drev ml;

> Cons(9, ref(Cons(5, ref(Cons(3, ref Nil)))))

ml; IT’S CHANGED!?

> val it = Cons(3, ref Nil) : int mlist

In the example above, the mutable list [3,5,9] is reversed to yield [9,5,3].
The e�ect of drev upon its argument ml may come as a surprise! Because
ml is now the last cell in the list, it appears as the one-element list [3].

The ideas presented in this lecture can be generalized in the obvious
way to trees. Another generalization is to provide additional link �elds. In
a doubly-linked list, each node points to its predecessor as well as to its
successor. In such a list one can move forwards or backwards from a given
spot. Inserting or deleting elements requires redirecting the pointer �elds in
two adjacent nodes. If the doubly-linked list is also cyclic then it is sometimes
called a ring bu�er [13, page 331].

Tree nodes normally carry links to their children. Occasionally, they
instead have a link to their parent, or sometimes links in both directions.

XV Foundations of Computer Science 159

Learning guide. Related material is in ML for the Working Programmer ,
pages 326�339.

Exercise 15.1 Write a function to copy a mutable list. When might you
use it?

Exercise 15.2 What is the value of ml1 (regarded as a list) after the
following declarations and commands are entered at top level? Explain this
outcome.

val ml1 = mlistOf[1,2,3]

and ml2 = mlistOf[4,5,6,7];

join(ml1, ml2);

drev ml2;

Exercise 15.3 Code destructive reverse using while instead of recursion.

Exercise 15.4 Write a function to copy a cyclic list, yielding another
cyclic list holding the same elements.

XV Foundations of Computer Science 160

References

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpretation
of Computer Programs. MIT Press, 1985.

[2] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley, 1974.

[3] C. Gordon Bell and Allen Newell. Computer Structures: Readings and
Examples. McGraw-Hill, 1971.

[4] Arthur W. Burks, Herman H. Goldstine, and John von Neumann.
Preliminary discussion of the logical design of an electronic computing
instrument. Reprinted as Chapter 4 of Bell and Newell [3], �rst
published in 1946.

[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

[6] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics: A Foundation for Computer Science. Addison-Wesley,
2nd edition, 1994.

[7] Matthew Halfant and Gerald Jay Sussman. Abstraction in numerical
methods. In LISP and Functional Programming, pages 1�7. ACM
Press, 1988.

[8] John Hughes. Why functional programming matters. Computer
Journal, 32:98�107, 1989.

[9] Donald E. Knuth. The Art of Computer Programming, volume 3:
Sorting and Searching. Addison-Wesley, 1973.

[10] Donald E. Knuth. The Art of Computer Programming, volume 1:
Fundamental Algorithms. Addison-Wesley, 2nd edition, 1973.

[11] R. E. Korf. Depth-�rst iterative-deepening: an optimal admissible tree
search. Arti�cial Intelligence, 27:97�109, 1985.

[12] Stephen K. Park and Keith W. Miller. Random number generators:
Good ones are hard to �nd. Communications of the ACM,
31(10):1192�1201, October 1988. Follow-up discussion in Comm. ACM
36 (7), July 1993, pp. 105-110.

[13] Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 2nd edition, 1996.

[14] Robert Sedgewick. Algorithms. Addison-Wesley, 2nd edition, 1988.

[15] Je�rey D. Ullman. Elements of ML Programming. Prentice-Hall, 1993.

[16] Å. Wikström. Functional Programming using ML. Prentice-Hall, 1987.

