Advanced Graphics

i Advanced Graphics 2006

= Subdivision curves & surfaces

Beware: some slides contain multi-layer
animations, which do not print well.
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i Modelling smooth 3D surfaces

= Where are smooth 3D surfaces used?

= Computer Aided Design (CAD)
= First developed for cars & aeroplanes
= Adopted for other manufactured objects

= Computer animation
= What mechanisms exist?
= Bézier patches
= NURBS surfaces
= Subdivision surfaces

i Desirable features

= Need to handle any surface

= Need guaranteed continuity

= Cl-continuity
= Smooth surfaces

= C2-continuity
= Smoothly reflecting surfaces
= Required for some aerodynamics

= Need to allow discontinuities dy//&
= Edges, creases and holes "
= Needs to be easy to use
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i History of 3D modelling 1/3

= Some mechanism was needed for
modelling 3D surfaces

= Hermite interpolation was generalised
to bivariate patches
= ...but proved too difficult to use in practice

= Bézier patches

= Developed for car design around 1960

= Bézier (Renault), de Casteljau (Citredn), de
Boor (GM)
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i History of 3D modelling 2/3

= B-spline theory
= Developed in the 1960s and '70s, led to:

= NURBS (Non-Uniform Rational B-Splines)
= More general than Bézier patches
= Béziers are special cases of NURBS

= NURBS quickly became the industry
standard in CAD
= ...and remain the industry standard today
= Adopted by the computer animation industry
when it began

i History of 3D modelling 3/3

= Subdivision surfaces

= Theory developed in 1970s and early '80s

= Picked up by computer animation industry
in late 1990s

= Now replaced NURBS in computer
animation

= Solves one of the big problems of NURBS
= Still under active research for use in CAD

= Introduces new problems, not present in
NURBS, which make it unsuitable for CAD in its
present form

i NURBS curve

= A curve is defined parametrically

= Its shape is determined by:
= control points, P,
= and the NURBS basis functions, N;,

n+1
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i Basic properties of NURBS 1/3

n+1

P(t) = Z Ni,k (t)Pu

= The basis functions must sum to 1 to
produce a valid new point

n+1

Z N; () =1t <t<t..

i=1
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i Basic properties of NURBS 2/3

n+1

P(t) = Z Ni,k(t)Pi

= The basis functions are calculated from
a knot vector
= Just a non-decreasing sequence of real
numbers

= e.¢. [0,0,0,1,1,1] or [1,2,3,4,5,6]
or[1.2,3.4,5.6,5.6, 7.2, 15.6]

= See lecture notes or Rogers & Adams for
details

i Basic properties of NURBS 3/3

n+1

P(t) = Z Ni,k (t)Pu

= If the basis functions are Cm-continuous
at t, then P(t) is guaranteed to be Cm-
continuous at t
= So continuity depends only on the basis
functions, N;
= Continuity does not depend on the
locations of the control points
= YOU can sometimes get extra continuity by

careful positioning of control points 10

i NURBS surface

= A bivariate
generalisation of the
univariate NURBS
curve

n+1

Curve P(t) = Z N ()P

m+1 n+1

Surface  P(s,t)=> > N, ()N, (t)P

i=1 j=1
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i The big constraint...

= NURBS surfaces require a quadrilateral
mesh of (m+1)x(n+1) points

12
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The first problem i The second problem

= Very few objects are made up of a single
rectangular patch, so we need to join
patches together

= What do we do at special points where

= Either we cannot get C2
Which means that curvature is not continuous

= Or we get C2 be forcing curvature to be zero
Which produces a flat spot

= Or we get C2 using very high degree patches

Which are very hard for a designer to control
13 14

i Drawing a NURBS curve

= NURBS curves and surfaces are always = NURBS surfaces are sub-
drawn on a pixelated surface divided and drawn as a

= NURBS curves can be approximated by series of planar polygons
straight lines = Each polygon is only one
= So long as each straight line deviates from or two pixels in area on
the curve by less than half a pixel the screen

= Shading algorithms are
used to ensure that the
surfaces appear to be
smoothly curved

15
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i Subdivision surfaces

Do away with the explicit parametric
representation

Base a curve or surface solely on its
control points and their connectivity
Provide a simple mechanism which
produces a larger, more refined set of
control points from the current set

Iterate refinement until the
appropriate level of detail is achieved

17

i History of subdivision schemes

= A univariate (curve) scheme was
described by de Rahm in 1947
= Rediscovered by Chaikin in 1974
» Extended to bivariate (surfaces) _
= Doo-Sabin bi-quadratic patches (1978)
= Catmull-Clark bi-cubic patches (1978) ‘&
= Flurry of mathematical work in the
early 1980s
= Dyn & Levin at Tel Aviv University

i Use of subdivision schemes

= Pixar picked up the ideas and tested
them in Geri's Game (1997)

= ...then discarded its NURBS based
software in favour of subdivision schemes

= NURBS
Toy Story 1995
A Bug’s Life 1998
= Subdivision surfaces
Toy Story 11 1999

Monsters Inc. 2001

Finding Nemo 2003
19
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i Subdivision basics

= An example: Catmull-
Clark subdivision
= Introduce new points
= At face-centres
= At mid-edges
= Adjust positions of
original points
= Repeat until sufficiently
detailed
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i Chaikin curve subdivision i The maths of Chaikin
= Underlies Doo-Sabin surface subdivision Pyt =2p"+1ip" A
= Cl1- I I imi n+ n n F’im
con_tan(_)us in the limit pri-Ep" 4 Bpn o
= Essentially just a ¥2-%4 rule
\ h:[Kioiol%i%l%l%!ololK]

Pn :[K ,Pon,RI_n,Pzn,K]
P"=[K ,P.0,P",0,P; 0K]

f Pl = hx P
i The limit curve i C2 approximating scheme
= It can be shown that the limit curve of = Underlies Catmull-Clark surface subdivision
the Chaikin scheme is the uniform = Can be described as: “Insert a midpoint
quadratlc B—Spllne, which is guaranteed and adjust the old control points”

to be C1
= When drawing curves in computer
graphics, we draw a set of straight
lines, so only need to subdivide until
each segment is about a pixel long and
we have a good enough approximation . .
to the curve
24
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i The maths of the C2 scheme

n+l
n P2i+1

6 pn_,1pn P n

8 P| + 8 Pi+l : $n+1 [ ) Pi+1
2i

2 on

il Pde

Pn :[K ,Pon,Pln,Pzn,K]
P"=[K ,P.0,P",0,P; 0.K]

P =hxP"
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i Why this notation?

= Easy to analyse
= Allows use of the z-transform

h:[K,hoyhlahZ!K] vector
U U
h(z)=A +hoz° +h121+h222+/\ polynomial
P™ —hxP" convolution
U U

Pn+1(z) :h(z)xpn(ZZ) mUItipIication

26

The analysis tools

= Generating function formalism
= Use the z-transform on the kernel, h

= Provides sufficient conditions for continuity

= Essentially checks that the differences between
adjacent points decrease fast enough at each
refinement step to produce a smooth curve

= There is also a matrix formalism
= Analyse stationary points

= Provides necessary conditions for
continuity

= For details see our research papers ©
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Useful subdivision kernels

h= ;[13 31] » C1, approximating, limit curve is
abmme quadratic B-spline
h= %[1,4,6,4,1] . C2,.approx_|mat|ng, limit curve is
cubic B-spline

h=21[%1091690%]

= C1, interpolating, “four-point
scheme”

= There is also a C2 interpolating
six-point scheme

&

28
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i From Chaikin to Doo-Sabin

= Doo-Sabin scheme is bivariate
generalisation of Chaikin ¥2-%2 scheme

29

i Extraordinary polygons

N/
= Need special 9%
co-efficients for
these

(Doo-Sabin)

30

i Catmull-Clark subdivision

L = Catmull-Clark is based on the
=S 1/,[1,4,6,4,1] univariate scheme

31
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i Catmull-Clark rules

4 4 1 64 1
64 64 64 ® 64

o 241 124 6 64 o6

16 1 64 64 64 64
64 &4 Aeo—04 1 5 p L
64 64 64 = 64

64
face edge vertex

= This is easy: the rules are simply the
tensor product of the univariate
/,[1,4,6,4,1] rules.

32
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i Catmull-Clark special cases

= This is more difficult: we need to find
co-efficients which maintain continuity

= It is only possible to get C1 continuity at
these extraordinary points.

o o o9
1l
2
p=}
%

Extraordinary polygons:
disappear after one step

Extraordinary vertices:
remain in the mesh ,,

i Subdivision s NURBS

= Extraordinary points
= Subdivision handles them easily

= NURBS requires the use of other types of
surface to fill in the holes

= Memory requirements

= Subdivision needs a lot (many MB)
= NURBS is very compact

= Artifacts
= Some artifacts present in both
= Subdivision has extra artifacts

34

i The future

= Computers now have enough memory
to handle subdivision easily

= Subdivision now standard for computer
animation

= NURBS still standard for CAD

= Subdivision will eventually replaced
NURBS for CAD if we can sort out the
artifact problems

35
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i Our work at Cambridge

= Univariate schemes that are not
binary
= Ternary (x3) schemes
= Sesquiary (x1¥2) schemes
¢ m Towards a bestiary of bivariate
' schemes
= Classification & analysis of all schemes
= ldentification & analysis of new
schemes (especially ternary)
* = Geometrically-sensitive subdivision

= Modifying existing schemes to take
account of geometric relationships

36
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i Principal subdivision schemes

= Catmull-Clark

=« C2, approximating = Doo-Sabin

only C1 at extra- = C1, approximating|

ordinary points

= Kobbelt (four-point)
= C1, interpolating

= Loop
= C2, approximating These are the five
ey ot subdivision schemes
= Butterfly which were thought to
« C1, interpolating be the only useful ones

i V2 and V3 schemes

= Velho-Zorin Reif-Peters
= C4, approximating = C1, approximating
only C1 at = The simplest
extraordinary possible scheme:
points there are no

special cases!

= V3 (Kobbelt)
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. Co. mati .
iﬁ,‘;ﬁf‘;}a "9 These were discovered
extraordinary in the late 1990s
points
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