
Concurrent Systems
and Applications

CST Part 1B, Michaelmas 2005

Dr John K Fawcett

john.fawcett@cl.cam.ac.uk

Lecture 1: Introduction

Concurrent Systems and Applications is closely based on last

year’s course of the same name, and is a development of

Further Java and Further Modula-3, which came before. This

course also includes topics from Concurrent Systems and

examples relating to Andy Hopper’s Additional Topics series in

Part II. The 2005 version of the course introduces new

material on Software Testing and additional examples

throughout the course.

I would be grateful to receive by email any feedback and, of

course, notice of any errors. Send email to

john.fawcett@cl.cam.ac.uk or use the lab’s feedback webpage.

This course consists of 24 lectures. There are lots of exercises

which make appropriate supervision work and preparation for

the Tripos examinations. There are also a few programming

challenge puzzles that will really test your understanding of

the subtleties of the Java programming language.

Like last year’s course, this course provides more background

information of several of the topics discussed than was

possible in the earlier Further Java course.

Programs will be demonstrated during the lectures using

overhead projection from a laptop computer. These notes

contain appropriate spaces for you to make notes.

1

Resources

➤ http://www.cl.cam.ac.uk/Teaching/2005/ConcSys/

➤ Progamming documentation is available on the web.

http://java.sun.com/j2se/1.5.0/docs/api/

➤ This includes the Java language specification + details

about Java Bytecode and the Java Virtual Machine at

http://java.sun.com/j2se/1.5.0/docs/

➤ Past Tripos questions relevant to this course can be found

under

➤ Concurrent Systems and Applications

http://www.cl.cam.ac.uk/tripos/t-ConcurrentSystemsandApplications.html

➤ Concurrent Systems

http://www.cl.cam.ac.uk/tripos/t-ConcurrentSystems.html

➤ Further Java

http://www.cl.cam.ac.uk/tripos/t-FurtherJava.html

➤ There’s a local newsgroup ucam.cl.java

(nntp://ucam.cl.java in most web browsers, or look at

stand-alone news clients e.g. trn)

➤ Recommended reading list...

2

Recommended reading

These notes are not intended as a complete reference text,

either to the subject of concurrency or for practical

programming in Java.

· Write your own programs

· Take notes in the Lectures

· Read the recommended texts

➤ ∗ Bacon, J., Harris, T. (2003) Operating systems

➤ Bacon, J. (1997) Concurrent systems (2nd ed.)

Addison-Wesley.

➤ Lea, D. (1999). Concurrent programming in Java (2nd ed.)

Addison-Wesley.

➤ Bracha, G., Gosling, J., Joy, B., Steele, G. (2000). The

Java language specification. Addison-Wesley (2nd ed.)

http://java.sun.com/docs/books/jls/

➤ Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994).

Design patterns Addison-Wesley.

➤ Bruce Eckel ((December 2002) Thinking in Java (3rd ed.)

Prentice-Hall and downloadable

http://www.mindview.net/Books/TIJ/

➤ Myers, Glenford J. The Art of Software Testing (2nd ed.)

John Wiley & Sons, Inc.

3

Where do we find concurrency?

➤ ’Concurrent systems’ just means those where several

independent or related activities are proceeding at the

same time. For example...

➤ between the system as a whole and its user, external

devices, etc.

➤ between applications running at the same time on a

computer:

· context switching by the OS

· genuine parallelism on a multi-processor machine

➤ explicitly between multiple threads within an application

➤ implicitly within an application, e.g. when receiving

call-backs through a user-interface tool-kit

➤ ’housekeeping’ activities within an application, e.g.

garbage collection

➤ SIMD instructions in the CPUs and GPUs.

➤ symmetric multi-threading (SMT, ’hyperthreading’)

How many threads when you run this?

class Simple {

public static void main(String args[]) {

while (true) {}

}

}

4

HotSpot Client VM

➤ Interrupt the program (ctrl+backslash)...
➤ 7 threads

Full thread dump Java HotSpot(TM) Client VM (1.5.0-b64 mixed mode, sharing):

"Low Memory Detector" daemon prio=1 tid=0x080a0680 nid=0x1239 runnable [0x00000000..0x00000000]

"CompilerThread0" daemon prio=1 tid=0x0809f130 nid=0x1238 waiting on condition [0x00000000..0xb2423818]

"Signal Dispatcher" daemon prio=1 tid=0x0809e208 nid=0x1237 waiting on condition [0x00000000..0x00000000]

"Finalizer" daemon prio=1 tid=0x080993f8 nid=0x1236 in Object.wait() [0xb2725000..0xb2726130]
at java.lang.Object.wait(Native Method)
- waiting on <0x88cb0838> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:116)
- locked <0x88cb0838> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:132)
at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159)

"Reference Handler" daemon prio=1 tid=0x080986f8 nid=0x1235 in Object.wait() [0xb27a6000..0xb27a70b0]
at java.lang.Object.wait(Native Method)
- waiting on <0x88cb0748> (a java.lang.ref.Reference$Lock)
at java.lang.Object.wait(Object.java:474)
at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116)
- locked <0x88cb0748> (a java.lang.ref.Reference$Lock)

"main" prio=1 tid=0x0805b788 nid=0x1233 runnable [0xbfffd000..0xbfffd6f8]
at Simple.main(Simple.java:3)

"VM Thread" prio=1 tid=0x08095bf8 nid=0x1234 runnable

"VM Periodic Task Thread" prio=1 tid=0x080a1b10 nid=0x123a waiting on condition

5

Outline of CS&A

➤ Part 1: Programming with Objects

· Lecture 1: Introduction

· Lecture 2: Objects and classes

· Lecture 3: Packages, interfaces, nested classes

· Lecture 4: Design patterns

➤ Part 2: Further Java Topics

· 8 Lectures

➤ Part 3: Concurrent Systems

· 5 Lectures

➤ Part 4: Distributed Systems and Transactions

· 5 Lectures

➤ The Specifics of Generics in Java

· 2 Lectures

➤ Examples classes: threaded, distributed, bluetooth-enabled,

database-backed, tank of fish with attitude.

· Java-enabled mobile ’phones, time permitting

6

Notation

In many of the examples depicting hierarchies UML-style class

diagrams are used. The nodes of these graphs represent classes

and the edges between them denote relationships of different

kinds. “Refers to” is shown with a solid arrow from the class

doing the referring to that being referred to. “A instantiates

C” is indicated by an broken arrow from A to C. An arrow

with the head half way along indicates the class being pointed

from extending the other. Interesting methods are listed.

void paint()
void setSize(int w, int h)

void doSomething()

void stop()
void go()

void doSomething()

C

B
A

D

refers to

instantiates

extends

This notation is consistent with Gamma et al’s text book;

others may vary.

7

Recap of basic Java

➤ Look through notes from last year

➤ Have another look at the Ticked Exercises, especially the

starred exercises

➤ Have a look at the code snippets from last year’s course

8

Exercises

1. Compile the Simple class using the javac compiler.

2. Read the online Java API documentation and answer these

questions:

· What is a deprecated method? Why should we avoid

using them?

· Find java.lang.Object; describe the intended purpose

of as many of the methods it provides as you can.

3. Find java.lang.Throwable in the documentation.

· A programmer believes that although the Java compiler

says a number of exceptions might be thrown by one of

his methods, no exception will ever occur in practice.

He is a busy chap and gets rid of the compiler’s

complaints by wrapping the code in a try...catch

block as below. Describe the problems that he or others

might encounter with this approach.

try {

...

} catch (java.lang.Throwable t) {}

· Why might Throwable objects implement Serializable?

[Answer in a later lecture.]

4. (Harder) Read the documentation for

java.lang.Object.finalize(). Write the contents of

the empty method in the program below (without printing

9

either “finalize” or “constructed” yourself!) for four

versions of the program so that it prints:

· “finalize” as many times as “constructed”

· “finalize” more often than “constructed”

· “finalize” fewer times than “constructed”

· “constructed” precisely three times (harder still)
...or explain why such is impossible. It is cheating to
change anything other than the contents of
yourMethod()!

class Ex1Point4 {
public static void main(String [] args)
throws Throwable {
A a = new A();
for (int x=0;x<5;x++) {

try {
Ex1Point4 e1p4 = new Ex1Point4(a);

} catch (Throwable t) {}
}
System.gc();

}

Ex1Point4(A a) throws Throwable {
a.yourMethod();
System.out.println("constructed");

}

protected void finalize() {
System.out.println("finalize");

}

static class A {
A() {}
void yourMethod() throws Throwable {

// write your code here
}

}
}

10

Lecture 2: Objects and classes

Previous lecture

➤ Course structure, administration details.

➤ Recap of basic Java using a number of Exercises

Overview of this lecture

➤ Terminology: objects, classes, types, object references

➤ Composition

➤ Overloading methods

➤ Inheritance

1

Object-oriented programming

Programs in Java are made up of objects, packaging

together data and the operations that may be performed

on the data.

For example, we could define:

1 class TelephoneEntry {
2 String name;
3 String number;
4
5 TelephoneEntry(String name, String number) {
6 this.name = name;
7 this.number = number;
8 }
9
10 String getName() {
11 return name;
12 }
13
14 TelephoneEntry duplicate() {
15 return new TelephoneEntry(name, number);
16 }
17 }

2

Object-oriented programming (2)

➤ Lines 1–17 comprise a complete class definition. A class

defines how a particular kind of object works. Each object

is said to be an instance of a particular class, e.g. line 15

creates a new instance of the TelephoneEntry class.

➤ Lines 2–3 are field definitions. These are ordinary ‘instance

fields’ and so a separate value is held for each object.

➤ Lines 5–8 define a constructor. This provides initialization

code for setting the field values for a new object.

➤ Lines 10–12, 14–16 define two methods. These are

‘instance methods’ and so must be invoked on a specific

object.

This can support encapsulation: other parts of the

program using a TelephoneEntry object can do so

through its methods without knowing how its fields are

defined.

3

Object-oriented programming (3)

➤ A program manipulates objects through object references.

➤ A value of an object reference type either

· identifies a particular instance

· is the special value null

➤ More than one reference can refer to the same object, for

example:

TelephoneEntry tel =

new TelephoneEntry("John", "76019");

TelephoneEntry tel2 = tel;

...creates two references to the same object.

If tel.name is updated, the new value can also be

accessed by tel2.name.

4

Overloaded methods

➤ The same name can be used for more than one method in

any class. They are said to be overloaded.

➤ ...however, they must have distinct parameter types to

disambiguate which one to call.

➤ It is insufficient to merely have distinct return types, e.g.

how would the following invocations behave?

void doSomething(String number) {

this.number = number; // nice and innocent!

}

String doSomething(String c) throws IOException {

Runtime.getRuntime().exec(c);

return "OK";

}

String s = o.doSomething("rm -rf /");

o.doSomething("12345");

➤ The choice would have to depend on the context in which

an expression occurs.

5

Overloaded methods (2)

➤ Calls to overloaded methods must also be unambiguous,

e.g.

void f(int x, long y) {

...

}

void f(long x, int y) {

...

}

➤ Which should f(10,10) call? There is no best match.

➤ However, unlike before, the caller can easily resolve the

ambiguity by writing an expression like f((long)10,10)

to convert the first parameter to a value of type long.

6

Constructors

➤ Using constructors makes it easier to ensure that all fields

are appropriately initialised.

➤ If the constructor signature changes (e.g. an extra

parameter is added) then other classes using the old

signature will fail to compile: the error is detected earlier –

before you deploy the program!

· however, be wary of forgetting to make clean!

➤ As with methods, constructors can be overloaded:

class TelephoneEntry {

TelephoneEntry(String name) {

this(name,"0");

}

...

}

➤ Unlike methods, constructors do not have a declared return

type or use the return statement.

➤ A default constructor without any parameters is

generated automatically if the programmer does not define

any constructors.

7

Composition

➤ Placing a field of reference type in a class definition is a

form of composition.

➤ A new kind of data structure is defined in terms of existing

ones, e.g.

class TEList {

TelephoneEntry te;

TEList nxt;

}

➤ We construct new data types by combining old ones

together to model things related by a ‘has a’ relationship

· e.g. a Car class might be expected to have a field of

type Engine and a field of type Wheel[].

· ... but it would be less likely to have a field of type

Vehicle

➤ By convention field names are spelled with an initial

lower-case letter and have names that are nouns, e.g.

steeringWheel or favouriteTellytubby

8

Inheritance

➤ Inheritance is another way to combine classes–it typically

models an ‘is a’ relationship, e.g.

· between Bicycle and a more general

PersonnelTransport

· between SpaceElevator and a more general

SatelliteLauncher

➤ Inheritance defines a new sub-class in terms of an existing

super-class. The sub-class is intended to be a more

specialised version of the super-class. It might

· add new fields

· add new methods

· override existing methods to change their behaviour

class AddressEntry extends TelephoneEntry {

String addr;

AddressEntry(String name,

String number,

String addr) {

super(name,number);

this.addr = addr;

}

...

}

9

Types and inheritance

➤ Reference types in Java are associated with particular

classes:

class A {

A anotherA; // Reference type A

}

➤ Such fields can also refer to any object of a sub-class of

the one named.

· e.g. if we have a class B that extends A then

anotherA could refer to an instance of class B.

➤ A particular object may be accessed through fields and

variables of different reference types over the course of its

lifetime; its class is fixed at the time of creation.

someA.anotherA = new B();

➤ Casting operations convert references to an object

between different reference types, e.g.

1 A ref1 = new B();

2 B ref2 = (B) ref1; // cast super -> sub

3 ref1 = ref2; // no cast needed: sub -> super

➤ The cast in line 2 is needed because the variable ref1 may

refer to any instance of A, which may or may not turn out

to be an instance of B. ref2 may only refer to instances of

B.

➤ Casts are checked for safety in Java.

10

Arrays and inheritance

➤ If B extends A then how are B[] and A[] related?

➤ An array of type A[] can hold objects of class B or class A

(or a mixture).

➤ An array of type B[] can hold only objects of class B.

➤ B[] is a sub-type of A[]

1 A[] array1 = new A[2];

2 B[] array2 = new B[2];

3 A[] temp;

4 temp = array1;

5 temp[0] = new B(); // A[] <- B: ok

6 temp[1] = new A(); // A[] <- A: ok

7 temp = array2;

8 temp[0] = new B(); // B[] <- B: ok

9 temp[1] = new A(); // B[] <- A: fails

➤ Line 9 fails at runtime because array2 refers to an object

that is an array of references to things of type B and so an

object of class A is incompatible.

➤ This scheme is said to be covariant.

11

Fields and inheritance

➤ A field in the sub-class is said to hide a field in the

super-class if it has the same name. The hidden field can

be accessed by casting the object reference to the type on

which the field is defined, or by writing super.name to get

to the immediate super-class.

➤ For example:

class A {

int x;

int y;

int z;

}

class B extends A {

String x; // hides A’s int called ‘x’

int y; // hides A’s int called ‘y’

void f() {

x = "Field defined in B";

y = 42; // B

super.x = 17; // A

((A)this).y = 20; // A

z = 23; // A

}

}

12

Methods and inheritance

A class inherits methods from its superclass.

➤ It can overload them by making additional definitions with

different signatures.

➤ It can override them by supplying new definitions with the

same signature.

class A {

void f() {}

}

class B extends A {

void f() {

System.out.println("Override");

}

void f(int x) {

System.out.println("Overload");

}

}

13

Methods and inheritance (2)

➤ When an overridden method is called, the code to execute

is based on the class of the target object, not the type of

the object reference used in the code to specify the

method’s name.

➤ Consequently, the type of an object reference does not

affect the chosen method in these examples. A common

mistake:

1 class A {

2 void f() {

3 System.out.println("Super-class");

4 }

5 }

6 class B extends A {

7 void f() {

8 System.out.println("Sub-class");

9 ((A)this).f(); // try to call original

10 }

11 }

➤ As with fields, the super keyword can be used:

9 super.f();

14

Exercises

1. Write concise definitions of object, class, object reference,

and type with respect to a simple example in Java.

2. Is this statement true for Java? “If S is a sub-type of T

then an object of type S can be used anywhere that an

object of type T can be used.” Explain your answer.

3. Read about the instanceof keyword in the online Java

documentation and write a program using it to distinguish

between these two classes:

class A {}

class B extends A {}

4. super.super is not valid syntax in Java even though it

might appear to provide a means to access the super-class

of a class’ super-class. Why might the designers have

disallowed this?

5. In some languages (like SmallTalk), a class can change

which other class it extends at runtime! Suppose this were

permitted in Java; outline how this could lead to confusion

by means of a small example program. Are any safeguards

needed to prevent the programmer doing something

insane? Would this feature ever be useful?

15

The Programming Challenge

➤ Can you write an additional Java class which creates an

object that, when passed to the test method causes it to

print “Here!”? As I say in the code, editing the class A

itself, or using library features like reflection, serialization,

or native methods are considered cheating! I’ll provide

some hints in lectures if nobody can spot it in a week or

so. None of the PhD students has got it yet.

public class A {
// Private constructor tries to prevent A
// from being instantiated outside this
// class definition
//
// Using reflection is cheating :-)

private A() { }

// ’test’ method checks whether the caller has
// been able to create an instance of the ’A’
// class. Can this be done even though the
// constructor is private?

public static void test(Object o) {
if (o instanceof A) {

System.out.println ("Here!");
}

}
}

16

Lecture 3: Packages, interfaces, nested classes

Previous lecture

➤ Classes in Java

➤ Encapsulation

➤ Composition

➤ Inheritance

Overview of this lecture

➤ Packages for grouping related classes

➤ Modifiers and enforced encapsulation

➤ Interfaces and abstract classes

➤ Nested classes

1

Packages (1)

➤ Java groups classes into packages. Classes within a

package are typically written by co-operating programmers

and are expected to be used together.

➤ Each class has a fully qualified name consisting of its

package name, a full stop, and then the class name, e.g.

uk.ac.cam.cl.jkf21.TelephoneEntry

➤ The package keyword is used to select the package to

which a class definition belongs, e.g.

package uk.ac.cam.cl.jkf21.examples;

class TelephoneEntry { ... }

➤ Don’t have to create the package in any way; just quote

the name in any package statement.

· Watch out for typos in your package names!

· Errors are often manifested as compiler errors saying

that it can’t find referenced or extended classes.

➤ Some compilers create subdirectories in the file system,

nesting one directory level for each full stop in the

package’s fully-qualified name.

➤ By convention, package names are spelled with an initial

capital letter, capital letters to begin each word, and are

nouns. e.g. uk.ac.cam.cl.jkf21.AwesomeStuff

2

Packages (2)

➤ Definitions in the current package and in java.lang can

always be accessed without specifying the package name.

Otherwise:

· the import keyword can be used to tell the compiler

that we mean to use items from other packages:

// import all classes+interfaces from here...

import java.util.*;

// import just this single class...

import java.awt.Graphics;

· the fully-qualified class name can be used in the code:

java.util.Map m = new java.util.HashMap();

➤ Defensive programming – always using fully-qualified

names prevents your code misbehaving or failing to

compile if you or someone else later adds to a class called

“Map” or “HashMap” to the local package.

· I prefer using fully-qualified names to importing too

much stuff.

· But all my friends hate my code because the lines are

too wide.

· But I use long names anyway.

3

Modifiers

➤ This section looks at a number of modifiers that may be

used when defining classes, fields, and methods. Only

access modifiers may be applied to constructors.

<class-modifiers> class TelephoneEntry {

<field-modifiers> String name;

<field-modifiers> String number;

TelephoneEntry() {

/* Only access modifiers are legal */

}

<method-modifiers> String getName() {

return name;

}

<method-modifiers> String getNumber() {

return number;

}

}

4

Access modifiers (1)

➤ Previous examples have relied on the programmer being

careful when implementing encapsulation.

· e.g. to interact with classes through their methods

rather than directly accessing their fields.

class UniversityCard {

MifareApplicationID mad[];
Byte checksum;

UniversityCard(MifareApplicationID mad[],
Byte checksum) {

this.mad = mad;
this.checksum = checksum;

}

void changeMADEntry(int index,
MifareApplicationID newval) {

mad[index & 0x0F] = newval;
recomputeChecksum();

}

void recomputeChecksum() {
// Do clever stuff
...

}

void programCard() {
// talk to the printer
...

}
}

5

Access modifiers (2)

➤ Access modifiers can be used to ensure that encapsulation

is honoured and also, in some standard libraries, to ensure

that untrustred downloaded code executes safety.

same class same package sub-class anywhere

public Y Y Y Y
protected Y Y some

default Y Y

private Y

➤ protected access permits access by sub-classes in the

same package, or in a different package provided the type

of the object reference is that of the sub-class...

6

The protected modifier

➤ A protected entity is always accessible in the package

within which it is defined.

➤ Additionally, it is accessible within the sub-classes (B) of

the defining class (A), but only when actually accessed on

instances of B or its sub-classes.

1 public class A {

2 protected int field1;

3 }

4

5 public class B extends A {

6 public void method2(B b_ref, A a_ref) {

7 System.out.println(field1);

8 System.out.println(b_ref.field1);

9 System.out.println(a_ref.field1);

10 }

11 }

➤ Lines 7–8 are OK: this and b ref must refer to instances

of B or its sub-classes.

➤ Line 9 is incorrect: a ref might refer to any instance of A

or its sub-classes.

7

The final modifier

➤ A final method cannot be overridden in a sub-class.

· Typically used because it allows faster calls to the

method.

· Also for security.

➤ A final class cannot be sub-classed at all.

➤ The value of a final field is fixed after initialisation, either

directly or in every constructor, e.g.

class FinalField {

final String A = "Initial value";

final String B;

FinalField() {

B = "Initial value";

}

}

➤ Every code path that creates instances of class

FinalField must initialise the final fields.

➤ final fields are also used to define constants, e.g.

public static final int BLUE = 1;

public static final int WHITE = 2;

public static final int RED = 3;

8

The abstract modifier (1)

➤ Used on class and method definitions. An abstract

method is one for which the class does not supply an

implementation.

➤ A class is abstract if declared so or if it contains any

abstract methods. Abstract classes cannot be instantiated.

public class A {

abstract int methodName();

}

public class B extends A {

int methodName() {

return 42;

}

}

➤ Abstract classes are used where functionality is moved into

a super-class, e.g. an abstract super-class representing

‘sets of objects’ supporting iteration, counting, etc., but

relying on sub-classes to provide the actual representation.

· Look for examples in the java class libraries –

java.util.AbstractMap, java.util.AbstractList,

etc.

➤ Note that fields cannot be abstract: they cannot be

overridden in sub-classes.

9

The abstract modifier (2)

➤ It is not permitted to instantiate an abstract class, but we

can use object references of the type of the abstract class,

e.g.

public abstract class A {

int x=20;

abstract int methodname(A a);

}

public class B extends A {

int methodname(A a){

System.out.println("The A’s x is "+a.x);

return 42;

}

public static void main(String [] args) {

new B().methodname(new A()); // invalid

new B().methodname(new B()); // fine

}

}

➤ Some compilers require explicit declaration as abstract of

classes containing abstract methods.

10

The abstract modifier (3)

➤ Ask the audience: is this valid?

public abstract class A {

int x=20;

abstract int methodname(A a);

}

public class B extends A {

int methodname(A a){

System.out.println("The A’s x is "+a.x);

// Am I allowed to access the

// abstract method in A?

a.methodname(a);

// Does casting to a B make any

// difference?

((B) a).methodname(a);

return 42;

}

public static void main(String [] args) {

new B().methodname(new B()); // fine

}

}

11

The abstract modifier (4)

➤ Moving functionality into the super-class...

public abstract class Collection {

protected java.lang.Object [] objs;

abstract void sortTheStuff();

void printInOrder() {

// Sub-classes will implement

// collections in different ways.

// Lets have our sub-class sort

// the things in this Collection

// in whatever way it needs to...

sortTheStuff();

// Right, now we can print them...

for (int x=0;x<objs.length;++x)

System.out.println(objs[x]);

}

}

12

The static modifier (1)

➤ The static modifier can be applied to any method or field

definition (and also to nested classes, discussed later).

➤ It means that the field/method is associated with the class

as a whole rather than with any particular object.

➤ For example, suppose the example TelephoneEntry class

maintains a count of the number of times that it has ever

been instantitated: there is only one value for the whole

class, rather than a separate value for each object.

➤ Similarly, static methods are not associated with a

current object—unqualified instance field names and the

this keyword cannot be used.

➤ static methods can be called by explicitly naming the

class within which the method is defined. The named class

is searched, then its super-class, etc. Otherwise the search

begins from the class in which the method call is made.

13

The static modifier (2)

class Example {

static int instantiationCount = 0;

String name;

Example (String name) {

this.name = name;

++instantiationCount;

}

String getName() {

return name;

}

static int getInstantiationCount() {

return instantiationCount;

}

}

14

Other modifiers

➤ A strictfp method is implemented at run-time using

IEEE 754/854 floating point arithmetic (see Numerical

Analysis I). This ensures that identical results are produced

on all computers, regardless of the processors’ floating

point hardware.

· strictfp can be applied to classes too—all methods

are implemented using strict floating point.

➤ There are four other modifiers to be covered in later

lectures:

· synchronized ensures that several threads in a

multi-threaded applications do not access the same

class/method at the same time.

· volatile causes the JVM to re-read a variable from

memory each time the value is required—caching is not

permitted in many circumstances.

· transient fields are used with the Serialization

API. transient fields are not sent over the network

when classes are copied from machine to machine—e.g.

temporary values, or large structures that can be

recomputed more quickly at the far end than the

network can transfer them.

· A native method is implemented in native code—e.g.

to interact with existing code or for (perceived)

performance reasons. The mechanism for locating the

native implementation is system-dependent.

15

Interfaces (1)

➤ There are often groups of classes that provide different

implementations of the same kind of functionality.

· e.g. the collection classes in java.util—HashSet and

ArraySet provide set operations; ArrayList and

LinkedList provide list-based operations.

➤ In that example there are some operations available on all

collections, further operations on all sets, and a third set of

operations on the HashSet class itself.

➤ Inheritance and abstract classes can be used to move

common functionality into super-classes such as

Collection and Set.

· Each class can only has a single super-class (in Java),

so should HashSet extend a class representing the

hashtable aspects of its behaviour, or a class

representing the set-like operations available on it?

➤ More generally, it is often desireable to separate the

definition of a standard programming interface (e.g.

set-like operations) from their implementation using an

actual data structure (e.g. a hash table).

16

Interfaces (2)

➤ Each Java class may extend only a single super-class, but

it can implement a number of interfaces.

interface Set {

boolean isEmpty();

void insert(Object o);

boolean contains(Object o);

}

class HashSet implements Hashtable, Set {

...

}

➤ An interface definition just declares method signatures

and static final fields (constants).

➤ An ordinary interface may have public or default access.

All methods and fields are implicitly public.

➤ An interface may extend one or more super-interfaces.

➤ A class that implements an interface must either:

· supply definitions for each of the declared methods; or

· be declared an abstract class.

17

Nested classes (1)

➤ A nested class/interface is one whose definition appears

inside another class or interface.

➤ There are four cases:

· inner classes in which the enclosed class is an ordinary

class (i.e. non-static);

· static nested classes in which the enclosed definition

is declared static;

· nested interfaces in which an interface is declared

within an enclosing class or interface; and

· anonymous inner classes.

➤ Beware: the term inner class is sometimes used incorrectly

to refer to all nested classes. In fact, inner classes only

form a subset of nested classes.

➤ In general nested classes are used:

· (i) for programming convenience to associate related

classes for readability;

· (ii) as a shorthand for defining common kinds of

relationship; and

· (iii) to provide one class with access to private

members or local variables from its enclosing class.

18

Nested classes (2)

➤ An inner class definition associates each instance of the

enclosed class with an instance of the enclosing class, e.g.

1 class Bus {

2 Engine e;

3

4 class Wheel {

5 ...

6 }

7 }

➤ Each instance of Wheel is associated with an enclosing

instance of Bus. For example, methods defined at Line 5

can access the field e without qualificiation or access the

enclosing Bus as Bus.this.

➤ An instance of Bus must explicitly keep track of the

associated Wheel instances, if it wishes to do so. There is

no mechanism for an instance of Bus to acquire a list of

the instances of Wheel that are associated to it.

➤ As with static fields and static methods, a static

nested class is not associated with any instance of an

enclosing class. They are often used to organise ‘helper’

classes that are only useful in combination with the

enclosing class. Nested interfaces are implicitly static.

19

Anonymous inner classes

➤ Anonymous inner classes provide a short-hand way of

defining inner classes.

class A {

void method1() {

Object ref = new Object() {

void method2() {};

};

}

}

➤ An anonymous inner class may be defined using an inerface

name rather than a class name—providing inline

implementations of all the methods in the interface.

interface Ifc {

public void interfaceMethod();

}

class A {

void method1() {

Ifc i = new Ifc() {

public void interfaceMethod() {

};

};

}

}

20

Exercises (1)

1. Describe the facilities in Java for defining classes and for

combining them through composition, inheritance, and

interfaces. Explain with a worked example how they

support the principle of encapsulation in an object-oriented

language.

2. Describe the differences and similarities between abstract

classes and interfaces in Java. How would you select which

kind of definition to use?

3. Why is it sensible that (i) interfaces cannot be private; (ii)

method signatures on interfaces are implicitly public; (iii)

nested interfaces are implicitly static?

4. A common grumble about Java is the lack of multiple

inheritance—being permitted to extend more than one

class. Describe three ways in which this problem can be

resolved to produce (one or more) class definitions. What

are the advantages and disadvantages of each approach?

21

Exercises (2)

5. An enthusiast for programming with closures proposes a

new language extending Java so that the following method

definition would be valid:

Closure myCounter(int start) {

int counter = start;

return {

System.out.println(counter++);

}

}

The programmer intends that no output would be made on

System.out when this method is executed but that it

would return an object implementing a new built-in

interface, Closure:

interface Closure {

void apply();

}

Invoking apply() on the object returned by myCounter

will cause successive values to be printed. By using a

nested class definition, show how this example could be

re-written as a valid Java program.

22

Lecture 4: Design patterns

Previous lecture

➤ Finished looking at the facilities for OO design

➤ Access modifiers to enforce encapsulation

➤ Interfaces and abstract classes

➤ Nested classes

Overview of this lecture

➤ Some ways of using these facilities effectively

➤ Think about the ways we might implement parts of the

distributed fish tank.

1

Design patterns

A number of common idioms frequently emerge in

object-oriented programming. Studying these design

patterns provides:

➤ common terminology for describing program organisation

and conveying the purposes of inter-related classes; and

➤ examples of how to structure programs for flexibility and

re-use.

void paint()
void setSize(int w, int h)

void doSomething()

void stop()
void go()

void doSomething()

C

B
A

D

refers to

instantiates

extends

2

Observer pattern

➤ Suppose we have a user interface in which we need to

permit the user to specify the colour of an on-screen item

(like a fish in the tank...).

➤ The client’s specification demands there be three ways to

specify colours:

· Text boxes for red, green, and blue elements;

· Sliders for red, green, and blue elements; and

· Selecting from a palette of commonly-used colours.

➤ BUT more than one of these input mechanisms might be

displayed simultaneously.

➤ AND when the user operates one of them, the others must

update appropriately.

➤ Question: how might we represent this in an

object-oriented program?

3

Bad hack (1)

➤ Write three classes: one for each input mechanism.

➤ Write code in each one to update the other two each time

it is used:

class ColourTextBoxes {
ColourSlider cs;
ColourPalette cp;
...
void changeTo(int r,int g,int b) {
setColour(r,g,b);
cs.update(r,g,b);
cp.update(r,g,b);

}
}

class ColourSlider {
ColourTextBoxes ct;
ColourPalette cp;
...
void changeTo(int r,int g,int b) {
setColour(r,g,b);
ct.update(r,g,b);
cp.update(r,g,b);

}
}

class ColourPalette {
ColourTextBoxes ct;
ColourSlider cs;
...
void changeTo(int r,int g,int b) {
setColour(r,g,b);
ct.update(r,g,b);
cs.update(r,g,b);

}
}

4

Bad hack (2)

Advantages

➤ Simple and efficient.

Disadvantages

➤ If we want to add a fourth way to select colours then we

have to change the code in several places.

➤ In general, each of the colour selection classes needs to

know about all the others.

5

Second attempt (1)

➤ Move the code that updates each object in to a common

super-class:

· it would be centralised; and

· there would be only a single method to change if we

add a fourth type of colour selector.

class Colour {
int r,g,b;
ColourTextBoxes ct;
ColourSlider cs;
ColourPalette cp;
void setColour(int r,int g,int b) {
this.r = r; this.g = g; this.b = b;
ct.update();
cs.update();
cp.update();

}
}
class ColourTextBoxes extends Colour {
void changeTo(int r,int g,int b) {
setColour(r,g,b);

}
}
class ColourSlider extends Colour {
void changeTo(int r,int g,int b) {
setColour(r,g,b);

}
}
class ColourPalette extends Colour {
void changeTo(int r,int g,int b) {
setColour(r,g,b);

}
}

6

Second attempt (2)

Advantages

➤ Remains simple.

➤ Efficient.

➤ Easier to maintain.

Disadvantages

➤ Messy—why should Colour have to know about all the

sub-classes?

➤ Adds clutter to Colour.

7

Observer pattern (1)

➤ Lets keep Colour clean:

class Colour {
int r,g,b;
void setColour(int r,int g,int b) {
this.r = r;
this.g = g;
this.b = b;

}
}

➤ Use the following as the super-class for ColourTextBoxes,

ColourSlider, and ColourPalette instead:

abstract class ColourObserver {
ColourSubject colsubj;
abstract void update();

}

➤ ...where ColourSubject is a class designed to handle all

the calls to update the other colour selectors:

class ColourSubject {
Colour c;
ColourObserver observers [];
void setColour(int r,int g,int b) {
c.setColour(r,g,b);
for (int x=0;x<observers.length;++x)

observers[x].update();
}
void addObserver(ColourObserver co) {
/* insert into observers[] */
...

}
}

8

Observer pattern (2)

➤ So the sub-classes now look like this:

class ColourSlider extends ColourObserver {
void update() {
/* read colour, redraw our GUI */
...

}

void changeTo(int r,int g,int b) {
colsubj.setColour(r,g,b);

}
}

9

Observer pattern (3)

➤ Also known as the Model-View-Controller pattern.

Advantages

➤ In Java, observers can be implemented as interfaces rather

than as concrete classes.

· Doesn’t use up the single opportunity to sub-class

another class.

➤ A many-to-many, dynamically changing relationship can

exist between subjects and observers.

Disadvantages

➤ The flexibility limits the extent of compile-time

type-checking.

➤ If observers can change the subject than cascading or

cyclic updates could occur.

➤ Potential for a large amount of computational overhead.

· Consider slowly dragging the slider from left to right.

10

Singleton pattern

➤ Ensures that a class can be instantiated at most once.

➤ Private constructor ensures external classes cannot

instantiate the class by calling new.

➤ A static method creates an instance when first called and

subsequently returns an object reference to the same

instance.

class Singleton {
static Singleton theInstance = null;

private Singleton() {...}

static Singleton getInstance() {
if (theInstance == null)

return (theInstance = new Singleton());
return theInstance;

}

void method1() {...}
void method2() {...}
void method3() {...}

}

➤ More flexible than a suite of static methods: allows

sub-classing, e.g. getInstance on ToolKit might return

MotifToolKit or MacToolKit as appropriate.

➤ The constraint is enforced (and could subsequently be

relaxed) in a single place.

➤ We’ll return to the multi-threaded case later.

11

Abstract factory pattern (1)

Suppose we have a set of interfaces: Window, ScrollBar,

etc., defining components used to build GUIs.

There may be several sets of these components—e.g. with

different visual appearances.

How does an application get hold of the appropriate

instances of classes implementing those interfaces?

➤ We could have the application know about all the options

and, whenever it needs to construct a new instance, switch

on the mode in which it is running:

switch (APPLICATION_MODE) {
case MACINTOSH: w = new MacWindow(); break;
case MOTIF : w = new MotifWindow(); break;
...

}

Disadvantages

➤ It would be lots of work to add support for a new GUI

system.

➤ And we would have to change every application!

➤ A buggy application might try to use a MacWindow with a

MotifScrollBar.

12

Abstract factory pattern (2)

➤ Define an abstract super-class Factory.

➤ Code for the methods is provided by one of a number of

sub-classes, each implementing a different family, e.g.

MotifFactory, MacFactory, ...

➤ The factory class instantiates objects on behalf of the client

from one of a family of related classes, e.g. MotifFactory

instantiates MotifWindow and MotifScrollBar.

➤ New families can be introduced by providing the client with

an instance of a new sub-class of Factory.

➤ The factory can ensure classes are instantiated

consistently—e.g. MotifWindow always with

MotifScrollBar.

➤ Adding a new operation involves co-ordinated change to

the Factory class and all its sub-classes.

... but the problem hasn’t entirely gone away: how does

the application know which Factory to use?

13

Adapter pattern

➤ Suppose you’ve got an existing application that accesses a

data structure through the Dictionary interface

public interface Dictionary {
int size();
boolean isEmpty();
Object get(Object key);
...

}

➤ ... and you have a good implementation BinomialTree

that instead implements some other interface, say

LookupTable

public interface LookupTable {
int numElements();
Object lookupKey(Object key);
...

}

➤ Terminology: the Client wishes to invoke operations on

the Target interface which the Adaptee does not

implement.

➤ The Adapter class implements the Target interface in

terms of operations the Adaptee supports.

➤ The adapter can be used with any sub-class of the adaptee

(unlike sub-classing adaptee directly).

14

Visitor pattern (1)

➤ Use a hierarchy of classes to represent the nodes in a data

structure, e.g.

class TreeNode {
Object myData;
TreeNode [] children;

void accept(Visitor v) {
// apply the visitor to my data...
v.apply(myData);

// ...and to each child’s data...
for (int x=0;x<children.length;++x)

children[x].accept(v);
};

}

class TreeNode2 extends TreeNode {
TreeNode2 () {children = new TreeNode[2];}

}
class TreeNode3 extends TreeNode {
TreeNode3 () {children = new TreeNode[3];}

}
class TreeNode4 extends TreeNode {
TreeNode4 () {children = new TreeNode[4];}

}

15

Visitor pattern (2)

➤ Implement different visitors for different tasks, e.g.

abstract class Visitor {
abstract void apply(Object o);

}

class VisitorCountNulls extends Visitor {
int count=0;
void apply(Object o) {if (o == null) ++count;}

}

class VisitorSumIntegers extends Visitor {
int sum=0;
void apply(Object o) {
if (o instanceof Integer) {

sum += ((Integer) o).intValue();
}

}
}

16

Visitor pattern (3)

➤ The data structure is built from instances of TreeNode2,

TreeNode3, etc.—all sub-classes of TreeNode.

➤ These classes, or a separate object structure class, provide

some mechanism for traversing the data structure.

➤ The abstract Visitor class defines operations to perform on

each node.

· It might perform different tasks on each different

sub-class of TreeNode.

➤ A concrete sub-class of Visitor is constructed for each kind

of operation on the data structure.

➤ The methods implementing a particular operation are kept

together in a single sub-class of Visitor.

➤ But changing the data structure requires changes to many

classes.

17

Summary

Some common themes...

➤ Explicitly creating objects by specifying their class commits

to a particular implementation.

· It is often better to separate code responsible for

instantiating objects—Abstract Factory and Singleton

patterns.

➤ Tight coupling between classes makes independent re-use

difficult.

· e.g. the Visitor pattern separates the structure-traversal

code from the visitor-specific operation to apply to each

item found.

➤ Extending functionality by sub-classing commits at compile

time to a particular organisation of extensions.

· Composition and delegation may be prefereable (as in

the Adapter pattern).

18

Exercises

1. Represent each of the design patterns as UML diagrams.

2. Have a look at java.util.Iterator. Describe how the

methods implement the Visitor pattern.

3. What is the scope to use design patterns together?—e.g.

in the Visitor pattern, why might the data structure nodes

be adapters?

19

A
n
sw

e
rs

to
U

M
L

q
u
e
st

io
n
s

(1
)

➤
V

is
it
or

p
at

te
rn

void accept(Vistor v)

void apply(TreeNode tn)

TreeNode

Visitor

VisitorCountNulls VisitorSumIntegers

Client

TreeNode2 TreeNode3 TreeNode4

2
0

Answers to UML questions (2)

➤ Singleton pattern

static getInstance()

Singleton

operation1()
operation2()

static Singleton theInstance

21

A
n
sw

e
rs

to
U

M
L

q
u
e
st

io
n
s

(3
)

➤
A

b
st

ra
ct

fa
ct

or
y

p
at

te
rn

Window createWindow()

Window createWindow() Window createWindow() Window createWindow()

Window ScrollBar

...MotifWindow MacWindow

Client Factory

ScrollBar createScrollBar()

MotifFactory MacFactory WindowsFactory

ScrollBar createScrollBar() ScrollBar createScrollBar() ScrollBar createScrollBar()

...

...MotifScrollBar MacScrollBar

2
2

A
n
sw

e
rs

to
U

M
L

q
u
e
st

io
n
s

(3
)

➤
A

d
ap

te
r

p
at

te
rn

void operation(...)

void operation(...)

void similarOperation(...)

Client Target

Adapter

Adaptee

2
3

Lecture 5: Reflection and serialization

Now in Part 2 of this course.

Previous section
Programming with Objects

➤ Recap of Java syntax

➤ Facilities for designing and using classes

➤ Design patterns

Overview of this section
Further Java

➤ Important library facilities for:

· Saving and restoring object state

· Graphical interfaces

· Managing memory

1

Reflection (1)

➤ Java provides facilities for reflection or introspection of

type information about objects at run time.

➤ Given the name of a class, a program can...

· find the methods and fields defined on that class; and

· instantiate the class to create new objects.

➤ Given an object reference, a program can...

· determine the class of the object it refers to; and

· invoke methods or update the values in fields.

➤ It is not possible to obtain or change the source code of

methods.

➤ These facilities are often used ‘behind the scenes’ in the

Java libraries, e.g. RMI, and in visual program

development environments—presenting a graphical

representation of the facilities provided by each class, or

showing the way in which classes are combined through

composition or inheritance.

2

Reflection (2)

➤ Reflection is provided by a number of classes in the

java.lang and java.lang.reflect packages. Each class

models one aspect of the Java programming language.

➤ An instance of Class represents a Java class definition.

The Class associated with an object is obtained by a

method inherited from java.lang.Object:

java.lang.Class getClass()

➤ An instance of Field represents a field definition, obtained

from the Class object by getFields().

➤ Instances of Method and Constructor represent method

and constructor definitions, similarly obtained by

getMethods() and getConstructors().

➤ Similarly for getSuperclass() and getInterfaces().

3

Reflection (3)

➤ For example:

1 public class ReflExample {

2 public static void main(String args[]) {

3 ReflExample re = new ReflExample();

4 Class reclass = re.getClass();

5 String name = reclass.getName();

6 System.out.println(name);

7 }

8 }

➤ Line 3 creates a new instance of ReflExample.

➤ Line 4 obtains the Class object for that instance.

➤ Line 5 obtains the name of that class.

4

Reflection (4)

➤ We could do the same in reverse:

1 public class ReflExample2 {

2 public static void main(String args[]) {

3 try {

4 Class c = Class.forName(args[0]);

5 Object o = c.newInstance();

6 System.out.println(o);

7 } catch (Exception e) {

8 System.out.println(e);

9 }

10 }

11 }

➤ But what about Exceptions that might be thrown in the

constructor?

➤ In fact, there are lots of Exceptions and Errors to think

about...

5

Reflection (5)

➤ Errors and Exceptions for Class.forName(String)...

· java.lang.ClassNotFoundException: the

ClassLoader was unable to find any definition of the

class whose name was supplied as argument.

· java.lang.LinkageError: Subclasses of LinkageError

indicate that a class has some dependency on another

class; however, the latter class has incompatibly

changed after the compilation of the former class.

· java.lang.ExceptionInInitializerError: the

initialization provoked by this method failed—see

Throwable.getCause() to find out what went wrong.

➤ Errors and Exceptions for Class.newInstance()...

· java.lang.InstantiationException: the Class

represents an abstract class, an interface, an array class,

a primitive type, or void; or the class has no nullary

constructor; or the instantiation failed for some other

reason.

· java.lang.IllegalAccessException: the class or

its nullary constructor is not accessible.

· java.lang.ExceptionInInitializerError: the

initialization provoked by this method failed.

· java.lang.SecurityException: there is no

permission to create a new instance.

6

Reflection (6)

➤ We’re taking a class name supplied as a parameter to the

program and instantiating it. We can name any class we

like...!

➤ By default a 0-argument constructor is called (and must

exist).

➤ Specific constructors are also modelled by Constructor

objects and each will define a newInstance(Object [])

method; the Object [] is a list of the arguments to the

constructor.

➤ Think about why anyone would want to write

Class c = Class.forName(args[0]);

Object o = c.newInstance();

instead of an ordinary new expression...

7

Fields and reflection (1)

➤ We can invoke getFields() on a Class object to obtain

an array of the public fields defined on that class (or

interface) and all super-classes (or super-interfaces).

➤ As a shortcut we can also use getField(...), passing the

name of an individual field to obtain information about it.

➤ If there is a security manager then its

checkMemberAccess method must permit general access

for Member.PUBLIC and checkPackageAccess must

permit reflection within the package.

➤ Only public fields are returned by getFields().

➤ A general getDeclaredFields() method provides full

access (subject to a checkMemberAcess test for

member.DECLARED) to a list of the public, protected,

default, and private fields, excluding inherited fields.

➤ Given an instance of Field we can use...

· Class getDeclaringClass()

· String getName()

· int getModifiers()

· Class getType()

8

Fields and reflection (2)

public class ReflExample3 {
public static int field1 = 10;
public static int field2 = 11;

public static void main(String [] args) {
try {

Class c = Class.forName(args[0]);
java.lang.reflect.Field f;
f = c.getField(args[1]);
int value = f.getInt(null);
System.out.println(value);

} catch (Exception e) {
System.out.println(e);

}
}

}

class A {
public static int ax;
public int ay;

static{
System.out.println(

"This is A’s static initializer.");
ax=20;

}

A() {
System.out.println(

"This is A’s constructor.");
ay=42;

}
}

9

Fields and reflection (3)

➤ For example:
$ java ReflExample3 ReflExample3 field1
10

$ java ReflExample3 ReflExample3 field2
11

$ java ReflExample3 ReflExample3 field3
java.lang.NoSuchFieldException: field3

$ java ReflExample3 A ax
This is A’s static initializer.
20

$ java ReflExample3 A ay
This is A’s static initializer.
java.lang.NullPointerException

➤ There are similar methods for setting the value of a field,

e.g.

f.setInt(null,1234);

10

Methods and reflection (1)

➤ The reflection API represents Java methods as instances of

a java.lang.reflect.Method class.

➤ This has an invoke operation defined on it that calls the

underlying method. For example, given a reference m to an

instance of Method:

Object parameters[] = new Object [2];

parameters[0] = ref1;

parameters[1] = ref2;

m.invoke(target,parameters);

is equivalent to making the call

target.mth(ref1,ref2);

where mth is the name of the method represented by m.

Well, almost equivalent...

11

Methods and reflection (2)

public class ReflExample4 {
public static int ctr=0;
public void mth(Object a, Object b) {++ctr;}

public static void main(String [] args) {
try {

ReflExample4 re4 = new ReflExample4();
Class c = Class.forName("ReflExample4");
java.lang.reflect.Method m;
m = c.getMethod("mth",new Class[] {
Class.forName("java.lang.Object"),
Class.forName("java.lang.Object")

});
Object params[] = new Object[2];
params[0] = params[1] = null;

long st1=System.currentTimeMillis();
for (int x=0;x<10000000;++x)
m.invoke(re4,params);

long speed1=System.currentTimeMillis()-st1;
System.out.println("Reflection took "+speed1
+" ms to do "+ctr+" iterations.");

ctr=0;
long st2=System.currentTimeMillis();
for (int x=0;x<10000000;++x)
re4.mth(null,null);

long speed2=System.currentTimeMillis()-st2;
System.out.println("Direct invocation took "
+speed2+" ms to do "+ctr+" iterations.");

System.out.println("Reflection took "+
((double)speed1/speed2)+" times longer!");

} catch (Exception e) {System.out.println(e);}
}

}

12

Methods and reflection (3)

With Sun’s JDK1.4.2 05...

$ java ReflExample4

Reflection took 1842 ms to
do 10000000 iterations.

Direct invocation took 41 ms to
do 10000000 iterations.

Reflection took 44.926829268292686
times longer!

With Sun’s JDK1.5.0...

$ java ReflExample4
Reflection took 3503 ms to
do 10000000 iterations.

Direct invocation took 144 ms to
do 10000000 iterations.

Reflection took 24.32638888888889
times longer!

13

Methods and reflection (4)

➤ The first value passed to invoke identifies the object on

which to make the invocation. It must be a reference to an

appropriate object (target in the first example), or null

for a static method.

➤ Note how the parameters are passed as an array of type

Object []: this means that each element of the array can

refer to any kind of Java object.

➤ If a primitive value (such as an int or boolean) is to be

passed then the value must be wrapped as an instance of

Integer, Boolean, etc. For example, new Integer(42).

➤ The result is also returned as an object reference and may

need unwrapping—e.g. invoking intValue() on an

instance of Integer.

14

Serialization (1)

Reflection lets you inspect the definition of classes and

manipulate objects without knowing their structure at

compile-time.

One use for this is automatically saving/loading data

structures...

➤ starting from a particular object you could use

getClass() to find what it is, getFields() to find the

fields defined on that class and then use the resulting

Field objects to get the field values.

➤ the data structures can be reconstructed by using

newInstance() to instantiate classes and invocations on

Field objects to restore their values.

The ObjectInputStream and ObjectOutputStream

classes automate this procedure.

➤ Beware: the term ‘serialization’ is used with two distinct

meanings. Here it means taking objects and making a

‘serial’ representation for storage. We’ll use it in a different

sense when talking about transactions.

15

Serialization (2)

In their simplest forms the writeObject() method on

ObjectOutputStream and readObject() method on

ObjectInputStream transfer objects to/from an

underlying stream, e.g.

FileOutputStream s = new FileOutputStream("file");

ObjectOutputStream o = new ObjectOutputStream(s);

o.writeObject(drawing);

o.close();

or

FileInputStream s = new FileInputStream("file");

ObjectInputStream o = new ObjectInputStream(s);

Vector v = (Vector) o.readObject();

o.close();

➤ A real example must consider exceptions as well.

➤ Fields with the transient modifier applied to them are

not saved or restored.

· So what value do transient fields have in restored

classes?

16

java.io.Serializable (1)

The methods defined in this interface attempt to transfer

the complete structure reachable from the initial object.

However, classes must implement the

java.io.Serializable interface to indicate that the

programmer believes this is a suitable way of loading or

saving instance state, e.g. considering:

· whether field values make sense between

invocations—e.g. time stamps or sequence numbers;

· whether the complete structure should be

saved/restored—e.g. if it refers to a temporary data

structure used as a cache; or

· any impact on application-level access control—e.g. if

security checks were performed at instantiation-time.

The definition of Serializable is trivial:

public interface Serializable {

}

17

java.io.Serializable (2)

➤ A 0-argument constructor must be accessible to the

sub-classes being serialized: it is used to initialize fields of

the non-serializable super-classes.

➤ More control can be achieved by implementing

Serializable and also two special methods to save and

restore that particular class’s aspect of the object’s state:

private void writeObject(

java.io.ObjectOutputStream out)

throws java.io.IOException;

private void readObject(

java.io.ObjectInputStream in)

throws java.io.IOException,

java.lang.ClassNotFoundException;

➤ Further methods allow alternative objects to be introduced

at each step, e.g. to canonicalize data structures:

ANY-ACCESS-MODIFIER Object writeReplace()

throws java.io.ObjectStreamException;

ANY-ACCESS-MODIFIER Object readResolve()

throws java.io.ObjectStreamException;

18

java.io.Externalizable

➤ writeObject and readObject are fiddley to use: they

may require careful co-ordination within the class hierarchy.

The documentation is unclear about the order in which

they’re called on different classes.

➤ The interface java.io.Externalizable is more useful in

practice:

public interface Externalizable

extends java.io.Serializable {

void writeExternal(ObjectOutput out)

throws java.io.IOException;

void readExternal(ObjectInput in)

throws java.io.IOException,

ClassNotFoundException;

}

➤ It is invoked using the normal rules of method dispatch.

➤ It is responsible for transferring the complete state of the

object on which it is invoked.

➤ But note: readExternal is called after instantiating the

new object.

19

Exercises

1. What is meant by reflection or introspection in Java? Give

an example of how and why these facilities might be useful.

2. What are the advantages and disadvantages, with respect

to encapsulation, of using Externalizable rather than

Serializable for customised serialization?

20

Lecture 6: Graphical interfaces

Previous lecture

➤ Reflection: APIs to interrogate objects and class definitions

at run-time, access fields, and call methods.

➤ Serialization: API to save and restore object state, e.g. to

a file.

Overview of this lecture

➤ Model-view-controller pattern

➤ Components and containers

➤ API specs are available on-line at

http://www.java.sun.com/products/jfc

➤ Examples of individual components in the

“SwingExamples” demos.

1

Java Foundation Classes (JFC)

➤ We will cover the ‘Swing’ user interface components, part

of JFC which also adds rendering APIs, drag ’n’ drop, and

more!

➤ The Abstract Windowing Toolkit (AWT) is the original set

of GUI classes in Java: it is a lowest-common-denominator

between the systems available at the time.

➤ AWT GUI components each had peers (using native

methods) responsible for their rendering, e.g.

ComponentPeerComponent

ScrollbarPeer

MScrollbarPeer

Scrollbar

➤ A Toolkit class puts all this together following the

abstract factory pattern—e.g. MToolkit for Motif,

instantiating MScrollbarPeer.

2

Model-View-Controller (1)

Swing components follow a model-view-controller

pattern (derived from Smalltalk-80).
Model View

Controller

Display

Input
from human

to human

This separates three aspects of the component:

➤ the view, responsible for rendering it to the display;

➤ the controller, responsible for receiving input; and

➤ the model, being the underlying logical representation.

Multiple views may be based on the same model (e.g. a

table of numbers and a graphical chart). This separation

allows views to be changed independently of application

logic.

3

Model-View-Controller (2)

For simplicity the controller and view are combined in

Swing to form a delegate.

The component itself (here JButton) contains references

to the current delegate and the current model.
JButton

(+ other models)

Delegate Model

...

ComponentUI

ButtonUI

MacButtonUI

MotifButtonUI DefaultButtonModel

ButtonModel

ItemSelectable

4

Graphics

➤ Basic rendering primitives are available on instances of

Graphics, e.g. using Java applets as in Part 1A:

import java.awt.*;

public class E1 extends java.applet.Applet {

public void paint(java.awt.Graphics g) {

g.drawLine(0,0,100,100);

}

}

➤ Simple primitives are available—setColor, copyArea,

drawLine, drawArc, ...

➤ More abstractly, an instance of Graphics represents the

component on which to draw, a translation origin, the

clipping mask, the font, etc.

➤ Translation allows components to assume that they’re

placed at (0,0).

Notice the running similarity between these basic functions

as X11/Motif...

5

Components (1)

Button, CheckBox,
Canvas, Choice,

Label, List, Scrollbar

Component

void paint(Graphics g)
void setSize(int w, int h)

TextField
TextArea

JFrame

Container getContentPane()

TextComponentContainer

String getText()
void setText(String s)

Component add(Component g)
...

JComponent Panel

ScrollPane

Window

Applet
JButton, ...

void init()
void start()
void stop()
void destroy()

void show()
void dispose()

Dialog Frame

FileDialog

String getDirectory()
String getFile()

void setMenuBar()

➤ See the “SwingExamples” demos for illustrations of how to

use many of these.

6

Components (2)

➤ In general a graphical interface is built up from

components and containers.

➤ Components represent the building blocks of the interface:

for example, buttons, check-boxes, text boxes, etc.

➤ Each kind of component is modelled by a separate Java

class (e.g. javax.swing.JButton). Instances of those

classes provide particular things in particular windows—e.g.

to create a button bar the programmer would instantiate

the JButton class multiple times.

➤ As you might expect, new kinds of component can be

created by sub-classing existing ones—e.g. by sub-classing

JPanel (a blank, rectangular area of the screen) to define

how that component should be rendered by overriding its

paintComponent method:

public void paintComponent(Graphics g) {

super.paintComponent(g);

...

}

7

Containers (1)

➤ Containers are a special kind of component that can

contain other components—as expected, the abstract class

java.awt.Container extends java.awt.Component.

➤ Containers implement an add method to place components

within them.

➤ Containers also provide top-level windows—for example

javax.swing.JWindow (a plain window, without a title

bar or borders) and javax.swing.JFrame (a ‘decorared’

window with a title bar, etc.)

➤ Other containers allow the programmer to control how

components are organized—in the simplest case

javax.swing.JPanel.

➤ In fact, java.applet.Applet is actually a sub-class of

Panel.

8

Containers (2)

➤ Components are organized within a container under the

control of a layout manager, e.g.

1 import java.awt.*;
2 import javax.swing.*;
3 public class ButtonsFrame extends JFrame {
4 public ButtonsFrame() {
5 super();
6 Container cp;
7 cp = getContentPane();
8 cp.setLayout(new BorderLayout());
9 cp.add("North", new JButton("North"));
10 cp.add("South", new JButton("South"));
11 cp.add("East", new JButton("East"));
12 cp.add("West", new JButton("West"));
13 cp.add("Centre", new JButton("Centre"));
14 }
15
16 public static void main(String [] args) {
17 ButtonsFrame b = new ButtonsFrame();
18 b.pack();
19 b.setVisible(true);
20 }
21 }

➤ A JFrame has a root pane which contains the main

content pane and the menu bar.

9

Containers (3)

➤ A common design technique is to develop a spatial

hierarchy of nested containers.

➤ BoxLayout is particularly useful: it places a series of

components horizontally or vertically.

➤ Box provides static methods to create special, invisible

components:

· Rigid-area components which have a fixed size;

· Struts which have a fixed height or width (used to

space out other components); and

· Glue which expands/contracts if the window is resized

and nothing else can change.

cp.setLayout(

new BoxLayout(cp, BoxLayout.X_AXIS));

cp.add(Box.createHorizontalStrut(10));

cp.add(left);

cp.add(Box.createHorizontalGlue());

cp.add(right);

cp.add(Box.createHorizontalStrut(10));

➤ It is almost always easier to use nested JPanel

components controlled with a BoxLayout than to use any

of the other, older, layout managers (CardLayout,

FlowLayout, GridLayout, GridBagLayout).

10

Receiving input (1)

➤ An event-based mechanism is used for delivering input to

applications, broadly following the observer pattern.

➤ Different kinds of event are represented by sub-classes of

java.awt.AWTEvent. These are all in the

java.awt.event package. For example, MouseEvent is

used for mouse clicks; KeyEvent for keyboard input, etc.

➤ The system delivers events by invoking methods on a

listener. For example, instances of MouseListener are

used to receive MouseEvents:

public interface MouseListener

extends EventListener {

public void mouseClicked(MouseEvent e);

...

}

Components provide methods for registering listeners with

them, e.g. addMouseListener on Component.

➤ AWTEvent has a getSource() method so a single listener

can disambiguate events from different sources.

Sub-classes add methods to obtain other details—e.g.

getX() and getY() on a MouseEvent.

11

Receiving input (2)

➤ All components can generate:

1 ComponentEvent when it is resized, moved, shown, or

hidden;

2 FocusEvent when it gains or loses the focus;

3 KeyEvent when a key is pressed or released;

4 MouseEvent when mouse buttons are pressed or released;

and

5 MouseMotionEvent when the mouse is dragged or moved.

➤ Containers can generate ContainerEvent when

components are added or removed.

➤ Windows can generate WindowEvent when opened, closed,

iconified, etc.

12

Input using inner classes

➤ Anonymous inner classes provide an effective way of

handling some forms of input, e.g.

addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

...

}

});

➤ A further idiom is to define inner classes that extend

adapter classes from the java.awt.event package.

They provide ‘no-op’ implementations of the associated

interfaces.

· Saves a lot of typing when we want to use only one of

several actions provided by listener interface.

➤ The programmer just needs to override the method(s) for

the kinds of event that they are interested in: there is no

need to define empty methods for the entire interface.

addMouseMotionListener(new MouseMotionAdapter() {

public void mouseDragged(MouseEvent e) {

...

}

// no need to define mouseMoved()

});

13

Accessibility (javax.accessibility)

Intended to allow interaction with Java applications

through technologies such as screen readers and screen

magnifiers.

➤ Swing UI components implement Accessible, defining a

single method getAccessibleContext() returning an

AccessibleContext...

➤ That instance describes and is used to interact with a

particular UI component. It defines methods to retrieve

associated instances of:

· AccessibleAction—representing operations that may

be performed on the component, named by strings;

· AccessibleComponent—represents the current visual

appearance of the component: allows colours, fonts,

focus settings, to be overridden;

· AccessibleSelection—e.g. the items in a menu,

table, or tabbed pane;

· AccessibleRole—in terms of generic roles such as

SCROLL PANE or SLIDER;

· AccessibleState—e.g. CHECKED, FOCUSED,

VERTICAL, ...;

· AccessibleText—represents textual information; and

· AccessibleValue—represents numerical values (e.g.

scroll bar positions).

14

Exercises (1)

1. Describe the way in which graphical output and interactive

input are achieved when using Swing. Your answer should

cover the use of:

· hierarchies of classes;

· overriding methods;

· interfaces;

· inner classes; and

· spatial hierarchy.

2. Define example classes showing how to use the

JComboBox, JProgressBar, JDesktopPane, and

JInternalFrame components.

3. Describe the advantages and disadvantages of rendering

components in Java (as with Swing) rather than using

native components provided by the system hosting the

JVM (as with AWT).

15

Exercises (2)

4. Define a class that uses the getAccessibleContext

method to extract a text-based description of a user

interface, indicating the components that it comprises,

their nesting within one another, and their current

state—for example, whether or not a button is pressed.

How does your class perform when dealing with a kind of

component for which you have not already tested it?

What are the advantages and disadvantages of having a

separate AccessibleContext interface rather than using

the reflection API?

5. Define a class that draws a fish at (0,0). Implement this

interface:

public interface AquaticSentience
extends java.lang.Runnable {

public void render(java.awt.Graphics g);

public void setSize(int s);
public int getSize();
public void setSpeed(int s);
public int getSpeed();
public void setDirection(int d);
public int getDirection();
public void setDepthInScene(int d);
public int getDepthInScene();

}

Some of the best fish will be included in the tank in later

lectures...

16

Lecture 7: Memory management

Previous lecture

➤ Graphical user interfaces

➤ Reminder of model-view-controller pattern

➤ Components and containers

Overview of this lecture

➤ Garbage collection in Java

➤ Interaction between the application and the collector

➤ Reference objects

1

Garbage collection (1)

As with Standard ML, a Java program does not need to

explicity reclaim storage space from objects and arrays that

are no longer needed.

Advantages

➤ Frees the programmer from handling memory deallocation.

➤ More rapid code development.

➤ Fewer bugs than in similar programs written in languages

not supporting run-time garbage collection.

➤ Increased run-time performance “for free” because garbage

collection can perform tidy-up during system idle time.

➤ Garbage collection is often unnecessary for short-lived

programs.

➤ Increased stability for very-long-running programs, e.g.

server daemons.

➤ In complex, multi-threaded systems, GC may have indirect

benefits over explicit deallocation.

· No need to agree which module is responsible for

deallocation.

· Aids sharing of data structures rather than having each

module take a private copy.

➤ Makes possible some data structures and algorithms that

otherwise are not possible, or are very difficult to

implement.

· Lock-free data structures (see later!)

2

Garbage collection (2)

Disadvantages

➤ Increased overhead at execution time.

· e.g. in some implementations, assignment requires

counter manipulation, and perhaps even mutex

operations!

➤ Programmer never thinks about memory allocation—not

always a good thing!

➤ Less control over the memory footprint of the process at

run-time.

· Harder or impossible to optimise locations and sizes of

data structures in memory to take advantage of CPU

data/instruction/page table caches.

➤ Might be more threads at run-time.

➤ Antithesis of real-time execution.

3

Garbage collection (3)

➤ The code below will run forever without any problems and

without requiring additional storage space for each

iteration of the loop.

class Loop {

public static void main(String args[]) {

while (true) {

int x[] = new int[42];

}

}

}

➤ The garbage collector is responsible for identifying when

storage space can be reclaimed.

$ java -verbose:gc Loop

[GC 512K->94K(1984K), 0.0051620 secs]

[GC 606K->94K(1984K), 0.0020410 secs]

[GC 606K->94K(1984K), 0.0013290 secs]

[GC 606K->94K(1984K), 0.0006350 secs]

[GC 606K->94K(1984K), 0.0006550 secs]

[GC 606K->94K(1984K), 0.0006440 secs]

[GC 606K->94K(1984K), 0.0006870 secs]

[GC 606K->94K(1984K), 0.0006490 secs]

[GC 606K->94K(1984K), 0.0006480 secs]

[GC 606K->94K(1984K), 0.0006840 secs]

4

Garbage collection (4)

➤ There are lots of different techniques that might be used

to implement the garbage collector. See Part 1B DS&A

and Compiler Construction for details of algorithms like:

· buddy systems;

· mark and sweep;

· reapers;

· incremental garbage collectors;

· ...

➤ The JVM guarantees that storage space will not be

reclaimed while an object remains reachable, defined as

being if it:

· is referred to by a static field in a class;

· is referred to by a local variable in a running thread;

· still needs to be finalized; or

· is referred to by another reachable object.

A
B

C

D

E

Objects A, B, C are all reachable. Objects D and E are not.

5

Garbage collection (5)

➤ Early languages with GC had reputations for being slow

and for adding annoying pauses to an application’s

execution. Modern collectors do better thanks to features

of newer GC techniques:

Generational collection: “most objects die young” →

keep a small young generation which can be collected

quickly and frequently.

Parallel collection: multiple processors work on GC at the

same time → application pauses for less time.

Concurrent collection: GC occurs at the same time as

application execution.

Incremental collection: GC occurs in small bursts, e.g.

each time an object is allocated: -Xincgc.

6

Finalizers (1)

When the GC detects that an object is otherwise

unreachable (e.g. D and E two slides previous) then it can

run a finalizer method on it. These are ordinary methods

that override a default version defined on

java.lang.Object.

protected void finalize() throws Throwable {}

Why might this be useful?

➤ To perform some clean-up operation...

· Although the GC can reclaim the storage space

allocated to the object, it will not be able to reclaim

other resources associated with it.

· e.g. if a network connection is set-up in the constructor

then perhaps the finalizer should close it down so that

the remote machine knows that the connection is no

longer in use.

➤ To aid debugging...

· e.g. to check that objects are being collected at the

times at which the programmer intended.

7

Finalizers (2)

➤ What about examples like this? The Restore class

implements a simple singly-linked-list:

class Restore {
int value;
Restore next;

static Restore found;

Restore(int value) {
this.value = value;
this.next = null;

}

public void finalize() {
synchronized (Restore.class) {

this.next = found;
found = this;

}
}

}

The finalize method will be invoked on objects once

they cease to be accessible to the application...

...but it then restores access to them through the static

found field. This is perfectly safe but very (beautifully)

unclear.

8

Finalizers (3)

Beware! The JVM gives few guarantees about exactly

when a finalizer will be executed.

➤ A finalizer will not be run on an object before it becomes

unreachable. It is invoked at most once on an object.

➤ The method System.runFinalization() will cause the

JVM to ‘make a best effort’ to complete any outstanding

finalizations.

➤ There is no built-in control over the order in which

finalizers are executed on different objects.

➤ There is no control over the thread that executes finalizer

methods—there may be a dedicated thread for executing

them, there may be one thread per class, they may be

executed by one of the threads performing garbage

collection.

Finalizers, and everything they access(!) should be

written defensively: assume that they might run

concurrently with anything else and make sure that

they do not deadlock (Lecture 12) or enter endless

loops.

9

Reference objects (1)

➤ Reference objects provide a more general mechanism for:

· scheduling clean-up actions when objects become

unreachable via ordinary references;

· managing caches in which the presence of an object in

the cache should not prevent its garbage collection; or

· accessing temporary objects which can be removed

when memory is low.

➤ A reference object holds a reference to some other object

introducing an extra level of indirection. The referent is

selected at the time that the reference object is instantiated

and can subsequently be obtained using the get method:

import java.lang.ref.*;

class RefExample {
public static void main (String args[]) {
int obj[] = new int[42];
Reference ref = new WeakReference(obj);
System.out.println("ref: " + ref);
System.out.println(ref.get());

}
}

10

Reference objects (2)

The garbage collector is aware of reference objects and will

clear the reference that they contain in certain situations.

Suppose that the object (obj) is accessible through a

weak reference object (ref) and through an ordinary

object (x):

X

obj
ref

If x becomes unreachable then obj is said to be weakly

reachable and the GC is permitted to clear the reference

in ref:

X

obj
ref

Further calls to ref.get() will return null. The reference

object can be cleared explicitly by invoking ref.clear().

Disadvantage

➤ Traversal requires extra calls to get().

Advantage

➤ Reference objects are simpler conceptually than separate

‘weak reference types’ to the language.

11

Reference objects (3)

A reference object can be assoicated with a reference

queue (instantiated from java.lang.ref.ReferenceQueue):

Reference ref = new WeakReference(obj,rq);

After clearing reference objects the garbage collector will

(possibly some time later) append those assoicated with

reference queues to the appropriate queue.

· It is the reference object (ref), not the referent (obj),

that is appended to the queue.

· This prevents the problem of ‘resurrected’ objects.

A reference queue supports three operations:

· poll() attempts to remove a reference object from the

queue, returning null if none is available;

· remove(x) attempts to remove a reference object,

blocking up to x milliseconds; and

· remove() attempts to remove a reference object,

blocking indefinitely.

12

Reference objects (4)

Compiling RefExample.java...

$ javac RefExample.java

Note: RefExample.java uses unchecked or unsafe
operations.

Note: Recompile with -Xlint:unchecked for
details.

$ javac -Xlint RefExample.java

RefExample.java:6: warning: [unchecked] unchecked
call to WeakReference(T) as a member of the raw
type java.lang.ref.WeakReference

Reference ref = new WeakReference(obj);
^

1 warning

$ java RefExample
ref: java.lang.ref.WeakReference@10b62c9
[I@82ba41

13

Reference objects (5)

There are actually three different classes defining

successively weaker kinds of reference object:

➤ SoftReference—a soft reference may be cleared by the

GC if memory is tight, so long as the referent is not

reachable by ordinary references. Useful for

memory-sensitive caches.

➤ WeakReference—may be cleared by the GC once the

referent is not reachable by ordinary references or soft

references. Useful for hashtables from which data can be

discarded when no longer in use elsewhere in the

application.

➤ PhantomReference—useful in combination with reference

queues as a more flexible alternative to finalizers.

Enqueued once the referent is not reachable through

ordinary, soft, or weak references and once it has been

finalized (if necessary). get() always returns null.

In practice PhantomReference would be sub-classed and

instances of those sub-classes would maintain any

information needed for clean-up.

14

Exercises

1. The ‘HotSpot’ JVM has a command-line option to control

the maximum size of the heap: -Xmx. Investigate the

effect different settings have on performance using the

MMExample program (or any other that allocates significant

numbers of objects). Also investigate the -Xincgc option

for incremental garbage collection.

2. Describe how soft references can be used to implement a

hashtable that discards objects when memory is tight. How

can the implementation be extended to approximate a LRU

(least-recently-used) policy for discard?

3. Compare and contrast object finalizers and phantom

references as mechanisms to clean-up after objects that

have become otherwise unreachable. For each approach

indicate, along with any specific problems or benefits:

(i) in which class the clean-up code is located;

(ii) in which thread or threads it might be executed; and

(iii) what happens if the code blocks or takes a long time

to execute.

15

Lecture 8: Miscellany

Previous lecture

➤ Garbage collection

➤ Finalizers

➤ Reference objects

Overview of this lecture

➤ Native methods

➤ Class loaders

1

Native methods (1)

The Java Native Interface (JNI) allows you to define

method implementations in some other language (e.g. C or

directly in assembly language) and to call them from Java.

It might be useful:

➤ to access facilities not provided by the standard APIs—e.g.

some special hardware device;

➤ to re-use an existing well-engineered library; or

➤ to allow careful optimization of part of an application.

The latter reason has become less important:

➤ Modern JVMs will compile Java bytecode to native code at

run-time;

➤ It can benefit from profile-directed optimization; and

➤ It is often hard to recoup the cost of making a JNI call

(and accessing Java objects from within it).

The details of writing native methods in C are not

examinable (but JNI is).

2

Native methods (2)

Here’s how it’s done...

1 class HelloWorld {
2 public native void displayHelloWorld();
3
4 static {
5 System.loadLibrary("hello");
6 }
7
8 public static void main(String args[]) {
9 new HelloWorld().displayHelloWorld();
10 }
11 }

➤ Line 2 defines the signature of a native method.

➤ Lines 4–6 are a static initializer, executed by the JVM

when the class is loaded.

➤ Line 9 instantiates the class and calls the native method.

➤ Compile the Java and create the C function signatures:

$ javac HelloWorld.java
$ javah -jni HelloWorld

➤ Creates HelloWorld.class and HelloWorld.h

3

Native methods (3)

So what did we get?

1 /* DO NOT EDIT THIS FILE - it is machine generated */
2 #include <jni.h>
3 /* Header for class HelloWorld */
4
5 #ifndef _Included_HelloWorld
6 #define _Included_HelloWorld
7 #ifdef __cplusplus
8 extern "C" {
9 #endif

10 /*
11 * Class: HelloWorld
12 * Method: displayHelloWorld
13 * Signature: ()V
14 */
15 JNIEXPORT void JNICALL
16 Java_HelloWorld_displayHelloWorld
17 (JNIEnv *, jobject);
18
19 #ifdef __cplusplus
20 }
21 #endif
22 #endif

➤ Lines 15–17 declare the function we must define for the

displayHelloWorld method.

4

Native methods (4)

➤ Now we write HelloWorldImp.c:

#include <jni.h>
#include "HelloWorld.h"
#include <stdio.h>

JNIEXPORT void JNICALL
Java_HelloWorld_displayHelloWorld(JNIEnv *env,

jobject obj)
{
printf("Hello World!\n");
return;

}

➤ On Linux or Solaris, we must build this to make the shared

library libhello.so (the one named in the

System.loadLibrary call):

$ JINCLUDE=/home/jkf/java/jdk1.5.0/include

$ gcc HelloWorldImp.c -I$JINCLUDE \
-I$JINCLUDE/linux -shared \
-fpic -o libhello.so

$ export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

$ java HelloWorld
Hello World!

➤ On Win32, we’d build hello.dll

5

Native methods (5)

➤ The header file jni.h defines the C or C++ functions that

can be used within native methods and the correspondence

between Java types and native types.

➤ The JNIEnv parameter refers to an environment structure

containing the function pointers for these operations, eg.

· FindClass to get the jclass for a specified name

· GetSuperclass to map one jclass to its parent

· NewObject to allocate an object and execute a

constructor on it

· CallObjectMethod, CallBooleanMethod,

CallVoidMethod, etc. for method calls

· Similarly GetObjectField, GetCharField, etc. and

corresponding Set...Field operations

➤ In C, references to Java objects (local references) are

represented by structures of type jobject. The JVM

tracks which objects have been passed to active native

methods. These cannot be collected by the GC.

➤ If a Java object is to be kept alive through references from

native data structures then a global reference must be

created to inform the GC about it (NewGlobalRef) and

removed when it may be collected (DeleteGlobalRef).

6

Class loaders (1)

➤ The examples we’ve seen so far are based on compiling a

number of .java files to get .class files placed in

per-package directories.

➤ Class loaders can be used to supply the JVM with class

definitions from other sources—e.g. across the network, or

dynamically generated.

➤ Class loaders are Java objects extending

java.lang.ClassLoader.

➤ c.loadClass(name) requests that c loads the named

class, returning a java.lang.Class object. The default

implementation:

· tests whether the class is already loaded,

· delegates to a parent class loader to load it,

· otherwise calls c.findClass(name).

➤ A new kind of class loader should override the protected

findClass method so that the delegation model remains

consistent.

➤ findClass can call c.defineClass(name, b, off,

len) to create a new Class object from the bytes at off

→ off+len.

7

Class loaders (2)

➤ An aside:

findClass is a good example of the use of a protected

method—note how the modifier prevents one kind of class

loader calling findClass on a different kind.

Within the JVM, classes are identified by the pair of their

fully-qualified name and the class loader that created them.

➤ i.e. there can be several different classes of the same name!

➤ if a class A refers to a class B (e.g. its super-class, a field of

that type, etc.) then the class loader that defined A is

requested for B.

➤ The delegation model ensures that all classes agree on

(e.g.) java.lang.System.

A good library for creating class definitions at run-time:

http://jakarta.apache.org/bcel/

8

Hosting separate applications

Class loaders provide part of a solution for hosting separate

applications within one JVM!

➤ Each application can have a separate class loader so

name-space clashes are avoided...

➤ ...but they will still share static fields in the standard

libraries (e.g. System.out).

➤ ...and there is no resource management at all.

while (true) { /* Nothing */ }

while (true) {
Thread t = new Thread();
t.start();

}

while (true) {
int a[] = new int[1000000];

}

9

Exercises (1)

1. Describe an example situation in which it might be

appropriate to use JNI. Suggest how the Java

programming language, or the standard libraries that it

supports, could be extended so that Java could be used

instead of native code.

2. Implement a simple class loader that prints a list of the

class names for which it is requested.

3. If you are familiar with C or C++ then experiment with

calls to a simple JNI method to determine the overhead

introduced by invoking a native method when compared

with an ordinary Java method. Similarly, compare the time

taken to access a Java field from Java code and from

native code. Compare versions 1.4.2 05 and 1.5.0 of Sun’s

JDK.

10

Exercises (2)

4. A class C1 loaded and defined by class loader L1, contains

the code

S s_object = C2.getS();

calling a static method on C2 to receive an object of type

S, again loaded by L1. C2 has been defined by a different

class loader, L2, and contains the definition

static S getS() { return new S(); }

(i) Show how the type safety of the JVM could be

compromised if the class named S in C2 is loaded by L2.

(ii) Implement classes C1, C2, L1, L2, and the two versions

of S (to be loaded by L1 and L2 respectively).

(iii) Is L2 actually requested to load S? If so, then what

happens if it supplies a different Class object from the one

already loaded by L1?

The paper Dynamic Class Loading in the JVM (on the

teaching material web site) discusses this problem more

formally and various solutions that were proposed—it was

a long-standing type safety problem in early versions of the

JVM.

11

Lecture 9: Threads

Now in Part 3 of this course.

Previous section
Further Java

➤ Reflection and serialization

➤ Memory management

➤ Swing and AWT

Overview of this section
Concurrency Issues

➤ Multi-threaded programming

➤ Concurrent data structures

1

Concurrency (1)

The next section of the course concerns different ways of

structuring systems in which concurrency is present and, in

particular, co-ordinating multiple threads, processes and

machines accessing shared resources and data.

Two main scenarios...

➤ Tasks operating with a shared address space—e.g. multiple

threads created within a Java application.

➤ Tasks communicating between address spaces—e.g.

different processes, whether on the same or separate

machines.

In each case we must consider...

➤ How shared resources and data are named and referred to

by the participants.

➤ Conventions for representing shared data.

➤ How access to resources and data is controlled.

➤ What kinds of system failure are possible.

2

Concurrency (2)

➤ Previous examples have been implemented using a single

thread that runs the main method of a program.

➤ Java supports lightweight concurrency within an

application—multiple threads can be running at the same

time.

➤ Can simplify code structuring and aid interactive

response—e.g. one thread deals with user interaction,

another thread deals with computation.

➤ Can benefit from multi-processor hardware

· e.g. the new High-Performance Computing Facility

(HPCF) machines have 106 processors.

➤ Implementation schemes vary substantially. We’ll look at

how multiple threads are available to the Java programmer,

and what you can assume when writing portable code.

3

Concurrency (3)

Most OS introduce a distinction between processes (as

discussed in Part 1A) and threads.

Processes are the unit of protection and resource

allocation. Each process has a process control block

(PCB) holding:

➤ identification (e.g. PID, UID, GID);

➤ memory management information;

➤ accounting information; and

➤ (references to) one or more TCB...

Threads are the entities considered by the scheduler. Each

thread has a thread control block (TCB) holding:

➤ thread state;

➤ saved context information;

➤ references to user (and kernel?) stack; and

➤ scheduling parameters (e.g. priority).

4

Concurrency (4)

Structure of this section:

➤ Managing threads in Java.

➤ Simple shared objects—shared counters, shared hashtables,

etc.

· Mutual exclusion locks (mutexes)

➤ Shared objects in Java with internal blocking—queues,

multi-reader single-writer (MRSW) locks.

· Condition variables (condvars)

➤ Implementation of mutexes and condvars.

· Direct scheduler support

· Semaphores

· Event counters / sequences

➤ Alternative abstractions

· Monitors

· Active objects

5

Creating threads in Java (1)

➤ There are two ways of creating a new thread. The simplest

is to define a sub-class of java.lang.Thread and to

override the run() method.

· run() provides the code that the thread will execute

while it is on the CPU.

· The thread terminates when run() returns.

· It is common to have daemonic threads in a loop:

while (!done) <code>

class MyThread extends Thread {

public void run() {

while (true) {

System.out.println("Hello from " +

this);

Thread.yield();

}

}

public static void main(String [] args) {

Thread t1 = new MyThread();

Thread t2 = new MyThread();

t1.start();

t2.start();

}

}

6

Creating threads in Java (2)

➤ The run method of the class MyThread defines the code

that the new thread(s) will execute. Just defining such a

class does not create any threads.

➤ The two calls to new instantiate the class to create two

objects representing the two threads that will be executed.

➤ The calls to start() actually start the two threads

executing.

➤ The program continues to execute until all ordinary threads

have finished, even after the main method has completed.

$ java MyThread

Hello from Thread[Thread-0,5,main]

Hello from Thread[Thread-1,5,main]

Hello from Thread[Thread-0,5,main]

Hello from Thread[Thread-1,5,main]

...

➤ A daemon thread will not prevent the application from

exiting.

t1.setDaemon(true);

7

Creating threads in Java (3)

➤ The second way of creating a new thread is to define a

class that implements the java.lang.Runnable

interface.

class MyCode implements Runnable {

public void run() {

while (true) {

System.out.println("Hello from " +

Thread.currentThread());

Thread.yield();

}

}

public static void main(String [] args) {

MyCode mt = new MyCode();

Thread t_a = new Thread(mt);

Thread t_b = new Thread(mt);

t_a.start();

t_b.start();

}

}

8

Creating threads in Java (4)

➤ As before, the MyCode class defines the code that the new

threads will execute.

➤ The two calls to new instantiate two Thread objects,

passing a reference to an instance of MyCode to them as

their targets.

➤ The two calls to start() set the two threads executing.

➤ Note that here the run() methods of the two threads are

being executed on the same MyCode object, whereas two

separate MyThread objects were required.

➤ The second way of creating threads is more complex, but

also more flexible.

· It doesn’t consume the single opportunity to sub-class a

parent class.

➤ Generally, the fields in the class containing the run()

method will hold per-thread state—e.g. which part of a

problem a particular thread is tackling.

9

Creating threads in Java (5)

➤ In some situations a thread is interrupted immediately if it

is blocked—e.g. sleep may throw InterruptedException.

For example:

class Example {

public static void main(String [] args) {

Thread t = new Thread() {

public void run() {

try {

do {

Thread.sleep(1000); // 1s sleep

} while (true);

} catch (InterruptedException ie) {

// Interrupted: better exit

}

}

};

t.start();

t.interrupt();

}

}

➤ If the thread didn’t block then the while (true) could

perhaps be

while (!isInterrupted());

10

Join

➤ The join method on java.lang.Thread causes the

currently running thread to wait until the target thread

dies.

class Example {

public void startThread(void)

throws InterruptedException

{

Thread t = new Thread() {

public void run() {

System.out.println("Hello world!");

}

};

t.start();

t.join(0);

}

}

➤ The call to join waits for the thread started on the

previous line to finish. The parameter specifies a time in

milliseconds (0 → wait forever).

➤ The throws clause on startThread is required: the call

to join may be interrupted.

11

Priority controls

➤ Methods setPriority and getPriority on

java.lang.Thread allow the priority to be controlled.

➤ A number of standard priority levels are defined:

MIN PRIORITY, NORM PRIORITY, MAX PRIORITY.

➤ The programmer can also try to influence thread

scheduling using the yield method on

java.lang.Thread. This is a hint to the system that it

should try switching to a different thread—note how it was

used in the previous examples.

· In a non-preemptive system even low priority threads

may continue to run unless they periodically yield.

➤ Selecting priorities becomes complex when there are many

threads or when multiple programmers are working

together.

➤ Although it may work on some systems, the variation

in behaviour between different JVMs means that it is

never correct to use thread priorities to control

access to shared data in portable code.

12

Thread scheduling

➤ The choice of exactly which thread(s) execute at any given

time can depend both on the operating system and on the

JVM.

➤ Some systems are preemptive—i.e. they switch between

the threads that are eligible to run. Typically these are

systems in which the OS supports threads directly, i.e.

maintaining separate PCBs and TCBs.

➤ Other systems are non-preemptive—i.e. they only switch

when the running thread yields, becomes blocked, or exits.

Typically these systems implement threads within the JVM.

➤ The Java language specification says that, in general,

threads with higher priorities will run in preference to those

with lower priorities.

➤ To write correct, portable code it is therefore

important to think about what the JVM is

guaranteed to do—not just what it does on one

system. Different behaviour might occur at different

nodes within a distributed system!

13

The volatile modifier (1)

static boolean signal = false;

public void run() {

while (!signal) {

doSomething();

}

}

If some other thread sets the signal field to true then

what will happen?

➤ The thread running the code above might keep executing

the while loop.

➤ This might happen if the JVM produces machine code that

loads the value of signal into a processor register and just

tests that register value each time around the loop.

· This is common when the body of the loop is short—no

need for compiler to re-use the register containing

signal.

· Commonly seen in embedded C/Java systems.

➤ Such behaviour is valid and might help performance.

14

The volatile modifier (2)

volatile is a modifier that can be applied to fields, e g.

static volatile boolean signal = false;

When a thread reads or writes a volatile field it must

actually access the memory location in which that field’s

value is held.

The precise rules about when it is permitted for the JVM

to re-use a value that is held in a register are still being

formulated. However, in general, if a shared field is being

accessed then either:

➤ the thread updating the field must release a mutual

exclusion lock that the thread reading from the field

acqiures; or

➤ the field should be volatile.

As we will see, the first condition is satisfied by the usual

use of synchronized methods (or classes) → volatile

is rarely seen in practice.

For more details, see Section 2.2 of Doug Lea’s book

(online at

http://gee.cs.oswego.edu/dl/cpj/jmm.html).

15

Exercises

1. Describe the facilities in Java for creating multiple threads

of execution.

2. What is the difference between a preemptive and a

non-preemptive scheduler? Write a Java class containing a

method

boolean probablyPreemptive();

which returns true if the JVM running it appears to be

preemptive. (Hint: your solution will probably need to start

multiple threads that perform some kind of experiment.)

3. A Java-based file server is to use a separate thread for each

user granted access. Discuss the merits of this approach

from the point of view of security, possible performance,

and likely ease of implementation.

4. Examine the behaviour that one or more JVMs provide for

the following aspects of thread management:

(i) whether scheduling is preemptive;

(ii) whether the highest-priority runnable-thread is

guaranteed to run; and

(iii) the impact on performance of making a

frequently-accessed field volatile.

16

Lecture 10: Mutual exclusion

Previous lecture

➤ Creating and terminating threads

➤ volatile

Overview of this lecture

➤ Shared data structures

➤ Mutual exclusion locks

1

Safety

In concurrent environments we must ensure that the

system remains safe no matter what the thread scheduler

does—i.e. that ‘nothing bad happens’.

➤ Unlike type-soundness, it is usually the case that this

cannot be checked automatically by compilers or tools

(although some exist to help).

➤ It is often useful to think of safety in terms of

invariants—things that must remain true, no matter how

different parts of the system evolve during execution.

· e.g. a ‘transfer’ operation between bank accounts

preserves the total amount.

➤ We can identify consistent object states in which all

invariants are satisfied.

➤ ...and aim that each of the operations available on the

system keeps it in a consistent state.

➤ Therefore many of the problems that we will see come

down to deciding when different threads can be allowed

access to objects in various ways.

2

Liveness

As well as safety, we would also like liveness—i.e.

‘something good eventually happens’. We often distinguish

per-thread and system-wide liveness.

Standard problems include:

➤ Deadlock—a circular dependency between processes

holding resources and processes requiring them. Typically

the ‘resources’ are exclusive access to locks.

➤ Livelock—a thread keeps executing instructions but makes

no useful progress, e.g. busy-waiting on a condition that

will never become true.

➤ Missed wake-up (wake-up waiting)—a thread misses a

notification that it should continue with some operation

and instead remains blocked.

➤ Starvation—a thread is waiting for some resource but

never receives it—e.g. a thread with a very low scheduling

priority may never receive the CPU.

➤ Distribution failures—of nodes or network connections in

a distributed system.

3

Shared data (1)

➤ Most useful multi-threaded applications will share data

between threads.

➤ Sometimes this is straightforward, e.g. data passed to a

thread through fields in the object containing the run()

method.

➤ More generally, threads may share state through...

· static fields in mutually-accessible classes, e.g.

System.out.

· objects to which multiple threads have references.

➤ What happens to field o.x:

Thread A Thread B

o.x = 17; o.x = 42;

➤ Most field accesses are atomic in Java (and many other

languages)—the value read from o.x after those updates

will be either 17 or 42.

➤ The only exceptions are numeric fields of type double or

type long—some third value may be read in those cases.

4

Shared data (2)

➤ This is an example of a race condition: the result depends

on the uncontrolled interleaving of the threads’ executions.

➤ We need some way of controlling how threads are executed

when accessing shared data.

➤ The basic notion is of critical regions: parts of the

program during which a thread should have exclusive

access to some data structures while making a number of

operations on them.

➤ Careful programming is rarely sufficient, e.g.

boolean busy;

int x;

...

while (busy) { /* nothing */ }

busy = true;

x = x + 1;

busy = false;

➤ Using x++ would be no better.

5

Locks in Java (1)

➤ Simple shared data structures can be managed using

mutual exclusion locks (‘mutexes’) and the

synchronized keyword to delimit critical regions.

➤ The JVM associates a separate mutex with each object.

Each acts like the ‘busy’ flag on the previous slide except:

· There is no need to spin while waiting for it—the thread

is blocked.

· The race condition between the while loop and

busy=true; is avoided.

➤ The synchronized keyword can be used in two

ways—either applied to a method or applied to a block of

code.

➤ For example, suppose we want to maintain an invariant

between multiple fields:

class BankAccounts {

private int balanceA;

private int balanceB;

synchronized void transferToB(int v) {

balanceA = balanceA - v;

balanceB = balanceB + v;

}

}

6

Locks in Java (2)

➤ When a synchronized method is called, the thread must

lock the mutex associated with the object.

➤ If the lock is already held by another thread then the called

thread is blocked until the lock becomes available.

➤ Locks therefore operate on a per-object basis—that is, only

one synchronized method can be called on a particular

object at any time.

· ...and similarly, it is OK for multiple threads to be

calling the same method, so long as they do so on

different objects.

➤ Locks are re-entrant, meaning that the thread may call

one synchronized method from another.

➤ If a static synchronized method is called then the

thread must acquire a lock associated with the class rather

than with an individual object.

➤ The synchronized modifier cannot be used directly on

classes or on fields.

7

Locks in Java (3)

➤ The second form of the synchronized keyword allows it

to be used within methods, e.g.

void methodA(Object x) {

synchronized (x) {

System.out.println("1");

}

...

synchronized (x) {

System.out.println("2");

}

}

➤ The first synchronized region locks the mutex associated

with the object to which x refers, performs the println

operation, and then releases the lock.

➤ Before entering the second region, the mutex must be

re-acquired.

This kind of usage is good if an intervening operation, not

requiring the mutual exclusion, may take a long time to

execute: other threads may acquire the lock while the

computation proceeds.

8

What about exceptions and errors?

➤ What if an exception is thrown inside a synchronized

region or a synchronized method?

➤ If the exception is not caught inside the region/method,

then the flow of execution leaves the synchronized region.

➤ The JVM will release the mutex automatically before

executing the catch block.

· This helps prevent deadlock caused by accidentally not

releasing a mutex.

· But sometimes we need to exercise a little caution...

void screwItUp(Bank college) {

try {

synchronized (college) {

college.credit(fees);

}

} catch (OutOfMoneyException oome) {

System.out.println("Credit to "+

college+" failed!");

// oops... that access on ’college’

// wasn’t thread-safe!

}

}

9

Compound data structures (1)

➤ How can we use locks on a data structure built from

multiple objects, e.g. a hashtable?

➤ One “big lock” associated with the hashtable object itself:

Hash

Advantages

➤ Easy to implement

➤ “Obviously correct”

➤ Good performance under light load: only one lock to

acquire/release per operation.

Disadvantage

➤ Poor performance in most other cases—only one operation

can proceed at a time.

10

Compound data structures (2)

➤ Separate “small locks”, e.g. associated with each bucket of

the hashtable:

Hash

Advantage

➤ Operations using different buckets can proceed

concurrently.

Disadvantage

➤ Harder to implement—consider resizing the hashtable...

In general designing an effective fine-grained locking

scheme is hard:

➤ A poor scheme may leave the program spending its time

juggling locks rather than doing useful work.

➤ Having many locks does not automatically imply better

concurrency.

➤ Deadlock problems...

11

Exercises

1. Describe how the mutual-exclusion locks provided by the

synchronized keyword can be used to control access to

shared data structures.

2. Describe what a race condition is, with the aid of example

code.

“A Java class is safe for use by multiple threads if all of its

methods are synchronized.”

To what extent do you agree with this statement?

3. Suppose that, instead of using mutual exclusion locks, a

programmer attempts to support critical regions by

manipulating the running thread’s scheduling priority in a

class extending java.lang.Thread:

void enterCriticalRegion() {

oldPriority = getPriority();

setPriority(Thread.MAX_PRIORITY);

}

void exitCriticalRegion() {

setPriority(oldPriority);

}

What assumptions are needed to guarantee this works?

Does your JVM guarantee them?

12

Lecture 11: Deadlock

Previous lecture

➤ Safety and liveness requirements

➤ Mutual exclusion locks

Overview of this lecture

➤ Deadlock

➤ Automatic detection

➤ Avoidance

1

Deadlock (1)

Suppose that a and b refer to two different shared objects,

Thread P Thread Q

synchronized (a) synchronized (b)

synchronized (b) synchronized (a)

{ {

... ...

} }

➤ If P locks both a and b then it can complete its operation

and release both locks, thereby allowing Q to acquire them.

➤ Similarly, Q might acquire both locks, then release them

and thus allow P to continue.

➤ But, if P locks a and Q locks b then neither thread can

continue: they are each deadlocked waiting for the

resources that the other has.

2

Deadlock (2)

Whether this deadlock actually occurs depends on the

dynamic behaviour of the applications. We can show this

graphically in terms of the threads’ progress:

Progress of Plock(a) lock(b) unlock(b) unlock(a)

Progress of Q

unlock(b)

unlock(a)

lock(a)

lock(b)

(1)

(2)

(3)

➤ In the horizontal area one thread is blocked by the other

waiting to lock a. In the vertical area it is lock b.

➤ Paths (1) and (2) show how these threads may be

scheduled without reaching deadlock.

➤ Deadlock is inevitable on path (3) (but hasn’t yet occurred

in the position indicated).

3

Requirements for deadlock

If all of the following conditions are true then deadlock

exists:

1. A resource request can be refused—e.g. a thread cannot

acquire a mutual-exclusion lock because it is already held

by another thread.

2. Resources are held while waiting—e.g. while a thread

blocks waiting for a lock it does not have to release any

others that it holds.

3. No preemption of resources is permitted—e.g. once a

thread acquires a lock then it is up to that thread to

choose when to release it, it cannot be taken away from

the thread.

4. Circular wait—a cycle of threads exists such that each

holds a lock requested by the next process in the cycle, and

that request has been refused.

In the case of mutual exclusion locks in Java, 1–3 are

always true (they are static properties of the language),

and so the existence of a circular wait leads to deadlock.

4

Object allocation graphs

An object allocation graph shows the various tasks in a

system and the resources that they have acquired and are

requesting. We will use a simplified form in which

resources are considered to be individual objects.

a is held by thread P and P is requesting object b:

a bP

a is held by P, b is held by Q:

a P

bQ

Should r2 be allocated to S or T?

S

Tr1 r2

5

Deadlock detection (1)

Deadlock can be detected by looking for cycles in object

allocation graphs (as in the second example on the

previous slide).

Let A be the object allocation matrix, with one thread per

row and one column per object. Aij indicates whether

thread i holds a lock on object j.

Let R be the object request matrix. Rij indicates whether

thread i is waiting to lock object j.

We proceed by marking rows of A indicating threads that

are not part of a deadlocked set. Initially no rows are

marked. A working vector W indicates which objects are

available.

1. Select an unmarked row i such that Ri ≤ W—i.e. a

thread whose requests can be met. Terminate if no such

row exists.

2. Set W = W + Ai, mark row i, and repeat.

This identifies when deadlock has occurred—we might be

interested in other properties such as whether deadlock is:

➤ inevitable (must happen in all possible execution paths); or

➤ possible (might happen in some paths).

6

Deadlock detection (2)

A =

0

B

B

@

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

1

C

C

A

R =

0

B

B

@

0 1 0 0 1

0 0 1 0 1

0 0 0 0 1

1 0 0 0 1

1

C

C

A

1. W = (0, 0, 0, 1, 1)

2. Thread 3’s requests can be met ⇒ it is not deadlocked so

can continue and might release object 1.

3. W = (1, 0, 0, 1, 1)

4. Thread 4’s requests can now be met ⇒ it is not

deadlocked.

5. W = (1, 0, 0, 1, 1)

➤ Nothing more can be done: threads 1 and 2 are

deadlocked.

7

Deadlock avoidance (1)

A conservative approach:

➤ Require that each process identifies the maximum set of

resources that it might ever lock, Cij.

➤ When a thread i requests a resource then construct a

hypothetical allocation matrix A′ in which it has been

made and a hypothetical request matrix B ′ in which every

other process makes its maximum request.

➤ If A′ and B′ do not indicate deadlock then the allocation

is safe.

Advantage

➤ This does avoid deadlock—might be preferable to deadlock

recovery.

Disadvantages

➤ Need to know maximum requests.

➤ Run-time overhead.

➤ What if there are no safe states?

➤ Objects are usually instantiated dynamically...

8

Deadlock avoidance (2)

It is often more practical to prevent deadlock by careful

design. How else can we tackle the four requirements for

deadlock?

➤ Use locking schemes that allow greater concurrency—e.g.

multiple-readers, single-writer in preference to mutual

exclusion.

➤ Do not hold resources while waiting—e.g. acquire all

necessary locks at the same time.

➤ Allow preemption of locks and roll-back (not a primitive in

Java if using built-in locks).

· Hardware/software transactional memories...

Two practical schemes that are widely applicable:

➤ Coalesce locks so that only one ever needs to be held—e.g.

have one lock protecting all bank accounts.

➤ Enforce a lock acquisition order, making it impossible for

circular waits to arise, e.g. lock two ‘bank account’ objects

in order of increasing account number.

...trade-off between simplicity of implementation and

possible concurrency.

9

Priority inversion (1)

Another liveness problem in priority-based systems:

➤ Consider low, medium, and high priority threads called

Plow, Pmed, and Phigh respectively.

1. First Plow starts, and acquires a lock on object a.

2. Then the other two processes start.

3. Phigh runs since it has the highest scheduling priority,

tries to lock a, and blocks.

4. Then Pmed gets to run, thus preventing Plow from

releasing a, and hence Phigh from running.

➤ Usual solution is priority inheritance:

· associate with every lock the priority p of the highest

priority process waiting for it; then

· temporarily boost the priority of the holder of the lock

up to p.

· We can use handoff scheduling to implement this.

➤ Windows 2000 “solution”: priority boosts

· checks if ∃ a thread in the ready-to-run state but not

run for ≥ 300 ticks.

· if so, double the on-CPU time quantum and boost

priority to 15.

➤ What happens in Java?

10

Priority inversion (2)

➤ With basic priority inheritance we can distinguish

(assuming a uni-processor with strict-priority scheduling)

· direct blocking of a thread waiting for a lock; and

· push-through blocking of a thread at one priority by an

originally-lower-priority thread that has inherited a

higher priority.

➤ A thread Phigh can be blocked by each lower priority

thread Plow for at most one of Plow’s critical sections.

➤ A thread Phigh can experience push-through blocking for

any lock accessed by a lower-priority thread and by a job

which has (or can inherit) a priority ≥ Phigh.

This can give an upper bound on the total blocking delay

that a thread encounters, but

➤ chains of blocking may limit the bounded and practical

performance: the former is a particular problem for

real-time systems; and

➤ remember: does not prevent deadlock.

11

Exercises (1)

1. In the dining philosophers problem, five philosophers spend

their time alternately thinking and eating. They each have

a chair around a common, circular table. In the centre of

the table is a bowl of spaghetti and the table is set with

five forks, one between each pair of adjacent chairs. From

time to time philosophers might get hungry and try to pick

up the two closest forks. A philosopher may only pick up

one fork at a time. It is a common axiom of philosophic

thought that one is only allowed to eat with the aid of two

forks and that, of course, both forks are put down while

thinking.

Model this problem in Java using a separate thread for

each philosopher.

Does your simulation illustrate either deadlock or livelock?

If so, then what changes could you make to avoid it?

2. Write a Java class that attempts to cause priority inversion

with a medium-priority thread preventing a high-priority

thread from making progress. Do you observe priority

inversion in practise?

12

Exercises (2)

3. Show how the deadlock detection algorithm can be

extended to manage locks that support a separate write

mode (in which it can be held by at most one thread at a

time) and a read mode (in which it can be held by multiple

threads at once). The lock cannot be held in both modes

at the same time.

4. One way to avoid deadlock is for a thread to

simultaneously acquire all of the locks that it needs for an

operation. However, Java’s synchronized keyword can

only acquire or release a single lock at a time.

Sketch the design of a class LockManager that implements

the LockManagerIfc interface (below) so that the

doWithLocks operation:

1. appears to atomically acquire locks on all of the objects

in the array o;

2. invokes op.doOp(arg) keeping the result of that

method as the eventual result of doWithLocks(); and

3. releases all of the locks initially acquired.

13

Exercises (3)

interface Operation {

Object doOp(Object arg);

}

interface LockManagerIfc {

Object doWithLocks(Object o[],

Operation op,

Object arg);

}

Hint: one approach is to assume initially some mechanism

for mapping each object to a unique integer value and later

to examine how to provide that mechanism.

14

Lecture 12: Condition synchronization

Previous lecture

➤ Deadlock

➤ Ordered acquisition

➤ Priority inversion and inheritance

Overview of this lecture

➤ Condition synchronization

➤ wait, notify, notifyAll

1

Limitations of mutexes (1)

➤ Suppose we want a one-cell buffer with a putValue

operation (store something if the cell is empty) and a

removeValue operation (read something if there is

anything in the cell).

class Cell {

private int value;

private boolean full;

public synchronized int removeValue() {

if (full) {

full = false;

return value;

} else {

/* ??? */

}

}

...

}

➤ What can we write in place of “/* ??? */” to finish the

code?

2

Limitations of mutexes (2)

➤ We could keep testing full—i.e. implement a ‘spin lock’...

1 class Cell { /* Incorrect */

2 private int value;

3 private boolean full;

4

5 public int removeValue() {

6 while (!full) {/* nothing */}

7 synchronized (this) {

8 full = false;

9 return value;

10 }

11 }

12 }

But this is...

1. incorrect: if multiple threads try to remove values then

they might each see full false at Line 6 and

independently execute 7–10;

2. inefficient: threads consume CPU time while waiting →

this might impede a thread about to put a value into the

cell; and

3. incorrect: full needs to be volatile anyway!

3

Limitations of mutexes (3)

➤ Another problem: what if we want to enforce some other

kind of concurrency control?

➤ e.g. if we identify read-only operations which can be

executed safely by multiple threads at once.

➤ e.g. if we want to control which thread gets next access to

the shared data structure.

· perhaps to give preference to threads performing update

operations,

· or to enforce a first-come first-served regime,

· or to choose on the basis of the threads’ scheduling

priorities?

➤ All that mutexes are able to do is to prevent more than

one thread from running the code on a particular object at

the same time.

4

Condition synchronization

➤ What we might like to write:

1 class Cell { /* Not valid Java */

2 private int value;

3 private boolean full;

4

5 public synchronized int removeValue() {

6 wait_until (full);

7 full = false;

8 return value;

9 }

10 }

➤ Line 6 would have the effect of

· if full is false, blocking the caller atomically with

doing the test and releasing the lock on the cell—the

method is synchronized—to allow another thread to

put items into it; and

· unblocking the thread when full becomes true and the

lock can be re-acquired (so the lock prevents multiple

‘removes’ of the same value).

➤ We can’t directly implement wait until in Java...

· call-by-value semantics mean that full would be

evaluated only once!

· we would need some way of releasing the lock on the

Cell.

5

Condition variables

➤ Condition variables provide one solution.

➤ In general, condition variables support two kinds of

operation:

· a cv.CVWait(m) operation causing the current thread

to atomically release a lock on mutex m and to block

itself on condition variable cv, re-acquiring the lock on

m before it completes; and

· a cv.CVNotify(m) operation that wakes up (one? all?)

threads blocked on cv.

➤ Such operations would be more cumbersome in this simple

example than a general wait until primitive:

1 class Cell { /* Not valid Java */

2 private int value;

3 private boolean full;

4 private ConditionVariable cv =

5 new ConditionVariable();

6

7 public synchronized int removeValue() {

8 while (!full) cv.CVWait(this);

9 full = false;

10 cv.CVNotify();

11 return value;

12 }

13 }

6

Condition variables in Java (1)

➤ Java doesn’t (currently) provide individual condition

variables in this way.

➤ Instead, each object o has an associated condition variable

which is accessed by:

· o.wait()

· o.notify()

· o.notifyAll()

➤ Calling o.wait() acts as the equivalent of cv.CVWait(o)

on the condition variable associated with o.

➤ This means that o.wait() always releases the mutual

exclusion lock held on o...

➤ ...and therefore the caller may only use o.wait() when

holding that lock (otherwise an

IllegalMonitorStateException is thrown).

➤ o.notify() unblocks exactly one thread (if any are

waiting), otherwise it does nothing—no wake-up waiting is

left.

➤ o.notifyAll() unblocks all waiting threads.

7

Condition variables in Java (2)

1 class Cell {

2 private int value;

3 private boolean full = false;

4

5 public synchronized int removeValue()

6 throws InterruptedException

7 {

8 while (!full) wait();

9

10 full = false;

11 notifyAll();

12 return value;

13 }

14

15 public synchronized void putValue(int v)

16 throws InterruptedException

17 {

18 while (full) wait();

19

20 full = true;

21 value = v;

22 notifyAll();

23 }

24 }

8

Condition variables in Java (3)

➤ Line 8 causes a thread executing removeValue() to block

on the condition variable until the cell is full.

· Think about whether I really need the while loop

around wait() (answer in 4 slides’ time...).

➤ Line 10 updates the object to mark it empty.

➤ Line 11 notifies all threads currently blocked on the

condition variable.

➤ Similarly, Line 18 causes a thread executing putValue()

to block on the condition variable until the cell is empty.

➤ Lines 20–21 update the fields to mark the cell full and

store the value in it, Line 22 notifies waiting threads.

An InterruptedException will be thrown if the thread is

interrupted while waiting. In general it should be

propagated until it can be handled. Be wary of writing:

try {

while (full) wait();

} catch (InterruptedException ie) {

/* nothing */

}

/* did we get here because wait() succeeded

or were we interrupted? */

9

Condition variables in Java (4.1)

Is this code cunning or broken?

class Cell {
private int value;
private boolean full = false;

public synchronized int removeValue()
throws InterruptedException

{
while (!full) {

wait();
/* Should a put’er or a remove’er have

been woken up? */
if (!full) {
// pass on the nofitication,
// hopefully to a put’er.
notify();

}
}

full = false;
notify(); // surely waking one thread

// is better than waking all?
return value;

}

10

Condition variables in Java (4.2)

Is this code cunning or broken (continued)?

public synchronized void putValue(int v)
throws InterruptedException

{
while (full) {

wait();
/* Should a put’er or a remove’er have

been woken up? */
if (full) {
// pass on the nofitication,
// hopefully to a remove’er.
notify();

}
}

full = true;
value = v;
notify(); // surely waking one thread

// is better than waking all?
}

}

11

Condition variables in Java (5)

➤ Note how there are now two different ways that a thread

may be blocked:

the lock

waiting for
the lock

waiting to
be notified

holding

unlock
wait

notify

lock

➤ It might have entered a synchronized region for an

object and found that the associated mutual exclusion lock

is already held.

➤ It might have called wait() on an object and blocked until

the associated condition variable is notified.

➤ When notified, the thread must compete for the lock once

more.

12

Condition variables in Java (5)

➤ When should notify() be used and when should

notifyAll() be used?

➤ With notifyAll() the programmer must ensure that

every thread blocked on the condition variable can

continue safely:

· e.g. Line 8 in the example surrounds the invocation of

wait() with a while loop;

· if a ‘removing’ thread is notified when there is no work

for it, it just waits again.

➤ notify() selects arbitrarily between the waiting threads:

the programmer must therefore be sure that the exact

choice does not matter.

➤ In the Cell example, we can’t use notify() because

although only one thread is to be woken a successful

removeValue() must allow a call blocked in putValue()

to proceed rather than another thread that is blocked in

removeValue—we cannot control which thread will be

notified by the notify() call.

notify() does not guarantee to wake the longest

waiting thread.

13

Suspending threads

➤ The suspend() and resume() methods defined on

java.lang.Thread allow one thread to temporarily stop

and start the execution of another (or to suspend itself).

Thread t = new MyThread();

t.suspend();

t.resume();

➤ As with stop(), the suspend() and resume() methods

are deprecated.

➤ This is because the use of suspend() can lead to

deadlocks if the target thread is holding locks. It also risks

missed wake-up problems:

1 public int removeValue() {

2 if (!full) {

3 Thread.suspend(Thread.currentThread());

4 }

The status might change between executing Lines 2 and 3

→ a lost wake-up problem!

suspend() should never be used: even if the program

does not explicitly take out locks the JVM might use

locks in its implementation.

14

Exercises

1. Describe the facilities in Java for restricting concurrent

access to critical regions. Explain how shared data can be

protected through the use of shared objects.

2. Consider the following class definition:

class Example implements Runnable {
public static Object o = new Object();
int count = 0;
public void run() {
while (true) {synchronized(o) {++count;}}

}
}

(i) Show how to start two threads, each executing this run()

method on separate instances of Example.

(ii) When this program runs, only one of the count fields is

found to increment even though threads are scheduled

preemptively. Why might this be?

(iii) If two threads are run on the same instance of class

Example, would you expect the value of count to increase

more rapidly or less rapidly than a single thread running

while (true) ++count;? Why? Does it make any

difference if the machine being used has several processors

instead of just one?

(iv) Compared to a uni-processor, approximately how rapidly

would you expect count to increase on a dual-processor

machine running the code if the synchronization on o was

removed from the while loop entirely?

15

Lecture 13: Worked examples

Previous lecture

➤ Condition synchronization

➤ wait, notify, notifyAll in Java

Overview of this lecture

➤ Further examples of how to use these facilities

➤ Common design features

1

Design (1)

Suppose that we wish to have a shared data structure on

which multiple threads may make read-only access, or a

single thread may make updates ⇒ the multiple-reader,

single-writer problem.

➤ How can this be implemented using the facilities of Java:

· In terms of a well-designed OO structure?

· In terms of the concurrency-control features?

One option is based on delegation and the Adapter pattern:

void operation()

void operation() void operation()

Client Interface

MTImpl BasicImpl

➤ BasicImpl provides the actual data structure

implementation, conforming to Interface. The class

MTImpl wraps each operation with appropriate code for its

use in a multi-threaded application, delegating calls to an

instance of BasicImpl.

2

Design (2)

➤ How does that compare with:

void operation()

void operation()

void operation()

Client Interface

BasicImpl

MTImpl

Advantages

➤ Sub-classes enforce encapsulation and mean that only one

instance is needed.

➤ Delegation may be easier; just use super.operation().

Disadvantages

➤ Separate sub-classes are needed for each implementation of

Interface.

➤ Composition of wrappers is fixed at compile time.

3

Design (3)

In each of these cases the class MTImpl will define methods

that can be split into three sections.

1. An entry protocol responsible for concurrency

control—usually waiting until it is safe for the operation

to continue.

2. Delegation to the underlying data structure

implementation (either by an ordinay method invocation

on an instance of BasicImpl or a call using the super

keyword).

3. An exit protocol—generally selecting the next

thread(s) to perform operations on the structure.

This common structure often motivates further separation

of concurrency control protocols from the data structure.

4

Design (4)

void operation()

void operation() void operation()void enter()
void exit()

Client Interface

MTImpl BasicImplCCInterface

CCImpl

MTImpl now just deals with delegation, wrapping each

invocation on Interface with appropriate calls to

enter() and exit() on a general concurrency-control

interface (CCInterface).

Sub-classes, e.g. CCImpl, provide specific entry/exit

protocols. A factory class might be used to instantiate and

assemble these objects.

Advantages

➤ Concurrency-control protocols can be shared.

➤ Only a single MTImpl class is needed per data structure

interface.

5

Multiple readers, single writer (1)

➤ As a more concrete example:

interface MRSW {

public void enterReader()

throws InterruptedException;

public void enterWriter()

throws InterruptedException;

public void exitReader();

public void exitWriter();

}

➤ This could be used as:

class MTHashtable implements Dictionary {

...

Object get(Object key) {

Object result;

cc.enterReader();

try {

result = ht.get(key);

} finally {

cc.exitReader();

}

}

}

➤ Why is try...finally used like this? How should

InterruptedException be managed?

6

Multiple readers, single writer (2)

➤ We’ll now look at implementing an example protocol,

MRSW.

class MRSWImpl1 implements MRSW {

private int numReaders = 0;

private int numWriters = 0;

...

➤ A reader must wait until numWriters is zero. A writer

must wait until both fields are zero.

synchronized void enterReader()

throws InterruptedException

{

while (numWriters > 0) wait();

numReaders++;

}

synchronized void enterWriter()

throws InterruptedException

{

while ((numWriters > 0) ||

(numReaders > 0)) wait();

numWriters++;

}

7

Multiple readers, single writer (3)

The exit protocols are more straightforward:

synchronized void exitRead() {

numReaders--;

notifyAll();

}

synchronized void exitWrite() {

numWriters--;

notifyAll();

}

}

Advantage

➤ Simple design: (1) create a class containing the necessary

fields; (2) write entry protocols that keep checking these

fields and waiting; (3) write exit protocols that cause any

waiting threads to assess whether they can continue.

Disadvantage

➤ notifyAll() may cause too many threads to be

woken—the code is safe but might be inefficient.

Is that inefficiency likely to be a problem?

Could notify() be used instead?

8

Giving writers priority

➤ ...how else could MRSW be implemented?

1 class PrioritizedWriters implements MRSW {

2 private int numReaders = 0;

3 private int numWriters = 0;

4 private int waitingWriters = 0;

5

6 synchronized void enterReader()

7 throws InterruptedException {

8 while ((numWriters>0)||(waitingWriters>0))

9 wait();

10 numReaders++;

11 }

12

13 synchronized void enterWriter()

14 throws InterruptedException {

15 waitingWriters++;

16 while ((numWriters>0)||(numReaders>0))

17 wait();

18 waitingWriters--;

19 numWriters++;

20 }

21 ...

22 }

➤ What happens to instances of PrioritizedWriter if the

code is interrupted at line 17?

9

First-come first-served ordering (1)

➤ Suppose now we want an ordinary lock that provides FCFS

semantics—the longest waiting thread is given access next.

class FCFSImpl implements CCInterface {

private int currentTurn = 0;

private int nextTicket = 0;

➤ Threads take a ticket and wait until it becomes their turn:

synchronized void enter()

throws InterruptedException

{

int myTicket = nextTicket++;

while (currentTurn < myTicket)

wait();

}

synchronized void exit() {

currentTurn++;

notifyAll();

}

}

10

First-come first-served ordering (2)

Advantages

➤ The implementation is simple!

Disadvantages

➤ If a thread is interrupted during wait() then its ticket is

lost.

➤ notifyAll() will wake all threads waiting in enter() on

this object—in this case we know that only one can

continue.

➤ What happens if the program runs for a long time and

nextTicket overflows?

Resolving these issues in an effective way depends on the

context in which the class is being used, e.g.

➤ lots of waiting threads and frequent contention: have an

explicit queue of per-thread objects and use notify() on

the object at the head of the queue;

➤ safe with arbitrary interruption: allow the enter() method

to manage aborted waiters, e.g. using a queue as above

with an abandoned field in each entry;

➤ no undetected failures: would longs ever overflow here?

11

Splitting locks (1)

Our last example shows how instances of

java.lang.Object can be used to create separate locks

to protect different parts of a data structure.

➤ This technique is generally useful to obtain more

concurrency:

· e.g. different locks to protect different operations that

are safe concurrently,

· e.g. in a list, ‘push on tail’ is usually safe to run in

parallel with ‘pop from head’.

Header Node Last Item

LinkedQueue

First Item

head

last

We will use one lock to protect the head field, one for the

last field, and then separate locks for each entry in the

list protecting its next field.

➤ Do this after seeing that a lack of concurrency is a

problem; the code is rarely as clear and often is wrong :-)

➤ More of this in the Part II course “Advanced Systems

Topics”

12

Splitting locks (2)

// Based on 2.4.2.4 in Doug Lea’s book
class LinkedQueue {
Node headNode = new Node(null);
Node lastNode = headNode;
Object headField = new Object();
Object lastField = new Object();

public void pushTail(Object x) {
Node n = new Node(x);
synchronized (lastField) {

synchronized (lastNode) {
// insert after last
// and update last

}
}

}

public Object popHead() {
synchronized (headField) {

synchronized (headNode) {
// read value from the
// node after head and
// make that node the
// new head

}
}

}
}

13

Exercises

1. In the PrioritizedWriters example the

waitingWriters field is supposed to be a count of the

number of threads executing in the body of the

enterWriter method. How can this invariant be broken?

Correct the code.

2. Update the FCFSImpl class so that it

· (i) allows threads to safely be interrupted during

wait();

· (ii) uses notify() instead of notifyAll();

· (iii) will not suffer from the ticket counter overflowing;

How does the performance of your new implementation

compare with that of the basic version?

3. Update the FCFSImpl class so that the lock can be held

recursively—a thread already holding the lock can make

subsequent calls to enter() without blocking. The lock is

released only when a matched number of (properly-nested)

calls to exit() have been made.

4. Complete the implementation of the LinkedQueue class by

giving a suitable definition for Node and filling in the

missing code in pushTail and popHead. Can you write

pushHead? What about popTail?

14

Lecture 14: Low-level synchronization

Previous lecture

➤ Integrating concurrency control

➤ Several examples: MRSW, FCFS.

➤ General design methods for other cases

Overview of this lecture

➤ Implementing mutexes and condition variables

➤ Direct scheduler support

➤ Semaphores

➤ Event counts / sequencers

➤ Alternative language features

1

Implementing mutexes and condvars

➤ Nowadays mutexes and condvars are usually implemented

using a combination of:

· operations provided by the scheduler to suspend and

resume threads;

· atomic assembly language instructions, e.g.

compare-and-swap

seen=CAS(addr,old,new)

Read from address addr, if it matches old then store new

at that address. Return the value seen.

➤ Care is needed to avoid the problems seen with Java’s

Thread.suspend() and Thread.resume() methods.

➤ Some implementations provide “lower-level” primitives and

build mutexes and condvars over these:

· semaphores

· event counts and sequencers

This layering is no longer typical, although we will still

briefly look at these other primitives.

2

Implementing mutexes (1)

➤ Using CAS we can build a simple spin-lock:

class Mutex {

int lockField = 0;

void lock() {

while (CAS(&lockfield,0,1) != 0) {

/* someone else has the lock */

}

}

void unlock() {

lockField = 0;

}

}

➤ Many performance problems: most importantly the lock

operation consumes CPU time while waiting.

➤ Also, if multiple threads are waiting, then the data-cache

line holding lockField will bounce between different

CPUs on a multi-processor machine.

· More about cache implications in the Part II course

“Advanced Systems Topics”.

3

Implementing mutexes (2)

➤ To avoid spinning, each mutex usually has a queue of

blocked threads associated with it.

➤ A thread attempts to acquire the lock directly (e.g. using

CAS), if it succeeds then it is done.

➤ If it doesn’t succeed then it adds itself to the queue and

invokes a suspend operation on the scheduler.

➤ After releasing the lock, a thread checks whether the

queue is empty.

➤ If the queue is non-empty the thread selects an entry and

resumes it. To avoid lost wake-up problems, either

outstanding resume operations must be remembered:

1 Thread A, LOCK(): Thread B, UNLOCK():

2 see that lock is held

3 add A to queue

4 release lock

5 take A from queue

6 resume A

7 suspend A

...or the scheduler should support a “disable thread

switches” operation.

4

Implementing condvars (1)

➤ Condition variables are more intricate but can build on very

similar techniques.

➤ Recall that a condition variable in general supports two

operations:

· a cv.CVWait(m) operation causes the current thread to

atomically release a lock on mutex m and to block itself

on condition variable cv, re-acquiring the lock on m

when it is woken; and

· a cv.CVNotify() operation that causes threads blocked

on cv to continue.

➤ Internally, in a typical implementation, each condvar has

private fields that hold:

· a queue of threads that are waiting on the condition

variable; and

· an additional mutex cvLock that is used to give the

atomicity required by CVWait().

5

Implementing condvars (2)

➤ cv.CVWait(m) proceeds by:

1 Acquire mutex cv.cvLock

2 Add the current thread to cv.queue

3 Release mutex m

4 Release mutex cv.cvLock

5 Suspend current thread

6 Re-acquire mutex m

➤ cv.CVNotify() proceeds by:

1 Acquire mutex cv.cvLock

2 Remove one thread from cv.queue

3 Resume that thread

4 Release mutex cv.cvLock

➤ Again, it is important to avoid lost wake-up

problems—typically by remembering resumptions.

➤ A real implementation is more complex—e.g. in Java it is

necessary to deal with threads being interrupted.

· See linuxthreads/condvar.c for a Linux

implementation.

6

Semaphores

➤ These examples have used the language-level mutexes and

condition variables.

➤ Semaphores provide basic operations on which the

language-level features could be built. In Java-style

pseudo-code:

class CountingSemaphore {

CountingSemaphore (int x) {

...

}

native void P();

native void V();

}

➤ P (sometimes called wait) decrements the value and then

blocks if the result is less than zero.

➤ V (sometimes called signal) increments the value and then,

if the result is zero or less, selects a blocked thread and

unblocks it.

➤ Using semaphores directly is intricate—the programmer

must ensure P() / V() are paired correctly.

7

Programming with semaphores (1)

➤ Typically the integer value of a counting semaphore is used

to represent the number of instances of some resource that

are available, e.g.

class Mutex {

CountingSemaphore sem;

Mutex() {

sem = new CountingSemaphore(1);

}

void acquire() {

sem.P();

}

void release () {

sem.V();

}

}

➤ The mutex is considered unlocked when the value is 1 (it is

initialized unlocked)...

➤ ...and is locked when the value is 0 or less.

➤ How does this mutex differ from a Java-style one?

8

Programming with semaphores (2)

class CondVar {

int numWaiters = 0;

Mutex cv_lock = new Mutex();

CountingSemaphore cv_sleep =

new CountingSemaphore (0);

void CVWait(Mutex m) {

cv_lock.acquire();

numWaiters++;

m.release();

cv_lock.release();

cv_sleep.P();

m.acquire();

}

void CVNotify() {

cv_lock.acquire();

if (numWaiters > 0) {

cv_sleep.V();

numWaiters--;

}

cv_lock.release();

}

}

9

Event counts and sequencers

A further style of concurrency control is presented by

event count and sequencer primitives.

➤ An event count is represented by a positive integer,

initialized to zero, supporting the following atomic

operations:

· advance()—increment the value by one, returning the

new value;

· read()—return the current value; and

· await(i)—wait until the value is greater than or equal

to i.

➤ A sequencer is again represented by a positive integer,

initialized to zero, supporting a single atomic operation:

· ticket()—increment the value by one, returning the

old value;

➤ Mutual exclusion is easy: a thread takes a ticket entering a

critical region and invokes await() to receive its turn (c.f.

FCFSImpl).

➤ The values returned by await() can be used directly in

implementing a single-producer single-consumer N-slot

buffer: they give the modulo-N indices to read/write.

10

Mutexes without hardware support

➤ What can we do if there isn’t a CAS or TAS instruction, just

atomic read and write? (e.g. the ARM7 only has a swap

operation)

➤ The ‘Bakery’ algorithm due to Lamport (1974)—this

algorithm is now an example: not for practical use!

 while (taking[j]) {}
 while ((ticket[j] != 0) &&
 (ticket[j] <= ticket[i])) {}
}

for (j=i; j<n; j++) {
 while (taking[j]) {}
 while ((ticket[j] != 0) &&
 (ticket[j] < ticket[i])) {}
}

ticket[i] = 0;

enter()

exit()

1

2

for (j=0; j<i; j++) {

taking[i] = true;
ticket[i] = max(ticket[0], ..., ticket[n−1])+1
taking[i] = false;

➤ Threads enter the critical region in ticket order, using their

IDs (i) as a tie-break.

11

Recap

General−purpose

Application−specific
concurrency control
(e.g. MRSW)

abstractions, e.g. mutexes,
condvars, ...

Direct scheduler support,
semaphores or event−
counters & sequences

Primitive atomic
operations

The details of exactly what is implemented where vary

greatly between systems, e.g.

➤ whether the thread scheduler is implemented in user-space

or in the kernel,

➤ which synchronization primitives can be used between

address spaces.

Similarly, unless the application builds it, FCFS semantics

and fairness are rarely guaranteed.

12

Alternative language features (1)

A monitor is an abstract data type in which mutual

exclusion is enforced between invocations of its operations.

Often depicted graphically showing the internal state and

external interfaces, e.g. in pseudo-code
monitorallocator:

free: condition variable

busy: boolean

busy=false;

busy=true;

if busy wait(free);

notify(free);

When looking at a definition such as this, independent of a

specific programming language, it is important to be clear

on what semantics are required of wait() and notify():

· Does notify wake at most one, exactly one, or more

than one waiting thread?

· Does notify cause the resumed thread to continue

immediately (if so, must the notifier exit the monitor)?

13

Alternative language features (2)

An active object achieves mutual exclusion between

operations by (at least conceptually) having a dedicated

thread that performs them on behalf of external callers,

e.g.

loop

SELECT

when count < buffer-size

ACCEPT insert(param) do

[insert item into buffer]

end;

increment count;

[manage ref to next slot for insertion]

or when count > 0

ACCEPT remove(param) do

[remove item from buffer]

end;

decrement count;

[manage ref to next slot for removal]

end SELECT

end LOOP

➤ Guarded ACCEPT statements provide operations and

pre-conditions that must hold for their execution.

➤ Management code occurs outside the ACCEPT statements.

14

Exercises (1)

1. Using the CountingSemaphore class (and not the

synchronized keyword) implement a sequencer. The

sequencer should hold a single positive number, initialized

to zero, and support an atomic operation ticket() which

increments the value by one and returns the old value.

2. Using the example EventCount and Sequencer classes,

implement a single-cell buffer supporting an arbitrary

number of producers and consumers, but holding only a

single value at once.

3. A binary semaphore is a simplified version of the counting

semaphore from the slides. Rather than an integer count

value it has a binary flag. Pb blocks (if necessary) until the

flag is set and then atomically clears it. Vb sets the flag

(atomically unblocking one thread, if any blocked in Pb on

that semaphore).

· (i) In pseudo-code, show how a binary semaphore can

be built using atomic compare-and-swap (CAS) or

test-and-set (TAS) machine instructions.

· (ii) In pseudo-code, show how a counting semaphore

can be built using binary semaphores. Your solution

might need more than one binary semaphore and

another field to hold the count value.

15

Exercises (2)

4. Some data structures can be implemented directly using

the CAS primitive without needing mutual exclusion locks.

Suppose that a Java-like language supports a CAS

operation on fields. Show how a single-ended queue could

be defined (implemented using a singly-linked list)

supporting push and pop operations at the head of the

queue.

16

Lecture 15: Distributed Systems

Now in Part 4 of this course.

Previous section
Concurrency Issues

➤ Multi-threaded programming

➤ Concurrent data structures

➤ Communication between threads

Overview of this section
Distributed Systems

➤ Distributed Systems

➤ Naming

➤ Network communication

➤ Compound operations

➤ Crash-tolerance

1

Communication between processes (1)

What problems emerge when communicating...

➤ between separate address spaces?

➤ between separate machines?

How do those environments differ from previous examples?

Recall that...

➤ within a process, or with a shared virtual address space,

threads can communicate naturally through ordinary data

structures—object references created by one thread can be

used by another—because all the parties share a single

copy of the data.

➤ failures are rare and at the granularity of whole processes

(e.g. SIGKILL by the user).

➤ OS-level protection is also performed at the granularity of

processes—as far as the OS is concerned a process is

running on behalf of (precisely) one user.

2

Communication between processes (2)

Introducing separate address spaces means that the data is

not directly shared between the threads involved.

➤ Access mechanisms and appropriate protection must be

constructed.

➤ At a low-level the representation of different kinds of data

may vary between machines—e.g. big-endian vs

little-endian architectures.

➤ Names used may require translation—e.g. object locations

in memory (at a low-level) or file names on a local disk (at

a somewhat higher level).

Any communicating components need...

➤ to agree on how to exchange data—usually by the sender

marshalling from a local format into an agreed common

format and the receiver unmarshalling.

· Similar to using the serialization API to read/write an

object to a file on disk.

➤ to agree on how to name shared (or shareable) entities.

3

Distributed systems (1)

More generally, four recurring problems emerge when

designing distributed systems:

➤ Components execute in parallel

· maybe on machines with very different performances

➤ Communication is not instantaneous

· and the sender does not know when/if a message is

received

➤ Components (and/or their communication links) may fail

independently

· usually need explicit failure detection and robustness

against failed components/links restarting

➤ Access to a global clock cannot be assumed

· different components may observe events in different

orders from one another

To varying degrees we can provide services to address these

problems. Is complete transparency possible?

4

Distributed systems (2)

Focus here is on basic naming and communication. Other

courses cover access control (Part 1B: OS, Introduction to

Security) and algorithms (Part II: Distributed Systems,

Advanced Systems Topics).

We will look at two different communication mechanisms:

➤ Remote method invocation

Advantage

· Remote invocations look substantially like local calls:

many low-level details are abstracted.

Disadvantages

· Remote invocations look substantially like local calls:

the programmer must remember the limits of this

transparency and still consider problems such as

independent failures.

· Not well suited to streaming or multi-casting data.

➤ Low-level communication using network sockets

Advantage

· A ‘lowest-common-denominator’: the TCP and UDP

protocols are available on almost all platforms.

Disadvantage

· Much more for the application programmer to think

about; many wheels to re-invent.

5

Interface definition

The provider and user of a network service need to agree

on how to access it and what parameters/results it

provides. In Java RMI this is done using Java interfaces.

Advantage

➤ Easy to use in Java-based systems

Disadvantage

➤ What about interoperability with other languages?

Java RMI is rather unusual in using ordinary language

facilities to define remote interfaces. Usually a separate

interface definition lanaguage (IDL) is used.

➤ This provides features common to many languages.

➤ The IDL has language bindings that define how its

features are realized in a particular programming language.

➤ An IDL compiler generates per-language stubs (contrast

with the rmic tool that only generates stubs for the JVM).

(An aside: they must agree on what the service does, but

that needs human intervention!)

6

Interface definition: OMG IDL (1)

We will take OMG IDL (used in CORBA) as a typical

example.

// POS Object IDL example

module POS {

typedef string Barcode;

interface InputMedia {

typedef string OperatorCmd;

void barcode_input(in Barcode item);

void keypad_input(in OperatorCmd cmd);

};

};

➤ A module defines a namespace within which a group of

related type definitions and interface definitions occur.

➤ Interfaces can be derived using multiple inheritance.

➤ Built-in types include basic integers (e.g. long holding

−231. . . 231 − 1 and unsigned long holding

0. . . 232 − 1, floating point types, 8-bit characters,

booleans, and octets.

➤ Parameter modifiers in, out, and inout define the

direction(s) in which parameters are copied.

7

Interface definition: OMG IDL (2)

Type constructors allow structures, discriminated unions,

enumerations, and sequences to be defined:

struct Person {

string name;

string age;

};

union Result switch(long) {

case 1 : ResultDataType r;

default : ErrorDataType e;

};

enum Color { red, green, blue };

typedef sequence<Person> People;

Interfaces can define attributes (unlike Java interfaces),

but these are just shorthand for pairs of method

definitions, e.g.:

attribute long value;

can be transformed to:

long _get_value();

void _set_value(in long v);

8

Interface definition: OMG IDL (3)

IDL construct Java construct

module package

interface interface + classes

constant public static final

boolean boolean

char,wchar char

octet byte

string,wstring java.lang.String

short short

unsigned short short

long long

unsigned long long

float float

double double

enum,struct,union class

exception class

readonly attribute read-accessor method

attribute read-/write-accessor methods

operation method

➤ ‘Holder classes’ are used for out and inout

parameters—these classes contain a field appropriate to

the type of the parameter.

9

Interface definition: .NET

Instead of defining a separate IDL and per-language

bindings, the Microsoft .NET platform defines a common

language subset and programming conventions for

making definitions that conform to it.

Many familiar features: static typing, objects (classes,

fields, methods, properties), overloading, single inheritance

of implementations, multiple implementation of interfaces,

...

Metadata describing these definitions is available at

run-time, e.g. to control marshalling.

➤ Interfaces can be defined in an ordinary programming

language and do not need an explicit IDL compiler.

➤ Languages vary according to whether they can be used to

write clients or servers in this system—e.g. JScript and

COBOL versus VB, C-sharp, SML.

10

Naming

How should processes identify which resources they wish to

access?

Within a single address space in a Java program we could

use object references to identify shared data structures and

either:

➤ pass them as parameters to a thread’s constructor; or

➤ access them from static fields.

When communicating between address spaces we need

other mechanisms to establish:

➤ unambiguously which item is going to be accessed; and

➤ where that item is located and how communication with it

can be achieved.

Late binding of names (e.g. magic.voidstar.org.uk)

to addresses (193.117.99.117) is considered good

practice—i.e. using a name service at run-time to resolve

names, rather than embedding addresses directly in a

program.

11

Names (1)

Names are used to identify things and so they should be

unique within the context that they are used. A directory

service may be used to select an appropriate name to look

up—e.g. “find the nearest system providing service xyz”.

In simple cases unique ID (UIDs) may be used—e.g.

process IDs in UNIX.

➤ UIDs are simply numbers in the range 0. . . 2N − 1 for an

N -bit namespace. Beware: UID 6= user ID in this context!

Advantage

➤ Allocation is easy if N is large—just allocate successive

integers

Disadvantages

➤ Allocation is centralized (designs for allocating process IDs

on highly parallel UNIX systems are still the subject of

research).

➤ What can be done if N is small? When can/should UIDs

be re-used?

12

Names (2)

More usually a hierarchical namespace is formed—e.g.

filenames or DNS names.

Advantages

➤ The hierarchy allows local allocation by separate

allocators if they agree to use non-overlapping prefixes.

➤ The hierarchy can often follow administrative delegation of

control.

➤ Locality of access within the structure may help

implementation efficiency (if I lookup one name in

/home/jkf21/ then perhaps I’m likely to lookup other

names in that same directory).

Disadvantage

➤ Lookups may be more complex. Can names be arbitrarily

long?

13

Names (3)

We can also distinguish between pure and impure names.

A pure name yields no information about the identified

object—where it may be located or where its details may

be held in a distributed name service.

· e.g. a UNIX process ID on a multi-processor system

does not stay on which CPU the process should run, or

which user created it.

An impure name contains information about the

object—e.g. email to jkf21@cam.ac.uk will always be

sent to a mail server in the University.

➤ Are DNS names, e.g. www.cl.cam.ac.uk, pure or impure?

➤ Are IPv4 addresses, e.g. 192.168.1.1, pure or impure?

Names may have structure while still being pure—e.g.

Ethernet MAC addresses are structured 48-bit UIDs and

include manufacturer codes, and broadcast/multicast flags.

This structure avoids centralised allocation.

In other schemes, pure names may contain location hints.

Crucially, impure names prevent the identified objects from

changing in some way (usually moving) without renaming.

14

Name services (1)

Client Name service

Server

1. Register

2. Resolve

3. Address

4. Access

➤ A namespace is a collection of names recognised by a

name service—e.g. process IDs on one UNIX system, the

filenames that are valid on a particular system, or Internet

DNS names that are defined.

➤ A naming domain is a section of a namespace operated

under a single administrative authority—e.g. management

of the cl.cam.ac.uk portion of the DNS namespace is

delegated to the Computer Laboratory.

➤ Binding or name resolution is the process of making a

lookup on the name service.

How does the client know how to contact the name

service?

15

Name services (2)

Although we’ve shown the name service here as a single

entity, in reality it may

➤ be replicated for availability (lookups can be made if any of

the replicas is accessible) and read performance (lookups

can be made to the nearest replica).

➤ be distributed, e.g. separate systems might manage

different naming domains within the same namespace

(updates to different naming domains require less

co-ordination).

➤ allow caching of addresses by clients, or caching of partially

resolved names in a hierarchical namespace.

16

Security (1)

In a distributed system, access control is needed to:

➤ control communications to/from the various components

involved,

· e.g. consider an industrial system with a component on

one computer recording the temperature and

responding to queries from another computer that

controls settings on a machine it is attached to.

· how does the controller know that the temperature

readings came from the intended probe?

· how does the probe know that it is being queried by the

intended controller?

➤ control operations that one component does on behalf of

users,

· e.g. a file server might run as the privileged root on a

UNIX machine;

· when accessing a file on behalf of a remote client it

needs to know who that client is and either cause the

OS to check access would be OK, or to do those checks

itself.

➤ Again, covered more fully in the security and distributed

systems courses in Part II.

17

Security (2)

We will look at basic sensible things to do when writing

distributed systems in Java.

➤ Use a security manager class to limit what the JVM is

able to do.

· e.g. limiting the IP addresses to which it can connect or

whether it is permitted to write to your files.

➤ If using network sockets directly, then make the program

robust to unexpected input.

· Less of a concern in Java than in C...

A security manager provides a mechanism for enforcing

simple controls.

➤ A security manager is implemented by

java.lang.SecurityManager, or a sub-class.

➤ An instance of this is installed using

System.setSecurityManager(...).

· Itself an operation under the control of the current

security manager.

18

Security (3)

➤ Most checks are made by delegating to a

checkPermission method, e.g. for dynamically loading a

native library:

checkPermission(

new RuntimePermission(

"loadLibrary."+lib));

➤ Decisions made by checkPermission are relative to a

particular security context. The current context can be

obtained by invoking getSecurityContext() and checks

then made on behalf of another context.

➤ Permissions can be granted in a policy definition file,

passed to the JVM on the command line with

-Djava.security.policy=filename

grant {

permission java.net.SocketPermission

"*:1024-65535","connect,accept";

};

http://java.sun.com/products/jdk/1.2/docs/

guide/security/index.html

19

Exercises

1. If you have access both to a big-endian (e.g. SPARC) and

a little-endian machine (e.g. Intel) then test whether an

object serialized to disk on one is able to be recreated

successfully on the other. Examine what happens if the

object refers to facilities intrinsic to the originating

machine—e.g. if it contains an open FileOutputStream

or a reference to System.out.

2. Suppose that two people are communicating by sending

and receiving mobile ’phone text messages (SMS).

Messages are delayed by varying amounts. Some messages

are lost entirely. Design a way to get reliable

communication (so far as is possible). You may need to

add information to each message sent, and possibly create

further messages in addition to those sent ordinarily.

3. Convert the POS module definition from OMG IDL into a

Java interface that provides similar RMI functionality.

4. Suppose that frequent updates are made to part of a

hierachical namespace, while other parts are rarely updated.

Lookups are made across the entire namespace. Discuss

the use of replication, distribution, caching, or other

techniques as ways of providing an effective name service.

20

Lecture 16: Network sockets (TCP, UDP)

Previous lecture

➤ Distributed systems

➤ Interface definitions

➤ Naming

Overview of this lecture

➤ Communication using network sockets

➤ UDP

➤ TCP

1

Provisions of POSIX 1003.1-2001 (1)

The ’socket’ system call:

int socket(int domain, int type, int protocol);

where domain is one of...
PF_UNIX, PF_LOCAL Local communication unix(7)
PF_INET IPv4 Internet protocols ip(7)
PF_INET6 IPv6 Internet protocols
PF_IPX IPX - Novell protocols
PF_NETLINK Kernel user interface device netlink(7)
PF_X25 ITU-T X.25 / ISO-8208 protocol x25(7)
PF_AX25 Amateur radio AX.25 protocol
PF_ATMPVC Access to raw ATM PVCs
PF_APPLETALK Appletalk ddp(7)
PF_PACKET Low level packet interface packet(7)

and type is ...

2

Provisions of POSIX 1003.1-2001 (2)

SOCK_STREAM

Provides sequenced, reliable, two-way, connection

based byte streams. An out-of-band data

transmission mechanism may be supported.

SOCK_DGRAM

Supports datagrams (connectionless, unreliable

messages of a fixed maximum length).

SOCK_SEQPACKET

Provides a sequenced, reliable, two-way

connection-based data transmission path for

datagrams of fixed maximum length; a consumer

is required to read an entire packet with each

read system call.

SOCK_RAW

Provides raw network protocol access.

SOCK_RDM

Provides a reliable datagram layer that does

not guarantee ordering.

SOCK_PACKET

Obsolete and should not be used in new programs.

3

Low-level communication (1)

Two basic network protocols are available in Java:

· datagram-based UDP, the user datagram protocol; and

· stream-based TCP, the transport control protocol.

UDP sockets provide unreliable datagram-based

communication that is subject to:

➤ Loss: datagrams that are sent might never be received.

➤ Duplication: the same datagram might be received several

times.

➤ Re-ordering: datagrams are forwarded separately within

the network and might arrive out of order.

What is provided:

➤ A checksum is used to guard against corruption (corrupt

data is discarded by the protocol implementation and the

application perceives it as packet loss).

➤ The framing within datagrams is preserved—a UDP

datagram might be fragmented into separate packets

within the network but these are reassembled by the

receiver.

4

Low-level communication (2)

Communication occurs between UDP sockets which are

addressed by giving an appropriate IP address and a UDP

port number (0..65535, although 0 is not accessible

through most common APIs, 1..1023 reserved for privileged

use and well-known services).

carnelian.chu.cam.ac.uk
131.111.131.78

www.voidstar.org.uk
193.117.99.117

Network

SAP=15345SAP=1234

Naming is handled by:

➤ using the DNS to map textual names to IP addresses,

InetAddress.getByName("www.voidstar.org.uk")

➤ using ‘well-known’ port numbers for particular UDP

services which wish to be accessible to clients (see

/etc/services on a UNIX system).

As far as we’re concerned here, the network acts as a

‘magic cloud’ that conveys datagrams—see Digital

Communications I for layering in general and examples of

how UDP is implemented over IP, and how IP is

implemented over (e.g.) ethernet by encapsulation and/or

fragmentation and reassembly.

5

UDP in Java

➤ UDP sockets are represented by instances of

java.net.DatagramSocket. The 0-argument constructor

creates a new socket that is bound to an available port on

the local machine. This identifies the local endpoint for the

communication.

➤ Datagrams are represented in Java as instances of

java.net.DatagramPacket. The most elaborate

constructor is:

DatagramPacket(byte buf[], int length,

InetAddress address, int port)

... and specifies the data to be sent (length bytes from

within buf) and the destination address and port for this

packet.

➤ MulticastSocket defines a UDP socket capable of

receiving multicast packets. The constructor specifies the

port number and the methods

joinGroup (InetAddress g);

leaveGroup(InetAddress g);

... join and leave a specified group operating on that port.

➤ Multicast group addresses are a designated subnet of the

IPv4 address space. Allocation policies are still in flux ⇒

check the local policy before using multicast!

6

UDP example (1)

import java.net.*;

public class Send {

public static void main(String args[]) {

try {

DatagramSocket s = new DatagramSocket();

byte[] b = new byte[1024];

int i;

for (i=0;i<args.length-2;++i)

b[i] = Byte.parseByte(args[2+i]);

DatagramPacket p = new DatagramPacket (

b, i,

InetAddress.getByName(args[0]),

Integer.parseInt(args[1]));

s.send(p);

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}

7

UDP example (2)

import java.net.*;

public class Recv {

public static void main (String args[]) {

try {

DatagramSocket s = new DatagramSocket();

byte[] b = new byte[1024];

DatagramPacket p =

new DatagramPacket(b,1024);

System.out.println("Port: " +

s.getLocalPort());

s.receive(p);

for (int i=0;i<p.getLength();++i)

System.out.print(""+b[i]+" ");

System.out.println("\nFrom: " +

p.getAddress() + ":" +

p.getPort());

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}

8

Problems using UDP

Many facilities must be implemented manually by the

application programmer:

➤ Detection and recovery from loss in the network;

➤ Flow control (preventing the receiver from being swamped

with too much data);

➤ Congestion control (preventing the network from being

overwhelmed); and

➤ Conversion between application data structures and arrays

of bytes (marshalling).

Of course, there are situations where UDP is directly useful:

➤ Communication with existing UDP services (e.g. some

DNS name servers); and

➤ Broadcast and multicast are possible (e.g. address

255.255.255.255 ⇒ all machines on the local

network—but note problems of port assignment and more

generally of multicast group naming).

9

TCP sockets (1)

The second basic form of inter-process communication is

provided by TCP sockets.

➤ Naming is again handled using the DNS and well-known

port numbers as before. There is no relationship between

UDP and TCP ports having the same number.

➤ TCP provides a reliable bi-directional connection-based

byte-stream with flow-control and congestion control.

What doesn’t it do?

➤ Unlike UDP the interface exposed to the programmer is

not datagram-based: framing must be provided explicitly.

➤ Marshalling must still be done explicitly—but serialization

may help here.

➤ Communication is always one-to-one.

In practice TCP forms the basis for many internet

protocols—e.g. FTP and HTTP are both currently

deployed over it.

10

TCP sockets (2)

Two principal classes are involved in exposing TCP sockets

in Java:

➤ java.net.Socket represents a connection over which

data can be sent and received. Instantiating it directly

initiates a connection from the current process to a

specified address and port. The constructor blocks until

the connection is established (or fails with an exception

being thrown).

➤ java.net.ServerSocket represents a socket awaiting

incoming connections. Instantiating it starts the local

machine listening for connections on a particular port.

ServerSocket provides an accept() operation that

blocks the caller until an incoming connection is received

(or the wait is interrupted). When it returns, an instance of

Socket representing the connection is passed to the caller.

Methods on Socket provide a mechanism to discover the

address and port number of the remote process.

The system will usually buffer only a small (5) number of

incoming connections if accept() is not called.

Typically programs that expect multiple clients will have

one thread making calls to accept() and starting further

threads for each connection.

11

TCP example (1)

import java.net.*;

import java.io.*;

public class TCPSend {

public static void main(String args[]) {

try {

Socket s = new Socket (

InetAddress.getByName(args[0]),

Integer.parseInt(args[1]));

OutputStream os = s.getOutputStream();

while (true) {

int i = System.in.read();

os.write(i);

}

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}

12

TCP example (2)

import java.net.*;
import java.io.*;

public class TCPRecv {
public static void main(String args[]) {
try {

ServerSocket serv = new ServerSocket (0);
System.out.println("Port: " +
serv.getLocalPort());

Socket s = serv.accept();
System.out.println("Remote addr: " +
s.getInetAddress());

System.out.println("Remote port: " +
s.getPort());

InputStream is = s.getInputStream();

while (true) {
int i = is.read();
if (i == -1) break;
System.out.write(i);

}
} catch (Exception e) {

System.out.println("Caught " + e);
}

}
}

13

Server design

The examples have only illustrated the basic use of the

operations on DatagramSocket, ServerSocket, and

Socket:

➤ Typically a server would be expected to manage multiple

clients.

Doing so efficiently can be a problem if there are lots of

clients:

➤ Could have one thread per client:

· Can exploit multi-processor hardware :-)

· Many active clients ⇒ frequent context switches :-(

· The JVM (+usually the OS) must maintain state for all

clients, whether active or not :-(

➤ Could have a single thread which services each client in

turn:

· Simple; avoids context switching :-)

· Implementation not easy due to absence of a ‘wait for

any input stream’ system operation in Java (c.f.

select in UNIX): must poll each client whether needed

or not :-(

➤ The java.nio package now supports asynchronous I/O.

14

Exercises

1. Write a class UDPSender which sends a series of UDP

packets to a specified address and port at regular 15

second intervals. Write a corresponding UDPReceiver

which receives such packets and records the inter-arrival

time. How does the performance differ if (i) both programs

run on the same computer; (ii) both run on computers on

the University Data Network; or (iii) one runs on the

University network and another on a dial-up internet

connection? Do you see that packets are lost, duplicated,

or re-ordered? Do the packets arrive regularly spaced?

2. Write similar classes TCPSender and TCPReceiver which

establish a TCP connection over which single bytes are sent

at 15 second intervals. How does the performance compare

with the UDP implementation? Is it necessary to call

flush() on the OutputStream after sending each byte?

3. Consider a server for a noughts-and-crosses game. The two

players communicate with it over UDP. Describe a possible

structure for the server in terms of the major data

structures, the threads used, the format of the datagrams

sent, and the concurrency-control techniques.

15

Lecture 17: RPC and RMI

Previous lecture

➤ UDP: connectionless, unreliable

➤ TCP: connection-oriented, reliable

Overview of this lecture

➤ Java Remote Method Invocation (RMI)

➤ Implementing RPC

1

Remote method invocation (1)

Using UDP or TCP it was necessary to:

➤ decide how to represent data being sent over the

network—either packing it into arrays of bytes (in a

DatagramPacket) or writing it into an OutputStream

using a Socket.

➤ use a rather inflexible naming system to identify

servers—updates to the DNS may be difficult, access to a

specific port number might not always be possible.

➤ distribute the code to all of the systems involved and

ensure that it remains consistent.

➤ deal with failures (e.g. the remote machine

crashing—something a ‘reliable’ protocol like TCP cannot

mask).

Java RMI presents a higher-level interface that addresses

some of these concerns. Although it is remote method

invocation, the principles are the same as for remote

procedure call (RPC) systems.

2

Remote method invocation (2)

client

shared classes

registry

server

1

1

4

2

3

1. A server registers a reference to a remote object with the

registry (a basic name service) and deposits associated

.class files in a shared location, the RMI codebase.

2. A client queries the registry to obtain a reference to a

remote object.

3. If they are not directly available, the client obtains the

.class files needed to access the remote object.

4. The client makes an RMI call to the remote object.

The registry acts as a name service, with names being of

the form

rmi://linux2.pwf.cl.cam.ac.uk/jkf21/example-1.2

3

Remote method invocation (3)

Parameters and results are generally passed by making

deep copies when passed or returned over RMI.

➤ i.e. copying proceeds recursively on the object passed,

objects reachable from that, etc. (⇒ take care to reduce

parameter sizes).

➤ The structure of object graphs is preserved—e.g. data

structures may be cyclic.

➤ Remote objects are passed by reference and so both caller

and callee will interact with the same remote object if a

reference to it is passed or returned.

Note that Java only supports remote method

invocation—changes to fields must be made use get/set

methods.

Other RPC systems make different choices:

➤ perform a shallow copy and treat other objects reachable

from that as remote data (as above, would be hard to

implement in Java) or copy them incrementally.

➤ emulate ‘pass by reference’ by passing back any changes

with the method results (what about concurrent updates?).

4

RMI—Interfaces

Suppose that we wish to define a simple remote object on

which a single method getFish is defined:

1 package remifc;

2

3 import java.rmi.*;

4

5 public interface FishFinder extends Remote

6 {

7 public static final String NAME

8 = "rmi://magic.voidstar.org.uk/jkf/fishfinder";

9

10 public FishLocation

11 getFish(FishLocation me)

12 throws RemoteException;

13 }

➤ All RMI invocations are made across remote interfaces

extending java.rmi.Remote.

➤ The field NAME in Lines 7–8 says which RMI registry will be

used (the one on magic.voidstar.org.uk) and the name

under which to register the service (jkf/fishfinder).

➤ All remote methods must throw RemoteException.

5

RMI—Client (1)

➤ Example code to construct a shoal of fish...

// Bind to RMI service

System.out.println("Looking for " +

FishFinder.NAME);

FishFinder ff = (FishFinder)

Naming.lookup(FishFinder.NAME);

// Start listening for connections from other fish

ServerSocket ss = new ServerSocket(0,1,

InetAddress.getLocalHost());

// Determine our network address and port number

FishLocation my_location =

new FishLocation(ss.getInetAddress(),

ss.getLocalPort());

System.out.println("My location is " +

my_location);

// Wait to be paired up with another fish

FishLocation friendlyfish_location =

ff.getFish(my_location);

System.out.println("Other fish’s location is " +

friendlyfish_location);

6

RMI—Client (2)

Note how few differences there are in the client compared

with local invocations on an instance of a class

implementing FishFinder:

➤ The call to Naming.lookup obtains an instance of a stub

class implementing the FishFinder interface. Invocations

on this instance will be forwarded to a remote object

registered under the name FishFinder.NAME.

➤ The next three commands start a server socket to await

connections from external processes.

➤ The actual invocation is performed by ff.getFish(...).

➤ The code requires an exception handler to deal with:

· NotBoundException—no remote object has been

associated with the name FishFinder.NAME

· RemoteException—if the RMI registry could not be

contacted (Naming.lookup) or if there was a problem

with the call (ff.getFish).

· AccessException—if the operation has not been

permitted by the installed security manager.

7

RMI—Server

public static void main(String args[]) {

try {

// Instantiate the server

FishFinderImpl s =

new FishFinderImpl();

// Allow connections to the registry

System.setSecurityManager(

new RMISecurityManager());

// Bind name in the registry

Naming.rebind(FishFinder.NAME,s);

System.out.println(NAME +

" server running");

} catch (Exception e) {

System.out.println("Failed: " + e);

e.printStackTrace();

}

}

8

Putting it all together (1)

➤ Select which machine is to run the registry and update

remifc.FishFinder.NAME (usually use the same machine

for the registry and the server).

➤ Compile the interface, the client, and the server:

$ javac remifc/*.java server/*.java client/*.java

➤ Generate stub classes from the server:

$ rmic -v1.2 server.FishFinderImpl

creating server.FishFinderImpl Stub.class.

➤ Generate a security policy file for the server, e.g.

security.policy:

grant {

permission java.net.SocketPermission

"*:1024-65535", "connect,accept";

permission java.net.SocketPermission

"*:80", "connect";

permission java.util.PropertyPermission

"java.rmi.server.codebase", "read";

permission java.util.PropertyPermission

"user.name", "read,write";

};

9

Putting it all together (2)

➤ Make sure that the RMI registry is running. If not then:

$ rmiregistry

➤ Select an RMI codebase for the server—this should be

available to the client and the registry (e.g. a directory on

a shared file system, or on a web site).

$ CODEBASE=file:/homes/jkf21/19.RMISVB/

Do not forget the trailing /

➤ Start the server running:

$ java -Djava.rmi.server.codebase=$CODEBASE \

-Djava.security.policy=security.policy \

server.FishFinderImpl

➤ Start the clients...

$ java client.Fish

10

RMI implementation (1)

TCPConnection TCPTransport

Fish

UnicastRef UnicastServerRef

Method

FishFinderImpl

FishFinderImpl_Stub

➤ The Stub class is the one created by the rmic tool—it

transforms invocations on the FishFinder interface into

generic invocations of an invoke method on UnicastRef.

➤ UnicastRef is responsible for selecting a suitable network

transport for accessing the remote object—in this case,

TCP.

➤ UnicastServerRef uses the ordinary reflection interface

to dispatch calls to remote objects.

11

RMI implementation (2)

With the TCP transport, RMI creates a new thread on the

server for each incoming connection that is received.

➤ A remote object should be prepared to accept concurrent

invocations of its methods.

➤ This concurrency avoids deadlock: e.g. if a remote method

A.m1 invokes an operation on remote method B.m2 which

in turn invokes an operation A.m3.

➤ But the application programmer must be aware of how

many threads might be created and the impact that they

might have on the system.

➤ Remember: the synchronized modifier applies to a

method’s implementation. It must be applied to the

definition in the server class, not the interface.

12

RMI implementation (3)

1. Marhsal
2. Generate ID
3. Set timer

8. Unmarshal
9. Acknowledge

4. Unmarshal
5. Record ID

6 Marshal
7. Set timer

Caller RMI Service RMI Service Called method

ServerClient

What could be done without TCP?

We need to manually implement:

➤ Reliable delivery of messages subject to loss in the network.

➤ Association between invocations and responses—shown

here using a per-call RPC identifier with which all

messages are tagged.

13

RMI implementation (4)

Even this simple protocol requires multiple threads: e.g. to

re-send lost acknowledgements after the client-side RMI

server has returned to the caller.

What happens if a timeout occurs at step 3? Either the

message sent to the server was lost, or the server failed

before replying...

➤ at-most-once semantics ⇒ return failure indication to the

application;

➤ ‘exactly’ once semantics ⇒ retry a few times with the

same RPC id (so the server can detect retries).

What happens if a timeout occurs at 7? Either the

message sent to the client was lost, or the client failed.

No matter what is done the client cannot distinguish, on

the basis of these messages alone, server failures

before/after making some change to persistent storage.

14

Exercises

1. Compile and execute the RMI example yourself. Use it

with the stub class held on a web server as well as with the

stub class available directly through the file system.

2. Modify the UDPSender and UDPReceiver example so the

sender initiates an RMI call to the receiver at regular 15

second intervals. How does the performance compare now

to the UDP and TCP examples?

3. To what extent can the fact that a method invocation is

remote be made transparent to the programmer? In what

ways is complete transparency not possible?

4. A client and a server are in frequent communication using

the RPC protocol described in the slides and implemented

over UDP. Design and outline an alternative protocol that

sends fewer datagrams when loss is rare.

5. All remote method invocations in Java may throw

RemoteException because of the failure modes

introduced by distribution. Do you agree that

RemoteException should be a checked exception rather

than an unchecked exception (such as

NullPointerException) which is usually fatal?

15

Lecture 18: Transactions

Previous lecture

➤ Communication using UDP or TCP

➤ Remote method invocation

➤ RPC semantics

Overview of this lecture

➤ Compound operations

➤ Correctness requirements

➤ Implementation

1

Compound operations (1)

We’ve now seen mechanisms for

➤ controlling concurrent access to objects; and

➤ providing access to remote objects.

Using these facilities correctly, and particularly in

combination, is extremely difficult.

getBalance(account) −> int
credit(account,int)
debit(account,int)

Client 1

Client 2

Server

➤ Client 1 tries to get the total amount in two accounts.

➤ Client 2 tries to transfer some money between the accounts

using credit() then debit().

➤ It can all go horribly wrong, even if getBalance(),

credit(), and debit() are safe for multi-threaded use.

2

Compound operations (2)

What can go wrong?

➤ Client 1 might look at the two accounts after one has been

credited but before the other has been debited.

· ⇒ the total amount will be incorrect.

➤ Client 2 might crash after doing its credit but before the

matching debit.

· ⇒ the recipient could be lucky...

➤ The network might fail, even if the clients are well behaved.

➤ The server might crash.

What can be done about these problems?

➤ Have the server provide lockAccount() and

unlockAccount() operations.

➤ Have the server provide transfer(...) as an atomic

operation.

➤ Use some kind of ‘downloadable code’ system.

3

Transactions (1)

Transactions provide a more general abstraction.

Ideally the programmer might wish to write something like

transaction {

if (server.getBalance(src) >= amount) {

server.credit(dest, amount);

server.debit (src, amount);

return true;

} else

return false;

}

The intent is that the code within a transaction block

will execute without interference from other activities, in

particular

➤ other operations on the same objects as those mentioned

within the block (src and dest in this case); and

➤ system crashes (within reason...).

We say that a transaction commits atomically (if it

completes successfully) or it aborts (if it fails for some

reason). Aborted transactions leave the state wholly

unchanged.

4

Transactions (2)

In more detail we would like committed transactions to

satisfy four ACID properties:

A tomicity—either all or none of the transaction’s operations

are performed.

· Programmers do not have to worry about ‘cleaning up’

after a transaction aborts; the system ensures that it

has no visible effects.

C onsistency—a transaction transforms the system from one

consistent state to another.

· The programmer must design transactions that preserve

desired invariants, e.g. totals across accounts.

I solation—each committed transaction executes isolated

from the concurrent effects of others.

· e.g. another transaction shouldn’t read the source and

destination amounts mid-transfer and then commit.

D urability—the effects of committed transactions endure

subsequent system failures.

· When the system confirms the transaction has

committed it must ensure that changes will survive

faults—e.g. don’t report “commit” until the disk caches

have been drained to the disk surfaces.

5

Transactions (3)

These requirements can be grouped into two categories:

➤ Atomicity and durability refer to the persistence of

transactions across system failures.

We want to ensure that no ‘partial’ transactions are

performed (atomicity) and we want to ensure that system

state does not regress by apparently-committed

transactions being lost (durability).

➤ Consistency and isolation concern ensuring correct

behaviour in the presence of concurrent transactions.

As we’ll see there are trade-offs between the ease of

programming within a particular transactional framework,

the extent that concurrent execution of transactions is

possible, and the isolation that is enforced.

In some cases—where data is held entirely in main

memory—we might just be concerned with controlling

concurrency.

➤ Note the distinction with the concurrency control schemes

based (e.g.) on programmers using mutexes and condition

variables: here the system enforces isolation.

6

Isolation

Recall our original example:

transaction {

if (server.getBalance(src) >= amount) {

server.credit(dest, amount);

server.debit (src, amount);

return true;

} else

return false;

}

What can the system do in order to enforce isolation

between transactions specified in this manner and initiated

concurrently?

A simple approach: have a single lock that is held while

executing a transaction, allowing only one to operate at

once.

Advantage

➤ Simple.

Disadvantages

➤ Does not enable concurrent execution, e.g. of two of these

operations on separate sets of accounts.

➤ What happens if operations can fail?

7

Isolation—Serializability (1)

This idea of executing transactions serially provides a useful

correctness criterion for executing transactions in parallel:

➤ A concurrent execution is serializable if there is some

serial execution of the same transactions that gives the

same result—the programmer cannot distinguish between

parallel execution and the simple one-at-a-time scheme.

Suppose we have two transactions:

T1: transaction {

int s = server.getBalance(A);

int t = server.getBalance(B);

return s + t;

}

T2: transaction {

server.credit(A, 100);

server.debit (B, 100);

}

If we assume that the individual getBalance, credit, and

debit operations are atomic (e.g. synchronized methods

on the server) then an execution without further

concurrency control can proceed in any of 6 ways.

8

Isolation—Serializability (2)

Each of these concurrent executions is OK:

A.read

A.read B.read

A.credit

B.debit

B.debit

B.read

A.credit

T1:

T2:

T1:

T2:

Neither of these concurrent executions is valid:

A.read

A.read B.read

A.credit

B.read

B.debit

B.debitA.credit

T1:

T2:

T1:

T2:

In each case some, but not all, of the effects of T2 have

been seen by T1, meaning that we have not achieved

isolation between the transactions.

9

Isolation—Serializability (3)

We can depict a particular execution of a set of concurrent

transactions by a history graph.

➤ Nodes in the graph represent the operations comprising

each transaction, e.g. T1: A.read.

➤ A directed edge from node a to node b means that a

happens before b.

· Operations within a transaction are totally ordered by

the program order in which they occur.

· Conflicting (i.e. non-commutative) operations on the

same object are ordered by the object’s implementation.

For clarity we usually omit edges that can be inferred by

the transitivity of happens before.

Suppose again that we have two objects A and B

associated with integer values and run transaction T1 that

reads values from both and transaction T2 that adds to A

and subtracts from B.

10

Isolation—Serializability (4)

These histories are OK. Either (i) both the read

operations see the old values of A and B:

T1:

T2: A.credit

A.readstart

start

B.read

B.debit

commit

commit

or (ii) both read operations see the new values:

T1:

T2: A.credit

A.readstart

start

B.read

B.debit

commit

commit

11

Isolation—Serializability (5)

These histories show non-serializable executions in which

one read sees an old value and the other sees a new value:

T1:

T2: A.credit

A.readstart

start

B.read

B.debit

commit

commit

T1:

T2: A.credit

A.readstart

start

B.read

B.debit

commit

commit

In general, “cycles” are caused by three kinds of problem:

➤ Lost updates (e.g. by another transaction overwriting

them before they are committed)

➤ Dirty reads (e.g. of updates before they are committed)

➤ Unrepeatable reads (e.g. before an update by another

transaction overwrites it)

12

Isolation and strict isolation

Here we’re interested in avoiding all three kinds of problem

so that committed transactions built from simple read and

update operations satisfy serializable execution.

We can distinguish between enforcing:

➤ Strict isolation: actually ensure that transactions are

isolated during their execution—prohibit all three problems.

➤ Non-strict isolation: ensure that a transaction was

isolated before it’s allowed to commit.

Non-strict isolation may permit more concurrency but can

lead to delays on commit (e.g. a transaction that

performed a dirty read cannot commit until the writer has)

and cascading aborts (if the writer actually aborts).

➤ NB: in some situations weaker guarantees are accepted for

higher concurrency.

· In systems using locks to enforce isolation: so long as

all transactions avoid lost updates, the decision to avoid

dirty and unrepeatable reads can be made on a

per-transaction basis.

13

Exercises

1. Define the ACID properties for transactions using a simple

example (such as transfers between a number of bank

accounts) as illustration. For each property, give a possible

(incorrect) execution which violates it.

2. Earlier it was claimed that there are 6 ways in which

execution can proceed but only 4 were presented. Illustrate

the remaining 2 possible executions and construct history

graphs for them.

3. If Java were to support a transaction keyword then its

semantics would need to be defined carefully. Describe how

it could behave when the transactional code:

(i) accesses local variables;

(ii) accesses fields;

(iii) throws exceptions;

(iv) makes method calls;

(v) uses mutexes and condition variables; and

(vi) creates threads.

You should assume that it is for multi-threaded use on a

single computer, rather than needing to support RMI or

other kinds of external communication.

14

Lecture 19: Enforcing isolation

Previous lecture

➤ Problems of compound operations

➤ ACID properties for transactions

➤ Serializability

Overview of this lecture

➤ Implementing isolation

➤ Two-phase locking

➤ Timestamp ordering

➤ Optimistic concurrency control

1

Isolation—two-phase locking (1)

We will now look at some mechanisms for ensuring that

transactions are executed in a serializable manner while

allowing more concurrency than an actual serial execution

would achieve.

In two-phase locking (2PL) each transaction is divided

into:

➤ a phase of acquiring locks; and

➤ a phase of releasing locks.

Locks must exclude other operations that might conflict

with those to be performed by the lock holder.

Operations can be performed during both phases so long

as the appropriate locks are held.

Simple mutual exclusion locks might suffice but could limit

the degree of concurrency. In the example we could use a

MRSW lock, held in read mode for getBalance() and in

write mode for credit() and debit().

2

Isolation—two-phase locking (2)

How does the system know when (and how) to acquire and

release locks if transactions are defined in the form:

1 transaction {

2 if (server.getBalance(src) >= amount) {

3 server.credit(dest, amount);

4 server.debit (src, amount);

5 return true;

6 } else

7 return false;

8 }

➤ Could require explicit invocations by the programmer, e.g.

expose lock() and unlock() operations on the server:

· acquire a read lock on src before 2, release if the else

clause is taken;

· upgrade to a write lock on src before 3;

· acquire a write lock on dest before 4;

· release the lock on src any time after acquiring both

locks; and

· release the lock on dest after 4.

3

Isolation—two-phase locking (3)

How well would this form of two-phase locking work?

Advantages

➤ Ensures serializable execution if implemented correctly.

➤ Allows arbitrary application-specific knowledge to be

exploited, e.g. using MRSW for increased concurrency over

mutual exclusion locks.

➤ Allowing other transactions to access objects as soon as

they have been unlocked increases concurrency.

Disadvantages

➤ Complexity of programming (e.g. 2PL ⇒ MRSW needs an

upgrade operation here).

➤ Would be nice to provide startTransaction and

endTransaction rather than individual lock operations.

➤ Risk of deadlock.

➤ If Tb locks an object just released by Ta then isolation

requires that:

· Tb cannot commit until Ta has done so; and

· Tb must abort if Ta does (a cascading abort).

Some of these problems can be addressed by Strict 2PL,

in which all locks are held until commit/abort:

transactions never see partial updates made by others.

4

Isolation—timestamp ordering (1)

Timestamp ordering (TSO) is another mechanism to

enforce isolation.

➤ Each transaction has a timestamp—e.g. of its start time.

These must be subject to a total ordering.

➤ The ordering between these timestamps will give a

serializable order for the transactions.

➤ If Ta and Tb each access some object then they must do

so according to the ordering of their timestamps.

Basic implementation

➤ Augment each object with a field holding the timestamp of

the transaction that most recently invoked an operation on

it.

➤ Check the object’s timestamp against the transaction’s

each time an operation is invoked.

· The operation is allowed if the transaction’s timestamp

is the later of the two.

· The operation is rejected as too late if the transaction’s

timestamp is earlier.

5

Isolation—timestamp ordering (2)

One serializable order is achieved: that of the timestamps

of the transactions, e.g.

T1,1:startTransaction T2,1:startTransaction

T1,2:server.getBalance(A) T2,2:server.credit(A,100)

T1,3:server.getBalance(B) T2,3:server.debit (B,100)

➤ T1,1 executes → timestamp 17

➤ T1,2 executes: set A:17,read

➤ T2,1 executes → timestamp 42

➤ T2,2 executes—this is OK (later timestamp): set

A:42,credit

➤ T2,3 executes: set B:42,debit

➤ T1,3 attempted: too late—17 earlier than 42 and read

conflicts with credit

In this case both transactions could have committed if

T1,3 had been executed before T2,3.

6

Isolation—timestamp ordering (3)

Advantages

➤ The decision of whether to admit a particular operation is

based on information local to the object.

➤ Simple to implement—e.g. by interposing checks on each

invocation at the server (contrast with non-strict 2PL).

➤ Avoiding locking might increase concurrency.

➤ Deadlock is not possible.

Disadvantages

➤ Needs a roll-back mechanism.

➤ Cascading aborts are possible—e.g. if T1,2 had updated A

then it would need to be undone and T2 would have to

abort because it might have been influenced by T1.

· could delay T2,2 until T1 either commits or aborts (still

avoiding deadlock).

➤ Serializable executions might be rejected if they do not

agree with the transactions’ timestamps (e.g. executing T2

in its entirety, then T1.

Generally: the low overheads and simplicity make TSO

good when conflicts are rare.

7

Isolation—OCC (1)

Optimistic Concurrency Control (OCC) is the third kind

of mechanism we will look at in our survey of means to

enforce isolation.

➤ Optimistic schemes assume that concurrent transactions

rarely conflict.

➤ Rather than ensuring isolation during execution a

transaction proceeds directly and serializability is checked

at commit-time.

➤ Assuming this check usually succeeds (and is itself fast)

then OCC will perform well.

➤ But, if the check often fails then performance might be

poor because the work done executing the transaction is

wasted.

For instance, consider implementing a shared counter using

atomic compare and swap:

do {

old_val = counter;

new_val = counter + 1;

} while (CAS(&counter, old_val -> new_val));

8

Isolation—OCC (2)

More generally, a transaction proceeds by taking shadow

copies of each object it uses (when it accesses it for the

first time). It works on these shadows so changes remain

local—isolated from other transactions.

Upon commit it must:

➤ Validate that the shadows were consistent...

➤ ...and that no other transaction has committed an

operation on an object which conflicts with the one

intended by this transaction.

➤ If OK then commit the updates to the persistent objects,

in the same transaction-order at every object.

➤ If not OK then abort: discard the shadows and retry.

Until commit, updates are made locally. Abort is easy.

There is no need for a roll-back mechanism.

No cascading aborts or deadlock.

But conflicts force transactions to retry.

9

Isolation—OCC (3)

➤ The first step avoids unrepeatable reads, e.g. T2 has seen

T1’s update to B but has not seen T1’s update to A:

T1:

T2:

Object A Object B

Validate −> OK

Validate

➤ The second step avoids lost updates, e.g. T1 updates A

and B, which T2 would overwrite if it was accepted:

T1:

T2:

Object A Object B

Validate

Validate −> OK

10

Implementing validation (1)

Validation is the complex part of OCC. As usual there are

trade-offs between the implementation complexity,

generality, and likelihood that a transaction must abort.

We will consider a validation scheme using:

➤ a single-threaded validator

➤ the usual distinction between conflicting and commutative

operations.

Transactions are assigned timestamps when they pass

validation, defining the order in which the transactions

have been serialized. We will assign timestamps when

validation starts and then either

➤ confirm during validation that this gives a serializable

order; or

➤ discover that it does not and abort the transaction.

Elaborate schemes are probably unnecessary: OCC assumes

transactions do not usually conflict.

11

Implementing validation (2)

The validator maintains a list of transactions that it has

accepted:

Validated Validation Objects Updates

transaction timestamp updated written back

T1 10 A, B, C Yes

T2 11 D Yes

T3 12 A, E No

➤ Once a transaction passes validation, it can proceed to

write its updates back to the shared objects.

➤ Then the ‘written back’ flag can be set for the

corresponding row.

Each object records the timestamp of the most recent

transaction to update it:

Object Timestamp

A 12

B 10

C 10

D 11

E 9

➤ In this case T3 is still writing back its updates: it has done

A but not yet reached E.

12

Implementing validation (3)

Consider T4 which updates B and E. Before it starts:

➤ Record the timestamp of the most recently validated,

fully-written-back transaction—in this case 11. This will be

T4’s start time.

When T4 accesses any object for the first time:

➤ Take a shadow copy of the object’s current state.

➤ Record the timestamp seen (e.g. 10 for B, and 9 for E).

Validation phase 1:

➤ Compare each shadow’s timestamp against the start time:

· If shadow is earlier/equal: part of a consistent snapshot

at the start time (B, E both OK here).

· If shadow is later: it might have seen a subsequent

update not seen by other shadows.

Validation phase 2:

➤ Compare the transaction T4 against each entry in the list

after its start time:

· No problem if they do not conflict.

· Abort T4 if a conflict is found (with T3 on E in this

case).

13

Isolation—recap

We have seen three schemes:

1. 2PL uses explicit locking to prevent concurrent

transactions performing conflicting operations. Strict 2PL

enforces strict isolation and avoids cascading aborts. Both

schemes are prone to deadlocking.

· Use when contention is likely and deadlock is avoidable.

Use strict 2PL if transactions are short or cascading

aborts are problematic.

2. TSO assigns transactions to a serial order at the time they

start. Can be modified to enforce strict isolation. Does not

deadlock but serializable executions might be rejected.

· Simple and effective when conflicts are rare. Decisions

are made local to each object: well-suited for

distributed systems.

3. OCC allows transactions to proceed in parallel on shadow

objects, deferring checks until they try to commit.

· Good when contention is rare. Validator might allow

more flexibility than TSO.

14

Exercises (1)

1. A system is to support abortable transactions that operate

on a data structure held only in main memory.

(a) Define and distinguish the properties of isolation and strict

isolation.

(b) Describe strict two-phase locking (S-2PL) and how it

enforces strict isolation.

(c) What impact would be made by changing from S-2PL to

ordinary 2PL?

You should say what the consequences are (i) during a

transaction’s execution; (ii) when a transaction attempts

to commit; and (iii) when a transaction aborts.

2. You discover that a system does not perform as well as

intended using S-2PL (measured in terms of the mean

number of transactions that commit each second).

Suggest why this might be in the following situations and

describe an enhancement or alternative mechanism for

concurrency control for each:

(a) The workload generates frequent contention for locks. The

commit rate sometimes drops to (and then remains at)

zero.

(b) Some transactions update several objects, then perform

private computation for a long period of time before

making one final update.

(c) Contention is extremely rare.

15

Exercises (2)

3. A system is using S-2PL to ensure the serializable

execution of a group of transactions. Suppose that a new

kind of transaction is to be supported which is tolerant to

dirty reads and to unrepeatable reads.

(a) Describe how the new transaction could proceed, in terms

of when it must acquire and release locks on the objects

from which it (i) reads; and (ii) updates.

(b) Does supporting this new kind of transaction have any

impact on the S-2PL algorithm used by the existing ones?

16

Lecture 20: Crash recovery and logging

Previous lecture

➤ Enforcing isolation

➤ Two-phase locking

➤ Timestamp ordering

➤ Optimistic concurrency control

Overview of this lecture

➤ Logging

➤ Crash recovery

➤ Checkpoints

1

Persistent storage

We assume a fail-stop model of crashes in which

➤ the contents of main memory (and above in the memory

hierarchy) is lost; and

➤ non-volatile storage is preserved (e.g. data written to disk).

If we want the state of an object to be preserved across a

machine crash then we must either

➤ ensure that sufficient replicas exist on different machines

that the risk of losing all of them simultaneously is

tolerable (Part II—Distributed Systems); or

➤ ensure that enough information is written to non-volatile

storage in order to recover the state after a restart.

Can we just write object state to disk before every

commit? (e.g. invoking flush() on any kind of Java

OutputStream)

➤ No, not directly: the failure might occur part-way through

the disk write (particularly for large amounts of data). We

would end up with inconsistent (corrupted) data on the

disk.

2

Persistent storage—logging (1)

We could split the update into stages.

1. Write details of the proposed update to a write-ahead

log—e.g. in a simple case giving the old and new values of

the data, or giving a list of smaller updates as a set of

(address,old,new) tuples.

Log

1: 65 −> 45
2: 6C −> 4C
3: 6C −> 4C
4: 6F −> 4F

6543210

48 65 6C 6C 6F 21 00

2. Proceed through the log making the updates.
Log

1: 65 −> 45
2: 6C −> 4C
3: 6C −> 4C
4: 6F −> 4F

6543210

48 6C 6F 21 0045 4C

Crash during phase 1 ⇒ no updates performed.

Crash during phase 2 ⇒ re-check log, either undo (so no

change) or redo (so all changes made).

3

Persistent storage—logging (2)

More generally we can record details of multiple

transactions in the log by associating each with a

transaction ID. Complete records, held in an append-only

log, are of the form:

➤ (transaction,operation, old, new); or

➤ (transaction,start/abort/commit).

T2, z.add(2),40,42
T2, START
T1, START
T0, COMMIT
T0, add(1),1,2
T0, START

Object values

C
ac

h
e

Log entries

T2, ABORT
T2, y.add(10),17,27
T1, x.add(1),2,3

x = 3

y = 17

N
ew

er lo
g

Object values

x = 3

y = 17

z = 42

O
ld

er lo
g

D
is

k

4

Persistent storage—logging (3)

We can cache values in memory and use the log for

recovery.

➤ A portion of the log may also be held in volatile storage,

but records for a transaction must be written to

non-volatile storage before that transaction commits.

➤ Values can be written out lazily.

This allows a basic recovery scheme by processing log

entries in turn (oldest to youngest).

➤ Note the need for an idempotent record of an

update—e.g. for add we keep the new and old values as

well as the difference.

➤ The old value lets us undo a transaction that is either

logged as aborted...

➤ ...or for which the log stops before we know its outcome.

The naive recovery algorithm can be inefficient.

5

Persistent storage—logging (4)

A checkpoint mechanism can be used, e.g. every x

seconds or every y log records. For each checkpoint:

➤ force log records out to non-volatile storage;

➤ write a special checkpoint record that identifies the

then-active transactions; and

➤ force cached updates out to non-volatile storage.

Restart file

Checkpoint:

T2, z.add(2),40,42
T2, START
T1, START

T1,T2 active

Object values

C
ac

h
e

Log entries

T2, ABORT
T2, y.add(10),17,27
T1, x.add(1),2,3

x = 3

y = 17

N
ew

er lo
g

Object values

x = 3

y = 17

z = 42

O
ld

er lo
g

D
is

k

6

Persistent storage—logging (5)

–

Checkpoint Faliure
time

T
ra

n
sa

ct
io

n
s

R

S

Q

P

T

P already committed before the checkpoint—any items

cached in volatile storage must have been flushed.

Q active at the checkpoint but subsequently committed—log

entries must have been flushed at commit: REDO

R active but not yet committed: UNDO

S not active but has committed: REDO

T not active, not yet committed: UNDO

7

Persistent storage—logging (6)

A general algorithm for recovery:

➤ The recovery manager keeps UNDO and REDO lists.

➤ Initialise UNDO with the set of transactions active at the

last checkpoint.

➤ REDO is initially empty.

➤ Search forwards from the (most recent) checkpoint record:

· Add transactions that start to the UNDO list.

· Move transactions that commit from the UNDO list to

the REDO list.

➤ Then work backwards through the log from the end to the

checkpoint record:

· UNDOing the effects of transactions on the UNDO list.

➤ Then work forwards through the log from the checkpoint

record:

· REDOing the effects of transactions in the REDO list.

8

Persistent storage—shadowing

An alternative to logging: create separate old and new

versions of the data structures being changed.
6543210

48 65 6C 6C 6F 21 00...

Old meta−data

An update starts by constructing a new ‘shadow’ version of

the data, possibly sharing unchanged components:
6543210

48 65 6C 6C 6F 21 00...

Old meta−data

48 65 6C 6C

7 9 A8

...

New meta−data

The change is committed by a single in-place update to a

location containing a pointer to the current version. This

last change must be guaranteed atomic by the system.

How can this be extended for persistent updates to

multiple objects?

9

Exercises

1. Consider the basic logging algorithm (without

checkpointing). Show how it enforces atomicity and

durability of committed transactions.

While it is not necessary to construct a formal proof, you

should be methodical and consider the different operations

that the system might perform (e.g. updating objects in

memory, starting and concluding transactions, transfers

between disk and the in-memory object cache, and writing

of log entries). Consider the effect of failure and recovery

after each one.

2. Suppose that you wish a (non-networked) computer game

to maintain a high-score table on disk. Is it necessary to

use any of the schemes presented here for persistent

storage? If so, then suggest which would be most

appropriate. If not then say why none is needed.

10

Lecture 21: Java 1.5.0—What’s new?

Previous lecture

➤ Logging

➤ Crash recovery

➤ Checkpoints

Overview of this lecture

➤ Generics

➤ Wildcards

➤ Bounded wildcards

➤ Generic methods

1

Generics

➤ Generics are new to JDK 1.5.

➤ Generics provide parametric polymorphism in Java.

➤ Generics have similar syntax to C++ templates and there

are similarities in semantics but also important differences.

· Similarities to/differences from C++ templates is not

examinable.

➤ There are resources on the web.

·

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

· Google for “Generics” and “Tutorial”.

➤ Generics are aimed (primarily) at fixing annoying

typing/casting problems with the java.util package

Collection classes.

➤ The java.util package has been re-developed to be

generics-aware.

2

Generics—why?

➤ The cast to Integer in this code snippet is typical of Java

code pre-1.5, and is annoying. The programmer knows

that the list contains Integers because (s)he put them

there. The type system is getting in the way (and adding

run-time overhead).

List listOfInts = new LinkedList();

listOfInts.add(new Integer(42));

Integer i = (Integer) listOfInts.iterator().next();

➤ The problem is that the compiler can only guarantee that

the iterator’s next item will be an instance of

java.lang.Object so the cast is needed to perform a

run-time check on the type of the object returned by

next().

➤ Generics allow us to encode sufficient extra information in

the source code that the compiler can relax the

requirement for the programmer to cast to the subtype.

3

Generics—syntax (1)

List<Integer> gil = new LinkedList<Integer> ();

gil.add(new Integer(42));

Integer i = gil.iterator().next(); // whohoo!

➤ The use of triangle-brackets (< and >) provide the

parameters for the generic class LinkedList.

· They are the names of types, java.lang.Integer in

this case.

· Think of them as providing a special version of List

that is specific to Integers.

➤ Java permits there to be several parameters, not just one.

➤ The parameter types cannot be primitive types like int or

boolean.

➤ The parameter types cannot be arrays either.

➤ The data type LinkedList<Integer> is a type in its own

right.

4

Generics—syntax (2)

➤ How do we write parametically polymorphic definitions?

public interface List<T> {

void add(T item);

Iterator<T> iterator();

}

public interface Iterator<S> {

S next();

boolean hasNext();

}

➤ The formal type parameters in triangle-brackets (T and

S) provide the parameters.

➤ We can use T and S as if they were the names of declared

types.

· add swallows arguments of type T (or a subclass).

· next returns object references to things of type S.

· List uses T to specialise another generic type—making

a flavour of Iterator that operates on things of (base)

type T.

· There are important restrictions on how we can use the

formal type parameters.

➤ “Ordinary” methods are permitted too—hasNext().

5

Generics—syntax (3)

What about classes, inheritance, implementing

interfaces...?

class MySubClass<T>

extends MySuperClass<T>

implements I1<T>, I2<String,T>

{

...

}

➤ Single-inheritance is permitted from generic and

non-generic superclasses.

· No multiple-inheritance.

➤ It is permitted to use MySubClass’s formal type parameter

in the name of the class that it extends and in the names

of interfaces it implements.

· They are the same T.

➤ Thinking of T as being text-substituted for (say) Integer is

naive.

➤ Java compiles a generic class once, into a single class file.

· It does not “have copies” of it for T=Integer, T=String.

➤ When we invoke a method in Java, the formal arguments

are replaced by the actual arguments for the call. Similarly,

when we instantiate a parameterised type, the formal type

parameters are replaced by the actual type parameters.

➤ This is unlike C++ templates.

6

Generics—Naming conventions

➤ The names of type parameters are usually single

upper-case letters.

➤ They often abbreviate words like Type or Element.

➤ Short, capitalised names make it easier to identify the

generic type parameters in a body of code.

➤ The java.util package uses E (for Element) in many of

the definitions of the Collection classes/interfaces.

7

How are generic types related?

➤ If I have a class A and a class B that extends A, how are

List<A> and List related?

List<String> ls = new ArrayList<String>();

List<Object> lo = ls; // error!

➤ This gives a compile-time error.

➤ In general, List<A> is not a supertype of List (and

List is not a subtype of List<A>).

If the generic types were related, this would be valid:

lo.add(new Object());

String s = ls.get(0);

➤ We have turned an Object into a String by aliasing the

object references ls and lo. This is not permitted in Java

1.5.

➤ Not what you intuitively expect.

8

Wildcards (1)

Because Collection<Object> is not the superclass of

other Collections, we cannot write a method that is able

to operate on a collection of “anythings”. The type of the

argument supplied to the method would not match that

declared type of the parameter.

➤ Instead, we can use wildcards:

void printThemAll(Collection<?> c) {

for (Object e : c) System.out.println(e);

}

➤ The type of argument c is pronounced “collection of

unknowns”.

➤ But, we cannot insert into c because the type of the

collection is unknown.

void insert(Collection<?> c) {

c.add(new Object());

}

➤ This is an error at compile-time.

9

Wildcards (2)

➤ There is a new use of the extends keyword:

class A<? extends T, List<T>> {...}

➤ And a new use of the super keyword:

class A<T, List<? super T>> {...}

➤ These are known as bounded wildcard parameters.

10

Generic methods

➤ The solution to the problem of not being able to insert into

collections of unknowns is to use generic methods.

interface Collection<E> {

public <T>

boolean containsAll(Collection<T> c);

public <T extends E>

boolean addAll(Collection<T> c);

/* this is also valid...

public <T, S extends T>

void copy(List<T> dest, List<S> src);

*/

}

11

Erasures

This code is valid and will compile...

public Integer canYouBelieveIt(Float f) {

List<Integer> li = new LinkedList<Integer>();

List nongenericli = li;

nongenericli.add(f);

return li.iterator().next();

}

➤ The call to add() generates an compile-time unchecked

warning.

➤ And if we execute the code, it fails precisely when an

argument of the wrong type is encountered.

· We were warned.

➤ This code demonstrates an erasure of generic type

information.

➤ The type safety of the Java Virtual Machine is never at

risk, even if the code compiles with unchecked warnings.

12

Generic classes are shared

Because a generic class is compiled only once and multiple

type-specialised versions are created dynamically at

runtime, this code prints true rather than doing as many

people expect—printing false.

List<Float> lf = new LinkedList<Float>();

List<Integer> li = new LinkedList<Integer>();

System.out.println(lf.getClass() == li.getClass());

➤ For the same reason, static fields and methods of a

generic class are also shared between all instances of all

type-specialised versions.

➤ Thus it is not permitted to refer to the formal type

parameters in a static method or initializer, or in the

definition or initializer of a static variable.

➤ And the keyword synchronized will disallow far more

concurrent activity than you expected!

13

Casts

➤ We can write casts that the compiler cannot check at

compile-time. A run-time check is used.

Collection<String> css =

(Collection<String>) c_something;

This code compiles with a compile-time unchecked

warning.

➤ instanceof is not valid with generic types:

Collection cs = new LinkedList<Float>();

// The following line is illegal:

if (cs instanceof Collection<String>) {...}

14

Generics and arrays

➤ In Java 1.5 it is illegal to attempt to declare an array

whose element type is a type variable or a parameterised

type unless it is an unbounded wildcard type.

➤ This is necessary to ensure that we never get failures at

runtime that were neither

· caught at compile-time and rejected; nor

· noticed at compile-time as unchecked warnings.

➤ So this is valid Java...

List<?>[] l = new LinkedList<?>[10];

Object o = l;

Object[] oa = (Object []) o;

List<Float> lf = new LinkedList<Float>();

lf.add(new Float(1.414));

oa[1] = lf;

String s = (String) l[1].get(0);

... although it does give a run-time error. At least the cast

is explicit.

15

Exercises

1. Building is the superclass of House and Shop, and

Bungalow is a subclass of House. Create methods void

addItem(...) and String printOut(...) that can be

used in conjunction with the following code to produce

sensible textual representations of the lists.

Shop s = new Shop();

Bungalow b = new Bungalow();

Collection<Building> street =

new LinkedList<Building>();

Collection<House> houses =

new LinkedList<House>();

addItem(s, street);

addItem(b, street);

addItem(b, houses);

System.out.println(printOut(street));

System.out.println(printOut(houses));

16

Lecture 22: Further Generics

Previous lecture

➤ Parametrically polymorphic interfaces and classes

➤ Wildcards, bounded wildcards

➤ Type erasures

➤ Generic methods

Overview of this lecture

➤ Arrays and Generics

➤ Examples

1

One Cell Generic Buffer (1)

➤ The earlier definition of a one cell buffer stored Objects

and the programmer using the buffer was required to cast

the value obtained when an item was removed from the

cell. Can we fix this using Generics?

public class Buffer<T> {

private T item;

private volatile boolean full;

public synchronized void insert(T item)

throws InterruptedException {

while (full) wait();

this.item=item;

full=true;

notifyAll();

}

public synchronized T remove()

throws InterruptedException {

while (!full) wait();

full=false;

notifyAll();

return item;

}

}

2

One Cell Generic Buffer (2)

➤ So all we had to do was to insert <T> after the name of the

class and replace Object with T in the body of the class

definition.

➤ But have we done a good job?

➤ Consider this program...

class BufTest {

public static void main(String [] args)

throws Throwable {

Buffer<Number> b = new Buffer<Number>();

b.insert(new Integer(42));

Integer i = b.remove();

}

}

➤ The call to insert works because Integer extends

Number so I can supply an Integer argument where a

Number is required. These are the normal rules of Java’s

object oriented inheritance system.

➤ The call to remove gives a compile-time error:

BufTest.java:5: incompatible types

found : java.lang.Number

required: java.lang.Integer

Integer i = b.remove();

^

1 error

3

One Cell Generic Buffer (3)

➤ OK, so what if I change the definition of remove to this...

public synchronized

<S extends T> S remove()

throws InterruptedException {

while (!full) wait();

full=false;

notifyAll();

return (S)item;

}

➤ At least it compiles, and it works too:

$ java BufTest

Removed 42

➤ But what about the compile-time unchecked warning?

Buffer.java:16: warning: [unchecked]

unchecked cast

found : T

required: S

return (S)item;

^

1 warning

➤ Exercise: suggest another way of going about this.

4

One Cell Generic Buffer (4)

➤ It is very tempting to write

public synchronized

<S extends T> void insert(S item) ...

but there is no point because the O-O rules already allow

this.

➤ Also note that it is illegal to write a method with this

signature:

class Foo<T> {

...

public <S super T> S doStuff();

}

➤ This is a compile-time error:

public <S super T> S doStuff() {

^

Foo.java:2: illegal start of type

➤ The compiler doesn’t like not knowing about the return

type of the method!

5

Key-Value Store (1)

Suppose I want to store key-value pairs and I want a

generic definition that will work for keys of any type and

values of any type.

➤ The keys have type T.

➤ The values have type S.

I can define a generic interface, describing three supported

operations:

interface KeyValueStore<T,S> {

public void add(...);

/* Needs a key and a value */

public S get(...);

/* Needs a key, returns a value */

public S remove(...);

/* Needs a key, returns a value */

}

➤ How do I decide what goes in place of the . . . s?

6

Key-Value Store (2)

➤ The Add method needs a key of type T and a value of type

S so this would work:

public void add(T key, S value);

➤ I can define get and remove similarly:

public S get(T key);

public S remove(T key);

➤ They keys don’t have to be of type T, any derived type of

T is OK. Similarly for the values except that when values

are read out with get they will be cast back up to the base

type S.

➤ So can we implement this interface...?

7

Key-Value Store (3a)

This first attempt is not valid Java...

class KeyValueStoreImpl<T,S>

implements KeyValueStore<T,S> {

private static final int SIZE=10;

private T [] keys;

private S [] values;

private int nextslot=0;

KeyValueStoreImpl() {

keys = new T[SIZE];

values = new S[SIZE];

}

public void add(T key,S value) {

if (nextslot == SIZE-1) return;

keys[nextslot] = key;

values[nextslot] = value;

++nextslot;

}

/* code continues overleaf */

8

Key-Value Store (3b)

public S get(T key) {

for (int i=0;i<nextslot;++i)

if (keys[i].equals(key))

return values[i];

return null;

}

public S remove(T key) {

S ret = null;

for (int i=0;i<nextslot;++i)

if (keys[i].equals(key)) {

ret = values[i];

if (i==nextslot-1) {

keys[i]=null;

values[i]=null;

} else {

nextslot--;

keys[i]=keys[nextslot];

values[i]=values[nextslot];

}

}

return ret;

}

}

9

Key-Value Store (4)

➤ Good thing: no casts!

➤ Bad thing: doesn’t compile :-(

➤ It is not valid Java to create an array whose element type

is parametrically polymorphic unless the parameter is an

unbound wildcard.

➤ These two lines ARE valid (because they don’t create any

arrays, they only define variables):

private T [] keys;

private S [] values;

➤ but these two are invalid:

keys = new T[SIZE];

values = new S[SIZE];

➤ The compile-time error is:

$ javac KeyValueStore.java KeyValueStoreImpl.java

KeyValueStoreImpl.java:10: generic array creation

keys = new T[SIZE];

^

KeyValueStoreImpl.java:11: generic array creation

values = new S[SIZE];

^

2 errors

10

Key-Value Store (5a)

Does it help to know that I want the keys to be

descendants of java.lang.Number?

class KeyValueStoreImpl<T extends Number,S>

implements KeyValueStore<T,S> {

private static final int SIZE=10;

private Number[] keys;

private Object[] values;

private int nextslot=0;

KeyValueStoreImpl() {

keys = new Number[SIZE];

values = new Object[SIZE];

}

public final void add(T key,S value) {

if (nextslot == SIZE-1) return;

keys[nextslot] = key;

values[nextslot] = value;

++nextslot;

}

/* code continues overleaf */

11

Key-Value Store (5b)

public final S get(T key) {

for (int i=0;i<nextslot;++i)

if (keys[i].equals(key))

return (S)values[i];

return null;

}

public final S remove(T key) {

S ret = null;

for (int i=0;i<nextslot;++i)

if (keys[i].equals(key)) {

ret = (S)values[i];

if (i==nextslot-1) {

keys[i]=null;

values[i]=null;

} else {

nextslot--;

keys[i]=keys[nextslot];

values[i]=values[nextslot];

}

}

return ret;

}

}

12

Key-Value Store (6)

At least it works...

class KVSTest {

public static void main(String [] args) {

KeyValueStoreImpl<Number,String> kvsi

= new KeyValueStoreImpl<Number,String>();

kvsi.add(new Integer(1),"one");

kvsi.add(new Integer(2),"two");

kvsi.add(new Integer(3),"three");

for (int i=0;i<4;++i)

System.out.println("Key "+i+" => "+kvsi.get(i));

kvsi.remove(2);

for (int i=0;i<4;++i)

System.out.println("Key "+i+" => "+kvsi.get(i));

}

}

/* Runs to give...

Key 0 => null

Key 1 => one

Key 2 => two

Key 3 => three

Key 0 => null

Key 1 => one

Key 2 => null

Key 3 => three */

13

Key-Value Store (7)

➤ Using java.util helps...

import java.util.ArrayList;

class KeyValueStoreImpl<T,S>

implements KeyValueStore<T,S> {

private ArrayList<T> keys;

private ArrayList<S> values;

KeyValueStoreImpl() {

keys = new ArrayList<T>();

values = new ArrayList<S>();

}

public void add(T key,S value) {

keys.add(key); values.add(value); }

public S get(T key) {

int i = keys.indexOf(key);

if (i>-1) return values.get(i);

return null; }

public S remove(T key) {

int i = keys.indexOf(key);

if (i==-1) return null;

S ret = values.get(i);

keys.remove(i);

values.remove(i);

return ret; }

}

14

Class literals

➤ java.lang.Class is now a generics-aware class.

➤ Class<T> represents the type T

➤ Class<T>.newInstance() returns an object reference to

a T. The non-generic version returned an Object.

➤ We can use this and the newInstance() method defined

on Class<T> as follows:

public static <T> Collection<T>

convertTo(Class<T> c,float [] n) {

Collection<T> result = new ArrayList<T>();

for (int i=0;i<n.length;++i) {

T t = c.newInstance(); /* no cast! */

/* But I do have to handle

InstantiationExceptions */

/* Set the fields of object t as necessary

to ’convertTo’ a T from float n[i]. Use

reflection to do this. */

result.add(t);

}

return result;

}

➤ This useful trick often resolves Generic Problems (tm).

15

Lecture 23: Part 5: The Real World

Previous section

➤ Transactions, ACID

➤ 2PL/S-2PL, TSO, OCC

➤ Generics!

Overview of this section

➤ Software Testing

➤ Practical Software Engineering

1

Resources

➤ Lecture notes

➤ The Art of Software Testing by Glenford J. Myers, John

Wiley and Sons Ltd, 1967 (the seminal reference!)

➤ Software Engineering by Ian Sommerville (University of

Lancaster)

2

What is testing?

➤ The process of determining that errors are not present?

psychological issues

➤ The process of proving that something behaves as

intended?

impossible!

➤ The process of establishing confidence that it does what it

should?

...and doesn’t do what it shouldn’t!

➤ All wrong!

Testing is the process of executing a program with

the intent of finding errors

Myers

➤ What is a successful test?

➤ What makes a test unsuccessful?

3

Who does testing?

Not the person who wrote the code!

➤ If they have misunderstood the specification, that same

misunderstanding will not be picked up by testing.

➤ Programmer doesn’t want to pick holes in his/her own

work, and might get into trouble with the boss if lots of

bugs are found and the project drags on while they are

fixed.

➤ After spending so much time and energy constructing a

program, it is difficult to change mindset to start

deconstructing it.

➤ BUT, as bugs are found, the same programmer should do

the debugging.

Not the organisation who wrote the code!

➤ Economic disincentive to squeeze time spent testing.

➤ Difficult to measure/monitor how effectively the testing

staff are working and how much better the product has

become as a result of testing.

Computer-based testing

➤ Regression testing and other techniques (next lecture)

➤ Why trust a human?! Actually, we’re good at finding some

types of bug and hopeless at others.

4

Black Box testing (1)

➤ Also known as input/output testing and data-driven

testing

➤ Treat the item to be tested as a black box: do not examine

how it works internally or how it divides up its task

➤ Read the specification of what it should do

➤ Feed in all possible inputs and check that the outputs are

correct: exhaustive test pattern coverage

➤ Remember to test all the possible invalid inputs as well as

the valid inputs

Advantages

➤ In theory at least, you can get full coverage of the critical

cases

➤ Military-standard demonstration of correct functionality

Disadvantages

➤ Impossible, even for trivial programs

➤ Even harder(!) for stateful and concurrent systems: need

to consider all possible orderings of performing operations

and all concurrent execution traces

5

Black Box testing (2)

➤ Boundary-value analysis: check all the inputs patterns

where (one/all of) the inputs are close to their

minimum/maximum extremes

➤ Economics demand that we make assumptions to reduce

the number of test cases to a manageable quantity

➤ Can use broad, sweeping assumptions to increase yield of

bug discovery

➤ Can use narrow-domain assumptions to increase testing

accuracy

e.g. Consider testing an ML interpreter:

➤ confirm that all valid programs type-check and have

correct type

➤ confirm that all invalid programs are rejected

➤ !?!

➤ Get a summer student...

➤ Can we do better by “looking inside” the black box?

6

White Box testing (1)

➤ Also known as logic-driven testing

Examine the structure of the code

➤ functions

➤ if..then..else.. statements

Derive the control-flow graph

➤ Now check sufficient, well-chosen test patterns so as to

exercise every code path (or as many as possible/ feasible/

economic)

➤ Percentage design coverage or decision coverage is the

proportion of choice points that have seen both boolean

values in the test suite

➤ Condition coverage: have switch statements seen all their

possible values?

7

White Box testing (2)

Advantages

➤ Might get closer to full coverage than with black box

testing

➤ Takes advantage of the knowledge of the internals of the

program to avoid lots of pointlessly similar tests

Disadvantages

➤ The number of unique paths is vast, even for trivial

programs

➤ You are not verifying that the code conforms to the

specification!

➤ The bug might be that a path is missing

➤ Walking each code path does not confirm that the code

will flow that way in only the circumstances when it should

8

What is a Test Case?

➤ A list of all the inputs to the program

➤ The starting state

➤ Order in which inputs are applied

➤ Specification of concurrent activity

➤ Definition of the “correct” answer

➤ A common mistake is to specify the inputs, not calculate

the “correct” answer, and mark the test as passed if the

output “looks plausible”

➤ Failure to think means sloppy testing and a poor rate of

finding bugs

Estimate the probability of a test case revealing an

error

➤ how many code paths does it execute that have not been

exercised before?

➤ how many inputs does it change?

➤ does it correspond to a valid or invalid input?

➤ is it a “common case” for this program or an

exceptional/special case?

➤ etc.

Good test cases have high probabilities of revealing

errors

9

Code inspections (1)

Group exercise, typically for four people:

➤ the programmer

➤ the person who wrote the specification

➤ an experienced test engineer

➤ a moderator

➤ The moderator distributes copies of the code and

specification a few days in advance

➤ Group meets for 1–2 hours, moderator keeps the discussion

focussed and records details of bugs found

➤ The programmer reads the code, line by line, and the

others interrupt with (educated) questions, e.g. explain

why this can never divide by zero. A discussion occurs and

often a bug is found.

➤ The programmer often finds most bugs: there is a lot of

value simply in working thoughtfully through the code

➤ The code is checked against a checklist of “common bugs”

for this programming language / type of program / this

programmer’s coding style and way of thinking.

➤ The programmer debugs the code after the session

although approaches to fixing the code may be discussed

(and some lead to talk of special cases and the discovery of

further bugs)

10

Code inspections (2)

Caveats

➤ But typically only 150 lines/hour can be discussed

➤ And programmer must not feel threatened because it is

his/her code under the microscope

➤ And managers must not be able to access

sizeof(bug list) because that changes the goal of the

session and it ceases to be an effective way to find bugs

Other benefits

➤ Teach junior members to think critically and learn to test

their own code

➤ Discussion often allows experienced programmers to

comment on coding style, choice of algorithms, and

generally share their expertise.

11

Error Checklists

Common coding errors shared between many programming

languages

➤ Memory allocation / deallocation errors

➤ Variables used before being initialised

➤ Dereferencing the null pointer and dangling pointers

➤ Reading from memory with incorrect interpretation of bytes

➤ Off-by-one errors and < vs <= and > vs >=

➤ Type-system overruled by programmer

➤ Misunderstanding of rules of floating point

➤ Value outside of meaningful range (e.g. probability=1.3)

➤ Integer divisions

➤ Operator precedence and associativity properly understood

➤ Opened files/network connections closed or leaked?

➤ I/O Exceptions handled properly?

➤ Insane use of expressions with side-effects:

y = (0==new Foo(++x?y--:1))?--*++p>>out:

throw BadSQLStatement() && *z=9 && exit();

12

Walkthroughs

➤ Uninterrupted meeting of 1–2 hours for 3–5 people chosen

from the programmer, other experienced programmers,

experts in the use of this programming language, a new

programmer, the person who will maintain this program,

someone from the same programming team as the

programmer.

➤ Code listing and specification circulated in advance

➤ An experienced participant prepares a (small) number of

test cases covering a broad range of special cases

➤ Participants trace through the actions of the computer for

each test case and discuss whether the code is correct

➤ Again, debugging is done after the meeting by the original

programmer

13

Desk checking

➤ The old fashioned way to check code

➤ Can check your own code or that of another programmer

➤ Less effective than group-based error detection because

lack of competitive environment reduces incentive to find

bugs and dullens the mind

Sometimes score another person’s code out of 10 for

various qualities

➤ readability

➤ correctness

➤ usefully commented

➤ maintainable

➤ sensible interface offered?

➤ sensible algorithm used?

14

Lecture 24: More about The Real World

Previous lecture

➤ Software testing

➤ Black box testing

➤ White box testing

➤ Strategies for code review

Overview of this lecture

➤ Picking test cases

1

Statement coverage

➤ Pick test cases such that every statement in the code is

executed at least once

➤ Need to know about internals of the code: applies to

White Box testing

➤ Hopelessly inadequate: doesn’t test that the branches

switch on the outcomes of the correct tests

➤ Can often be done by exercising very few code paths:

many/most opportunities for bugs are not examined

➤ Too simplistic

➤ Extend to decision coverage...

2

Decision Coverage

➤ Make use of test cases chosen to cause every branch to

demonstrate both outcomes of false and true at least once

➤ Need to know about internals of the code: applies to

White Box testing

➤ Decision Coverage usually subsumes Statement Coverage

➤ But what about programs with no decisions?

➤ And functions with multiple entry points?

➤ Multi-way branches (e.g. switch blocks in Java)?

➤ Loops count as decision points: execute the body or not

WHILE (foo < bar) {doThings(stuff);}

3

Condition Coverage

➤ At every branch, each boolean variable should take on both

false and true values at least once in the test cases

➤ Need to know about internals of the code: applies to

White Box testing

➤ This picks up cases that are missed by decision coverage

➤ But it also fails to explore code paths that decision

coverage would have tested:

if (A & B) then ...

This could be tested using cases A=false, B=true and

A=true, B=false but neither will cause the then arm of

the conditional to be executed.

➤ An obvious fix is to use decision-condition coverage, which

requires sufficient test cases to explore all branches and all

assignments of boolean values to variables used in

conditions.

4

Multiple-condition Coverage

➤ Decision-condition coverage is vulnerable to exhibiting

insufficient testing when shortcut-evaluation is used on

boolean expressions.

Consider evaluating the boolean expression (A && B):

➤ The double & gives shortcut evaluation in Java (and

C/C++)

➤ If A is false, no test of the value of B is performed

➤ The situation of A being false is said to mask the condition

B

➤ Multiple-condition coverage requires that the test cases not

be weakened by shortcut evaluation: usually, this means

more test cases must be considered

➤ Need to know about internals of the code: applies to

White Box testing

5

Equivalence Partitioning (1)

➤ Lets consider test case selection strategies for Black Box

testing

➤ Last lecture we observed that a good test case is one with

a good probability of revealing an error

➤ Equivalence partitioning uses two additional heuristics to

select good test cases:

1 good test cases reduce (by more than 1) the number of

other test cases that must be used to achieve some

predefined level of required testing

2 good test cases subsume a large set of other possible test

cases (i.e. they give information about patterns of inputs

in general, not only about their own particular set of input

values)

➤ Heuristic 1 aims to give rapid coverage of all the possible

input considerations by arranging for each test case to be

as different as possible from one another.

➤ Heuristic 2 aims to partition the domain of input values

into equivalence classes such that, in any class, if one test

case reveals an error than any other test case would reveal

the same error, and symmetrically if one test case finds no

error then no other test case in the same class would find

one either.

6

Equivalence Partitioning (2)

➤ Test cases generated by the second heuristic are known as

interesting tests, i.e. they reveal information about the

distribution of errors in the program being tested. These

test cases are also those sought by cryptographers

attempting to defeat an encryption system: interesting

cases reveal information about the key or keystream.

➤ Two problems remain:

1 How do I define the equivalence classes?

2 How do I select a test case for each class?

7

Defining equivalence classes

➤ Take the specification document and split each

requirement into (at least) two groups: valid equivalence

classes and invalid equivalence classes.

1 If the specification requires some behaviour for a range of

inputs (e.g. “the date should fall between 06-OCT-2005

and 30-NOV-2005 inclusive (Michaelmas Term lectures)”)

then generate one valid equivalence class for dates within

that range and two invalid equivalence classes for dates

before and after the valid range.

2 If the specification defines a number of instances that are

permitted (e.g. “lectures shall be delivered by 1 to 3

lecturers”) then generate one valid equivalence class and

two for invalid inputs (no lecturers or greater than 3

lecturers).

3 If the program might behave differently for different values

in one of its inputs, distinguish equivalent classes for each

case (e.g. “a network socket may be of type SOCK DGRAM,

SOCK STREAM, or SOCK RAW”).

4 Translate requirement phrases like (“x MUST BE a letter”)

into two equivalence classes: valid and invalid inputs.

➤ Read through the list of equivalence classes. Split any

where there is reason to believe that the program might

not handle identically all of the inputs in the class.

8

Defining test cases

1 Initialise two lists, VEC and IEC, to contain the valid and

invalid equivalence classes respectively.

2 While VEC is non-empty, write a new test case that covers

as many as possible of the equivalence classes still in VEC

and remove from VEC any that are covered.

3 While IEC is non-empty, write a test case that covers one

(and only one) of the invalid equivalence classes still in IEC

and remove from IEC the class that is covered.

➤ Invalid test cases are handled separately because input

validators often mask each other:

input x, "Enter a number between 1 and 100: ";

input y, "Print FACTORS or PRIME? : ";

if (x<1 || x>100) {

print "Invalid number!";

end;

}

/* Forget to verify y */

runProgram(x,y);

9

Boundary Value Analysis

➤ An extension to equivalence partitioning

➤ Rather than picking test cases arbitrarily from each valid

and invalid equivalence class, pick those corresponding to

the extremities of the class (e.g. x=1 or x=100 in the

previous program).

➤ Do this for both the equivalence classes of inputs and

those seen on the outputs.

➤ A problem common to equivalence partitioning and

boundary value analysis is that combinations of inputs are

not considered.

➤ e.g. what if the number x is 100 AND y is set to FACTORS

at the same time? Does the program run out of memory?

➤ Could apply equivalence partitioning on condition-pairs,

triples, and so on but the number of cases gets to be far

too big.

➤ Cause-Effect Graphing can be used instead.

10

Error Guessing

➤ A combination of intuition and experience can be used to

provide informal testing

➤ Guess what errors might be present and write

corresponding test cases

➤ Guesses you might make:

0 the binary tree contains duplicate values

1 all the numbers in the list are the same

2 all the numbers are integers except one float

3 the list is empty

4 the list is cyclic

5 the program will wait forever if a DNS lookup stalls

6 the window will flicker if it is moved while being repainted

7 the program will crash if you remove the floppy disk

...

11

Unit testing

➤ Extreme Programming idea

➤ Perform reasonably heavy testing on separate modules of

code before bringing them together

➤ See JUnitTest in Java (Eclipse)

➤ Top-down and bottom-up testing strategies

Tests might be automated: regression testing

➤ write test programs for each module

➤ test program’s output is true for success and false otherwise

➤ accumulate thousands of test programs in a database

➤ overnight, use spare CPU cycles to recompile all the test

programs and re-execute them to make sure the code

hasn’t been broken during the day

➤ email results (including the “all-ok” result) to the

developers

➤ remember to read the email before deleting it!

12

Other testing issues

➤ Facility testing

➤ Volume testing

➤ Stress testing

➤ Usability testing

➤ Security testing

➤ Performance testing

➤ Storage testing

➤ Confirguration testing

➤ Compatibility testing

➤ Installability testing

➤ Reliability testing

➤ Recovery testing

➤ Serviceability testing

➤ Documentation testing

➤ Procedure testing

➤ Acceptance testing

➤ And think about testing distributed applications!

13

The Last Lecture

➤ Examples

➤ Past Tripos Questions

➤ Email jkf21@cam.ac.uk if there are any specific Tripos

questions or exercises from these notes that you would like

me to go over. First come, first served!

14

