
PERL(1) Perl Programmers Reference Guide PERL(1)

NAME
perl − Practical Extraction and Report Language

SYNOPSIS
perl [ −sTuU ] [ −hv ] [ −V[:configvar] ]

[ −cw ] [ −d[:debugger] ] [ −D[number/list] ]
[ −pna ] [ −Fpattern ] [ −l[octal] ] [ −0[octal] ]
[ −Idir ] [ −m[−]module ] [ −M[−]’module...’ ]
[ −P ] [ −S ] [ −x[dir] ]
[ −i[extension] ] [ −e ’command’ ] [ −− ] [ programfile ] [ argument ]...

If you’re new to Perl, you should start with perlintro, which is a general intro for beginners and pro-
vides some background to help you navigate the rest of Perl’s extensive documentation.

For ease of access, the Perl manual has been split up into several sections.

Overview

perl Perl overview (this section)
perlintro Perl introduction for beginners
perltoc Perl documentation table of contents

Tutorials

perlreftut Perl references short introduction
perldsc Perl data structures intro
perllol Perl data structures: arrays of arrays

perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial

perlboot Perl OO tutorial for beginners
perltoot Perl OO tutorial, part 1
perltooc Perl OO tutorial, part 2
perlbot Perl OO tricks and examples

perlstyle Perl style guide

perlcheat Perl cheat sheet
perltrap Perl traps for the unwary
perldebtut Perl debugging tutorial

perlfaq Perl frequently asked questions
perlfaq1 General Questions About Perl
perlfaq2 Obtaining and Learning about Perl
perlfaq3 Programming Tools
perlfaq4 Data Manipulation
perlfaq5 Files and Formats
perlfaq6 Regexes
perlfaq7 Perl Language Issues
perlfaq8 System Interaction
perlfaq9 Networking

Reference Manual

perl v5.8.3 2003-11-25 1



PERL(1) Perl Programmers Reference Guide PERL(1)

perlsyn Perl syntax
perldata Perl data structures
perlop Perl operators and precedence
perlsub Perl subroutines
perlfunc Perl built-in functions
perlopentut Perl open() tutorial
perlpacktut Perl pack() and unpack() tutorial

perlpod Perl plain old documentation
perlpodspec Perl plain old documentation format specification
perlrun Perl execution and options
perldiag Perl diagnostic messages
perllexwarn Perl warnings and their control
perldebug Perl debugging
perlvar Perl predefined variables
perlre Perl regular expressions, the rest of the story
perlreref Perl regular expressions quick reference
perlref Perl references, the rest of the story
perlform Perl formats
perlobj Perl objects
perltie Perl objects hidden behind simple variables
perldbmfilter Perl DBM filters

perlipc Perl interprocess communication
perlfork Perl fork() information
perlnumber Perl number semantics

perlthrtut Perl threads tutorial
perlothrtut Old Perl threads tutorial

perlport Perl portability guide
perllocale Perl locale support
perluniintro Perl Unicode introduction
perlunicode Perl Unicode support
perlebcdic Considerations for running Perl on EBCDIC platforms

perlsec Perl security

perlmod Perl modules: how they work
perlmodlib Perl modules: how to write and use
perlmodstyle Perl modules: how to write modules with style
perlmodinstall Perl modules: how to install from CPAN
perlnewmod Perl modules: preparing a new module for distribution

perlutil utilities packaged with the Perl distribution

perlcompile Perl compiler suite intro

perlfilter Perl source filters

Internals and C Language Interface

perlembed Perl ways to embed perl in your C or C++ application
perldebguts Perl debugging guts and tips
perlxstut Perl XS tutorial
perlxs Perl XS application programming interface
perlclib Internal replacements for standard C library functions
perlguts Perl internal functions for those doing extensions
perlcall Perl calling conventions from C

perlapi Perl API listing (autogenerated)
perlintern Perl internal functions (autogenerated)
perliol C API for Perl’s implementation of IO in Layers
perlapio Perl internal IO abstraction interface

2 2003-11-25 perl v5.8.3



PERL(1) Perl Programmers Reference Guide PERL(1)

perlhack Perl hackers guide

Miscellaneous

perlbook Perl book information
perltodo Perl things to do

perldoc Look up Perl documentation in Pod format

perlhist Perl history records
perldelta Perl changes since previous version
perl582delta Perl changes in version 5.8.2
perl581delta Perl changes in version 5.8.1
perl58delta Perl changes in version 5.8.0
perl573delta Perl changes in version 5.7.3
perl572delta Perl changes in version 5.7.2
perl571delta Perl changes in version 5.7.1
perl570delta Perl changes in version 5.7.0
perl561delta Perl changes in version 5.6.1
perl56delta Perl changes in version 5.6
perl5005delta Perl changes in version 5.005
perl5004delta Perl changes in version 5.004

perlartistic Perl Artistic License
perlgpl GNU General Public License

Language-Specific

perlcn Perl for Simplified Chinese (in EUC-CN)
perljp Perl for Japanese (in EUC-JP)
perlko Perl for Korean (in EUC-KR)
perltw Perl for Traditional Chinese (in Big5)

Platform-Specific

perl v5.8.3 2003-11-25 3



PERL(1) Perl Programmers Reference Guide PERL(1)

perlaix Perl notes for AIX
perlamiga Perl notes for AmigaOS
perlapollo Perl notes for Apollo DomainOS
perlbeos Perl notes for BeOS
perlbs2000 Perl notes for POSIX-BC BS2000
perlce Perl notes for WinCE
perlcygwin Perl notes for Cygwin
perldgux Perl notes for DG/UX
perldos Perl notes for DOS
perlepoc Perl notes for EPOC
perlfreebsd Perl notes for FreeBSD
perlhpux Perl notes for HP-UX
perlhurd Perl notes for Hurd
perlirix Perl notes for Irix
perlmachten Perl notes for Power MachTen
perlmacos Perl notes for Mac OS (Classic)
perlmacosx Perl notes for Mac OS X
perlmint Perl notes for MiNT
perlmpeix Perl notes for MPE/iX
perlnetware Perl notes for NetWare
perlos2 Perl notes for OS/2
perlos390 Perl notes for OS/390
perlos400 Perl notes for OS/400
perlplan9 Perl notes for Plan 9
perlqnx Perl notes for QNX
perlsolaris Perl notes for Solaris
perltru64 Perl notes for Tru64
perluts Perl notes for UTS
perlvmesa Perl notes for VM/ESA
perlvms Perl notes for VMS
perlvos Perl notes for Stratus VOS
perlwin32 Perl notes for Windows

By default, the manpages listed above are installed in the /usr/local/man/ directory.

Extensive additional documentation for Perl modules is available. The default configuration for perl
will place this additional documentation in the /usr/local/lib/perl5/man directory (or else in the man
subdirectory of the Perl library directory). Some of this additional documentation is distributed stan-
dard with Perl, but you’ll also find documentation for third-party modules there.

You should be able to view Perl’s documentation with your man (1) program by including the proper
directories in the appropriate start-up files, or in the MANPATH environment variable. To find out
where the configuration has installed the manpages, type:

perl -V:man.dir

If the directories have a common stem, such as /usr/local/man/man1 and /usr/local/man/man3, you
need only to add that stem (/usr/local/man) to your man (1) configuration files or your MANPATH envi-
ronment variable. If they do not share a stem, you’ll have to add both stems.

If that doesn’t work for some reason, you can still use the supplied perldoc script to view module infor-
mation. You might also look into getting a replacement man program.

If something strange has gone wrong with your program and you’re not sure where you should look for
help, try the −w switch first. It will often point out exactly where the trouble is.

DESCRIPTION
Perl is a language optimized for scanning arbitrary text files, extracting information from those text
files, and printing reports based on that information. It’s also a good language for many system man-
agement tasks. The language is intended to be practical (easy to use, efficient, complete) rather than
beautiful (tiny, elegant, minimal).

Perl combines (in the author’s opinion, anyway) some of the best features of C, sed, awk, and sh, so
people familiar with those languages should have little difficulty with it. (Language historians will also

4 2003-11-25 perl v5.8.3



PERL(1) Perl Programmers Reference Guide PERL(1)

note some vestiges of csh, Pascal, and even BASIC−PLUS.) Expression syntax corresponds closely to C
expression syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data — if
you’ve got the memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited
depth. And the tables used by hashes (sometimes called ‘‘associative arrays’’) grow as necessary to
prevent degraded performance. Perl can use sophisticated pattern matching techniques to scan large
amounts of data quickly. Although optimized for scanning text, Perl can also deal with binary data, and
can make dbm files look like hashes. Setuid Perl scripts are safer than C programs through a dataflow
tracing mechanism that prevents many stupid security holes.

If you have a problem that would ordinarily use sed or awk or sh, but it exceeds their capabilities or
must run a little faster, and you don’t want to write the silly thing in C, then Perl may be for you. There
are also translators to turn your sed and awk scripts into Perl scripts.

But wait, there’s more...

Begun in 1993 (see perlhist), Perl version 5 is nearly a complete rewrite that provides the following
additional benefits:

• modularity and reusability using innumerable modules

Described in perlmod, perlmodlib, and perlmodinstall.

• embeddable and extensible

Described in perlembed, perlxstut, perlxs, perlcall, perlguts, and xsubpp.

• roll-your-own magic variables (including multiple simultaneous DBM implementations)

Described in perltie and AnyDBM_File.

• subroutines can now be overridden, autoloaded, and prototyped

Described in perlsub.

• arbitrarily nested data structures and anonymous functions

Described in perlreftut, perlref, perldsc, and perllol.

• object-oriented programming

Described in perlobj, perlboot, perltoot, perltooc, and perlbot.

• support for light-weight processes (threads)

Described in perlthrtut and threads.

• support for Unicode, internationalization, and localization

Described in perluniintro, perllocale and Locale::Maketext.

• lexical scoping

Described in perlsub.

• regular expression enhancements

Described in perlre, with additional examples in perlop.

• enhanced debugger and interactive Perl environment, with integrated editor support

Described in perldebtut, perldebug and perldebguts.

• POSIX 1003.1 compliant library

Described in POSIX.

Okay, that’s definitely enough hype.

AV AILABILITY
Perl is available for most operating systems, including virtually all Unix-like platforms. See ‘‘Sup-
ported Platforms’’ in perlport for a listing.

ENVIRONMENT
See perlrun.

perl v5.8.3 2003-11-25 5



PERL(1) Perl Programmers Reference Guide PERL(1)

AUTHOR
Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wish to advocate the use of
Perl in their applications, or if you wish to simply express your gratitude to Larry and the Perl develop-
ers, please write to perl−thanks@perl.org .

FILES
"@INC" locations of perl libraries

SEE ALSO
a2p awk to perl translator
s2p sed to perl translator

http://www.perl.com/ the Perl Home Page
http://www.cpan.org/ the Comprehensive Perl Archive
http://www.perl.org/ Perl Mongers (Perl user groups)

DIAGNOSTICS
The use warnings pragma (and the −w switch) produces some lovely diagnostics.

See perldiag for explanations of all Perl’s diagnostics. The use diagnostics pragma automati-
cally turns Perl’s normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the next token or
token type that was to be examined. (In a script passed to Perl via −e switches, each −e is counted as
one line.)

Setuid scripts have additional constraints that can produce error messages such as ‘‘Insecure depen-
dency’’. See perlsec.

Did we mention that you should definitely consider using the −w switch?

BUGS
The −w switch is not mandatory.

Perl is at the mercy of your machine’s definitions of various operations such as type casting, atof(), and
floating-point output with sprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Perl. (This
doesn’t apply to sysread() and syswrite().)

While none of the built-in data types have any arbitrary size limits (apart from memory size), there are
still a few arbitrary limits: a giv en variable name may not be longer than 251 characters. Line numbers
displayed by diagnostics are internally stored as short integers, so they are limited to a maximum of
65535 (higher numbers usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration information as output by the
myconfig program in the perl source tree, or by perl −V) to perlbug@perl.org .  If you’ve succeeded
in compiling perl, the perlbug script in the utils/ subdirectory can be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don’t tell anyone I said that.

NOTES
The Perl motto is ‘‘There’s more than one way to do it.’’ Divining how many more is left as an exercise
to the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel
Book for why.

6 2003-11-25 perl v5.8.3



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

NAME
perlsyn − Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements which run from the top to the
bottom. Loops, subroutines and other control structures allow you to jump around within the code.

Perl is a free-form language, you can format and indent it however you like. Whitespace mostly serves
to separate tokens, unlike languages like Python where it is an important part of the syntax.

Many of Perl’s syntactic elements are optional. Rather than requiring you to put parentheses around
ev ery function call and declare every variable, you can often leave such explicit elements off and Perl
will figure out what you meant. This is known as Do What I Mean, abbreviated DWIM. It allows
programmers to be lazy and to code in a style with which they are comfortable.

Perl borrows syntax and concepts from many languages: awk, sed, C, Bourne Shell, Smalltalk, Lisp
and even English. Other languages have borrowed syntax from Perl, particularly its regular expression
extensions. So if you have programmed in another language you will see familiar pieces in Perl. They
often work the same, but see perltrap for information about how they differ.

Declarations

The only things you need to declare in Perl are report formats and subroutines (and sometimes not even
subroutines). A variable holds the undefined value (undef) until it has been assigned a defined value,
which is anything other than undef. When used as a number, undef is treated as 0; when used as a
string, it is treated as the empty string, ""; and when used as a reference that isn’t being assigned to, it
is treated as an error. If you enable warnings, you’ll be notified of an uninitialized value whenever you
treat undef as a string or a number. Well, usually. Boolean contexts, such as:

my $a;
if ($a) {}

are exempt from warnings (because they care about truth rather than definedness). Operators such as
++, −−, +=, −=, and .=, that operate on undefined left values such as:

my $a;
$a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on the execution of the primary
sequence of statements — declarations all take effect at compile time. Typically all the declarations are
put at the beginning or the end of the script. However, if you’re using lexically-scoped private variables
created with my(), you’ll have to make sure your format or subroutine definition is within the same
block scope as the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the program. You can declare a subroutine without defining it by saying sub name, thus:

sub myname;
$me = myname $0 or die "can’t get myname";

Note that myname() functions as a list operator, not as a unary operator; so be careful to use or instead
of  in this case. However, if you were to declare the subroutine as sub myname ($), then
myname would function as a unary operator, so either or or  would work.

Subroutines declarations can also be loaded up with the require statement or both loaded and
imported into your namespace with a use statement. See perlmod for details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring
a variable name, the declaration acts like an ordinary statement, and is elaborated within the sequence
of statements as if it were an ordinary statement. That means it actually has both compile-time and
run-time effects.

perl v5.8.3 2003-11-25 7



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

Comments

Te xt from a "#" character until the end of the line is a comment, and is ignored. Exceptions include
"#" inside a string or regular expression.

Simple Statements

The only kind of simple statement is an expression evaluated for its side effects. Every simple
statement must be terminated with a semicolon, unless it is the final statement in a block, in which case
the semicolon is optional. (A semicolon is still encouraged if the block takes up more than one line,
because you may eventually add another line.) Note that there are some operators like eval {} and
do {} that look like compound statements, but aren’t (they’re just TERMs in an expression), and thus
need an explicit termination if used as the last item in a statement.

Truth and Falsehood

The number 0, the strings ’0’ and ’’, the empty list (), and undef are all false in a boolean context.
All other values are true.

Statement Modifiers

Any simple statement may optionally be followed by a SINGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
foreach LIST

The EXPR following the modifier is referred to as the ‘‘condition’’. Its truth or falsehood determines
how the modifier will behave.

if executes the statement once if and only if the condition is true. unless is the opposite, it executes
the statement unless the condition is true (i.e., if the condition is false).

print "Basset hounds got long ears" if length $ear >= 10;
go_outside() and play() unless $is_raining;

The foreach modifier is an iterator: it executes the statement once for each item in the LIST (with $_
aliased to each item in turn).

print "Hello $_!\n" foreach qw(world Dolly nurse);

while repeats the statement while the condition is true. until does the opposite, it repeats the
statement until the condition is true (or while the condition is false):

# Both of these count from 0 to 10.
print $i++ while $i <= 10;
print $j++ until $j > 10;

The while and until modifiers have the usual "while loop" semantics (conditional evaluated first),
except when applied to a do−BLOCK (or to the deprecated do−SUBROUTINE statement), in which
case the block executes once before the conditional is evaluated. This is so that you can write loops
like:

do {
$line = <STDIN>;
...

} until $line eq ".\n";

See ‘‘do’’ in perlfunc. Note also that the loop control statements described later will NOT work in this
construct, because modifiers don’t take loop labels. Sorry. You can always put another block inside of
it (for next) or around it (for last) to do that sort of thing. For next, just double the braces:

8 2003-11-25 perl v5.8.3



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

do {{
next if $x == $y;
# do something here

}} until $x++ > $z;

For last, you have to be more elaborate:

LOOP: {
do {

last if $x = $y**2;
# do something here

} while $x++ <= $z;
}

NOTE: The behaviour of a my statement modified with a statement modifier conditional or loop
construct (e.g. my $x if ...) is undefined. The value of the my variable may be undef, any
previously assigned value, or possibly anything else. Don’t rely on it. Future versions of perl might do
something different from the version of perl you try it out on. Here be dragons.

Compound Statements

In Perl, a sequence of statements that defines a scope is called a block. Sometimes a block is delimited
by the file containing it (in the case of a required file, or the program as a whole), and sometimes a
block is delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces. We will call this syntactic
construct a BLOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
LABEL while (EXPR) BLOCK
LABEL while (EXPR) BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK
LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK
LABEL BLOCK continue BLOCK

Note that, unlike C  and Pascal, these are defined in terms of BLOCKs, not statements. This means that
the curly brackets are required−−no dangling statements allowed. If you want to write conditionals
without curly brackets there are several other ways to do it. The following all do the same thing:

if (!open(FOO)) { die "Can’t open $FOO: $!"; }
die "Can’t open $FOO: $!" unless open(FOO);
open(FOO) or die "Can’t open $FOO: $!"; # FOO or bust!
open(FOO) ? ’hi mom’ : die "Can’t open $FOO: $!";

# a bit exotic, that last one

The if statement is straightforward. Because BLOCKs are always bounded by curly brackets, there is
never any ambiguity about which if an else goes with. If you use unless in place of if, the sense
of the test is reversed.

The while statement executes the block as long as the expression is true (does not evaluate to the null
string "" or 0 or "0"). The LABEL is optional, and if present, consists of an identifier followed by a
colon. The LABEL identifies the loop for the loop control statements next, last, and redo. If the
LABEL is omitted, the loop control statement refers to the innermost enclosing loop. This may include
dynamically looking back your call-stack at run time to find the LABEL. Such desperate behavior
triggers a warning if you use the use warnings pragma or the −w flag.

If there is a continue BLOCK, it is always executed just before the conditional is about to be
evaluated again. Thus it can be used to increment a loop variable, even when the loop has been
continued via the next statement.

perl v5.8.3 2003-11-25 9



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

Loop Control

The next command starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
...

}

The last command immediately exits the loop in question. The continue block, if any, is not
executed:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with header
...

}

The redo command restarts the loop block without evaluating the conditional again. The continue
block, if any, is not executed. This command is normally used by programs that want to lie to
themselves about what was just input.

For example, when processing a file like /etc/termcap. If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (s/\\$//) {

$_ .= <>;
redo unless eof();

}
# now process $_

}

which is Perl short-hand for the more explicitly written version:

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =˜ s/\\$//) {

$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!

}
# now process $line

}

Note that if there were a continue block on the above code, it would get executed only on lines
discarded by the regex (since redo skips the continue block). A continue block is often used to reset
line counters or ?pat? one-time matches:

# inspired by :1,$g/fred/s//WILMA/
while (<>) {

?(fred)? && s//WILMA $1 WILMA/;
?(barney)? && s//BETTY $1 BETTY/;
?(homer)? && s//MARGE $1 MARGE/;

} continue {
print "$ARGV $.: $_";
close ARGV if eof(); # reset $.
reset if eof(); # reset ?pat?

}

If the word while is replaced by the word until, the sense of the test is reversed, but the conditional
is still tested before the first iteration.

The loop control statements don’t work in an if or unless, since they aren’t loops. You can double
the braces to make them such, though.

10 2003-11-25 perl v5.8.3



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

if (/pattern/) {{
last if /fred/;
next if /barney/; # same effect as "last", but doesn’t document as well
# do something here

}}

This is caused by the fact that a block by itself acts as a loop that executes once, see ‘‘Basic BLOCKs
and Switch Statements’’.

The form while/if BLOCK BLOCK, available in Perl 4, is no longer available. Replace any
occurrence of if BLOCK by if (do BLOCK).

For Loops

Perl’s C−style for loop works like the corresponding while loop; that means that this:

for ($i = 1; $i < 10; $i++) {
...

}

is the same as this:

$i = 1;
while ($i < 10) {

...
} continue {

$i++;
}

There is one minor difference: if variables are declared with my in the initialization section of the for,
the lexical scope of those variables is exactly the for loop (the body of the loop and the control
sections).

Besides the normal array index looping, for can lend itself to many other interesting applications.
Here’s one that avoids the problem you get into if you explicitly test for end-of-file on an interactive file
descriptor causing your program to appear to hang.

$on_a_tty = -t STDIN && -t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for ( prompt(); <STDIN>; prompt() ) {

# do something
}

Using readline (or the operator form, <EXPR>) as the conditional of a for loop is shorthand for
the following. This behaviour is the same as a while loop conditional.

for ( prompt(); defined( $_ = <STDIN> ); prompt() ) {
# do something

}

Foreach Loops

The foreach loop iterates over a normal list value and sets the variable VAR to be each element of the
list in turn. If the variable is preceded with the keyword my, then it is lexically scoped, and is therefore
visible only within the loop. Otherwise, the variable is implicitly local to the loop and regains its
former value upon exiting the loop. If the variable was previously declared with my, it uses that
variable instead of the global one, but it’s still localized to the loop. This implicit localisation occurs
only in a foreach loop.

The foreach keyword is actually a synonym for the for keyword, so you can use foreach for
readability or for for brevity. (Or because the Bourne shell is more familiar to you than csh, so
writing for comes more naturally.) If VAR is omitted, $_ is set to each value.

If any element of LIST is an lvalue, you can modify it by modifying VAR inside the loop. Conversely, if
any element of LIST is NOT an lvalue, any attempt to modify that element will fail. In other words, the
foreach loop index variable is an implicit alias for each item in the list that you’re looping over.

If any part of LIST is an array, foreach will get very confused if you add or remove elements within

perl v5.8.3 2003-11-25 11



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

the loop body, for example with splice. So don’t do that.

foreach probably won’t do what you expect if VAR is a tied or other special variable. Don’t do that
either.

Examples:

for (@ary) { s/foo/bar/ }

for my $elem (@elements) {
$elem *= 2;

}

for $count (10,9,8,7,6,5,4,3,2,1,’BOOM’) {
print $count, "\n"; sleep(1);

}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {
print "Item: $item\n";

}

Here’s how a C programmer might code up a particular algorithm in Perl:

for (my $i = 0; $i < @ary1; $i++) {
for (my $j = 0; $j < @ary2; $j++) {

if ($ary1[$i] > $ary2[$j]) {
last; # can’t go to outer :-(

}
$ary1[$i] += $ary2[$j];

}
# this is where that last takes me

}

Whereas here’s how a Perl programmer more comfortable with the idiom might do it:

OUTER: for my $wid (@ary1) {
INNER: for my $jet (@ary2) {

next OUTER if $wid > $jet;
$wid += $jet;

}
}

See how much easier this is? It’s cleaner, safer, and faster. It’s cleaner because it’s less noisy. It’s safer
because if code gets added between the inner and outer loops later on, the new code won’t be
accidentally executed. The next explicitly iterates the other loop rather than merely terminating the
inner one. And it’s faster because Perl executes a foreach statement more rapidly than it would the
equivalent for loop.

Basic BLOCKs and Switch Statements

A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus you
can use any of the loop control statements in it to leave or restart the block. (Note that this is NOT true
in eval{}, sub{}, or contrary to popular belief do{} blocks, which do NOT count as loops.) The
continue block is optional.

The BLOCK construct is particularly nice for doing case structures.

SWITCH: {
if (/ˆabc/) { $abc = 1; last SWITCH; }
if (/ˆdef/) { $def = 1; last SWITCH; }
if (/ˆxyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

There is no official switch statement in Perl, because there are already several ways to write the
equivalent.

12 2003-11-25 perl v5.8.3



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

However, starting from Perl 5.8 to get switch and case one can use the Switch extension and say:

use Switch;

after which one has switch and case. It is not as fast as it could be because it’s not really part of the
language (it’s done using source filters) but it is available, and it’s very flexible.

In addition to the above BLOCK construct, you could write

SWITCH: {
$abc = 1, last SWITCH if /ˆabc/;
$def = 1, last SWITCH if /ˆdef/;
$xyz = 1, last SWITCH if /ˆxyz/;
$nothing = 1;

}

(That’s actually not as strange as it looks once you realize that you can use loop control ‘‘operators’’
within an expression. That’s just the binary comma operator in scalar context. See ‘‘Comma
Operator’’ in perlop.)

or

SWITCH: {
/ˆabc/ && do { $abc = 1; last SWITCH; };
/ˆdef/ && do { $def = 1; last SWITCH; };
/ˆxyz/ && do { $xyz = 1; last SWITCH; };
$nothing = 1;

}

or formatted so it stands out more as a ‘‘proper’’ switch statement:

SWITCH: {
/ˆabc/ && do {

$abc = 1;
last SWITCH;

};

/ˆdef/ && do {
$def = 1;
last SWITCH;

};

/ˆxyz/ && do {
$xyz = 1;
last SWITCH;

};
$nothing = 1;

}

or

SWITCH: {
/ˆabc/ and $abc = 1, last SWITCH;
/ˆdef/ and $def = 1, last SWITCH;
/ˆxyz/ and $xyz = 1, last SWITCH;
$nothing = 1;

}

or even, horrors,

perl v5.8.3 2003-11-25 13



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

if (/ˆabc/)
{ $abc = 1 }

elsif (/ˆdef/)
{ $def = 1 }

elsif (/ˆxyz/)
{ $xyz = 1 }

else
{ $nothing = 1 }

A common idiom for a switch statement is to use foreach’s aliasing to make a temporary
assignment to $_ for convenient matching:

SWITCH: for ($where) {
/In Card Names/ && do { push @flags, ’-e’; last; };
/Anywhere/ && do { push @flags, ’-h’; last; };
/In Rulings/ && do { last; };
die "unknown value for form variable where: ‘$where’";

}

Another interesting approach to a switch statement is arrange for a do block to return the proper value:

$amode = do {
if ($flag & O_RDONLY) { "r" } # XXX: isn’t this 0?
elsif ($flag & O_WRONLY) { ($flag & O_APPEND) ? "a" : "w" }
elsif ($flag & O_RDWR) {

if ($flag & O_CREAT) { "w+" }
else { ($flag & O_APPEND) ? "a+" : "r+" }

}
};

Or

print do {
($flags & O_WRONLY) ? "write-only" :
($flags & O_RDWR) ? "read-write" :

"read-only";
};

Or if you are certain that all the && clauses are true, you can use something like this, which ‘‘switches’’
on the value of the HTTP_USER_AGENT environment variable.

#!/usr/bin/perl
# pick out jargon file page based on browser
$dir = ’http://www.wins.uva.nl/˜mes/jargon’;
for ($ENV{HTTP_USER_AGENT}) {

$page = /Mac/ && ’m/Macintrash.html’
 /Win(dows )?NT/ && ’e/evilandrude.html’
 /WinMSIEWebTV/ && ’m/MicroslothWindows.html’
 /Linux/ && ’l/Linux.html’
 /HP-UX/ && ’h/HP-SUX.html’
 /SunOS/ && ’s/ScumOS.html’
 ’a/AppendixB.html’;

}
print "Location: $dir/$page\015\012\015\012";

That kind of switch statement only works when you know the && clauses will be true. If you don’t, the
previous ?: example should be used.

You might also consider writing a hash of subroutine references instead of synthesizing a switch
statement.

14 2003-11-25 perl v5.8.3



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

Goto

Although not for the faint of heart, Perl does support a goto statement. There are three forms:
goto−LABEL, goto−EXPR, and goto−&NAME. A loop’s LABEL is not actually a valid target for
a goto; it’s just the name of the loop.

The goto−LABEL form finds the statement labeled with LABEL and resumes execution there. It may
not be used to go into any construct that requires initialization, such as a subroutine or a foreach
loop. It also can’t be used to go into a construct that is optimized away. It can be used to go almost
anywhere else within the dynamic scope, including out of subroutines, but it’s usually better to use
some other construct such as last or die. The author of Perl has never felt the need to use this form
of goto (in Perl, that is — C  is another matter).

The goto−EXPR form expects a label name, whose scope will be resolved dynamically. This allows
for computed gotos per FORTRAN, but isn’t necessarily recommended if you’re optimizing for
maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]);

The goto−&NAME form is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine. This is used by AUTOLOAD() subroutines that wish to load another
subroutine and then pretend that the other subroutine had been called in the first place (except that any
modifications to @_ in the current subroutine are propagated to the other subroutine.) After the goto,
not even caller() will be able to tell that this routine was called first.

In almost all cases like this, it’s usually a far, far better idea to use the structured control flow
mechanisms of next, last, or redo instead of resorting to a goto. For certain applications, the
catch and throw pair of eval{} and die() for exception processing can also be a prudent approach.

PODs: Embedded Documentation

Perl has a mechanism for intermixing documentation with source code. While it’s expecting the
beginning of a new statement, if the compiler encounters a line that begins with an equal sign and a
word, like this

=head1 Here There Be Pods!

Then that text and all remaining text up through and including a line beginning with =cut will be
ignored. The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text freely, as in

=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;
.........

}

Note that pod translators should look at only paragraphs beginning with a pod directive (it makes
parsing easier), whereas the compiler actually knows to look for pod escapes even in the middle of a
paragraph. This means that the following secret stuff will be ignored by both the compiler and the
translators.

$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";

You probably shouldn’t rely upon the warn() being podded out forever. Not all pod translators are
well-behaved in this regard, and perhaps the compiler will become pickier.

One may also use pod directives to quickly comment out a section of code.

perl v5.8.3 2003-11-25 15



PERLSYN(1) Perl Programmers Reference Guide PERLSYN(1)

Plain Old Comments (Not!)

Perl can process line directives, much like the C preprocessor. Using this, one can control Perl’s idea of
filenames and line numbers in error or warning messages (especially for strings that are processed with
eval()). The syntax for this mechanism is the same as for most C preprocessors: it matches the
regular expression

# example: ’# line 42 "new_filename.plx"’
/ˆ\# \s*
line \s+ (\d+) \s*
(?:\s("?)([ˆ"]+)\2)? \s*
$/x

with $1 being the line number for the next line, and $3 being the optional filename (specified with or
without quotes).

There is a fairly obvious gotcha included with the line directive: Debuggers and profilers will only
show the last source line to appear at a particular line number in a given file. Care should be taken not
to cause line number collisions in code you’d like to debug later.

Here are some examples that you should be able to type into your command shell:

% perl
# line 200 "bzzzt"
# the ‘#’ on the previous line must be the first char on line
die ’foo’;
__END__
foo at bzzzt line 201.

% perl
# line 200 "bzzzt"
eval qq[\n#line 2001 ""\ndie ’foo’]; print $@;
__END__
foo at - line 2001.

% perl
eval qq[\n#line 200 "foo bar"\ndie ’foo’]; print $@;
__END__
foo at foo bar line 200.

% perl
# line 345 "goop"
eval "\n#line " . __LINE__ . ’ "’ . __FILE__ ."\"\ndie ’foo’";
print $@;
__END__
foo at goop line 345.

16 2003-11-25 perl v5.8.3



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

NAME
perldata − Perl data types

DESCRIPTION
Variable names

Perl has three built-in data types: scalars, arrays of scalars, and associative arrays of scalars, known as
‘‘hashes’’. A scalar is a single string (of any size, limited only by the available memory), number, or a
reference to something (which will be discussed in perlref). Normal arrays are ordered lists of scalars
indexed by number, starting with 0. Hashes are unordered collections of scalar values indexed by their
associated string key.

Values are usually referred to by name, or through a named reference. The first character of the name
tells you to what sort of data structure it refers. The rest of the name tells you the particular value to
which it refers. Usually this name is a single identifier, that is, a string beginning with a letter or
underscore, and containing letters, underscores, and digits. In some cases, it may be a chain of
identifiers, separated by :: (or by the slightly archaic ’); all but the last are interpreted as names of
packages, to locate the namespace in which to look up the final identifier (see ‘‘Packages’’ in perlmod
for details). It’s possible to substitute for a simple identifier, an expression that produces a reference to
the value at runtime. This is described in more detail below and in perlref.

Perl also has its own built-in variables whose names don’t follow these rules. They hav e strange names
so they don’t accidentally collide with one of your normal variables. Strings that match parenthesized
parts of a regular expression are saved under names containing only digits after the $ (see perlop and
perlre). In addition, several special variables that provide windows into the inner working of Perl have
names containing punctuation characters and control characters. These are documented in perlvar.

Scalar values are always named with ’$’, even when referring to a scalar that is part of an array or a
hash. The ’$’ symbol works semantically like the English word ‘‘the’’ in that it indicates a single value
is expected.

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{’Feb’} # the ’Feb’ value from hash %days
$#days # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by ’@’, which works much like the word
‘‘these’’ or ‘‘those’’ does in English, in that it indicates multiple values are expected.

@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as ($days[3],$days[4],$days[5])
@days{’a’,’c’} # same as ($days{’a’},$days{’c’})

Entire hashes are denoted by ’%’:

%days # (key1, val1, key2, val2 ...)

In addition, subroutines are named with an initial ’&’, though this is optional when unambiguous, just
as the word ‘‘do’’ is often redundant in English. Symbol table entries can be named with an initial ’*’,
but you don’t really care about that yet (if ever :−).

Every variable type has its own namespace, as do several non-variable identifiers. This means that you
can, without fear of conflict, use the same name for a scalar variable, an array, or a hash — or, for that
matter, for a filehandle, a directory handle, a subroutine name, a format name, or a label. This means
that $foo and @foo are two different variables. It also means that $foo[1] is a part of @foo, not a
part of $foo. This may seem a bit weird, but that’s okay, because it is weird.

Because variable references always start with ’$’, ’@’, or ’%’, the ‘‘reserved’’ words aren’t in fact
reserved with respect to variable names. They are reserved with respect to labels and filehandles,
however, which don’t hav e an initial special character. You can’t hav e a filehandle named ‘‘log’’, for
instance. Hint: you could say open(LOG,’logfile’) rather than open(log,’logfile’).
Using uppercase filehandles also improves readability and protects you from conflict with future
reserved words. Case is significant−−‘‘FOO’’, ‘‘Foo’’, and ‘‘foo’’ are all different names. Names that
start with a letter or underscore may also contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression that returns a reference to the
appropriate type. For a description of this, see perlref.

perl v5.8.3 2003-11-25 17



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

Names that start with a digit may contain only more digits. Names that do not start with a letter,
underscore, digit or a caret (i.e. a control character) are limited to one character, e.g., $% or $$. (Most
of these one character names have a predefined significance to Perl. For instance, $$ is the current
process id.)

Context

The interpretation of operations and values in Perl sometimes depends on the requirements of the
context around the operation or value. There are two major contexts: list and scalar. Certain operations
return list values in contexts wanting a list, and scalar values otherwise. If this is true of an operation it
will be mentioned in the documentation for that operation. In other words, Perl overloads certain
operations based on whether the expected return value is singular or plural. Some words in English
work this way, like ‘‘fish’’ and ‘‘sheep’’.

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its arguments.
For example, if you say

int( <STDIN> )

the integer operation provides scalar context for the <> operator, which responds by reading one line
from STDIN and passing it back to the integer operation, which will then find the integer value of that
line and return that. If, on the other hand, you say

sort( <STDIN> )

then the sort operation provides list context for <>, which will proceed to read every line available up
to the end of file, and pass that list of lines back to the sort routine, which will then sort those lines and
return them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the right
argument. Assignment to a scalar evaluates the right-hand side in scalar context, while assignment to
an array or hash evaluates the righthand side in list context. Assignment to a list (or slice, which is just
a list anyway) also evaluates the righthand side in list context.

When you use the use warnings pragma or Perl’s −w command-line option, you may see warnings
about useless uses of constants or functions in ‘‘void context’’. Void context just means the value has
been discarded, such as a statement containing only "fred"; or getpwuid(0);. It still counts as
scalar context for functions that care whether or not they’re being called in list context.

User-defined subroutines may choose to care whether they are being called in a void, scalar, or list
context. Most subroutines do not need to bother, though. That’s because both scalars and lists are
automatically interpolated into lists. See ‘‘wantarray’’ in perlfunc for how you would dynamically
discern your function’s calling context.

Scalar values

All data in Perl is a scalar, an array of scalars, or a hash of scalars. A scalar may contain one single
value in any of three different flavors: a number, a string, or a reference. In general, conversion from
one form to another is transparent. Although a scalar may not directly hold multiple values, it may
contain a reference to an array or hash which in turn contains multiple values.

Scalars aren’t necessarily one thing or another. There’s no place to declare a scalar variable to be of
type ‘‘string’’, type ‘‘number’’, type ‘‘reference’’, or anything else. Because of the automatic
conversion of scalars, operations that return scalars don’t need to care (and in fact, cannot care) whether
their caller is looking for a string, a number, or a reference. Perl is a contextually polymorphic
language whose scalars can be strings, numbers, or references (which includes objects). Although
strings and numbers are considered pretty much the same thing for nearly all purposes, references are
strongly−typed, uncastable pointers with builtin reference-counting and destructor invocation.

A scalar value is interpreted as TRUE in the Boolean sense if it is not the null string or the number 0 (or
its string equivalent, ‘‘0’’). The Boolean context is just a special kind of scalar context where no
conversion to a string or a number is ever performed.

There are actually two varieties of null strings (sometimes referred to as ‘‘empty’’ strings), a defined
one and an undefined one. The defined version is just a string of length zero, such as "". The
undefined version is the value that indicates that there is no real value for something, such as when
there was an error, or at end of file, or when you refer to an uninitialized variable or element of an array

18 2003-11-25 perl v5.8.3



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

or hash. Although in early versions of Perl, an undefined scalar could become defined when first used
in a place expecting a defined value, this no longer happens except for rare cases of autovivification as
explained in perlref. You can use the defined() operator to determine whether a scalar value is defined
(this has no meaning on arrays or hashes), and the undef() operator to produce an undefined value.

To find out whether a given string is a valid non-zero number, it’s sometimes enough to test it against
both numeric 0 and also lexical ‘‘0’’ (although this will cause noises if warnings are on). That’s
because strings that aren’t numbers count as 0, just as they do in awk:

if ($str == 0 && $str ne "0") {
warn "That doesn’t look like a number";

}

That method may be best because otherwise you won’t treat IEEE notations like NaN or Infinity
properly. At other times, you might prefer to determine whether string data can be used numerically by
calling the POSIX::strtod() function or by inspecting your string with a regular expression (as
documented in perlre).

warn "has nondigits" if /\D/;
warn "not a natural number" unless /ˆ\d+$/; # rejects -3
warn "not an integer" unless /ˆ-?\d+$/; # rejects +3
warn "not an integer" unless /ˆ[+-]?\d+$/;
warn "not a decimal number" unless /ˆ-?\d+\.?\d*$/; # rejects .2
warn "not a decimal number" unless /ˆ-?(?:\d+(?:\.\d*)?\.\d+)$/;
warn "not a C float"

unless /ˆ([+-]?)(?=\d\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array @days by evaluating
$#days, as in csh. Howev er, this isn’t the length of the array; it’s the subscript of the last element,
which is a different value since there is ordinarily a 0th element. Assigning to $#days actually
changes the length of the array. Shortening an array this way destroys intervening values. Lengthening
an array that was previously shortened does not recover values that were in those elements. (It used to
do so in Perl 4, but we had to break this to make sure destructors were called when expected.)

You can also gain some minuscule measure of efficiency by pre-extending an array that is going to get
big. You can also extend an array by assigning to an element that is off the end of the array. You can
truncate an array down to nothing by assigning the null list () to it. The following are equivalent:

@whatever = ();
$#whatever = -1;

If you evaluate an array in scalar context, it returns the length of the array. (Note that this is not true of
lists, which return the last value, like the C comma operator, nor of built-in functions, which return
whatever they feel like returning.) The following is always true:

scalar(@whatever) == $#whatever - $[ + 1;

Version 5 of Perl changed the semantics of $[: files that don’t set the value of $[ no longer need to
worry about whether another file changed its value. (In other words, use of $[ is deprecated.) So in
general you can assume that

scalar(@whatever) == $#whatever + 1;

Some programmers choose to use an explicit conversion so as to leave nothing to doubt:

$element_count = scalar(@whatever);

If you evaluate a hash in scalar context, it returns false if the hash is empty. If there are any key/value
pairs, it returns true; more precisely, the value returned is a string consisting of the number of used
buckets and the number of allocated buckets, separated by a slash. This is pretty much useful only to
find out whether Perl’s internal hashing algorithm is performing poorly on your data set. For example,
you stick 10,000 things in a hash, but evaluating %HASH in scalar context reveals "1/16", which
means only one out of sixteen buckets has been touched, and presumably contains all 10,000 of your
items. This isn’t supposed to happen.

You can preallocate space for a hash by assigning to the keys() function. This rounds up the allocated
buckets to the next power of two:

perl v5.8.3 2003-11-25 19



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

keys(%users) = 1000; # allocate 1024 buckets

Scalar value constructors

Numeric literals are specified in any of the following floating point or integer formats:

12345
12345.67
.23E-10 # a very small number
3.14_15_92 # a very important number
4_294_967_296 # underscore for legibility
0xff # hex
0xdead_beef # more hex
0377 # octal
0b011011 # binary

You are allowed to use underscores (underbars) in numeric literals between digits for legibility. You
could, for example, group binary digits by threes (as for a Unix-style mode argument such as
0b110_100_100) or by fours (to represent nibbles, as in 0b1010_0110) or in other groups.

String literals are usually delimited by either single or double quotes. They work much like quotes in
the standard Unix shells: double-quoted string literals are subject to backslash and variable substitution;
single-quoted strings are not (except for \’ and \\). The usual C−style backslash rules apply for
making characters such as newline, tab, etc., as well as some more exotic forms. See ‘‘Quote and
Quote-like Operators’’ in perlop for a list.

Hexadecimal, octal, or binary, representations in string literals (e.g. ’0xff’) are not automatically
converted to their integer representation. The hex() and oct() functions make these conversions for you.
See ‘‘hex’’ in perlfunc and ‘‘oct’’ in perlfunc for more details.

You can also embed newlines directly in your strings, i.e., they can end on a different line than they
begin. This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds
another line containing the quote character, which may be much further on in the script. Variable
substitution inside strings is limited to scalar variables, arrays, and array or hash slices. (In other
words, names beginning with $ or @, followed by an optional bracketed expression as a subscript.)
The following code segment prints out "The price is $100."

$Price = ’$100’; # not interpolated
print "The price is $Price.\n"; # interpolated

There is no double interpolation in Perl, so the $100 is left as is.

As in some shells, you can enclose the variable name in braces to disambiguate it from following
alphanumerics (and underscores). You must also do this when interpolating a variable into a string to
separate the variable name from a following double-colon or an apostrophe, since these would be
otherwise treated as a package separator:

$who = "Larry";
print PASSWD "${who}::0:0:Superuser:/:/bin/perl\n";
print "We use ${who}speak when ${who}’s here.\n";

Without the braces, Perl would have looked for a $whospeak, a $who::0, and a $who’s variable.
The last two would be the $0 and the $s variables in the (presumably) non-existent package who.

In fact, an identifier within such curlies is forced to be a string, as is any simple identifier within a hash
subscript. Neither need quoting. Our earlier example, $days{’Feb’} can be written as
$days{Feb} and the quotes will be assumed automatically. But anything more complicated in the
subscript will be interpreted as an expression.

Version Strings

Note: Version Strings (v−strings) have been deprecated. They will not be available after Perl 5.8. The
marginal benefits of v−strings were greatly outweighed by the potential for Surprise and Confusion.

A literal of the form v1.20.300.4000 is parsed as a string composed of characters with the
specified ordinals. This form, known as v−strings, provides an alternative, more readable way to
construct strings, rather than use the somewhat less readable interpolation form
"\x{1}\x{14}\x{12c}\x{fa0}". This is useful for representing Unicode strings, and for

20 2003-11-25 perl v5.8.3



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

comparing version ‘‘numbers’’ using the string comparison operators, cmp, gt, lt etc. If there are
two or more dots in the literal, the leading v may be omitted.

print v9786; # prints UTF-8 encoded SMILEY, "\x{263a}"
print v102.111.111; # prints "foo"
print 102.111.111; # same

Such literals are accepted by both require and use for doing a version check. The $ˆV special
variable also contains the running Perl interpreter’s version in this form. See ‘‘$ˆV’’ in perlvar. Note
that using the v−strings for IPv4 addresses is not portable unless you also use the
inet_aton()/inet_ntoa() routines of the Socket package.

Note that since Perl 5.8.1 the single-number v−strings (like v65) are not v−strings before the =>
operator (which is usually used to separate a hash key from a hash value), instead they are interpreted
as literal strings (’v65’). They were v−strings from Perl 5.6.0 to Perl 5.8.0, but that caused more
confusion and breakage than good. Multi-number v−strings like v65.66 and 65.66.67 continue to
be v−strings always.

Special Literals

The special literals _ _FILE_ _, _ _LINE_ _, and _ _PACKAGE_ _ represent the current filename, line
number, and package name at that point in your program. They may be used only as separate tokens;
they will not be interpolated into strings. If there is no current package (due to an empty package;
directive), _ _PACKAGE_ _ is the undefined value.

The two control characters ˆD and ˆZ, and the tokens _ _END_ _ and _ _DAT A_ _  may be used to
indicate the logical end of the script before the actual end of file. Any following text is ignored.

Te xt after _ _DAT A_ _  but may be read via the filehandle PACKNAME::DATA, where PACKNAME is
the package that was current when the _ _DAT A_ _  token was encountered. The filehandle is left open
pointing to the contents after _ _DAT A_ _. It is the program’s responsibility to close DATA when it
is done reading from it. For compatibility with older scripts written before _ _DAT A_ _  was
introduced, _ _END_ _ behaves like _ _DAT A_ _  in the toplevel script (but not in files loaded with
require or do) and leaves the remaining contents of the file accessible via main::DATA.

See SelfLoader for more description of _ _DAT A_ _, and an example of its use. Note that you cannot
read from the DATA filehandle in a BEGIN block: the BEGIN block is executed as soon as it is seen
(during compilation), at which point the corresponding _ _DAT A_ _  (or _ _END_ _) token has not yet
been seen.

Barewords

A word that has no other interpretation in the grammar will be treated as if it were a quoted string.
These are known as ‘‘barewords’’. As with filehandles and labels, a bareword that consists entirely of
lowercase letters risks conflict with future reserved words, and if you use the use warnings pragma
or the −w switch, Perl will warn you about any such words. Some people may wish to outlaw
barewords entirely. If you say

use strict ’subs’;

then any bareword that would NOT be interpreted as a subroutine call produces a compile-time error
instead. The restriction lasts to the end of the enclosing block. An inner block may countermand this
by saying no strict ’subs’.

Array Joining Delimiter

Arrays and slices are interpolated into double-quoted strings by joining the elements with the delimiter
specified in the $" variable ($LIST_SEPARATOR if ‘‘use English;’’ is specified), space by default.
The following are equivalent:

$temp = join($", @ARGV);
system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is an unfortunate
ambiguity: Is /$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar] is a character
class for the regular expression) or as /${foo[bar]}/ (where [bar] is the subscript to array
@foo)? If @foo doesn’t otherwise exist, then it’s obviously a character class. If @foo exists, Perl

perl v5.8.3 2003-11-25 21



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

takes a good guess about [bar], and is almost always right. If it does guess wrong, or if you’re just
plain paranoid, you can force the correct interpretation with curly braces as above.

If you’re looking for the information on how to use here−documents, which used to be here, that’s been
moved to ‘‘Quote and Quote-like Operators’’ in perlop.

List value constructors

List values are denoted by separating individual values by commas (and enclosing the list in
parentheses where precedence requires it):

(LIST)

In a context not requiring a list value, the value of what appears to be a list literal is simply the value of
the final element, as with the C comma operator. For example,

@foo = (’cc’, ’-E’, $bar);

assigns the entire list value to array @foo, but

$foo = (’cc’, ’-E’, $bar);

assigns the value of variable $bar to the scalar variable $foo. Note that the value of an actual array
in scalar context is the length of the array; the following assigns the value 3 to $foo:

@foo = (’cc’, ’-E’, $bar);
$foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of a list literal, so that you can say:

@foo = (
1,
2,
3,

);

To use a here-document to assign an array, one line per element, you might use an approach like this:

@sauces = <<End_Lines =˜ m/(\S.*\S)/g;
normal tomato
spicy tomato
green chile
pesto
white wine

End_Lines

LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated, each element of the list
is evaluated in list context, and the resulting list value is interpolated into LIST just as if each individual
element were a member of LIST. Thus arrays and hashes lose their identity in a LIST — the list

(@foo,@bar,&SomeSub,%glarch)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elements
returned by the subroutine named SomeSub called in list context, followed by the key/value pairs of
%glarch. To make a list reference that does NOT interpolate, see perlref.

The null list is represented by (). Interpolating it in a list has no effect. Thus ((),(),()) is equivalent to
(). Similarly, interpolating an array with no elements is the same as if no array had been interpolated at
that point.

This interpolation combines with the facts that the opening and closing parentheses are optional (except
when necessary for precedence) and lists may end with an optional comma to mean that multiple
commas within lists are legal syntax. The list 1,,3 is a concatenation of two lists, 1, and 3, the first
of which ends with that optional comma. 1,,3 is (1,),(3) is 1,3 (And similarly for 1,,,3 is
(1,),(,),3 is 1,3 and so on.) Not that we’d advise you to use this obfuscation.

A list value may also be subscripted like a normal array. You must put the list in parentheses to avoid
ambiguity. For example:

22 2003-11-25 perl v5.8.3



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

# Stat returns list value.
$time = (stat($file))[8];

# SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

# Find a hex digit.
$hexdigit = (’a’,’b’,’c’,’d’,’e’,’f’)[$digit-10];

# A "reverse comma operator".
return (pop(@foo),pop(@foo))[0];

Lists may be assigned to only when each element of the list is itself legal to assign to:

($a, $b, $c) = (1, 2, 3);

($map{’red’}, $map{’blue’}, $map{’green’}) = (0x00f, 0x0f0, 0xf00);

An exception to this is that you may assign to undef in a list. This is useful for throwing away some
of the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

List assignment in scalar context returns the number of elements produced by the expression on the
right side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2
$x = (($foo,$bar) = f()); # set $x to f()’s return count

This is handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpreted as FALSE.

It’s also the source of a useful idiom for executing a function or performing an operation in list context
and then counting the number of return values, by assigning to an empty list and then using that
assignment in scalar context. For example, this code:

$count = () = $string =˜ /\d+/g;

will place into $count the number of digit groups found in $string. This happens because the
pattern match is in list context (since it is being assigned to the empty list), and will therefore return a
list of all matching parts of the string. The list assignment in scalar context will translate that into the
number of elements (here, the number of times the pattern matched) and assign that to $count. Note
that simply using

$count = $string =˜ /\d+/g;

would not have worked, since a pattern match in scalar context will only return true or false, rather than
a count of matches.

The final element of a list assignment may be an array or a hash:

($a, $b, @rest) = split;
my($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up all the
values, and anything after it will become undefined. This may be useful in a my() or local().

A hash can be initialized using a literal list holding pairs of items to be interpreted as a key and a value:

# same as map assignment above
%map = (’red’,0x00f,’blue’,0x0f0,’green’,0xf00);

While literal lists and named arrays are often interchangeable, that’s not the case for hashes. Just
because you can subscript a list value like a normal array does not mean that you can subscript a list
value as a hash. Likewise, hashes included as parts of other lists (including parameters lists and return
lists from functions) always flatten out into key/value pairs. That’s why it’s good to use references
sometimes.

It is often more readable to use the => operator between key/value pairs. The => operator is mostly
just a more visually distinctive synonym for a comma, but it also arranges for its left-hand operand to
be interpreted as a string — if it’s a bareword that would be a legal simple identifier (=> doesn’t quote
compound identifiers, that contain double colons). This makes it nice for initializing hashes:

perl v5.8.3 2003-11-25 23



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,

);

or for initializing hash references to be used as records:

$rec = {
witch => ’Mable the Merciless’,
cat => ’Fluffy the Ferocious’,
date => ’10/31/1776’,

};

or for using call-by-named-parameter to complicated functions:

$field = $query->radio_group(
name => ’group_name’,
values => [’eenie’,’meenie’,’minie’],
default => ’meenie’,
linebreak => ’true’,
labels => \%labels

);

Note that just because a hash is initialized in that order doesn’t mean that it comes out in that order.
See ‘‘sort’’ in perlfunc for examples of how to arrange for an output ordering.

Subscripts

An array is subscripted by specifying a dollary sign ($), then the name of the array (without the leading
@), then the subscript inside square brackets. For example:

@myarray = (5, 50, 500, 5000);
print "Element Number 2 is", $myarray[2], "\n";

The array indices start with 0. A negative subscript retrieves its value from the end. In our example,
$myarray[−1] would have been 5000, and $myarray[−2] would have been 500.

Hash subscripts are similar, only instead of square brackets curly brackets are used. For example:

%scientists =
(

"Newton" => "Isaac",
"Einstein" => "Albert",
"Darwin" => "Charles",
"Feynman" => "Richard",

);

print "Darwin’s First Name is ", $scientists{"Darwin"}, "\n";

Slices

A common way to access an array or a hash is one scalar element at a time. You can also subscript a
list to get a single element from it.

$whoami = $ENV{"USER"}; # one element from the hash
$parent = $ISA[0]; # one element from the array
$dir = (getpwnam("daemon"))[7]; # likewise, but with list

A slice accesses several elements of a list, an array, or a  hash simultaneously using a list of subscripts.
It’s more convenient than writing out the individual elements as a list of separate scalar values.

($him, $her) = @folks[0,-1]; # array slice
@them = @folks[0 .. 3]; # array slice
($who, $home) = @ENV{"USER", "HOME"}; # hash slice
($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice

Since you can assign to a list of variables, you can also assign to an array or hash slice.

24 2003-11-25 perl v5.8.3



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

@days[3..5] = qw/Wed Thu Fri/;
@colors{’red’,’blue’,’green’}

= (0xff0000, 0x0000ff, 0x00ff00);
@folks[0, -1] = @folks[-1, 0];

The previous assignments are exactly equivalent to

($days[3], $days[4], $days[5]) = qw/Wed Thu Fri/;
($colors{’red’}, $colors{’blue’}, $colors{’green’})

= (0xff0000, 0x0000ff, 0x00ff00);
($folks[0], $folks[-1]) = ($folks[-1], $folks[0]);

Since changing a slice changes the original array or hash that it’s slicing, a foreach construct will
alter some — or even all — of the values of the array or hash.

foreach (@array[ 4 .. 10 ]) { s/peter/paul/ }

foreach (@hash{qw[key1 key2]}) {
s/ˆ\s+//; # trim leading whitespace
s/\s+$//; # trim trailing whitespace
s/(\w+)/\u\L$1/g; # "titlecase" words

}

A slice of an empty list is still an empty list. Thus:

@a = ()[1,0]; # @a has no elements
@b = (@a)[0,1]; # @b has no elements
@c = (0,1)[2,3]; # @c has no elements

But:

@a = (1)[1,0]; # @a has two elements
@b = (1,undef)[1,0,2]; # @b has three elements

This makes it easy to write loops that terminate when a null list is returned:

while ( ($home, $user) = (getpwent)[7,0]) {
printf "%-8s %s\n", $user, $home;

}

As noted earlier in this document, the scalar sense of list assignment is the number of elements on the
right-hand side of the assignment. The null list contains no elements, so when the password file is
exhausted, the result is 0, not 2.

If you’re confused about why you use an ’@’ there on a hash slice instead of a ’%’, think of it like this.
The type of bracket (square or curly) governs whether it’s an array or a hash being looked at. On the
other hand, the leading symbol (’$’ or ’@’) on the array or hash indicates whether you are getting back
a singular value (a scalar) or a plural one (a list).

Typeglobs and Filehandles

Perl uses an internal type called a typeglob to hold an entire symbol table entry. The type prefix of a
typeglob is a *, because it represents all types. This used to be the preferred way to pass arrays and
hashes by reference into a function, but now that we have real references, this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:

*this = *that;

makes $this an alias for $that, @this an alias for @that, %this an alias for %that, &this an
alias for &that, etc. Much safer is to use a reference. This:

local *Here::blue = \$There::green;

temporarily makes $Here::blue an alias for $There::green, but doesn’t make @Here::blue
an alias for @There::green, or %Here::blue an alias for %There::green, etc. See ‘‘Symbol
Tables’’ in perlmod for more examples of this. Strange though this may seem, this is the basis for the
whole module import/export system.

Another use for typeglobs is to pass filehandles into a function or to create new filehandles. If you need
to use a typeglob to save away a filehandle, do it this way:

perl v5.8.3 2003-11-25 25



PERLDAT A(1) Perl Programmers Reference Guide PERLDAT A(1)

$fh = *STDOUT;

or perhaps as a real reference, like this:

$fh = \*STDOUT;

See perlsub for examples of using these as indirect filehandles in functions.

Typeglobs are also a way to create a local filehandle using the local() operator. These last until their
block is exited, but may be passed back. For example:

sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) or return undef;
return *FH;

}
$fh = newopen(’/etc/passwd’);

Now that we have the *foo{THING} notation, typeglobs aren’t used as much for filehandle
manipulations, although they’re still needed to pass brand new file and directory handles into or out of
functions. That’s because *HANDLE{IO} only works if HANDLE has already been used as a handle.
In other words, *FH must be used to create new symbol table entries; *foo{THING} cannot. When
in doubt, use *FH.

All functions that are capable of creating filehandles (open(), opendir(), pipe(), socketpair(), sysopen(),
socket(), and accept()) automatically create an anonymous filehandle if the handle passed to them is an
uninitialized scalar variable. This allows the constructs such as open(my $fh, ...) and
open(local $fh,...) to be used to create filehandles that will conveniently be closed
automatically when the scope ends, provided there are no other references to them. This largely
eliminates the need for typeglobs when opening filehandles that must be passed around, as in the
following example:

sub myopen {
open my $fh, "@_"

or die "Can’t open ’@_’: $!";
return $fh;

}

{
my $f = myopen("</etc/motd");
print <$f>;
# $f implicitly closed here

}

Note that if an initialized scalar variable is used instead the result is different: my $fh=’zzz’;
open($fh, ...) is equivalent to open( *{’zzz’}, ...). use strict ’refs’ forbids
such practice.

Another way to create anonymous filehandles is with the Symbol module or with the IO::Handle
module and its ilk. These modules have the advantage of not hiding different types of the same name
during the local(). See the bottom of ‘‘open()’’ in perlfunc for an example.

SEE ALSO
See perlvar for a description of Perl’s built-in variables and a discussion of legal variable names. See
perlref, perlsub, and ‘‘Symbol Tables’’ in perlmod for more discussion on typeglobs and the
*foo{THING} syntax.

26 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

NAME
perlop − Perl operators and precedence

DESCRIPTION
Operator Precedence and Associativity

Operator precedence and associativity work in Perl more or less like they do in mathematics.

Operator precedence means some operators are evaluated before others. For example, in 2 + 4 *
5, the multiplication has higher precedence so 4 *  5 is evaluated first yielding 2 + 20 == 22 and
not 6 * 5 == 30.

Operator associativity defines what happens if a sequence of the same operators is used one after
another: whether the evaluator will evaluate the left operations first or the right. For example, in 8 −
4 − 2, subtraction is left associative so Perl evaluates the expression left to right. 8 − 4 is evaluated
first making the expression 4 − 2 == 2 and not 8 − 2 == 6.

Perl operators have the following associativity and precedence, listed from highest precedence to
lowest. Operators borrowed from C keep the same precedence relationship with each other, even where
C’s precedence is slightly screwy. (This makes learning Perl easier for C folks.) With very few
exceptions, these all operate on scalar values only, not array values.

left terms and list operators (leftward)
left ->
nonassoc ++ --
right **
right ! ˜ \ and unary + and -
left =˜ !˜
left * / % x
left + - .
left << >>
nonassoc named unary operators
nonassoc < > <= >= lt gt le ge
nonassoc == != <=> eq ne cmp
left &
left  ˆ
left &&
left 
nonassoc .. ...
right ?:
right = += -= *= etc.
left , =>
nonassoc list operators (rightward)
right not
left and
left or xor

In the following sections, these operators are covered in precedence order.

Many operators can be overloaded for objects. See overload.

Terms and List Operators (Leftward)

A TERM has the highest precedence in Perl. They include variables, quote and quote-like operators,
any expression in parentheses, and any function whose arguments are parenthesized. Actually, there
aren’t really functions in this sense, just list operators and unary operators behaving as functions
because you put parentheses around the arguments. These are all documented in perlfunc.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) is followed by a left parenthesis
as the next token, the operator and arguments within parentheses are taken to be of highest precedence,
just like a normal function call.

In the absence of parentheses, the precedence of list operators such as print, sort, or chmod is
either very high or very low depending on whether you are looking at the left side or the right side of
the operator. For example, in

perl v5.8.3 2003-11-25 27



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are
evaluated after. In other words, list operators tend to gobble up all arguments that follow, and then act
like a simple TERM with regard to the preceding expression. Be careful with parentheses:

# These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

# These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.
print ($foo), exit; # Or even this.

Also note that

print ($foo & 255) + 1, "\n";

probably doesn’t do what you expect at first glance. The parentheses enclose the argument list for
print which is evaluated (printing the result of $foo & 255). Then one is added to the return
value of print (usually 1). The result is something like this:

1 + 1, "\n"; # Obviously not what you meant.

To do what you meant properly, you must write:

print(($foo & 255) + 1, "\n");

See ‘‘Named Unary Operators’’ for more discussion of this.

Also parsed as terms are the do {} and eval {} constructs, as well as subroutine and method calls,
and the anonymous constructors [] and {}.

See also ‘‘Quote and Quote-like Operators’’ tow ard the end of this section, as well as ‘‘I/O Operators’’.

The Arrow Operator

"−>" is an infix dereference operator, just as it is in C and C++. If the right side is either a [...],
{...}, or a (...) subscript, then the left side must be either a hard or symbolic reference to an
array, a hash, or a subroutine respectively. (Or technically speaking, a location capable of holding a
hard reference, if it’s an array or hash reference being used for assignment.) See perlreftut and perlref.

Otherwise, the right side is a method name or a simple scalar variable containing either the method
name or a subroutine reference, and the left side must be either an object (a blessed reference) or a
class name (that is, a package name). See perlobj.

Auto-increment and Auto-decrement

‘‘++’’ and ‘‘−−’’ work as in C. That is, if placed before a variable, they increment or decrement the
variable by one before returning the value, and if placed after, increment or decrement after returning
the value.

$i = 0; $j = 0;
print $i++; # prints 0
print ++$j; # prints 1

The auto-increment operator has a little extra builtin magic to it. If you increment a variable that is
numeric, or that has ever been used in a numeric context, you get a normal increment. If, however, the
variable has been used in only string contexts since it was set, and has a value that is not the empty
string and matches the pattern /ˆ[a−zA−Z]*[0−9]*\z/, the increment is done as a string,
preserving each character within its range, with carry:

print ++($foo = ’99’); # prints ’100’
print ++($foo = ’a0’); # prints ’a1’
print ++($foo = ’Az’); # prints ’Ba’
print ++($foo = ’zz’); # prints ’aaa’

undef is always treated as numeric, and in particular is changed to 0 before incrementing (so that a

28 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

post-increment of an undef value will return 0 rather than undef).

The auto-decrement operator is not magical.

Exponentiation

Binary ‘‘**’’ is the exponentiation operator. It binds even more tightly than unary minus, so −2**4 is
−(2**4), not (−2)**4. (This is implemented using C’s pow (3) function, which actually works on
doubles internally.)

Symbolic Unary Operators

Unary ‘‘!’’ performs logical negation, i.e., ‘‘not’’. See also not for a lower precedence version of this.

Unary ‘‘−’’ performs arithmetic negation if the operand is numeric. If the operand is an identifier, a
string consisting of a minus sign concatenated with the identifier is returned. Otherwise, if the string
starts with a plus or minus, a string starting with the opposite sign is returned. One effect of these rules
is that −bareword is equivalent to "−bareword".

Unary ‘‘˜’’ performs bitwise negation, i.e., 1’s complement. For example, 0666 & ˜027 is 0640.
(See also ‘‘Integer Arithmetic’’ and ‘‘Bitwise String Operators’’.) Note that the width of the result is
platform−dependent: ˜0 is 32 bits wide on a 32−bit platform, but 64 bits wide on a 64−bit platform, so
if you are expecting a certain bit width, remember to use the & operator to mask off the excess bits.

Unary ‘‘+’’ has no effect whatsoever, even on strings. It is useful syntactically for separating a function
name from a parenthesized expression that would otherwise be interpreted as the complete list of
function arguments. (See examples above under ‘‘Terms and List Operators (Leftward)’’.)

Unary ‘‘\’’ creates a reference to whatever follows it. See perlreftut and perlref. Do not confuse this
behavior with the behavior of backslash within a string, although both forms do convey the notion of
protecting the next thing from interpolation.

Binding Operators

Binary ‘‘=˜’’ binds a scalar expression to a pattern match. Certain operations search or modify the
string $_ by default. This operator makes that kind of operation work on some other string. The right
argument is a search pattern, substitution, or transliteration. The left argument is what is supposed to
be searched, substituted, or transliterated instead of the default $_. When used in scalar context, the
return value generally indicates the success of the operation. Behavior in list context depends on the
particular operator. See ‘‘Regexp Quote-Like Operators’’ for details.

If the right argument is an expression rather than a search pattern, substitution, or transliteration, it is
interpreted as a search pattern at run time.

Binary ‘‘!˜’’ is just like ‘‘=˜’’ except the return value is negated in the logical sense.

Multiplicative Operators

Binary ‘‘*’’ multiplies two numbers.

Binary ‘‘/’’ divides two numbers.

Binary ‘‘%’’ computes the modulus of two numbers. Given integer operands $a and $b: If $b is
positive, then $a % $b is $a minus the largest multiple of $b that is not greater than $a. If $b is
negative, then $a % $b is $a minus the smallest multiple of $b that is not less than $a (i.e. the result
will be less than or equal to zero). Note that when use integer is in scope, ‘‘%’’ giv es you direct
access to the modulus operator as implemented by your C compiler. This operator is not as well
defined for negative operands, but it will execute faster.

Binary ‘‘x’’ is the repetition operator. In scalar context or if the left operand is not enclosed in
parentheses, it returns a string consisting of the left operand repeated the number of times specified by
the right operand. In list context, if the left operand is enclosed in parentheses, it repeats the list.

print ’-’ x 80; # print row of dashes

print "\t" x ($tab/8), ’ ’ x ($tab%8); # tab over

perl v5.8.3 2003-11-25 29



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

@ones = (1) x 80; # a list of 80 1’s
@ones = (5) x @ones; # set all elements to 5

Additive Operators

Binary ‘‘+’’ returns the sum of two numbers.

Binary ‘‘−’’ returns the difference of two numbers.

Binary ‘‘.’’ concatenates two strings.

Shift Operators

Binary ‘‘<<’’ returns the value of its left argument shifted left by the number of bits specified by the
right argument. Arguments should be integers. (See also ‘‘Integer Arithmetic’’.)

Binary ‘‘>>’’ returns the value of its left argument shifted right by the number of bits specified by the
right argument. Arguments should be integers. (See also ‘‘Integer Arithmetic’’.)

Note that both ‘‘<<’’ and ‘‘>>’’ in Perl are implemented directly using ‘‘<<’’ and ‘‘>>’’ in C. If use
integer (see ‘‘Integer Arithmetic’’) is in force then signed C integers are used, else unsigned C
integers are used. Either way, the implementation isn’t going to generate results larger than the size of
the integer type Perl was built with (32 bits or 64 bits).

The result of overflowing the range of the integers is undefined because it is undefined also in C. In
other words, using 32−bit integers, 1 << 32 is undefined. Shifting by a negative number of bits is
also undefined.

Named Unary Operators

The various named unary operators are treated as functions with one argument, with optional
parentheses.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) is followed by a left parenthesis
as the next token, the operator and arguments within parentheses are taken to be of highest precedence,
just like a normal function call. For example, because named unary operators are higher precedence
than :

chdir $foo  die; # (chdir $foo)  die
chdir($foo)  die; # (chdir $foo)  die
chdir ($foo)  die; # (chdir $foo)  die
chdir +($foo)  die; # (chdir $foo)  die

but, because * is higher precedence than named operators:

chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20
rand +(10) * 20; # rand (10 * 20)

Regarding precedence, the filetest operators, like −f, −M, etc. are treated like named unary operators,
but they don’t follow this functional parenthesis rule. That means, for example, that
−f($file).".bak" is equivalent to −f "$file.bak".

See also ‘‘Terms and List Operators (Leftward)’’.

Relational Operators

Binary ‘‘<’’ returns true if the left argument is numerically less than the right argument.

Binary ‘‘>’’ returns true if the left argument is numerically greater than the right argument.

Binary ‘‘<=’’ returns true if the left argument is numerically less than or equal to the right argument.

Binary ‘‘>=’’ returns true if the left argument is numerically greater than or equal to the right argument.

30 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Binary ‘‘lt’’ returns true if the left argument is stringwise less than the right argument.

Binary ‘‘gt’’ returns true if the left argument is stringwise greater than the right argument.

Binary ‘‘le’’ returns true if the left argument is stringwise less than or equal to the right argument.

Binary ‘‘ge’’ returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators

Binary ‘‘==’’ returns true if the left argument is numerically equal to the right argument.

Binary ‘‘!=’’ returns true if the left argument is numerically not equal to the right argument.

Binary ‘‘<=>’’ returns −1, 0, or 1 depending on whether the left argument is numerically less than,
equal to, or greater than the right argument. If your platform supports NaNs (not−a−numbers) as
numeric values, using them with ‘‘<=>’’ returns undef. NaN is not ‘‘<’’, ‘‘==’’, ‘‘>’’, ‘‘<=’’ or ‘‘>=’’
anything (even NaN), so those 5 return false. NaN != NaN returns true, as does NaN != anything else.
If your platform doesn’t support NaNs then NaN is just a string with numeric value 0.

perl -le ’$a = NaN; print "No NaN support here" if $a == $a’
perl -le ’$a = NaN; print "NaN support here" if $a != $a’

Binary ‘‘eq’’ returns true if the left argument is stringwise equal to the right argument.

Binary ‘‘ne’’ returns true if the left argument is stringwise not equal to the right argument.

Binary ‘‘cmp’’ returns −1, 0, or 1 depending on whether the left argument is stringwise less than, equal
to, or greater than the right argument.

‘‘lt’’, ‘‘le’’, ‘‘ge’’, ‘‘gt’’ and ‘‘cmp’’ use the collation (sort) order specified by the current locale if use
locale is in effect. See perllocale.

Bitwise And

Binary ‘‘&’’ returns its operands ANDed together bit by bit. (See also ‘‘Integer Arithmetic’’ and
‘‘Bitwise String Operators’’.)

Note that ‘‘&’’ has lower priority than relational operators, so for example the brackets are essential in
a test like

print "Even\n" if ($x & 1) == 0;

Bitwise Or and Exclusive Or

Binary ‘‘’’ returns its operands ORed together bit by bit. (See also ‘‘Integer Arithmetic’’ and ‘‘Bitwise
String Operators’’.)

Binary ‘‘ˆ’’ returns its operands XORed together bit by bit. (See also ‘‘Integer Arithmetic’’ and
‘‘Bitwise String Operators’’.)

Note that ‘‘’’ and ‘‘ˆ’’ hav e lower priority than relational operators, so for example the brackets are
essential in a test like

print "false\n" if (8  2) != 10;

C−style Logical And

Binary ‘‘&&’’ performs a short-circuit logical AND operation. That is, if the left operand is false, the
right operand is not even evaluated. Scalar or list context propagates down to the right operand if it is
evaluated.

C−style Logical Or

Binary ‘‘’’ performs a short-circuit logical OR operation. That is, if the left operand is true, the right
operand is not even evaluated. Scalar or list context propagates down to the right operand if it is
evaluated.

The  and && operators return the last value evaluated (unlike C’s  and &&, which return 0 or 1).
Thus, a reasonably portable way to find out the home directory might be:

perl v5.8.3 2003-11-25 31



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$home = $ENV{’HOME’}  $ENV{’LOGDIR’} 
(getpwuid($<))[7]  die "You’re homeless!\n";

In particular, this means that you shouldn’t use this for selecting between two aggregates for
assignment:

@a = @b  @c; # this is wrong
@a = scalar(@b)  @c; # really meant this
@a = @b ? @b : @c; # this works fine, though

As more readable alternatives to && and  when used for control flow, Perl provides and and or
operators (see below). The short-circuit behavior is identical. The precedence of ‘‘and’’ and ‘‘or’’ is
much lower, howev er, so that you can safely use them after a list operator without the need for
parentheses:

unlink "alpha", "beta", "gamma"
or gripe(), next LINE;

With the C−style operators that would have been written like this:

unlink("alpha", "beta", "gamma")
 (gripe(), next LINE);

Using ‘‘or’’ for assignment is unlikely to do what you want; see below.

Range Operators

Binary ‘‘..’’ is the range operator, which is really two different operators depending on the context. In
list context, it returns a list of values counting (up by ones) from the left value to the right value. If the
left value is greater than the right value then it returns the empty list. The range operator is useful for
writing foreach (1..10) loops and for doing slice operations on arrays. In the current
implementation, no temporary array is created when the range operator is used as the expression in
foreach loops, but older versions of Perl might burn a lot of memory when you write something like
this:

for (1 .. 1_000_000) {
# code

}

The range operator also works on strings, using the magical auto−increment, see below.

In scalar context, ‘‘..’’ returns a boolean value. The operator is bistable, like a flip−flop, and emulates
the line-range (comma) operator of sed, awk, and various editors. Each ‘‘..’’ operator maintains its
own boolean state. It is false as long as its left operand is false. Once the left operand is true, the range
operator stays true until the right operand is true, AFTER which the range operator becomes false again.
It doesn’t become false till the next time the range operator is evaluated. It can test the right operand
and become false on the same evaluation it became true (as in awk), but it still returns true once. If you
don’t want it to test the right operand till the next evaluation, as in sed, just use three dots (‘‘...’’)
instead of two. In all other regards, ‘‘...’’ behaves just like ‘‘..’’ does.

The right operand is not evaluated while the operator is in the ‘‘false’’ state, and the left operand is not
evaluated while the operator is in the ‘‘true’’ state. The precedence is a little lower than  and &&.
The value returned is either the empty string for false, or a sequence number (beginning with 1) for
true. The sequence number is reset for each range encountered. The final sequence number in a range
has the string ‘‘E0’’ appended to it, which doesn’t affect its numeric value, but gives you something to
search for if you want to exclude the endpoint. You can exclude the beginning point by waiting for the
sequence number to be greater than 1.

If either operand of scalar ‘‘..’’ is a constant expression, that operand is considered true if it is equal
(==) to the current input line number (the $. variable).

To be pedantic, the comparison is actually int(EXPR) == int(EXPR), but that is only an issue if
you use a floating point expression; when implicitly using $. as described in the previous paragraph,
the comparison is int(EXPR) == int($.) which is only an issue when $. is set to a floating
point value and you are not reading from a file. Furthermore, "span" .. "spat" or 2.18 ..
3.14 will not do what you want in scalar context because each of the operands are evaluated using
their integer representation.

32 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines, short for
# if ($. == 101 .. $. == 200) ...

next line if (1 .. /ˆ$/); # skip header lines, short for
# ... if ($. == 1 .. /ˆ$/);

s/ˆ/> / if (/ˆ$/ .. eof()); # quote body

# parse mail messages
while (<>) {

$in_header = 1 .. /ˆ$/;
$in_body = /ˆ$/ .. eof;
if ($in_header) {

# ...
} else { # in body

# ...
}

} continue {
close ARGV if eof; # reset $. each file

}

As a list operator:

for (101 .. 200) { print; } # print $_ 100 times
@foo = @foo[0 .. $#foo]; # an expensive no-op
@foo = @foo[$#foo-4 .. $#foo]; # slice last 5 items

The range operator (in list context) makes use of the magical auto-increment algorithm if the operands
are strings. You can say

@alphabet = (’A’ .. ’Z’);

to get all normal letters of the English alphabet, or

$hexdigit = (0 .. 9, ’a’ .. ’f’)[$num & 15];

to get a hexadecimal digit, or

@z2 = (’01’ .. ’31’); print $z2[$mday];

to get dates with leading zeros. If the final value specified is not in the sequence that the magical
increment would produce, the sequence goes until the next value would be longer than the final value
specified.

Because each operand is evaluated in integer form, 2.18 .. 3.14 will return two elements in list
context.

@list = (2.18 .. 3.14); # same as @list = (2 .. 3);

Conditional Operator

Ternary ‘‘?:’’ is the conditional operator, just as in C. It works much like an if−then−else. If the
argument before the ? is true, the argument before the : is returned, otherwise the argument after the : is
returned. For example:

printf "I have %d dog%s.\n", $n,
($n == 1) ? ’’ : "s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

$a = $ok ? $b : $c; # get a scalar
@a = $ok ? @b : @c; # get an array
$a = $ok ? @b : @c; # oops, that’s just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal lvalues (meaning that you
can assign to them):

($a_or_b ? $a : $b) = $c;

perl v5.8.3 2003-11-25 33



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Because this operator produces an assignable result, using assignments without parentheses will get
you in trouble. For example, this:

$a % 2 ? $a += 10 : $a += 2

Really means this:

(($a % 2) ? ($a += 10) : $a) += 2

Rather than this:

($a % 2) ? ($a += 10) : ($a += 2)

That should probably be written more simply as:

$a += ($a % 2) ? 10 : 2;

Assignment Operators

‘‘=’’ is the ordinary assignment operator.

Assignment operators work as in C. That is,

$a += 2;

is equivalent to

$a = $a + 2;

although without duplicating any side effects that dereferencing the lvalue might trigger, such as from
tie(). Other assignment operators work similarly. The following are recognized:

**= += *= &= <<= &&=
-= /= = >>= =
.= %= ˆ=

x=

Although these are grouped by family, they all have the precedence of assignment.

Unlike in C, the scalar assignment operator produces a valid lvalue. Modifying an assignment is
equivalent to doing the assignment and then modifying the variable that was assigned to. This is useful
for modifying a copy of something, like this:

($tmp = $global) =˜ tr [A-Z] [a-z];

Likewise,

($a += 2) *= 3;

is equivalent to

$a += 2;
$a *= 3;

Similarly, a list assignment in list context produces the list of lvalues assigned to, and a list assignment
in scalar context returns the number of elements produced by the expression on the right hand side of
the assignment.

Comma Operator

Binary ‘‘,’’ is the comma operator. In scalar context it evaluates its left argument, throws that value
aw ay, then evaluates its right argument and returns that value. This is just like C’s comma operator.

In list context, it’s just the list argument separator, and inserts both its arguments into the list.

The => operator is a synonym for the comma, but forces any word to its left to be interpreted as a string
(as of 5.001). It is helpful in documenting the correspondence between keys and values in hashes, and
other paired elements in lists.

34 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

List Operators (Rightward)

On the right side of a list operator, it has very low precedence, such that it controls all comma-separated
expressions found there. The only operators with lower precedence are the logical operators ‘‘and’’,
‘‘or’’, and ‘‘not’’, which may be used to evaluate calls to list operators without the need for extra
parentheses:

open HANDLE, "filename"
or die "Can’t open: $!\n";

See also discussion of list operators in ‘‘Terms and List Operators (Leftward)’’.

Logical Not

Unary ‘‘not’’ returns the logical negation of the expression to its right. It’s the equivalent of ‘‘!’’ except
for the very low precedence.

Logical And

Binary ‘‘and’’ returns the logical conjunction of the two surrounding expressions. It’s equivalent to
&& except for the very low precedence. This means that it short−circuits: i.e., the right expression is
evaluated only if the left expression is true.

Logical or and Exclusive Or

Binary ‘‘or’’ returns the logical disjunction of the two surrounding expressions. It’s equivalent to 
except for the very low precedence. This makes it useful for control flow

print FH $data or die "Can’t write to FH: $!";

This means that it short−circuits: i.e., the right expression is evaluated only if the left expression is
false. Due to its precedence, you should probably avoid using this for assignment, only for control
flow.

$a = $b or $c; # bug: this is wrong
($a = $b) or $c; # really means this
$a = $b  $c; # better written this way

However, when it’s a list-context assignment and you’re trying to use ‘‘’’ for control flow, you
probably need ‘‘or’’ so that the assignment takes higher precedence.

@info = stat($file)  die; # oops, scalar sense of stat!
@info = stat($file) or die; # better, now @info gets its due

Then again, you could always use parentheses.

Binary ‘‘xor’’ returns the exclusive-OR of the two surrounding expressions. It cannot short circuit, of
course.

C Operators Missing From Perl

Here is what C has that Perl doesn’t:

unary & Address-of operator. (But see the ‘‘\’’ operator for taking a reference.)

unary * Dereference-address operator. (Perl’s prefix dereferencing operators are typed: $, @, %, and
&.)

(TYPE) Type-casting operator.

Quote and Quote-like Operators

While we usually think of quotes as literal values, in Perl they function as operators, providing various
kinds of interpolating and pattern matching capabilities. Perl provides customary quote characters for
these behaviors, but also provides a way for you to choose your quote character for any of them. In the
following table, a {} represents any pair of delimiters you choose.

perl v5.8.3 2003-11-25 35



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Customary Generic Meaning Interpolates
’’ q{} Literal no
"" qq{} Literal yes
‘‘ qx{} Command yes*

qw{} Word list no
// m{} Pattern match yes*

qr{} Pattern yes*
s{}{} Substitution yes*
tr{}{} Transliteration no (but see below)

<<EOF here-doc yes*

* unless the delimiter is ’’.

Non-bracketing delimiters use the same character fore and aft, but the four sorts of brackets (round,
angle, square, curly) will all nest, which means that

q{foo{bar}baz}

is the same as

’foo{bar}baz’

Note, however, that this does not always work for quoting Perl code:

$s = q{ if($a eq "}") ... }; # WRONG

is a syntax error. The Text::Balanced module (from CPAN, and starting from Perl 5.8 part of the
standard distribution) is able to do this properly.

There can be whitespace between the operator and the quoting characters, except when # is being used
as the quoting character. q#foo# is parsed as the string foo, while q #foo# is the operator q
followed by a comment. Its argument will be taken from the next line. This allows you to write:

s {foo} # Replace foo
{bar} # with bar.

The following escape sequences are available in constructs that interpolate and in transliterations.

\t tab (HT, TAB)
\n newline (NL)
\r return (CR)
\f form feed (FF)
\b backspace (BS)
\a alarm (bell) (BEL)
\e escape (ESC)
\033 octal char (ESC)
\x1b hex char (ESC)
\x{263a} wide hex char (SMILEY)
\c[ control char (ESC)
\N{name} named Unicode character

NOTE: Unlike C and other languages, Perl has no \v escape sequence for the vertical tab (VT − ASCII
11).

The following escape sequences are available in constructs that interpolate but not in transliterations.

\l lowercase next char
\u uppercase next char
\L lowercase till \E
\U uppercase till \E
\E end case modification
\Q quote non-word characters till \E

If use locale is in effect, the case map used by \l, \L, \u and \U is taken from the current locale.
See perllocale. If Unicode (for example, \N{} or wide hex characters of 0x100 or beyond) is being
used, the case map used by \l, \L, \u and \U is as defined by Unicode. For documentation of
\N{name}, see charnames.

All systems use the virtual "\n" to represent a line terminator, called a ‘‘newline’’. There is no such

36 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

thing as an unvarying, physical newline character. It is only an illusion that the operating system,
device drivers, C libraries, and Perl all conspire to preserve. Not all systems read "\r" as ASCII CR
and "\n" as ASCII LF. For example, on a Mac, these are reversed, and on systems without line
terminator, printing "\n" may emit no actual data. In general, use "\n" when you mean a ‘‘newline’’
for your system, but use the literal ASCII when you need an exact character. For example, most
networking protocols expect and prefer a CR+LF ("\015\012" or "\cM\cJ") for line terminators,
and although they often accept just "\012", they seldom tolerate just "\015". If you get in the habit
of using "\n" for networking, you may be burned some day.

For constructs that do interpolate, variables beginning with "$‘‘ or ’’@" are interpolated. Subscripted
variables such as $a[3] or $href−>{key}[0] are also interpolated, as are array and hash slices.
But method calls such as $obj−>meth are not.

Interpolating an array or slice interpolates the elements in order, separated by the value of $", so is
equivalent to interpolating join $", @array. ‘‘Punctuation’’ arrays such as @+ are only
interpolated if the name is enclosed in braces @{+}.

You cannot include a literal $ or @ within a \Q sequence. An unescaped $ or @ interpolates the
corresponding variable, while escaping will cause the literal string \$ to be inserted. You’ll need to
write something like m/\Quser\E\@\Qhost/.

Patterns are subject to an additional level of interpretation as a regular expression. This is done as a
second pass, after variables are interpolated, so that regular expressions may be incorporated into the
pattern from the variables. If this is not what you want, use \Q to interpolate a variable literally.

Apart from the behavior described above, Perl does not expand multiple levels of interpolation. In
particular, contrary to the expectations of shell programmers, back-quotes do NOT interpolate within
double quotes, nor do single quotes impede evaluation of variables when used within double quotes.

Regexp Quote-Like Operators

Here are the quote-like operators that apply to pattern matching and related activities.

?PATTERN?
This is just like the /pattern/ search, except that it matches only once between calls to
the reset() operator. This is a useful optimization when you want to see only the first
occurrence of something in each file of a set of files, for instance. Only ?? patterns local to
the current package are reset.

while (<>) {
if (?ˆ$?) {

# blank line between header and body
}

} continue {
reset if eof; # clear ?? status for next file

}

This usage is vaguely deprecated, which means it just might possibly be removed in some
distant future version of Perl, perhaps somewhere around the year 2168.

m/PATTERN/cgimosx
/PATTERN/cgimosx

Searches a string for a pattern match, and in scalar context returns true if it succeeds, false if
it fails. If no string is specified via the =˜ or !˜ operator, the $_ string is searched. (The
string specified with =˜ need not be an lvalue — it may be the result of an expression
evaluation, but remember the =˜ binds rather tightly.) See also perlre. See perllocale for
discussion of additional considerations that apply when use locale is in effect.

Options are:

perl v5.8.3 2003-11-25 37



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

c Do not reset search position on a failed match when /g is in effect.
g Match globally, i.e., find all occurrences.
i Do case-insensitive pattern matching.
m Treat string as multiple lines.
o Compile pattern only once.
s Treat string as single line.
x Use extended regular expressions.

If ‘‘/’’ is the delimiter then the initial m is optional. With the m you can use any pair of
non−alphanumeric, non-whitespace characters as delimiters. This is particularly useful for
matching path names that contain ‘‘/’’, to avoid LTS (leaning toothpick syndrome). If ‘‘?’’ is
the delimiter, then the match-only-once rule of ?PATTERN? applies. If ‘‘’’’ is the delimiter,
no interpolation is performed on the PATTERN.

PATTERN may contain variables, which will be interpolated (and the pattern recompiled)
ev ery time the pattern search is evaluated, except for when the delimiter is a single quote.
(Note that $(, $), and $ are not interpolated because they look like end-of-string tests.) If
you want such a pattern to be compiled only once, add a /o after the trailing delimiter. This
avoids expensive run-time recompilations, and is useful when the value you are interpolating
won’t change over the life of the script. However, mentioning /o constitutes a promise that
you won’t change the variables in the pattern. If you change them, Perl won’t even notice.
See also ‘‘qr/STRING/imosx’’.

If the PATTERN evaluates to the empty string, the last successfully matched regular
expression is used instead. In this case, only the g and c flags on the empty pattern is
honoured − the other flags are taken from the original pattern. If no match has previously
succeeded, this will (silently) act instead as a genuine empty pattern (which will always
match).

If the /g option is not used, m// in list context returns a list consisting of the subexpressions
matched by the parentheses in the pattern, i.e., ($1, $2, $3...). (Note that here $1 etc. are
also set, and that this differs from Perl 4’s behavior.) When there are no parentheses in the
pattern, the return value is the list (1) for success. With or without parentheses, an empty
list is returned upon failure.

Examples:

open(TTY, ’/dev/tty’);
<TTY> =˜ /ˆy/i && foo(); # do foo if desired

if (/Version: *([0-9.]*)/) { $version = $1; }

next if m#ˆ/usr/spool/uucp#;

# poor man’s grep
$arg = shift;
while (<>) {

print if /$arg/o; # compile only once
}

if (($F1, $F2, $Etc) = ($foo =˜ /ˆ(\S+)\s+(\S+)\s*(.*)/))

This last example splits $foo into the first two words and the remainder of the line, and
assigns those three fields to $F1, $F2, and $Etc. The conditional is true if any variables
were assigned, i.e., if the pattern matched.

The /g modifier specifies global pattern matching — that is, matching as many times as
possible within the string. How it behaves depends on the context. In list context, it returns a
list of the substrings matched by any capturing parentheses in the regular expression. If there
are no parentheses, it returns a list of all the matched strings, as if there were parentheses
around the whole pattern.

In scalar context, each execution of m//g finds the next match, returning true if it matches,
and false if there is no further match. The position after the last match can be read or set
using the pos() function; see ‘‘pos’’ in perlfunc. A failed match normally resets the search

38 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

position to the beginning of the string, but you can avoid that by adding the /c modifier (e.g.
m//gc). Modifying the target string also resets the search position.

You can intermix m//g matches with m/\G.../g, where \G is a zero-width assertion that
matches the exact position where the previous m//g, if any, left off. Without the /g
modifier, the \G assertion still anchors at pos(), but the match is of course only attempted
once. Using \G without /g on a target string that has not previously had a /g match applied
to it is the same as using the \A assertion to match the beginning of the string. Note also
that, currently, \G is only properly supported when anchored at the very beginning of the
pattern.

Examples:

# list context
($one,$five,$fifteen) = (‘uptime‘ =˜ /(\d+\.\d+)/g);

# scalar context
$/ = "";
while (defined($paragraph = <>)) {

while ($paragraph =˜ /[a-z][’")]*[.!?]+[’")]*\s/g) {
$sentences++;

}
}
print "$sentences\n";

# using m//gc with \G
$_ = "ppooqppqq";
while ($i++ < 2) {

print "1: ’";
print $1 while /(o)/gc; print "’, pos=", pos, "\n";
print "2: ’";
print $1 if /\G(q)/gc; print "’, pos=", pos, "\n";
print "3: ’";
print $1 while /(p)/gc; print "’, pos=", pos, "\n";

}
print "Final: ’$1’, pos=",pos,"\n" if /\G(.)/;

The last example should print:

1: ’oo’, pos=4
2: ’q’, pos=5
3: ’pp’, pos=7
1: ’’, pos=7
2: ’q’, pos=8
3: ’’, pos=8
Final: ’q’, pos=8

Notice that the final match matched q instead of p, which a match without the \G anchor
would have done. Also note that the final match did not update pos — pos is only updated
on a /g match. If the final match did indeed match p, it’s a good bet that you’re running an
older (pre−5.6.0) Perl.

A useful idiom for lex−like scanners is /\G.../gc. You can combine several regexps
like this to process a string part−by−part, doing different actions depending on which regexp
matched. Each regexp tries to match where the previous one leaves off.

perl v5.8.3 2003-11-25 39



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$_ = <<’EOL’;
$url = new URI::URL "http://www/"; die if $url eq "xXx";

EOL
LOOP:

{
print(" digits"), redo LOOP if /\G\d+\b[,.;]?\s*/gc;
print(" lowercase"), redo LOOP if /\G[a-z]+\b[,.;]?\s*/gc;
print(" UPPERCASE"), redo LOOP if /\G[A-Z]+\b[,.;]?\s*/gc;
print(" Capitalized"), redo LOOP if /\G[A-Z][a-z]+\b[,.;]?\s*/gc;
print(" MiXeD"), redo LOOP if /\G[A-Za-z]+\b[,.;]?\s*/gc;
print(" alphanumeric"), redo LOOP if /\G[A-Za-z0-9]+\b[,.;]?\s*/gc;
print(" line-noise"), redo LOOP if /\G[ˆA-Za-z0-9]+/gc;
print ". That’s all!\n";

}

Here is the output (split into several lines):

line-noise lowercase line-noise lowercase UPPERCASE line-noise
UPPERCASE line-noise lowercase line-noise lowercase line-noise
lowercase lowercase line-noise lowercase lowercase line-noise
MiXeD line-noise. That’s all!

q/STRING/
’STRING’

A single−quoted, literal string. A backslash represents a backslash unless followed by the
delimiter or another backslash, in which case the delimiter or backslash is interpolated.

$foo = q!I said, "You said, ’She said it.’"!;
$bar = q(’This is it.’);
$baz = ’\n’; # a two-character string

qq/STRING/
‘‘STRING’’

A double−quoted, interpolated string.

$_ .= qq
(*** The previous line contains the naughty word "$1".\n)

if /\b(tcljavapython)\b/i; # :-)
$baz = "\n"; # a one-character string

qr/STRING/imosx
This operator quotes (and possibly compiles) its STRING as a regular expression. STRING is
interpolated the same way as PA TTERN in m/PATTERN/. If ‘‘’’’ is used as the delimiter, no
interpolation is done. Returns a Perl value which may be used instead of the corresponding
/STRING/imosx expression.

For example,

$rex = qr/my.STRING/is;
s/$rex/foo/;

is equivalent to

s/my.STRING/foo/is;

The result may be used as a subpattern in a match:

$re = qr/$pattern/;
$string =˜ /foo${re}bar/; # can be interpolated in other patterns
$string =˜ $re; # or used standalone
$string =˜ /$re/; # or this way

Since Perl may compile the pattern at the moment of execution of qr() operator, using qr()
may have speed advantages in some situations, notably if the result of qr() is used standalone:

40 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

sub match {
my $patterns = shift;
my @compiled = map qr/$_/i, @$patterns;
grep {

my $success = 0;
foreach my $pat (@compiled) {

$success = 1, last if /$pat/;
}
$success;

} @_;
}

Precompilation of the pattern into an internal representation at the moment of qr() avoids a
need to recompile the pattern every time a match /$pat/ is attempted. (Perl has many other
internal optimizations, but none would be triggered in the above example if we did not use
qr() operator.)

Options are:

i Do case-insensitive pattern matching.
m Treat string as multiple lines.
o Compile pattern only once.
s Treat string as single line.
x Use extended regular expressions.

See perlre for additional information on valid syntax for STRING, and for a detailed look at
the semantics of regular expressions.

qx/STRING/
‘STRING‘

A string which is (possibly) interpolated and then executed as a system command with
/bin/sh or its equivalent. Shell wildcards, pipes, and redirections will be honored. The
collected standard output of the command is returned; standard error is unaffected. In scalar
context, it comes back as a single (potentially multi−line) string, or undef if the command
failed. In list context, returns a list of lines (however you’ve defined lines with $/ or
$INPUT_RECORD_SEPARATOR), or an empty list if the command failed.

Because backticks do not affect standard error, use shell file descriptor syntax (assuming the
shell supports this) if you care to address this. To capture a command’s STDERR and
STDOUT together:

$output = ‘cmd 2>&1‘;

To capture a command’s STDOUT but discard its STDERR:

$output = ‘cmd 2>/dev/null‘;

To capture a command’s STDERR but discard its STDOUT (ordering is important here):

$output = ‘cmd 2>&1 1>/dev/null‘;

To exchange a command’s STDOUT and STDERR in order to capture the STDERR but leave
its STDOUT to come out the old STDERR:

$output = ‘cmd 3>&1 1>&2 2>&3 3>&-‘;

To read both a command’s STDOUT and its STDERR separately, it’s easiest and safest to
redirect them separately to files, and then read from those files when the program is done:

system("program args 1>/tmp/program.stdout 2>/tmp/program.stderr");

Using single-quote as a delimiter protects the command from Perl’s double-quote
interpolation, passing it on to the shell instead:

$perl_info = qx(ps $$); # that’s Perl’s $$
$shell_info = qx’ps $$’; # that’s the new shell’s $$

How that string gets evaluated is entirely subject to the command interpreter on your system.

perl v5.8.3 2003-11-25 41



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

On most platforms, you will have to protect shell metacharacters if you want them treated
literally. This is in practice difficult to do, as it’s unclear how to escape which characters.
See perlsec for a clean and safe example of a manual fork() and exec() to emulate backticks
safely.

On some platforms (notably DOS-like ones), the shell may not be capable of dealing with
multiline commands, so putting newlines in the string may not get you what you want. You
may be able to evaluate multiple commands in a single line by separating them with the
command separator character, if your shell supports that (e.g. ; on many Unix shells; & on
the Windows NT cmd shell).

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before starting the
child process, but this may not be supported on some platforms (see perlport). To be safe,
you may need to set $ ($AUTOFLUSH in English) or call the autoflush() method of
IO::Handle on any open handles.

Beware that some command shells may place restrictions on the length of the command line.
You must ensure your strings don’t exceed this limit after any necessary interpolations. See
the platform-specific release notes for more details about your particular environment.

Using this operator can lead to programs that are difficult to port, because the shell
commands called vary between systems, and may in fact not be present at all. As one
example, the type command under the POSIX shell is very different from the type
command under DOS. That doesn’t mean you should go out of your way to avoid backticks
when they’re the right way to get something done. Perl was made to be a glue language, and
one of the things it glues together is commands. Just understand what you’re getting yourself
into.

See ‘‘I/O Operators’’ for more discussion.

qw/STRING/
Evaluates to a list of the words extracted out of STRING, using embedded whitespace as the
word delimiters. It can be understood as being roughly equivalent to:

split(’ ’, q/STRING/);

the differences being that it generates a real list at compile time, and in scalar context it
returns the last element in the list. So this expression:

qw(foo bar baz)

is semantically equivalent to the list:

’foo’, ’bar’, ’baz’

Some frequently seen examples:

use POSIX qw( setlocale localeconv )
@EXPORT = qw( foo bar baz );

A common mistake is to try to separate the words with comma or to put comments into a
multi-line qw−string. For this reason, the use warnings pragma and the −w switch (that
is, the $ˆW variable) produces warnings if the STRING contains the ‘‘,’’ or the ‘‘#’’ character.

s/PATTERN/REPLACEMENT/egimosx
Searches a string for a pattern, and if found, replaces that pattern with the replacement text
and returns the number of substitutions made. Otherwise it returns false (specifically, the
empty string).

If no string is specified via the =˜ or !˜ operator, the $_ variable is searched and modified.
(The string specified with =˜ must be scalar variable, an array element, a hash element, or an
assignment to one of those, i.e., an lvalue.)

If the delimiter chosen is a single quote, no interpolation is done on either the PATTERN or
the REPLACEMENT. Otherwise, if the PATTERN contains a $ that looks like a  variable rather
than an end-of-string test, the variable will be interpolated into the pattern at run−time. If
you want the pattern compiled only once the first time the variable is interpolated, use the /o

42 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

option. If the pattern evaluates to the empty string, the last successfully executed regular
expression is used instead. See perlre for further explanation on these. See perllocale for
discussion of additional considerations that apply when use locale is in effect.

Options are:

e Evaluate the right side as an expression.
g Replace globally, i.e., all occurrences.
i Do case-insensitive pattern matching.
m Treat string as multiple lines.
o Compile pattern only once.
s Treat string as single line.
x Use extended regular expressions.

Any non−alphanumeric, non-whitespace delimiter may replace the slashes. If single quotes
are used, no interpretation is done on the replacement string (the /e modifier overrides this,
however). Unlike Perl 4, Perl 5 treats backticks as normal delimiters; the replacement text is
not evaluated as a command. If the PATTERN is delimited by bracketing quotes, the
REPLACEMENT has its own pair of quotes, which may or may not be bracketing quotes, e.g.,
s(foo)(bar) or s<foo>/bar/. A /e will cause the replacement portion to be treated
as a full-fledged Perl expression and evaluated right then and there. It is, however, syntax
checked at compile−time. A second e modifier will cause the replacement portion to be
evaled before being run as a Perl expression.

Examples:

s/\bgreen\b/mauve/g; # don’t change wintergreen

$path =˜ s/usr/bin/usr/local/bin;

s/Login: $foo/Login: $bar/; # run-time pattern

($foo = $bar) =˜ s/this/that/; # copy first, then change

$count = ($paragraph =˜ s/Mister\b/Mr./g); # get change-count

$_ = ’abc123xyz’;
s/\d+/$&*2/e; # yields ’abc246xyz’
s/\d+/sprintf("%5d",$&)/e; # yields ’abc 246xyz’
s/\w/$& x 2/eg; # yields ’aabbcc 224466xxyyzz’

s/%(.)/$percent{$1}/g; # change percent escapes; no /e
s/%(.)/$percent{$1}  $&/ge; # expr now, so /e
s/ˆ=(\w+)/&pod($1)/ge; # use function call

# expand variables in $_, but dynamics only, using
# symbolic dereferencing
s/\$(\w+)/${$1}/g;

# Add one to the value of any numbers in the string
s/(\d+)/1 + $1/eg;

# This will expand any embedded scalar variable
# (including lexicals) in $_ : First $1 is interpolated
# to the variable name, and then evaluated
s/(\$\w+)/$1/eeg;

# Delete (most) C comments.
$program =˜ s {

/\* # Match the opening delimiter.
.*? # Match a minimal number of characters.
\*/ # Match the closing delimiter.

} []gsx;

s/ˆ\s*(.*?)\s*$/$1/; # trim white space in $_, expensively

perl v5.8.3 2003-11-25 43



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

for ($variable) { # trim white space in $variable, cheap
s/ˆ\s+//;
s/\s+$//;

}

s/([ˆ ]*) *([ˆ ]*)/$2 $1/; # reverse 1st two fields

Note the use of $ instead of \ in the last example. Unlike sed, we use the \<digit> form in
only the left hand side. Anywhere else it’s $<digit>.

Occasionally, you can’t use just a /g to get all the changes to occur that you might want.
Here are two common cases:

# put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g;

# expand tabs to 8-column spacing
1 while s/\t+/’ ’ x (length($&)*8 - length($‘)%8)/e;

tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

Transliterates all occurrences of the characters found in the search list with the corresponding
character in the replacement list. It returns the number of characters replaced or deleted. If
no string is specified via the =˜ or !˜ operator, the $_ string is transliterated. (The string
specified with =˜ must be a scalar variable, an array element, a hash element, or an
assignment to one of those, i.e., an lvalue.)

A character range may be specified with a hyphen, so tr/A−J/0−9/ does the same
replacement as tr/ACEGIBDFHJ/0246813579/. For sed devotees, y is provided as a
synonym for tr. If the SEARCHLIST is delimited by bracketing quotes, the
REPLACEMENTLIST has its own pair of quotes, which may or may not be bracketing quotes,
e.g., tr[A−Z][a−z] or tr(+\−*/)/ABCD/.

Note that tr does not do regular expression character classes such as \d or [:lower:].
The <tr> operator is not equivalent to the tr (1) utility. If you want to map strings between
lower/upper cases, see ‘‘lc’’ in perlfunc and ‘‘uc’’ in perlfunc, and in general consider using
the s operator if you need regular expressions.

Note also that the whole range idea is rather unportable between character sets — and even
within character sets they may cause results you probably didn’t expect. A sound principle is
to use only ranges that begin from and end at either alphabets of equal case (a−e, A−E), or
digits (0−4). Anything else is unsafe. If in doubt, spell out the character sets in full.

Options:

c Complement the SEARCHLIST.
d Delete found but unreplaced characters.
s Squash duplicate replaced characters.

If the /c modifier is specified, the SEARCHLIST character set is complemented. If the /d
modifier is specified, any characters specified by SEARCHLIST not found in
REPLACEMENTLIST are deleted. (Note that this is slightly more flexible than the behavior of
some tr programs, which delete anything they find in the SEARCHLIST, period.) If the /s
modifier is specified, sequences of characters that were transliterated to the same character
are squashed down to a single instance of the character.

If the /d modifier is used, the REPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST, the final character is
replicated till it is long enough. If the REPLACEMENTLIST is empty, the SEARCHLIST is
replicated. This latter is useful for counting characters in a class or for squashing character
sequences in a class.

Examples:

$ARGV[1] =˜ tr/A-Z/a-z/; # canonicalize to lower case

44 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

$cnt = tr/*/*/; # count the stars in $_

$cnt = $sky =˜ tr/*/*/; # count the stars in $sky

$cnt = tr/0-9//; # count the digits in $_

tr/a-zA-Z//s; # bookkeeper -> bokeper

($HOST = $host) =˜ tr/a-z/A-Z/;

tr/a-zA-Z/ /cs; # change non-alphas to single space

tr [\200-\377]
[\000-\177]; # delete 8th bit

If multiple transliterations are given for a character, only the first one is used:

tr/AAA/XYZ/

will transliterate any A to X.

Because the transliteration table is built at compile time, neither the SEARCHLIST nor the
REPLACEMENTLIST are subjected to double quote interpolation. That means that if you
want to use variables, you must use an eval():

eval "tr/$oldlist/$newlist/";
die $@ if $@;

eval "tr/$oldlist/$newlist/, 1" or die $@;

<<EOF A line-oriented form of quoting is based on the shell ‘‘here−document’’ syntax. Following a
<< you specify a string to terminate the quoted material, and all lines following the current
line down to the terminating string are the value of the item. The terminating string may be
either an identifier (a word), or some quoted text. If quoted, the type of quotes you use
determines the treatment of the text, just as in regular quoting. An unquoted identifier works
like double quotes. There must be no space between the << and the identifier, unless the
identifier is quoted. (If you put a space it will be treated as a null identifier, which is valid,
and matches the first empty line.) The terminating string must appear by itself (unquoted and
with no surrounding whitespace) on the terminating line.

print <<EOF;
The price is $Price.
EOF

print << "EOF"; # same as above
The price is $Price.
EOF

print << ‘EOC‘; # execute commands
echo hi there
echo lo there
EOC

print <<"foo", <<"bar"; # you can stack them
I said foo.
foo
I said bar.
bar

myfunc(<< "THIS", 23, <<’THAT’);
Here’s a line
or two.
THIS
and here’s another.
THAT

Just don’t forget that you have to put a semicolon on the end to finish the statement, as Perl
doesn’t know you’re not going to try to do this:

perl v5.8.3 2003-11-25 45



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

print <<ABC
179231
ABC

+ 20;

If you want your here-docs to be indented with the rest of the code, you’ll need to remove
leading whitespace from each line manually:

($quote = <<’FINIS’) =˜ s/ˆ\s+//gm;
The Road goes ever on and on,
down from the door where it began.

FINIS

If you use a here-doc within a delimited construct, such as in s///eg, the quoted material
must come on the lines following the final delimiter. So instead of

s/this/<<E . ’that’
the other
E
. ’more ’/eg;

you have to write

s/this/<<E . ’that’
. ’more ’/eg;
the other
E

If the terminating identifier is on the last line of the program, you must be sure there is a
newline after it; otherwise, Perl will give the warning Can’t find string terminator ‘‘END’’
anywhere before EOF....

Additionally, the quoting rules for the identifier are not related to Perl’s quoting rules —
q(), qq(), and the like are not supported in place of ’’ and "", and the only interpolation
is for backslashing the quoting character:

print << "abc\"def";
testing...
abc"def

Finally, quoted strings cannot span multiple lines. The general rule is that the identifier must
be a string literal. Stick with that, and you should be safe.

Gory details of parsing quoted constructs

When presented with something that might have sev eral different interpretations, Perl uses the DWIM
(that’s ‘‘Do What I Mean’’) principle to pick the most probable interpretation. This strategy is so
successful that Perl programmers often do not suspect the ambivalence of what they write. But from
time to time, Perl’s notions differ substantially from what the author honestly meant.

This section hopes to clarify how Perl handles quoted constructs. Although the most common reason
to learn this is to unravel labyrinthine regular expressions, because the initial steps of parsing are the
same for all quoting operators, they are all discussed together.

The most important Perl parsing rule is the first one discussed below: when processing a quoted
construct, Perl first finds the end of that construct, then interprets its contents. If you understand this
rule, you may skip the rest of this section on the first reading. The other rules are likely to contradict
the user’s expectations much less frequently than this first one.

Some passes discussed below are performed concurrently, but because their results are the same, we
consider them individually. For different quoting constructs, Perl performs different numbers of passes,
from one to five, but these passes are always performed in the same order.

Finding the end
The first pass is finding the end of the quoted construct, whether it be a multicharacter delimiter
"\nEOF\n" in the <<EOF construct, a / that terminates a qq// construct, a ] which terminates
qq[] construct, or a > which terminates a fileglob started with <.

46 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

When searching for single-character non-pairing delimiters, such as /, combinations of \\ and \/
are skipped. However, when searching for single-character pairing delimiter like [, combinations
of \\, \], and \[ are all skipped, and nested [, ] are skipped as well. When searching for
multicharacter delimiters, nothing is skipped.

For constructs with three-part delimiters (s///, y///, and tr///), the search is repeated once
more.

During this search no attention is paid to the semantics of the construct. Thus:

"$hash{"$foo/$bar"}"

or:

m/
bar # NOT a comment, this slash / terminated m//!
/x

do not form legal quoted expressions. The quoted part ends on the first " and /, and the rest
happens to be a syntax error. Because the slash that terminated m// was followed by a SPACE,
the example above is not m//x, but rather m// with no /x modifier. So the embedded # is
interpreted as a literal #.

Removal of backslashes before delimiters
During the second pass, text between the starting and ending delimiters is copied to a safe
location, and the \ is removed from combinations consisting of \ and delimiter — or delimiters,
meaning both starting and ending delimiters will should these differ. This removal does not
happen for multi-character delimiters. Note that the combination \\ is left intact, just as it was.

Starting from this step no information about the delimiters is used in parsing.

Interpolation
The next step is interpolation in the text obtained, which is now delimiter−independent. There are
four different cases.

<<’EOF’, m’’, s’’’, tr///, y///
No interpolation is performed.

’’, q//
The only interpolation is removal of \ from pairs \\.

‘‘’’, ‘‘, qq//, qx//, <file*glob>
\Q, \U, \u, \L, \l (possibly paired with \E) are converted to corresponding Perl constructs.
Thus, "$foo\Qbaz$bar" is converted to $foo . (quotemeta("baz" . $bar))
internally. The other combinations are replaced with appropriate expansions.

Let it be stressed that whatever falls between \Q and \E is interpolated in the usual way.
Something like "\Q\\E" has no \E inside. instead, it has \Q, \\, and E, so the result is the
same as for "\\\\E". As a general rule, backslashes between \Q and \E may lead to
counterintuitive results. So, "\Q\t\E" is converted to quotemeta("\t"), which is the
same as "\\\t" (since TAB is not alphanumeric). Note also that:

$str = ’\t’;
return "\Q$str";

may be closer to the conjectural intention of the writer of "\Q\t\E".

Interpolated scalars and arrays are converted internally to the join and . catenation
operations. Thus, "$foo XXX ’@arr’" becomes:

$foo . " XXX ’" . (join $", @arr) . "’";

All operations above are performed simultaneously, left to right.

Because the result of "\Q STRING \E" has all metacharacters quoted, there is no way to
insert a literal $ or @ inside a \Q\E pair. If protected by \, $ will be quoted to became
"\\\$"; if not, it is interpreted as the start of an interpolated scalar.

Note also that the interpolation code needs to make a decision on where the interpolated

perl v5.8.3 2003-11-25 47



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

scalar ends. For instance, whether "a $b −> {c}" really means:

"a " . $b . " -> {c}";

or:

"a " . $b -> {c};

Most of the time, the longest possible text that does not include spaces between components
and which contains matching braces or brackets. because the outcome may be determined by
voting based on heuristic estimators, the result is not strictly predictable. Fortunately, it’s
usually correct for ambiguous cases.

?RE?, /RE/, m/RE/, s/RE/foo/,
Processing of \Q, \U, \u, \L, \l, and interpolation happens (almost) as with qq//
constructs, but the substitution of \ followed by RE-special chars (including \) is not
performed. Moreover, inside (?{BLOCK}), (?# comment ), and a #−comment in a
//x−regular expression, no processing is performed whatsoever. This is the first step at
which the presence of the //x modifier is relevant.

Interpolation has several quirks: $, $(, and $) are not interpolated, and constructs
$var[SOMETHING] are voted (by several different estimators) to be either an array
element or $var followed by an RE alternative. This is where the notation
${arr[$bar]} comes handy: /${arr[0−9]}/ is interpreted as array element −9, not
as a regular expression from the variable $arr followed by a digit, which would be the
interpretation of /$arr[0−9]/. Since voting among different estimators may occur, the
result is not predictable.

It is at this step that \1 is begrudgingly converted to $1 in the replacement text of s/// to
correct the incorrigible sed hackers who haven’t picked up the saner idiom yet. A warning is
emitted if the use warnings pragma or the −w command-line flag (that is, the $ˆW
variable) was set.

The lack of processing of \\ creates specific restrictions on the post-processed text. If the
delimiter is /, one cannot get the combination \/ into the result of this step. / will finish the
regular expression, \/ will be stripped to / on the previous step, and \\/ will be left as is.
Because / is equivalent to \/ inside a regular expression, this does not matter unless the
delimiter happens to be character special to the RE engine, such as in s*foo*bar*,
m[foo], or ?foo?; or an alphanumeric char, as in:

m m ˆ a \s* b mmx;

In the RE above, which is intentionally obfuscated for illustration, the delimiter is m, the
modifier is mx, and after backslash-removal the RE is the same as for m/ ˆ a \s* b
/mx. There’s more than one reason you’re encouraged to restrict your delimiters to
non−alphanumeric, non-whitespace choices.

This step is the last one for all constructs except regular expressions, which are processed further.

Interpolation of regular expressions
Previous steps were performed during the compilation of Perl code, but this one happens at run
time — although it may be optimized to be calculated at compile time if appropriate. After
preprocessing described above, and possibly after evaluation if catenation, joining, casing
translation, or metaquoting are involved, the resulting string is passed to the RE engine for
compilation.

Whatever happens in the RE engine might be better discussed in perlre, but for the sake of
continuity, we shall do so here.

This is another step where the presence of the //x modifier is relevant. The RE engine scans the
string from left to right and converts it to a finite automaton.

Backslashed characters are either replaced with corresponding literal strings (as with \{), or else
they generate special nodes in the finite automaton (as with \b). Characters special to the RE
engine (such as ) generate corresponding nodes or groups of nodes. (?#...) comments are
ignored. All the rest is either converted to literal strings to match, or else is ignored (as is

48 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

whitespace and #−style comments if //x is present).

Parsing of the bracketed character class construct, [...], is rather different than the rule used for
the rest of the pattern. The terminator of this construct is found using the same rules as for finding
the terminator of a {}−delimited construct, the only exception being that ] immediately following
[ is treated as though preceded by a backslash. Similarly, the terminator of (?{...}) is found
using the same rules as for finding the terminator of a {}−delimited construct.

It is possible to inspect both the string given to RE engine and the resulting finite automaton. See
the arguments debug/debugcolor in the use re pragma, as well as Perl’s −Dr command-
line switch documented in ‘‘Command Switches’’ in perlrun.

Optimization of regular expressions
This step is listed for completeness only. Since it does not change semantics, details of this step
are not documented and are subject to change without notice. This step is performed over the
finite automaton that was generated during the previous pass.

It is at this stage that split() silently optimizes /ˆ/ to mean /ˆ/m.

I/O Operators

There are several I/O operators you should know about.

A string enclosed by backticks (grave accents) first undergoes double-quote interpolation. It is then
interpreted as an external command, and the output of that command is the value of the backtick string,
like in a shell. In scalar context, a single string consisting of all output is returned. In list context, a list
of values is returned, one per line of output. (You can set $/ to use a different line terminator.) The
command is executed each time the pseudo-literal is evaluated. The status value of the command is
returned in $? (see perlvar for the interpretation of $?). Unlike in csh, no translation is done on the
return data — newlines remain newlines. Unlike in any of the shells, single quotes do not hide variable
names in the command from interpretation. To pass a literal dollar-sign through to the shell you need
to hide it with a backslash. The generalized form of backticks is qx//. (Because backticks always
undergo shell expansion as well, see perlsec for security concerns.)

In scalar context, evaluating a filehandle in angle brackets yields the next line from that file (the
newline, if any, included), or undef at end-of-file or on error. When $/ is set to undef (sometimes
known as file-slurp mode) and the file is empty, it returns ’’ the first time, followed by undef
subsequently.

Ordinarily you must assign the returned value to a variable, but there is one situation where an
automatic assignment happens. If and only if the input symbol is the only thing inside the conditional
of a while statement (even if disguised as a for(;;) loop), the value is automatically assigned to
the global variable $_, destroying whatever was there previously. (This may seem like an odd thing to
you, but you’ll use the construct in almost every Perl script you write.) The $_ variable is not
implicitly localized. You’ll have to put a local $_; before the loop if you want that to happen.

The following lines are equivalent:

while (defined($_ = <STDIN>)) { print; }
while ($_ = <STDIN>) { print; }
while (<STDIN>) { print; }
for (;<STDIN>;) { print; }
print while defined($_ = <STDIN>);
print while ($_ = <STDIN>);
print while <STDIN>;

This also behaves similarly, but avoids $_ :

while (my $line = <STDIN>) { print $line }

In these loop constructs, the assigned value (whether assignment is automatic or explicit) is then tested
to see whether it is defined. The defined test avoids problems where line has a string value that would
be treated as false by Perl, for example a "‘‘ or a ’’0" with no trailing newline. If you really mean for
such values to terminate the loop, they should be tested for explicitly:

perl v5.8.3 2003-11-25 49



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

while (($_ = <STDIN>) ne ’0’) { ... }
while (<STDIN>) { last unless $_; ... }

In other boolean contexts, <filehandle> without an explicit defined test or comparison elicit a
warning if the use warnings pragma or the −w command-line switch (the $ˆW variable) is in
effect.

The filehandles STDIN, STDOUT, and STDERR are predefined. (The filehandles stdin, stdout, and
stderr will also work except in packages, where they would be interpreted as local identifiers rather
than global.) Additional filehandles may be created with the open() function, amongst others. See
perlopentut and ‘‘open’’ in perlfunc for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list comprising all input lines is
returned, one line per list element. It’s easy to grow to a rather large data space this way, so use with
care.

<FILEHANDLE> may also be spelled readline(*FILEHANDLE). See ‘‘readline’’ in perlfunc.

The null filehandle <> is special: it can be used to emulate the behavior of sed and awk. Input from <>
comes either from standard input, or from each file listed on the command line. Here’s how it works:
the first time <> is evaluated, the @ARGV array is checked, and if it is empty, $ARGV[0] is set to ‘‘−’’,
which when opened gives you standard input. The @ARGV array is then processed as a list of
filenames. The loop

while (<>) {
... # code for each line

}

is equivalent to the following Perl-like pseudo code:

unshift(@ARGV, ’-’) unless @ARGV;
while ($ARGV = shift) {

open(ARGV, $ARGV);
while (<ARGV>) {

... # code for each line
}

}

except that it isn’t so cumbersome to say, and will actually work. It really does shift the @ARGV array
and put the current filename into the $ARGV variable. It also uses filehandle ARGV internally−−<> is
just a synonym for <ARGV>, which is magical. (The pseudo code above doesn’t work because it treats
<ARGV> as non−magical.)

You can modify @ARGV before the first <> as long as the array ends up containing the list of filenames
you really want. Line numbers ($.) continue as though the input were one big happy file. See the
example in ‘‘eof ’’ in perlfunc for how to reset line numbers on each file.

If you want to set @ARGV to your own list of files, go right ahead. This sets @ARGV to all plain text
files if no @ARGV was giv en:

@ARGV = grep { -f && -T } glob(’*’) unless @ARGV;

You can even set them to pipe commands. For example, this automatically filters compressed
arguments through gzip:

@ARGV = map { /\.(gzZ)$/ ? "gzip -dc < $_ " : $_ } @ARGV;

If you want to pass switches into your script, you can use one of the Getopts modules or put a loop on
the front like this:

while ($_ = $ARGV[0], /ˆ-/) {
shift;
last if /ˆ--$/;
if (/ˆ-D(.*)/) { $debug = $1 }
if (/ˆ-v/) { $verbose++ }
# ... # other switches

}

50 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

while (<>) {
# ... # code for each line

}

The <> symbol will return undef for end-of-file only once. If you call it again after this, it will
assume you are processing another @ARGV list, and if you haven’t set @ARGV, will read input from
STDIN.

If what the angle brackets contain is a simple scalar variable (e.g., <$foo>), then that variable contains
the name of the filehandle to input from, or its typeglob, or a reference to the same. For example:

$fh = \*STDIN;
$line = <$fh>;

If what’s within the angle brackets is neither a filehandle nor a simple scalar variable containing a
filehandle name, typeglob, or typeglob reference, it is interpreted as a filename pattern to be globbed,
and either a list of filenames or the next filename in the list is returned, depending on context. This
distinction is determined on syntactic grounds alone. That means <$x> is always a readline() from an
indirect handle, but <$hash{key}> is always a glob(). That’s because $x is a simple scalar variable,
but $hash{key} is not — it’s a hash element.

One level of double-quote interpretation is done first, but you can’t say <$foo> because that’s an
indirect filehandle as explained in the previous paragraph. (In older versions of Perl, programmers
would insert curly brackets to force interpretation as a filename glob: <${foo}>. These days, it’s
considered cleaner to call the internal function directly as glob($foo), which is probably the right
way to hav e done it in the first place.) For example:

while (<*.c>) {
chmod 0644, $_;

}

is roughly equivalent to:

open(FOO, "echo *.c  tr -s ’ \t\r\f’ ’\\012\\012\\012\\012’");
while (<FOO>) {

chomp;
chmod 0644, $_;

}

except that the globbing is actually done internally using the standard File::Glob extension. Of
course, the shortest way to do the above is:

chmod 0644, <*.c>;

A (file)glob evaluates its (embedded) argument only when it is starting a new list. All values must be
read before it will start over. In list context, this isn’t important because you automatically get them all
anyway. Howev er, in scalar context the operator returns the next value each time it’s called, or undef
when the list has run out. As with filehandle reads, an automatic defined is generated when the glob
occurs in the test part of a while, because legal glob returns (e.g. a file called 0) would otherwise
terminate the loop. Again, undef is returned only once. So if you’re expecting a single value from a
glob, it is much better to say

($file) = <blurch*>;

than

$file = <blurch*>;

because the latter will alternate between returning a filename and returning false.

If you’re trying to do variable interpolation, it’s definitely better to use the glob() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);

perl v5.8.3 2003-11-25 51



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Constant Folding

Like C, Perl does a certain amount of expression evaluation at compile time whenever it determines
that all arguments to an operator are static and have no side effects. In particular, string concatenation
happens at compile time between literals that don’t do variable substitution. Backslash interpolation
also happens at compile time. You can say

’Now is the time for all’ . "\n" .
’good men to come to.’

and this all reduces to one string internally. Likewise, if you say

foreach $file (@filenames) {
if (-s $file > 5 + 100 * 2**16) { }

}

the compiler will precompute the number which that expression represents so that the interpreter won’t
have to.

Bitwise String Operators

Bitstrings of any size may be manipulated by the bitwise operators (˜  & ˆ).

If the operands to a binary bitwise op are strings of different sizes,  and ˆ ops act as though the shorter
operand had additional zero bits on the right, while the & op acts as though the longer operand were
truncated to the length of the shorter. The granularity for such extension or truncation is one or more
bytes.

# ASCII-based examples
print "j p \n" ˆ " a h"; # prints "JAPH\n"
print "JA"  " ph\n"; # prints "japh\n"
print "japh\nJunk" & ’_____’; # prints "JAPH\n";
print ’p N$’ ˆ " E<H\n"; # prints "Perl\n";

If you are intending to manipulate bitstrings, be certain that you’re supplying bitstrings: If an operand
is a number, that will imply a numeric bitwise operation. You may explicitly show which type of
operation you intend by using "" or 0+, as in the examples below.

$foo = 150  105 ; # yields 255 (0x96  0x69 is 0xFF)
$foo = ’150’  105 ; # yields 255
$foo = 150  ’105’; # yields 255
$foo = ’150’  ’105’; # yields string ’155’ (under ASCII)

$baz = 0+$foo & 0+$bar; # both ops explicitly numeric
$biz = "$foo" ˆ "$bar"; # both ops explicitly stringy

See ‘‘vec’’ in perlfunc for information on how to manipulate individual bits in a bit vector.

Integer Arithmetic

By default, Perl assumes that it must do most of its arithmetic in floating point. But by saying

use integer;

you may tell the compiler that it’s okay to use integer operations (if it feels like it) from here to the end
of the enclosing BLOCK. An inner BLOCK may countermand this by saying

no integer;

which lasts until the end of that BLOCK. Note that this doesn’t mean everything is only an integer,
merely that Perl may use integer operations if it is so inclined. For example, even under use
integer, if you take the sqrt(2), you’ll still get 1.4142135623731 or so.

Used on numbers, the bitwise operators (‘‘&’’, ‘‘’’, ‘‘ˆ’’, ‘‘˜’’, ‘‘<<’’, and ‘‘>>’’) always produce
integral results. (But see also ‘‘Bitwise String Operators’’.) However, use integer still has
meaning for them. By default, their results are interpreted as unsigned integers, but if use integer
is in effect, their results are interpreted as signed integers. For example, ˜0 usually evaluates to a large
integral value. However, use integer; ˜0 is −1 on twos-complement machines.

52 2003-11-25 perl v5.8.3



PERLOP(1) Perl Programmers Reference Guide PERLOP(1)

Floating-point Arithmetic

While use integer provides integer-only arithmetic, there is no analogous mechanism to provide
automatic rounding or truncation to a certain number of decimal places. For rounding to a certain
number of digits, sprintf() or printf() is usually the easiest route. See perlfaq4.

Floating-point numbers are only approximations to what a mathematician would call real numbers.
There are infinitely more reals than floats, so some corners must be cut. For example:

printf "%.20g\n", 123456789123456789;
# produces 123456789123456784

Testing for exact equality of floating-point equality or inequality is not a good idea. Here’s a (relatively
expensive) work-around to compare whether two floating-point numbers are equal to a particular
number of decimal places. See Knuth, volume II, for a more robust treatment of this topic.

sub fp_equal {
my ($X, $Y, $POINTS) = @_;
my ($tX, $tY);
$tX = sprintf("%.${POINTS}g", $X);
$tY = sprintf("%.${POINTS}g", $Y);
return $tX eq $tY;

}

The POSIX module (part of the standard perl distribution) implements ceil(), floor(), and other
mathematical and trigonometric functions. The Math::Complex module (part of the standard perl
distribution) defines mathematical functions that work on both the reals and the imaginary numbers.
Math::Complex not as efficient as POSIX, but POSIX can’t work with complex numbers.

Rounding in financial applications can have serious implications, and the rounding method used should
be specified precisely. In these cases, it probably pays not to trust whichever system rounding is being
used by Perl, but to instead implement the rounding function you need yourself.

Bigger Numbers

The standard Math::BigInt and Math::BigFloat modules provide variable-precision arithmetic and
overloaded operators, although they’re currently pretty slow. At the cost of some space and
considerable speed, they avoid the normal pitfalls associated with limited-precision representations.

use Math::BigInt;
$x = Math::BigInt->new(’123456789123456789’);
print $x * $x;

# prints +15241578780673678515622620750190521

There are several modules that let you calculate with (bound only by memory and cpu−time) unlimited
or fixed precision. There are also some non-standard modules that provide faster implementations via
external C libraries.

Here is a short, but incomplete summary:

Math::Fraction big, unlimited fractions like 9973 / 12967
Math::String treat string sequences like numbers
Math::FixedPrecision calculate with a fixed precision
Math::Currency for currency calculations
Bit::Vector manipulate bit vectors fast (uses C)
Math::BigIntFast Bit::Vector wrapper for big numbers
Math::Pari provides access to the Pari C library
Math::BigInteger uses an external C library
Math::Cephes uses external Cephes C library (no big numbers)
Math::Cephes::Fraction fractions via the Cephes library
Math::GMP another one using an external C library

Choose wisely.

perl v5.8.3 2003-11-25 53



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

NAME
perlsub − Perl subroutines

SYNOPSIS
To declare subroutines:

sub NAME; # A "forward" declaration.
sub NAME(PROTO); # ditto, but with prototypes
sub NAME : ATTRS; # with attributes
sub NAME(PROTO) : ATTRS; # with attributes and prototypes

sub NAME BLOCK # A declaration and a definition.
sub NAME(PROTO) BLOCK # ditto, but with prototypes
sub NAME : ATTRS BLOCK # with attributes
sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes

To define an anonymous subroutine at runtime:

$subref = sub BLOCK; # no proto
$subref = sub (PROTO) BLOCK; # with proto
$subref = sub : ATTRS BLOCK; # with attributes
$subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes

To import subroutines:

use MODULE qw(NAME1 NAME2 NAME3);

To call subroutines:

NAME(LIST); # & is optional with parentheses.
NAME LIST; # Parentheses optional if predeclared/imported.
&NAME(LIST); # Circumvent prototypes.
&NAME; # Makes current @_ visible to called subroutine.

DESCRIPTION
Like many languages, Perl provides for user-defined subroutines. These may be located anywhere in
the main program, loaded in from other files via the do, require, or use keywords, or generated on
the fly using eval or anonymous subroutines. You can even call a function indirectly using a variable
containing its name or a CODE reference.

The Perl model for function call and return values is simple: all functions are passed as parameters one
single flat list of scalars, and all functions likewise return to their caller one single flat list of scalars.
Any arrays or hashes in these call and return lists will collapse, losing their identities — but you may
always use pass-by-reference instead to avoid this. Both call and return lists may contain as many or as
few scalar elements as you’d like. (Often a function without an explicit return statement is called a
subroutine, but there’s really no difference from Perl’s perspective.)

Any arguments passed in show up in the array @_. Therefore, if you called a function with two
arguments, those would be stored in $_[0] and $_[1]. The array @_ is a local array, but its elements
are aliases for the actual scalar parameters. In particular, if an element $_[0] is updated, the
corresponding argument is updated (or an error occurs if it is not updatable). If an argument is an array
or hash element which did not exist when the function was called, that element is created only when
(and if) it is modified or a reference to it is taken. (Some earlier versions of Perl created the element
whether or not the element was assigned to.) Assigning to the whole array @_ removes that aliasing,
and does not update any arguments.

The return value of a subroutine is the value of the last expression evaluated. More explicitly, a
return statement may be used to exit the subroutine, optionally specifying the returned value, which
will be evaluated in the appropriate context (list, scalar, or void) depending on the context of the
subroutine call. If you specify no return value, the subroutine returns an empty list in list context, the
undefined value in scalar context, or nothing in void context. If you return one or more aggregates
(arrays and hashes), these will be flattened together into one large indistinguishable list.

Perl does not have named formal parameters. In practice all you do is assign to a my() list of these.
Variables that aren’t declared to be private are global variables. For gory details on creating private
variables, see ‘‘Private Variables via my()’’ and ‘‘Temporary Values via local()’’. To create protected
environments for a set of functions in a separate package (and probably a separate file), see

54 2003-11-25 perl v5.8.3



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

‘‘Packages’’ in perlmod.

Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {

$max = $foo if $max < $foo;
}
return $max;

}
$bestday = max($mon,$tue,$wed,$thu,$fri);

Example:

# get a line, combining continuation lines
# that start with whitespace

sub get_line {
$thisline = $lookahead; # global variables!
LINE: while (defined($lookahead = <STDIN>)) {

if ($lookahead =˜ /ˆ[ \t]/) {
$thisline .= $lookahead;

}
else {

last LINE;
}

}
return $thisline;

}

$lookahead = <STDIN>; # get first line
while (defined($line = get_line())) {

...
}

Assigning to a list of private variables to name your arguments:

sub maybeset {
my($key, $value) = @_;
$Foo{$key} = $value unless $Foo{$key};

}

Because the assignment copies the values, this also has the effect of turning call-by-reference into
call−by−value. Otherwise a function is free to do in-place modifications of @_ and change its caller’s
values.

upcase_in($v1, $v2); # this changes $v1 and $v2
sub upcase_in {

for (@_) { tr/a-z/A-Z/ }
}

You aren’t allowed to modify constants in this way, of course. If an argument were actually literal and
you tried to change it, you’d take a (presumably fatal) exception. For example, this won’t work:

upcase_in("frederick");

It would be much safer if the upcase_in() function were written to return a copy of its parameters
instead of changing them in place:

perl v5.8.3 2003-11-25 55



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

($v3, $v4) = upcase($v1, $v2); # this doesn’t change $v1 and $v2
sub upcase {

return unless defined wantarray; # void context, do nothing
my @parms = @_;
for (@parms) { tr/a-z/A-Z/ }
return wantarray ? @parms : $parms[0];

}

Notice how this (unprototyped) function doesn’t care whether it was passed real scalars or arrays. Perl
sees all arguments as one big, long, flat parameter list in @_. This is one area where Perl’s simple
argument-passing style shines. The upcase() function would work perfectly well without changing
the upcase() definition even if we fed it things like this:

@newlist = upcase(@list1, @list2);
@newlist = upcase( split /:/, $var );

Do not, however, be tempted to do this:

(@a, @b) = upcase(@list1, @list2);

Like the flattened incoming parameter list, the return list is also flattened on return. So all you have
managed to do here is stored everything in @a and made @b empty. See ‘‘Pass by Reference’’ for
alternatives.

A subroutine may be called using an explicit & prefix. The & is optional in modern Perl, as are
parentheses if the subroutine has been predeclared. The & is not optional when just naming the
subroutine, such as when it’s used as an argument to defined() or undef(). Nor is it optional when you
want to do an indirect subroutine call with a subroutine name or reference using the &$subref() or
&{$subref}() constructs, although the $subref−>() notation solves that problem. See perlref
for more about all that.

Subroutines may be called recursively. If a subroutine is called using the & form, the argument list is
optional, and if omitted, no @_ array is set up for the subroutine: the @_ array at the time of the call is
visible to subroutine instead. This is an efficiency mechanism that new users may wish to avoid.

&foo(1,2,3); # pass three arguments
foo(1,2,3); # the same

foo(); # pass a null list
&foo(); # the same

&foo; # foo() get current args, like foo(@_) !!
foo; # like foo() IFF sub foo predeclared, else "foo"

Not only does the & form make the argument list optional, it also disables any prototype checking on
arguments you do provide. This is partly for historical reasons, and partly for having a convenient way
to cheat if you know what you’re doing. See Prototypes below.

Subroutines whose names are in all upper case are reserved to the Perl core, as are modules whose
names are in all lower case. A subroutine in all capitals is a loosely-held convention meaning it will be
called indirectly by the run-time system itself, usually due to a triggered event. Subroutines that do
special, pre-defined things include AUTOLOAD, CLONE, DESTROY plus all functions mentioned in
perltie and PerlIO::via.

The BEGIN, CHECK, INIT and END subroutines are not so much subroutines as named special code
blocks, of which you can have more than one in a package, and which you can not call explicitely. See
‘‘BEGIN, CHECK, INIT and END’’ in perlmod

Private Variables via my()

Synopsis:

my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp"; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it
my $x : Foo = $y; # similar, with an attribute applied

56 2003-11-25 perl v5.8.3



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

WARNING: The use of attribute lists on my declarations is still evolving. The current semantics and
interface are subject to change. See attributes and Attribute::Handlers.

The my operator declares the listed variables to be lexically confined to the enclosing block, conditional
(if/unless/elsif/else), loop (for/foreach/while/until/continue), subroutine,
eval, or do/require/use’d file. If more than one value is listed, the list must be placed in
parentheses. All listed elements must be legal lvalues. Only alphanumeric identifiers may be lexically
scoped — magical built-ins like $/ must currently be localized with local instead.

Unlike dynamic variables created by the local operator, lexical variables declared with my are totally
hidden from the outside world, including any called subroutines. This is true if it’s the same subroutine
called from itself or elsewhere — every call gets its own copy.

This doesn’t mean that a my variable declared in a statically enclosing lexical scope would be invisible.
Only dynamic scopes are cut off. For example, the bumpx() function below has access to the lexical
$x variable because both the my and the sub occurred at the same scope, presumably file scope.

my $x = 10;
sub bumpx { $x++ }

An eval(), howev er, can see lexical variables of the scope it is being evaluated in, so long as the
names aren’t hidden by declarations within the eval() itself. See perlref.

The parameter list to my() may be assigned to if desired, which allows you to initialize your variables.
(If no initializer is given for a particular variable, it is created with the undefined value.) Commonly
this is used to name input parameters to a subroutine. Examples:

$arg = "fred"; # "global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";

fred thinks the root is 3

sub cube_root {
my $arg = shift; # name doesn’t matter
$arg **= 1/3;
return $arg;

}

The my is simply a modifier on something you might assign to. So when you do assign to variables in
its argument list, my doesn’t change whether those variables are viewed as a scalar or an array. So

my ($foo) = <STDIN>; # WRONG?
my @FOO = <STDIN>;

both supply a list context to the right-hand side, while

my $foo = <STDIN>;

supplies a scalar context. But the following declares only one variable:

my $foo, $bar = 1; # WRONG

That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,

my $x = $x;

can be used to initialize a new $x with the value of the old $x, and the expression

my $x = 123 and $x == 123

is false unless the old $x happened to have the value 123.

Lexical scopes of control structures are not bounded precisely by the braces that delimit their controlled
blocks; control expressions are part of that scope, too. Thus in the loop

perl v5.8.3 2003-11-25 57



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

while (my $line = <>) {
$line = lc $line;

} continue {
print $line;

}

the scope of $line extends from its declaration throughout the rest of the loop construct (including
the continue clause), but not beyond it. Similarly, in the conditional

if ((my $answer = <STDIN>) =˜ /ˆyes$/i) {
user_agrees();

} elsif ($answer =˜ /ˆno$/i) {
user_disagrees();

} else {
chomp $answer;
die "’$answer’ is neither ’yes’ nor ’no’";

}

the scope of $answer extends from its declaration through the rest of that conditional, including any
elsif and else clauses, but not beyond it. See ‘‘Simple statements’’ in perlsyn for information on
the scope of variables in statements with modifiers.

The foreach loop defaults to scoping its index variable dynamically in the manner of local.
However, if the index variable is prefixed with the keyword my, or if there is already a lexical by that
name in scope, then a new lexical is created instead. Thus in the loop

for my $i (1, 2, 3) {
some_function();

}

the scope of $i extends to the end of the loop, but not beyond it, rendering the value of $i inaccessible
within some_function().

Some users may wish to encourage the use of lexically scoped variables. As an aid to catching implicit
uses to package variables, which are always global, if you say

use strict ’vars’;

then any variable mentioned from there to the end of the enclosing block must either refer to a lexical
variable, be predeclared via our or use vars, or else must be fully qualified with the package name.
A compilation error results otherwise. An inner block may countermand this with no strict
’vars’.

A my has both a compile-time and a run-time effect. At compile time, the compiler takes notice of it.
The principal usefulness of this is to quiet use strict ’vars’, but it is also essential for
generation of closures as detailed in perlref. Actual initialization is delayed until run time, though, so it
gets executed at the appropriate time, such as each time through a loop, for example.

Variables declared with my are not part of any package and are therefore never fully qualified with the
package name. In particular, you’re not allowed to try to make a package variable (or other global)
lexical:

my $pack::var; # ERROR! Illegal syntax
my $_; # also illegal (currently)

In fact, a dynamic variable (also known as package or global variables) are still accessible using the
fully qualified :: notation even while a lexical of the same name is also visible:

package main;
local $x = 10;
my $x = 20;
print "$x and $::x\n";

That will print out 20 and 10.

You may declare my variables at the outermost scope of a file to hide any such identifiers from the
world outside that file. This is similar in spirit to C’s static variables when they are used at the file
level. To do this with a subroutine requires the use of a closure (an anonymous function that accesses

58 2003-11-25 perl v5.8.3



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

enclosing lexicals). If you want to create a private subroutine that cannot be called from outside that
block, it can declare a lexical variable containing an anonymous sub reference:

my $secret_version = ’1.001-beta’;
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference is never returned by any function within the module, no outside module can
see the subroutine, because its name is not in any package’s symbol table. Remember that it’s not
REALLY called $some_pack::secret_version or anything; it’s just $secret_version,
unqualified and unqualifiable.

This does not work with object methods, however; all object methods have to be in the symbol table of
some package to be found. See ‘‘Function Templates’’ in perlref for something of a work-around to
this.

Persistent Private Variables

Just because a lexical variable is lexically (also called statically) scoped to its enclosing block, eval,
or do FILE, this doesn’t mean that within a function it works like a  C  static. It normally works more
like a C auto, but with implicit garbage collection.

Unlike local variables in C or C++, Perl’s lexical variables don’t necessarily get recycled just because
their scope has exited. If something more permanent is still aware of the lexical, it will stick around.
So long as something else references a lexical, that lexical won’t be freed — which is as it should be.
You wouldn’t want memory being free until you were done using it, or kept around once you were
done. Automatic garbage collection takes care of this for you.

This means that you can pass back or save away references to lexical variables, whereas to return a
pointer to a C auto is a grave error. It also gives us a way to simulate C’s function statics. Here’s a
mechanism for giving a function private variables with both lexical scoping and a static lifetime. If you
do want to create something like C’s static variables, just enclose the whole function in an extra block,
and put the static variable outside the function but in the block.

{
my $secret_val = 0;
sub gimme_another {

return ++$secret_val;
}

}
# $secret_val now becomes unreachable by the outside
# world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate file via require or use, then this is probably just
fine. If it’s all in the main program, you’ll need to arrange for the my to be executed early, either by
putting the whole block above your main program, or more likely, placing merely a BEGIN code block
around it to make sure it gets executed before your program starts to run:

BEGIN {
my $secret_val = 0;
sub gimme_another {

return ++$secret_val;
}

}

See ‘‘BEGIN, CHECK, INIT and END’’ in perlmod about the special triggered code blocks, BEGIN,
CHECK, INIT and END.

If declared at the outermost scope (the file scope), then lexicals work somewhat like C’s file statics.
They are available to all functions in that same file declared below them, but are inaccessible from
outside that file. This strategy is sometimes used in modules to create private variables that the whole
module can see.

perl v5.8.3 2003-11-25 59



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

Temporary Values via local()

WARNING: In general, you should be using my instead of local, because it’s faster and safer.
Exceptions to this include the global punctuation variables, global filehandles and formats, and direct
manipulation of the Perl symbol table itself. local is mostly used when the current value of a
variable must be visible to called subroutines.

Synopsis:

# localization of values

local $foo; # make $foo dynamically local
local (@wid, %get); # make list of variables local
local $foo = "flurp"; # make $foo dynamic, and init it
local @oof = @bar; # make @oof dynamic, and init it

local $hash{key} = "val"; # sets a local value for this hash entry
local ($cond ? $v1 : $v2); # several types of lvalues support

# localization

# localization of symbols

local *FH; # localize $FH, @FH, %FH, &FH ...
local *merlyn = *randal; # now $merlyn is really $randal, plus

# @merlyn is really @randal, etc
local *merlyn = ’randal’; # SAME THING: promote ’randal’ to *randal
local *merlyn = \$randal; # just alias $merlyn, not @merlyn etc

A local modifies its listed variables to be ‘‘local’’ to the enclosing block, eval, or do FILE−−and
to any subroutine called from within that block. A local just gives temporary values to global
(meaning package) variables. It does not create a local variable. This is known as dynamic scoping.
Lexical scoping is done with my, which works more like C’s auto declarations.

Some types of lvalues can be localized as well : hash and array elements and slices, conditionals
(provided that their result is always localizable), and symbolic references. As for simple variables, this
creates new, dynamically scoped values.

If more than one variable or expression is given to local, they must be placed in parentheses. This
operator works by saving the current values of those variables in its argument list on a hidden stack and
restoring them upon exiting the block, subroutine, or eval. This means that called subroutines can also
reference the local variable, but not the global one. The argument list may be assigned to if desired,
which allows you to initialize your local variables. (If no initializer is given for a particular variable, it
is created with an undefined value.)

Because local is a run-time operator, it gets executed each time through a loop. Consequently, it’s
more efficient to localize your variables outside the loop.

Grammatical note on local()

A local is simply a modifier on an lvalue expression. When you assign to a localized variable, the
local doesn’t change whether its list is viewed as a scalar or an array. So

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the right-hand side, while

local $foo = <STDIN>;

supplies a scalar context.

Localization of special variables

If you localize a special variable, you’ll be giving a new value to it, but its magic won’t go away. That
means that all side-effects related to this magic still work with the localized value.

This feature allows code like this to work :

# Read the whole contents of FILE in $slurp
{ local $/ = undef; $slurp = <FILE>; }

Note, however, that this restricts localization of some values ; for example, the following statement

60 2003-11-25 perl v5.8.3



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

dies, as of perl 5.9.0, with an error Modification of a read-only value attempted, because the $1
variable is magical and read-only :

local $1 = 2;

Similarly, but in a way more difficult to spot, the following snippet will die in perl 5.9.0 :

sub f { local $_ = "foo"; print }
for ($1) {

# now $_ is aliased to $1, thus is magic and readonly
f();

}

See next section for an alternative to this situation.

WARNING: Localization of tied arrays and hashes does not currently work as described. This will be
fixed in a future release of Perl; in the meantime, avoid code that relies on any particular behaviour of
localising tied arrays or hashes (localising individual elements is still okay). See ‘‘Localising Tied
Arrays and Hashes Is Broken’’ in perl58delta for more details.

Localization of globs

The construct

local *name;

creates a whole new symbol table entry for the glob name in the current package. That means that all
variables in its glob slot ($name, @name, %name, &name, and the name filehandle) are dynamically
reset.

This implies, among other things, that any magic eventually carried by those variables is locally lost.
In other words, saying local */ will not have any effect on the internal value of the input record
separator.

Notably, if you want to work with a brand new value of the default scalar $_, and avoid the potential
problem listed above about $_ previously carrying a magic value, you should use local *_ instead
of local $_.

Localization of elements of composite types

It’s also worth taking a moment to explain what happens when you localize a member of a
composite type (i.e. an array or hash element). In this case, the element is localized by name. This
means that when the scope of the local() ends, the saved value will be restored to the hash element
whose key was named in the local(), or the array element whose index was named in the
local(). If that element was deleted while the local() was in effect (e.g. by a delete() from a
hash or a shift() of an array), it will spring back into existence, possibly extending an array and
filling in the skipped elements with undef. For instance, if you say

%hash = ( ’This’ => ’is’, ’a’ => ’test’ );
@ary = ( 0..5 );
{

local($ary[5]) = 6;
local($hash{’a’}) = ’drill’;
while (my $e = pop(@ary)) {

print "$e . . .\n";
last unless $e > 3;

}
if (@ary) {

$hash{’only a’} = ’test’;
delete $hash{’a’};

}
}
print join(’ ’, map { "$_ $hash{$_}" } sort keys %hash),".\n";
print "The array has ",scalar(@ary)," elements: ",

join(’, ’, map { defined $_ ? $_ : ’undef’ } @ary),"\n";

Perl will print

perl v5.8.3 2003-11-25 61



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

6 . . .
4 . . .
3 . . .
This is a test only a test.
The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior of local() on non-existent members of composite types is subject to change in future.

Lvalue subroutines

WARNING: Lvalue subroutines are still experimental and the implementation may change in future
versions of Perl.

It is possible to return a modifiable value from a subroutine. To do this, you have to declare the
subroutine to return an lvalue.

my $val;
sub canmod : lvalue {

# return $val; this doesn’t work, don’t say "return"
$val;

}
sub nomod {

$val;
}

canmod() = 5; # assigns to $val
nomod() = 5; # ERROR

The scalar/list context for the subroutine and for the right-hand side of assignment is determined as if
the subroutine call is replaced by a scalar. For example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:

(data(2,3)) = get_data(3,4);

and in:

(data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines are EXPERIMENTAL
They appear to be convenient, but there are several reasons to be circumspect.

You can’t use the return keyword, you must pass out the value before falling out of subroutine
scope. (see comment in example above). This is usually not a problem, but it disallows an explicit
return out of a deeply nested loop, which is sometimes a nice way out.

They violate encapsulation. A normal mutator can check the supplied argument before setting the
attribute it is protecting, an lvalue subroutine never gets that chance. Consider;

my $some_array_ref = []; # protected by mutators ??

sub set_arr { # normal mutator
my $val = shift;
die("expected array, you supplied ", ref $val)

unless ref $val eq ’ARRAY’;
$some_array_ref = $val;

}
sub set_arr_lv : lvalue { # lvalue mutator

$some_array_ref;
}

# set_arr_lv cannot stop this !
set_arr_lv() = { a => 1 };

62 2003-11-25 perl v5.8.3



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

Passing Symbol Table Entries (typeglobs)

WARNING: The mechanism described in this section was originally the only way to simulate pass-by-
reference in older versions of Perl. While it still works fine in modern versions, the new reference
mechanism is generally easier to work with. See below.

Sometimes you don’t want to pass the value of an array to a subroutine but rather the name of it, so that
the subroutine can modify the global copy of it rather than working with a local copy. In perl you can
refer to all objects of a particular name by prefixing the name with a star: *foo. This is often known
as a ‘‘typeglob’’, because the star on the front can be thought of as a wildcard match for all the funny
prefix characters on variables and subroutines and such.

When evaluated, the typeglob produces a scalar value that represents all the objects of that name,
including any filehandle, format, or subroutine. When assigned to, it causes the name mentioned to
refer to whatever * value was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {

$elem *= 2;
}

}
doubleary(*foo);
doubleary(*bar);

Scalars are already passed by reference, so you can modify scalar arguments without using this
mechanism by referring explicitly to $_[0] etc. You can modify all the elements of an array by
passing all the elements as scalars, but you have to use the * mechanism (or the equivalent reference
mechanism) to push, pop, or change the size of an array. It will certainly be faster to pass the
typeglob (or reference).

Even if you don’t want to modify an array, this mechanism is useful for passing multiple arrays in a
single LIST, because normally the LIST mechanism will merge all the array values so that you can’t
extract out the individual arrays. For more on typeglobs, see ‘‘Typeglobs and Filehandles’’ in perldata.

When to Still Use local()

Despite the existence of my, there are still three places where the local operator still shines. In fact,
in these three places, you must use local instead of my.

1. You need to give a global variable a temporary value, especially $_.

The global variables, like @ARGV or the punctuation variables, must be localized with
local(). This block reads in /etc/motd, and splits it up into chunks separated by lines of equal
signs, which are placed in @Fields.

{
local @ARGV = ("/etc/motd");
local $/ = undef;
local $_ = <>;
@Fields = split /ˆ\s*=+\s*$/;

}

It particular, it’s important to localize $_ in any routine that assigns to it. Look out for implicit
assignments in while conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own must use local() on a complete typeglob. This
can be used to create new symbol table entries:

perl v5.8.3 2003-11-25 63



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

sub ioqueue {
local (*READER, *WRITER); # not my!
pipe (READER, WRITER) or die "pipe: $!";
return (*READER, *WRITER);

}
($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to a typeglob creates an alias, this can be used to create what is
effectively a local function, or at least, a local alias.

{
local *grow = \&shrink; # only until this block exists
grow(); # really calls shrink()
move(); # if move() grow()s, it shrink()s too

}
grow(); # get the real grow() again

See ‘‘Function Templates’’ in perlref for more about manipulating functions by name in this way.

3. You want to temporarily change just one element of an array or hash.

You can localize just one element of an aggregate. Usually this is done on dynamics:

{
local $SIG{INT} = ’IGNORE’;
funct(); # uninterruptible

}
# interruptibility automatically restored here

But it also works on lexically declared aggregates. Prior to 5.005, this operation could on
occasion misbehave.

Pass by Reference

If you want to pass more than one array or hash into a function — or return them from it — and have
them maintain their integrity, then you’re going to have to use an explicit pass−by−reference. Before
you do that, you need to understand references as detailed in perlref. This section may not make much
sense to you otherwise.

Here are a few simple examples. First, let’s pass in several arrays to a function and have it pop all of
then, returning a new list of all their former last elements:

@tailings = popmany ( \@a, \@b, \@c, \@d );

sub popmany {
my $aref;
my @retlist = ();
foreach $aref ( @_ ) {

push @retlist, pop @$aref;
}
return @retlist;

}

Here’s how you might write a function that returns a list of keys occurring in all the hashes passed to it:

64 2003-11-25 perl v5.8.3



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

@common = inter( \%foo, \%bar, \%joe );
sub inter {

my ($k, $href, %seen); # locals
foreach $href (@_) {

while ( $k = each %$href ) {
$seen{$k}++;

}
}
return grep { $seen{$_} == @_ } keys %seen;

}

So far, we’re using just the normal list return mechanism. What happens if you want to pass or return a
hash? Well, if you’re using only one of them, or you don’t mind them concatenating, then the normal
calling convention is ok, although a little expensive.

Where people get into trouble is here:

(@a, @b) = func(@c, @d);
or

(%a, %b) = func(%c, %d);

That syntax simply won’t work. It sets just @a or %a and clears the @b or %b. Plus the function didn’t
get passed into two separate arrays or hashes: it got one long list in @_, as always.

If you can arrange for everyone to deal with this through references, it’s cleaner code, although not so
nice to look at. Here’s a function that takes two array references as arguments, returning the two array
elements in order of how many elements they hav e in them:

($aref, $bref) = func(\@c, \@d);
print "@$aref has more than @$bref\n";
sub func {

my ($cref, $dref) = @_;
if (@$cref > @$dref) {

return ($cref, $dref);
} else {

return ($dref, $cref);
}

}

It turns out that you can actually do this also:

(*a, *b) = func(\@c, \@d);
print "@a has more than @b\n";
sub func {

local (*c, *d) = @_;
if (@c > @d) {

return (\@c, \@d);
} else {

return (\@d, \@c);
}

}

Here we’re using the typeglobs to do symbol table aliasing. It’s a tad subtle, though, and also won’t
work if you’re using my variables, because only globals (even in disguise as locals) are in the symbol
table.

If you’re passing around filehandles, you could usually just use the bare typeglob, like *STDOUT, but
typeglobs references work, too. For example:

splutter(\*STDOUT);
sub splutter {

my $fh = shift;
print $fh "her um well a hmmm\n";

}

perl v5.8.3 2003-11-25 65



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

$rec = get_rec(\*STDIN);
sub get_rec {

my $fh = shift;
return scalar <$fh>;

}

If you’re planning on generating new filehandles, you could do this. Notice to pass back just the bare
*FH, not its reference.

sub openit {
my $path = shift;
local *FH;
return open (FH, $path) ? *FH : undef;

}

Prototypes

Perl supports a very limited kind of compile-time argument checking using function prototyping. If
you declare

sub mypush (\@@)

then mypush() takes arguments exactly like push() does. The function declaration must be visible
at compile time. The prototype affects only interpretation of new-style calls to the function, where
new-style is defined as not using the & character. In other words, if you call it like a built-in function,
then it behaves like a built-in function. If you call it like an old-fashioned subroutine, then it behaves
like an old-fashioned subroutine. It naturally falls out from this rule that prototypes have no influence
on subroutine references like \&foo or on indirect subroutine calls like &{$subref} or
$subref−>().

Method calls are not influenced by prototypes either, because the function to be called is indeterminate
at compile time, since the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define subroutines that work like built-in
functions, here are prototypes for some other functions that parse almost exactly like the corresponding
built−in.

Declared as Called as

sub mylink ($$) mylink $old, $new
sub myvec ($$$) myvec $var, $offset, 1
sub myindex ($$;$) myindex &getstring, "substr"
sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) - $off, $off
sub myreverse (@) myreverse $a, $b, $c
sub myjoin ($@) myjoin ":", $a, $b, $c
sub mypop (\@) mypop @array
sub mysplice (\@$$@) mysplice @array, @array, 0, @pushme
sub mykeys (\%) mykeys %{$hashref}
sub myopen (*;$) myopen HANDLE, $name
sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $a, $b, $c
sub myrand ($) myrand 42
sub mytime () mytime

Any backslashed prototype character represents an actual argument that absolutely must start with that
character. The value passed as part of @_ will be a reference to the actual argument given in the
subroutine call, obtained by applying \ to that argument.

You can also backslash several argument types simultaneously by using the \[] notation:

sub myref (\[$@%&*])

will allow calling myref() as

66 2003-11-25 perl v5.8.3



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

myref $var
myref @array
myref %hash
myref &sub
myref *glob

and the first argument of myref() will be a reference to a scalar, an array, a hash, a code, or a glob.

Unbackslashed prototype characters have special meanings. Any unbackslashed @ or % eats all
remaining arguments, and forces list context. An argument represented by $ forces scalar context. An
& requires an anonymous subroutine, which, if passed as the first argument, does not require the sub
keyword or a subsequent comma.

A * allows the subroutine to accept a bareword, constant, scalar expression, typeglob, or a reference to
a typeglob in that slot. The value will be available to the subroutine either as a simple scalar, or (in the
latter two cases) as a reference to the typeglob. If you wish to always convert such arguments to a
typeglob reference, use Symbol::qualify_to_ref() as follows:

use Symbol ’qualify_to_ref’;

sub foo (*) {
my $fh = qualify_to_ref(shift, caller);
...

}

A semicolon separates mandatory arguments from optional arguments. It is redundant before @ or %,
which gobble up everything else.

Note how the last three examples in the table above are treated specially by the parser. mygrep() is
parsed as a true list operator, myrand() is parsed as a true unary operator with unary precedence the
same as rand(), and mytime() is truly without arguments, just like time(). That is, if you say

mytime +2;

you’ll get mytime() + 2, not mytime(2), which is how it would be parsed without a prototype.

The interesting thing about & is that you can generate new syntax with it, provided it’s in the initial
position:

sub try (&@) {
my($try,$catch) = @_;
eval { &$try };
if ($@) {

local $_ = $@;
&$catch;

}
}
sub catch (&) { $_[0] }

try {
die "phooey";

} catch {
/phooey/ and print "unphooey\n";

};

That prints "unphooey". (Yes, there are still unresolved issues having to do with visibility of @_.
I’m ignoring that question for the moment. (But note that if we make @_ lexically scoped, those
anonymous subroutines can act like closures... (Gee, is this sounding a little Lispish? (Never mind.))))

And here’s a reimplementation of the Perl grep operator:

perl v5.8.3 2003-11-25 67



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {

push(@result, $_) if &$code;
}
@result;

}

Some folks would prefer full alphanumeric prototypes. Alphanumerics have been intentionally left out
of prototypes for the express purpose of someday in the future adding named, formal parameters. The
current mechanism’s main goal is to let module writers provide better diagnostics for module users.
Larry feels the notation quite understandable to Perl programmers, and that it will not intrude greatly
upon the meat of the module, nor make it harder to read. The line noise is visually encapsulated into a
small pill that’s easy to swallow.

If you try to use an alphanumeric sequence in a prototype you will generate an optional warning −
‘‘Illegal character in prototype...’’. Unfortunately earlier versions of Perl allowed the prototype to be
used as long as its prefix was a valid prototype. The warning may be upgraded to a fatal error in a
future version of Perl once the majority of offending code is fixed.

It’s probably best to prototype new functions, not retrofit prototyping into older ones. That’s because
you must be especially careful about silent impositions of differing list versus scalar contexts. For
example, if you decide that a function should take just one parameter, like this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";

}

and someone has been calling it with an array or expression returning a list:

func(@foo);
func( split /:/ );

Then you’ve just supplied an automatic scalar in front of their argument, which can be more than a
bit surprising. The old @foo which used to hold one thing doesn’t get passed in. Instead, func()
now gets passed in a 1; that is, the number of elements in @foo. And the split gets called in scalar
context so it starts scribbling on your @_ parameter list. Ouch!

This is all very powerful, of course, and should be used only in moderation to make the world a better
place.

Constant Functions

Functions with a prototype of () are potential candidates for inlining. If the result after optimization
and constant folding is either a constant or a lexically-scoped scalar which has no other references, then
it will be used in place of function calls made without &. Calls made using & are never inlined. (See
constant.pm for an easy way to declare most constants.)

The following functions would all be inlined:

sub pi () { 3.14159 } # Not exact, but close.
sub PI () { 4 * atan2 1, 1 } # As good as it gets,

# and it’s inlined, too!
sub ST_DEV () { 0 }
sub ST_INO () { 1 }

sub FLAG_FOO () { 1 << 8 }
sub FLAG_BAR () { 1 << 9 }
sub FLAG_MASK () { FLAG_FOO  FLAG_BAR }

68 2003-11-25 perl v5.8.3



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

sub OPT_BAZ () { not (0x1B58 & FLAG_MASK) }
sub BAZ_VAL () {

if (OPT_BAZ) {
return 23;

}
else {

return 42;
}

}

sub N () { int(BAZ_VAL) / 3 }
BEGIN {

my $prod = 1;
for (1..N) { $prod *= $_ }
sub N_FACTORIAL () { $prod }

}

If you redefine a subroutine that was eligible for inlining, you’ll get a mandatory warning. (You can
use this warning to tell whether or not a particular subroutine is considered constant.) The warning is
considered severe enough not to be optional because previously compiled invocations of the function
will still be using the old value of the function. If you need to be able to redefine the subroutine, you
need to ensure that it isn’t inlined, either by dropping the () prototype (which changes calling
semantics, so beware) or by thwarting the inlining mechanism in some other way, such as

sub not_inlined () {
23 if $];

}

Overriding Built-in Functions

Many built-in functions may be overridden, though this should be tried only occasionally and for good
reason. Typically this might be done by a package attempting to emulate missing built-in functionality
on a non-Unix system.

Overriding may be done only by importing the name from a module at compile time — ordinary
predeclaration isn’t good enough. However, the use subs pragma lets you, in effect, predeclare subs
via the import syntax, and these names may then override built-in ones:

use subs ’chdir’, ’chroot’, ’chmod’, ’chown’;
chdir $somewhere;
sub chdir { ... }

To unambiguously refer to the built-in form, precede the built-in name with the special package
qualifier CORE::. For example, saying CORE::open() always refers to the built-in open(), even
if the current package has imported some other subroutine called &open() from elsewhere. Even
though it looks like a regular function call, it isn’t: you can’t take a reference to it, such as the incorrect
\&CORE::open might appear to produce.

Library modules should not in general export built-in names like open or chdir as part of their
default @EXPORT list, because these may sneak into someone else’s namespace and change the
semantics unexpectedly. Instead, if the module adds that name to @EXPORT_OK, then it’s possible for
a user to import the name explicitly, but not implicitly. That is, they could say

use Module ’open’;

and it would import the open override. But if they said

use Module;

they would get the default imports without overrides.

The foregoing mechanism for overriding built-in is restricted, quite deliberately, to the package that
requests the import. There is a second method that is sometimes applicable when you wish to override
a built-in everywhere, without regard to namespace boundaries. This is achieved by importing a sub
into the special namespace CORE::GLOBAL::. Here is an example that quite brazenly replaces the
glob operator with something that understands regular expressions.

perl v5.8.3 2003-11-25 69



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

package REGlob;
require Exporter;
@ISA = ’Exporter’;
@EXPORT_OK = ’glob’;

sub import {
my $pkg = shift;
return unless @_;
my $sym = shift;
my $where = ($sym =˜ s/ˆGLOBAL_// ? ’CORE::GLOBAL’ : caller(0));
$pkg->export($where, $sym, @_);

}

sub glob {
my $pat = shift;
my @got;
local *D;
if (opendir D, ’.’) {

@got = grep /$pat/, readdir D;
closedir D;

}
return @got;

}
1;

And here’s how it could be (ab)used:

#use REGlob ’GLOBAL_glob’; # override glob() in ALL namespaces
package Foo;
use REGlob ’glob’; # override glob() in Foo:: only
print for <ˆ[a-z_]+\.pm\$>; # show all pragmatic modules

The initial comment shows a contrived, even dangerous example. By overriding glob globally, you
would be forcing the new (and subversive) behavior for the glob operator for every namespace,
without the complete cognizance or cooperation of the modules that own those namespaces. Naturally,
this should be done with extreme caution — if it must be done at all.

The REGlob example above does not implement all the support needed to cleanly override perl’s
glob operator. The built-in glob has different behaviors depending on whether it appears in a scalar
or list context, but our REGlob doesn’t. Indeed, many perl built-in have such context sensitive
behaviors, and these must be adequately supported by a properly written override. For a fully
functional example of overriding glob, study the implementation of File::DosGlob in the
standard library.

When you override a built−in, your replacement should be consistent (if possible) with the built-in
native syntax. You can achieve this by using a suitable prototype. To get the prototype of an
overridable built−in, use the prototype function with an argument of "CORE::builtin_name"
(see ‘‘prototype’’ in perlfunc).

Note however that some built-ins can’t hav e their syntax expressed by a prototype (such as system or
chomp). If you override them you won’t be able to fully mimic their original syntax.

The built-ins do, require and glob can also be overridden, but due to special magic, their original
syntax is preserved, and you don’t hav e to define a prototype for their replacements. (You can’t
override the do BLOCK syntax, though).

require has special additional dark magic: if you invoke your require replacement as require
Foo::Bar, it will actually receive the argument "Foo/Bar.pm" in @_. See ‘‘require’’ in perlfunc.

And, as you’ll have noticed from the previous example, if you override glob, the <*> glob operator is
overridden as well.

In a similar fashion, overriding the readline function also overrides the equivalent I/O operator
<FILEHANDLE>.

Finally, some built-ins (e.g. exists or grep) can’t be overridden.

70 2003-11-25 perl v5.8.3



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

Autoloading

If you call a subroutine that is undefined, you would ordinarily get an immediate, fatal error
complaining that the subroutine doesn’t exist. (Likewise for subroutines being used as methods, when
the method doesn’t exist in any base class of the class’s package.) However, if an AUTOLOAD
subroutine is defined in the package or packages used to locate the original subroutine, then that
AUTOLOAD subroutine is called with the arguments that would have been passed to the original
subroutine. The fully qualified name of the original subroutine magically appears in the global
$AUTOLOAD variable of the same package as the AUTOLOAD routine. The name is not passed as an
ordinary argument because, er, well, just because, that’s why...

Many AUTOLOAD routines load in a definition for the requested subroutine using eval(), then execute
that subroutine using a special form of goto() that erases the stack frame of the AUTOLOAD routine
without a trace. (See the source to the standard module documented in AutoLoader, for example.) But
an AUTOLOAD routine can also just emulate the routine and never define it. For example, let’s pretend
that a function that wasn’t defined should just invoke system with those arguments. All you’d do is:

sub AUTOLOAD {
my $program = $AUTOLOAD;
$program =˜ s/.*:://;
system($program, @_);

}
date();
who(’am’, ’i’);
ls(’-l’);

In fact, if you predeclare functions you want to call that way, you don’t even need parentheses:

use subs qw(date who ls);
date;
who "am", "i";
ls -l;

A more complete example of this is the standard Shell module, which can treat undefined subroutine
calls as calls to external programs.

Mechanisms are available to help modules writers split their modules into autoloadable files. See the
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader
modules in SelfLoader, and the document on adding C functions to Perl code in perlxs.

Subroutine Attributes

A subroutine declaration or definition may have a list of attributes associated with it. If such an
attribute list is present, it is broken up at space or colon boundaries and treated as though a use
attributes had been seen. See attributes for details about what attributes are currently supported.
Unlike the limitation with the obsolescent use attrs, the sub : ATTRLIST syntax works to
associate the attributes with a pre−declaration, and not just with a subroutine definition.

The attributes must be valid as simple identifier names (without any punctuation other than the ’_’
character). They may have a parameter list appended, which is only checked for whether its
parentheses (’(’,’)’) nest properly.

Examples of valid syntax (even though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) : expensive ;
sub plugh () : Ugly(’\(") :Bad ;
sub xyzzy : _5x5 { ... }

Examples of invalid syntax:

sub fnord : switch(10,foo() ; # ()-string not balanced
sub snoid : Ugly(’(’) ; # ()-string not balanced
sub xyzzy : 5x5 ; # "5x5" not a valid identifier
sub plugh : Y2::north ; # "Y2::north" not a simple identifier
sub snurt : foo + bar ; # "+" not a colon or space

The attribute list is passed as a list of constant strings to the code which associates them with the

perl v5.8.3 2003-11-25 71



PERLSUB(1) Perl Programmers Reference Guide PERLSUB(1)

subroutine. In particular, the second example of valid syntax above currently looks like this in terms of
how it’s parsed and invoked:

use attributes __PACKAGE__, \&plugh, q[Ugly(’\(")], ’Bad’;

For further details on attribute lists and their manipulation, see attributes and Attribute::Handlers.

SEE ALSO
See ‘‘Function Templates’’ in perlref for more about references and closures. See perlxs if you’d like
to learn about calling C subroutines from Perl. See perlembed if you’d like to learn about calling Perl
subroutines from C. See perlmod to learn about bundling up your functions in separate files. See
perlmodlib to learn what library modules come standard on your system. See perltoot to learn how to
make object method calls.

72 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

NAME
perlfunc − Perl builtin functions

DESCRIPTION
The functions in this section can serve as terms in an expression. They fall into two major categories:
list operators and named unary operators. These differ in their precedence relationship with a
following comma. (See the precedence table in perlop.) List operators take more than one argument,
while unary operators can never take more than one argument. Thus, a comma terminates the argument
of a unary operator, but merely separates the arguments of a list operator. A unary operator generally
provides a scalar context to its argument, while a list operator may provide either scalar or list contexts
for its arguments. If it does both, the scalar arguments will be first, and the list argument will follow.
(Note that there can ever be only one such list argument.) For instance, splice() has three scalar
arguments followed by a list, whereas gethostbyname() has four scalar arguments.

In the syntax descriptions that follow, list operators that expect a list (and provide list context for the
elements of the list) are shown with LIST as an argument. Such a list may consist of any combination
of scalar arguments or list values; the list values will be included in the list as if each individual
element were interpolated at that point in the list, forming a longer single-dimensional list value.
Elements of the LIST should be separated by commas.

Any function in the list below may be used either with or without parentheses around its arguments.
(The syntax descriptions omit the parentheses.) If you use the parentheses, the simple (but occasionally
surprising) rule is this: It looks like a function, therefore it is a function, and precedence doesn’t matter.
Otherwise it’s a list operator or unary operator, and precedence does matter. And whitespace between
the function and left parenthesis doesn’t count — so you need to be careful sometimes:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.
print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.
print ((1+2)+4); # Prints 7.

If you run Perl with the −w switch it can warn you about this. For example, the third line above
produces:

print (...) interpreted as function at - line 1.
Useless use of integer addition in void context at - line 1.

A few functions take no arguments at all, and therefore work as neither unary nor list operators. These
include such functions as time and endpwent. For example, time+86_400 always means
time() + 86_400.

For functions that can be used in either a scalar or list context, nonabortive failure is generally indicated
in a scalar context by returning the undefined value, and in a list context by returning the null list.

Remember the following important rule: There is no rule that relates the behavior of an expression in
list context to its behavior in scalar context, or vice versa. It might do two totally different things.
Each operator and function decides which sort of value it would be most appropriate to return in scalar
context. Some operators return the length of the list that would have been returned in list context.
Some operators return the first value in the list. Some operators return the last value in the list. Some
operators return a count of successful operations. In general, they do what you want, unless you want
consistency.

A named array in scalar context is quite different from what would at first glance appear to be a list in
scalar context. You can’t get a list like (1,2,3) into being in scalar context, because the compiler
knows the context at compile time. It would generate the scalar comma operator there, not the list
construction version of the comma. That means it was never a list to start with.

In general, functions in Perl that serve as wrappers for system calls of the same name (like chown (2),
fork (2), closedir (2), etc.) all return true when they succeed and undef otherwise, as is usually
mentioned in the descriptions below. This is different from the C interfaces, which return −1 on
failure. Exceptions to this rule are wait, waitpid, and syscall. System calls also set the special
$! variable on failure. Other functions do not, except accidentally.

perl v5.8.3 2003-11-25 73



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Perl Functions by Category

Here are Perl’s functions (including things that look like functions, like some keywords and named
operators) arranged by category. Some functions appear in more than one place.

Functions for SCALARs or strings
chomp, chop, chr, crypt, hex, index, lc, lcfirst, length, oct, ord, pack,
q/STRING/, qq/STRING/, reverse, rindex, sprintf, substr, tr///, uc,
ucfirst, y///

Regular expressions and pattern matching
m//, pos, quotemeta, s///, split, study, qr//

Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Functions for real @ARRAYs
pop, push, shift, splice, unshift

Functions for list data
grep, join, map, qw/STRING/, reverse, sort, unpack

Functions for real %HASHes
delete, each, exists, keys, values

Input and output functions
binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock,
format, getc, print, printf, read, readdir, rewinddir, seek, seekdir,
select, syscall, sysread, sysseek, syswrite, tell, telldir, truncate, warn,
write

Functions for fixed length data or records
pack, read, syscall, sysread, syswrite, unpack, vec

Functions for filehandles, files, or directories
−X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open,
opendir, readlink, rename, rmdir, stat, symlink, sysopen, umask, unlink,
utime

Ke ywords related to the control flow of your perl program
caller, continue, die, do, dump, eval, exit, goto, last, next, redo, return,
sub, wantarray

Ke ywords related to scoping
caller, import, local, my, our, package, use

Miscellaneous functions
defined, dump, eval, formline, local, my, our, reset, scalar, undef,
wantarray

Functions for processes and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx/STRING/,
setpgrp, setpriority, sleep, system, times, wait, waitpid

Ke ywords related to perl modules
do, import, no, package, require, use

Ke ywords related to classes and object-orientedness
bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Low-level socket functions
accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv,
send, setsockopt, shutdown, socket, socketpair

System V interprocess communication functions
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget,
shmread, shmwrite

74 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Fetching user and group info
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam,
getlogin, getpwent, getpwnam, getpwuid, setgrent, setpwent

Fetching network info
endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent,
getnetbyaddr, getnetbyname, getnetent, getprotobyname,
getprotobynumber, getprotoent, getservbyname, getservbyport,
getservent, sethostent, setnetent, setprotoent, setservent

Time-related functions
gmtime, localtime, time, times

Functions new in perl5
abs, bless, chomp, chr, exists, formline, glob, import, lc, lcfirst, map, my,
no, our, prototype, qx, qw, readline, readpipe, ref, sub*, sysopen, tie, tied,
uc, ucfirst, untie, use

* − sub was a keyword in perl4, but in perl5 it is an operator, which can be used in expressions.

Functions obsoleted in perl5
dbmclose, dbmopen

Portability

Perl was born in Unix and can therefore access all common Unix system calls. In non-Unix
environments, the functionality of some Unix system calls may not be available, or details of the
available functionality may differ slightly. The Perl functions affected by this are:

−X, binmode, chmod, chown, chroot, crypt, dbmclose, dbmopen, dump, endgrent,
endhostent, endnetent, endprotoent, endpwent, endservent, exec, fcntl, flock,
fork, getgrent, getgrgid, gethostbyname, gethostent, getlogin, getnetbyaddr,
getnetbyname, getnetent, getppid, getprgp, getpriority, getprotobynumber,
getprotoent, getpwent, getpwnam, getpwuid, getservbyport, getservent,
getsockopt, glob, ioctl, kill, link, lstat, msgctl, msgget, msgrcv, msgsnd, open,
pipe, readlink, rename, select, semctl, semget, semop, setgrent, sethostent,
setnetent, setpgrp, setpriority, setprotoent, setpwent, setservent,
setsockopt, shmctl, shmget, shmread, shmwrite, socket, socketpair, stat,
symlink, syscall, sysopen, system, times, truncate, umask, unlink, utime, wait,
waitpid

For more information about the portability of these functions, see perlport and other available platform-
specific documentation.

Alphabetical Listing of Perl Functions

−X FILEHANDLE
−X EXPR
−X A file test, where X is one of the letters listed below. This unary operator takes one

argument, either a filename or a filehandle, and tests the associated file to see if something is
true about it. If the argument is omitted, tests $_, except for −t, which tests STDIN. Unless
otherwise documented, it returns 1 for true and ’’ for false, or the undefined value if the file
doesn’t exist. Despite the funny names, precedence is the same as any other named unary
operator, and the argument may be parenthesized like any other unary operator. The operator
may be any of:

-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.
-x File is executable by effective uid/gid.
-o File is owned by effective uid.

perl v5.8.3 2003-11-25 75



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

-R File is readable by real uid/gid.
-W File is writable by real uid/gid.
-X File is executable by real uid/gid.
-O File is owned by real uid.

-e File exists.
-z File has zero size (is empty).
-s File has nonzero size (returns size in bytes).

-f File is a plain file.
-d File is a directory.
-l File is a symbolic link.
-p File is a named pipe (FIFO), or Filehandle is a pipe.
-S File is a socket.
-b File is a block special file.
-c File is a character special file.
-t Filehandle is opened to a tty.

-u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.

-T File is an ASCII text file (heuristic guess).
-B File is a "binary" file (opposite of -T).

-M Script start time minus file modification time, in days.
-A Same for access time.
-C Same for inode change time (Unix, may differ for other platforms)

Example:

while (<>) {
chomp;
next unless -f $_; # ignore specials
#...

}

The interpretation of the file permission operators −r, −R, −w, −W, −x, and −X is by default
based solely on the mode of the file and the uids and gids of the user. There may be other
reasons you can’t actually read, write, or execute the file. Such reasons may be for example
network filesystem access controls, ACLs (access control lists), read-only filesystems, and
unrecognized executable formats.

Also note that, for the superuser on the local filesystems, the −r, −R, −w, and −W tests always
return 1, and −x and −X return 1 if any execute bit is set in the mode. Scripts run by the
superuser may thus need to do a stat() to determine the actual mode of the file, or temporarily
set their effective uid to something else.

If you are using ACLs, there is a pragma called filetest that may produce more accurate
results than the bare stat() mode bits. When under the use filetest ’access’ the
above-mentioned filetests will test whether the permission can (not) be granted using the
access() family of system calls. Also note that the −x and −X may under this pragma return
true even if there are no execute permission bits set (nor any extra execute permission ACLs).
This strangeness is due to the underlying system calls’ definitions. Read the documentation
for the filetest pragma for more information.

Note that −s/a/b/ does not do a negated substitution. Saying −exp($foo) still works as
expected, however — only single letters following a minus are interpreted as file tests.

The −T and −B switches work as follows. The first block or so of the file is examined for
odd characters such as strange control codes or characters with the high bit set. If too many
strange characters (>30%) are found, it’s a −B file, otherwise it’s a −T file. Also, any file
containing null in the first block is considered a binary file. If −T or −B is used on a
filehandle, the current IO buffer is examined rather than the first block. Both −T and −B
return true on a null file, or a file at EOF when testing a filehandle. Because you have to read

76 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

a file to do the −T test, on most occasions you want to use a −f against the file first, as in
next unless −f $file && −T $file.

If any of the file tests (or either the stat or lstat operators) are given the special
filehandle consisting of a solitary underline, then the stat structure of the previous file test (or
stat operator) is used, saving a system call. (This doesn’t work with −t, and you need to
remember that lstat() and −l will leave values in the stat structure for the symbolic link, not
the real file.) (Also, if the stat buffer was filled by a lstat call, −T and −B will reset it with
the results of stat _). Example:

print "Can do.\n" if -r $a  -w _  -x _;

stat($filename);
print "Readable\n" if -r _;
print "Writable\n" if -w _;
print "Executable\n" if -x _;
print "Setuid\n" if -u _;
print "Setgid\n" if -g _;
print "Sticky\n" if -k _;
print "Text\n" if -T _;
print "Binary\n" if -B _;

abs VALUE
abs Returns the absolute value of its argument. If VALUE is omitted, uses $_.

accept NEWSOCKET,GENERICSOCKET
Accepts an incoming socket connect, just as the accept (2) system call does. Returns the
packed address if it succeeded, false otherwise. See the example in ‘‘Sockets: Client/Server
Communication’’ in perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly
opened file descriptor, as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

alarm SECONDS
alarm Arranges to have a SIGALRM delivered to this process after the specified number of

wallclock seconds have elapsed. If SECONDS is not specified, the value stored in $_ is used.
(On some machines, unfortunately, the elapsed time may be up to one second less or more
than you specified because of how seconds are counted, and process scheduling may delay
the delivery of the signal even further.)

Only one timer may be counting at once. Each call disables the previous timer, and an
argument of 0 may be supplied to cancel the previous timer without starting a new one. The
returned value is the amount of time remaining on the previous timer.

For delays of finer granularity than one second, you may use Perl’s four-argument version of
select() leaving the first three arguments undefined, or you might be able to use the
syscall interface to access setitimer (2) if your system supports it. The Time::HiRes
module (from CPAN, and starting from Perl 5.8 part of the standard distribution) may also
prove useful.

It is usually a mistake to intermix alarm and sleep calls. (sleep may be internally
implemented in your system with alarm)

If you want to use alarm to time out a system call you need to use an eval/die pair. You
can’t rely on the alarm causing the system call to fail with $! set to EINTR because Perl sets
up signal handlers to restart system calls on some systems. Using eval/die always works,
modulo the caveats given in ‘‘Signals’’ in perlipc.

perl v5.8.3 2003-11-25 77



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;
alarm 0;

};
if ($@) {

die unless $@ eq "alarm\n"; # propagate unexpected errors
# timed out

}
else {

# didn’t
}

For more information see perlipc.

atan2 Y,X
Returns the arctangent of Y/X in the range −PI to PI.

For the tangent operation, you may use the Math::Trig::tan function, or use the
familiar relation:

sub tan { sin($_[0]) / cos($_[0]) }

bind SOCKET,NAME
Binds a network address to a socket, just as the bind system call does. Returns true if it
succeeded, false otherwise. NAME should be a packed address of the appropriate type for the
socket. See the examples in ‘‘Sockets: Client/Server Communication’’ in perlipc.

binmode FILEHANDLE, LAYER
binmode FILEHANDLE

Arranges for FILEHANDLE to be read or written in ‘‘binary’’ or ‘‘text’’ mode on systems
where the run-time libraries distinguish between binary and text files. If FILEHANDLE is an
expression, the value is taken as the name of the filehandle. Returns true on success,
otherwise it returns undef and sets $! (errno).

On some systems (in general, DOS and Windows-based systems) binmode() is necessary
when you’re not working with a text file. For the sake of portability it is a good idea to
always use it when appropriate, and to never use it when it isn’t appropriate. Also, people
can set their I/O to be by default UTF−8 encoded Unicode, not bytes.

In other words: regardless of platform, use binmode() on binary data, like for example
images.

If LAYER is present it is a single string, but may contain multiple directives. The directives
alter the behaviour of the file handle. When LAYER is present using binmode on text file
makes sense.

If LAYER is omitted or specified as :raw the filehandle is made suitable for passing binary
data. This includes turning off possible CRLF translation and marking it as bytes (as opposed
to Unicode characters). Note that, despite what may be implied in ‘‘Programming Perl’’ (the
Camel) or elsewhere, :raw is not the simply inverse of :crlf — other layers which would
affect binary nature of the stream are also disabled. See PerlIO, perlrun and the discussion
about the PERLIO environment variable.

The :bytes, :crlf, and :utf8, and any other directives of the form :..., are called I/O
layers. The open pragma can be used to establish default I/O layers. See open.

The LAYER parameter of the binmode() function is described as ‘‘DISCIPLINE’’ in
‘‘Programming Perl, 3rd Edition’’. However, since the publishing of this book, by many
known as ‘‘Camel III’’, the consensus of the naming of this functionality has moved from
‘‘discipline’’ to ‘‘layer’’. All documentation of this version of Perl therefore refers to
‘‘layers’’ rather than to ‘‘disciplines’’. Now back to the regularly scheduled documentation...

To mark FILEHANDLE as UTF−8, use :utf8.

78 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

In general, binmode() should be called after open() but before any I/O is done on the
filehandle. Calling binmode() will normally flush any pending buffered output data (and
perhaps pending input data) on the handle. An exception to this is the :encoding layer
that changes the default character encoding of the handle, see open. The :encoding layer
sometimes needs to be called in mid−stream, and it doesn’t flush the stream. The
:encoding also implicitly pushes on top of itself the :utf8 layer because internally Perl
will operate on UTF−8 encoded Unicode characters.

The operating system, device drivers, C libraries, and Perl run-time system all work together
to let the programmer treat a single character (\n) as the line terminator, irrespective of the
external representation. On many operating systems, the native text file representation
matches the internal representation, but on some platforms the external representation of \n
is made up of more than one character.

Mac OS, all variants of Unix, and Stream_LF files on VMS use a single character to end each
line in the external representation of text (even though that single character is CARRIAGE
RETURN on Mac OS and LINE FEED on Unix and most VMS files). In other systems like
OS/2, DOS and the various flavors of MS-Windows your program sees a \n as a simple \cJ,
but what’s stored in text files are the two characters \cM\cJ. That means that, if you don’t
use binmode() on these systems, \cM\cJ sequences on disk will be converted to \n on
input, and any \n in your program will be converted back to \cM\cJ on output. This is
what you want for text files, but it can be disastrous for binary files.

Another consequence of using binmode() (on some systems) is that special end-of-file
markers will be seen as part of the data stream. For systems from the Microsoft family this
means that if your binary data contains \cZ, the I/O subsystem will regard it as the end of the
file, unless you use binmode().

binmode() is not only important for readline() and print() operations, but also when using
read(), seek(), sysread(), syswrite() and tell() (see perlport for more details). See the $/ and
$\ variables in perlvar for how to manually set your input and output line-termination
sequences.

bless REF,CLASSNAME
bless REF

This function tells the thingy referenced by REF that it is now an object in the CLASSNAME
package. If CLASSNAME is omitted, the current package is used. Because a bless is often
the last thing in a constructor, it returns the reference for convenience. Always use the two-
argument version if the function doing the blessing might be inherited by a derived class. See
perltoot and perlobj for more about the blessing (and blessings) of objects.

Consider always blessing objects in CLASSNAMEs that are mixed case. Namespaces with
all lowercase names are considered reserved for Perl pragmata. Builtin types have all
uppercase names, so to prevent confusion, you may wish to avoid such package names as
well. Make sure that CLASSNAME is a true value.

See ‘‘Perl Modules’’ in perlmod.

caller EXPR
caller Returns the context of the current subroutine call. In scalar context, returns the caller’s

package name if there is a caller, that is, if we’re in a subroutine or eval or require, and
the undefined value otherwise. In list context, returns

($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stack trace.
The value of EXPR indicates how many call frames to go back before the current one.

($package, $filename, $line, $subroutine, $hasargs,
$wantarray, $evaltext, $is_require, $hints, $bitmask) = caller($i);

Here $subroutine may be (eval) if the frame is not a subroutine call, but an eval. In
such a case additional elements $evaltext and $is_require are set: $is_require
is true if the frame is created by a require or use statement, $evaltext contains the
text of the eval EXPR statement. In particular, for an eval BLOCK statement,

perl v5.8.3 2003-11-25 79



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$filename is (eval), but $evaltext is undefined. (Note also that each use
statement creates a require frame inside an eval EXPR frame.) $subroutine may
also be (unknown) if this particular subroutine happens to have been deleted from the
symbol table. $hasargs is true if a new instance of @_ was set up for the frame. $hints
and $bitmask contain pragmatic hints that the caller was compiled with. The $hints and
$bitmask values are subject to change between versions of Perl, and are not meant for
external use.

Furthermore, when called from within the DB package, caller returns more detailed
information: it sets the list variable @DB::args to be the arguments with which the
subroutine was invoked.

Be aware that the optimizer might have optimized call frames away before caller had a
chance to get the information. That means that caller(N) might not return information
about the call frame you expect it do, for N > 1. In particular, @DB::args might have
information from the previous time caller was called.

chdir EXPR
Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to the
directory specified by $ENV{HOME}, if set; if not, changes to the directory specified by
$ENV{LOGDIR}. (Under VMS, the variable $ENV{SYS$LOGIN} is also checked, and used
if it is set.) If neither is set, chdir does nothing. It returns true upon success, false
otherwise. See the example under die.

chmod LIST
Changes the permissions of a list of files. The first element of the list must be the numerical
mode, which should probably be an octal number, and which definitely should not a string of
octal digits: 0644 is okay, ’0644’ is not. Returns the number of files successfully
changed. See also ‘‘oct’’, if all you have is a string.

$cnt = chmod 0755, ’foo’, ’bar’;
chmod 0755, @executables;
$mode = ’0644’; chmod $mode, ’foo’; # !!! sets mode to

# --w----r-T
$mode = ’0644’; chmod oct($mode), ’foo’; # this is better
$mode = 0644; chmod $mode, ’foo’; # this is best

You can also import the symbolic S_I* constants from the Fcntl module:

use Fcntl ’:mode’;

chmod S_IRWXUS_IRGRPS_IXGRPS_IROTHS_IXOTH, @executables;
# This is identical to the chmod 0755 of the above example.

chomp VARIABLE
chomp( LIST )
chomp This safer version of ‘‘chop’’ removes any trailing string that corresponds to the current value

of $/ (also known as $INPUT_RECORD_SEPARATOR in the English module). It returns
the total number of characters removed from all its arguments. It’s often used to remove the
newline from the end of an input record when you’re worried that the final record may be
missing its newline. When in paragraph mode ($/ = ""), it removes all trailing newlines
from the string. When in slurp mode ($/ = undef) or fixed-length record mode ($/ is a
reference to an integer or the like, see perlvar) chomp() won’t remove anything. If
VARIABLE is omitted, it chomps $_. Example:

while (<>) {
chomp; # avoid \n on last field
@array = split(/:/);
# ...

}

If VARIABLE is a hash, it chomps the hash’s values, but not its keys.

You can actually chomp anything that’s an lvalue, including an assignment:

80 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

chomp($cwd = ‘pwd‘);
chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters removed is
returned.

Note that parentheses are necessary when you’re chomping anything that is not a simple
variable. This is because chomp $cwd = ‘pwd‘; is interpreted as (chomp $cwd) =
‘pwd‘;, rather than as chomp( $cwd = ‘pwd‘ ) which you might expect. Similarly,
chomp $a, $b is interpreted as chomp($a), $b rather than as chomp($a, $b).

chop VARIABLE
chop( LIST )
chop Chops off the last character of a string and returns the character chopped. It is much more

efficient than s/.$//s because it neither scans nor copies the string. If VARIABLE is
omitted, chops $_. If VARIABLE is a hash, it chops the hash’s values, but not its keys.

You can actually chop anything that’s an lvalue, including an assignment.

If you chop a list, each element is chopped. Only the value of the last chop is returned.

Note that chop returns the last character. To return all but the last character, use
substr($string, 0, −1).

See also ‘‘chomp’’.

chown LIST
Changes the owner (and group) of a list of files. The first two elements of the list must be the
numeric uid and gid, in that order. A value of −1 in either position is interpreted by most
systems to leave that value unchanged. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, ’foo’, ’bar’;
chown $uid, $gid, @filenames;

Here’s an example that looks up nonnumeric uids in the passwd file:

print "User: ";
chomp($user = <STDIN>);
print "Files: ";
chomp($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

@ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you’re the
superuser, although you should be able to change the group to any of your secondary groups.
On insecure systems, these restrictions may be relaxed, but this is not a portable assumption.
On POSIX systems, you can detect this condition this way:

use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
$can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);

chr NUMBER
chr Returns the character represented by that NUMBER in the character set. For example,

chr(65) is "A" in either ASCII or Unicode, and chr(0x263a) is a Unicode smiley face.
Note that characters from 128 to 255 (inclusive) are by default not encoded in UTF−8
Unicode for backward compatibility reasons (but see encoding).

If NUMBER is omitted, uses $_.

For the reverse, use ‘‘ord’’.

Note that under the bytes pragma the NUMBER is masked to the low eight bits.

See perlunicode and encoding for more about Unicode.

perl v5.8.3 2003-11-25 81



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

chroot FILENAME
chroot This function works like the system call by the same name: it makes the named directory the

new root directory for all further pathnames that begin with a / by your process and all its
children. (It doesn’t change your current working directory, which is unaffected.) For
security reasons, this call is restricted to the superuser. If FILENAME is omitted, does a
chroot to $_.

close FILEHANDLE
close Closes the file or pipe associated with the file handle, returning true only if IO buffers are

successfully flushed and closes the system file descriptor. Closes the currently selected
filehandle if the argument is omitted.

You don’t hav e to close FILEHANDLE if you are immediately going to do another open on
it, because open will close it for you. (See open.) However, an explicit close on an input
file resets the line counter ($.), while the implicit close done by open does not.

If the file handle came from a piped open close will additionally return false if one of the
other system calls involved fails or if the program exits with non-zero status. (If the only
problem was that the program exited non-zero $! will be set to 0.) Closing a pipe also waits
for the process executing on the pipe to complete, in case you want to look at the output of
the pipe afterwards, and implicitly puts the exit status value of that command into $?.

Prematurely closing the read end of a pipe (i.e. before the process writing to it at the other
end has closed it) will result in a SIGPIPE being delivered to the writer. If the other end can’t
handle that, be sure to read all the data before closing the pipe.

Example:

open(OUTPUT, ’sort >foo’) # pipe to sort
or die "Can’t start sort: $!";

#... # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"
: "Exit status $? from sort";

open(INPUT, ’foo’) # get sort’s results
or die "Can’t open ’foo’ for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle,
usually the real filehandle name.

closedir DIRHANDLE
Closes a directory opened by opendir and returns the success of that system call.

connect SOCKET,NAME
Attempts to connect to a remote socket, just as the connect system call does. Returns true if
it succeeded, false otherwise. NAME should be a packed address of the appropriate type for
the socket. See the examples in ‘‘Sockets: Client/Server Communication’’ in perlipc.

continue BLOCK
Actually a flow control statement rather than a function. If there is a continue BLOCK
attached to a BLOCK (typically in a while or foreach), it is always executed just before
the conditional is about to be evaluated again, just like the third part of a for loop in C.
Thus it can be used to increment a loop variable, even when the loop has been continued via
the next statement (which is similar to the C continue statement).

last, next, or redo may appear within a continue block. last and redo will
behave as if they had been executed within the main block. So will next, but since it will
execute a continue block, it may be more entertaining.

82 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

while (EXPR) {
### redo always comes here
do_something;

} continue {
### next always comes here
do_something_else;
# then back the top to re-check EXPR

}
### last always comes here

Omitting the continue section is semantically equivalent to using an empty one, logically
enough. In that case, next goes directly back to check the condition at the top of the loop.

cos EXPR
cos Returns the cosine of EXPR (expressed in radians). If EXPR is omitted, takes cosine of $_.

For the inverse cosine operation, you may use the Math::Trig::acos() function, or use
this relation:

sub acos { atan2( sqrt(1 - $_[0] * $_[0]), $_[0] ) }

crypt PLAINTEXT,SALT
Encrypts a string exactly like the crypt (3) function in the C library (assuming that you
actually have a version there that has not been extirpated as a potential munition). This can
prove useful for checking the password file for lousy passwords, amongst other things. Only
the guys wearing white hats should do this.

Note that crypt is intended to be a one-way function, much like breaking eggs to make an
omelette. There is no (known) corresponding decrypt function (in other words, the crypt() is
a one-way hash function). As a result, this function isn’t all that useful for cryptography.
(For that, see your nearby CPAN mirror.)

When verifying an existing encrypted string you should use the encrypted text as the salt (like
crypt($plain, $crypted) eq $crypted). This allows your code to work with
the standard crypt and with more exotic implementations. In other words, do not assume
anything about the returned string itself, or how many bytes in the encrypted string matter.

Traditionally the result is a string of 13 bytes: two first bytes of the salt, followed by 11 bytes
from the set [./0−9A−Za−z], and only the first eight bytes of the encrypted string
mattered, but alternative hashing schemes (like MD5), higher level security schemes (like
C2), and implementations on non-UNIX platforms may produce different strings.

When choosing a new salt create a random two character string whose characters come from
the set [./0−9A−Za−z] (like join ’’, (’.’, ’/’, 0..9, ’A’..’Z’,
’a’..’z’)[rand 64, rand 64]). This set of characters is just a recommendation;
the characters allowed in the salt depend solely on your system’s crypt library, and Perl can’t
restrict what salts crypt() accepts.

Here’s an example that makes sure that whoever runs this program knows their own
password:

$pwd = (getpwuid($<))[1];

system "stty -echo";
print "Password: ";
chomp($word = <STDIN>);
print "\n";
system "stty echo";

if (crypt($word, $pwd) ne $pwd) {
die "Sorry...\n";

} else {
print "ok\n";

}

Of course, typing in your own password to whoever asks you for it is unwise.

perl v5.8.3 2003-11-25 83



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

The crypt function is unsuitable for encrypting large quantities of data, not least of all
because you can’t get the information back. Look at the by−module/Crypt and
by−module/PGP directories on your favorite CPAN mirror for a slew of potentially useful
modules.

If using crypt() on a Unicode string (which potentially has characters with codepoints above
255), Perl tries to make sense of the situation by trying to downgrade (a copy of the string)
the string back to an eight-bit byte string before calling crypt() (on that copy). If that works,
good. If not, crypt() dies with Wide character in crypt.

dbmclose HASH
[This function has been largely superseded by the untie function.]

Breaks the binding between a DBM file and a hash.

dbmopen HASH,DBNAME,MASK
[This function has been largely superseded by the tie function.]

This binds a dbm (3), ndbm (3), sdbm (3), gdbm (3), or Berkeley DB file to a hash. HASH is
the name of the hash. (Unlike normal open, the first argument is not a filehandle, even
though it looks like one). DBNAME is the name of the database (without the .dir or .pag
extension if any). If the database does not exist, it is created with protection specified by
MASK (as modified by the umask). If your system supports only the older DBM functions,
you may perform only one dbmopen in your program. In older versions of Perl, if your
system had neither DBM nor ndbm, calling dbmopen produced a fatal error; it now falls
back to sdbm (3).

If you don’t hav e write access to the DBM file, you can only read hash variables, not set them.
If you want to test whether you can write, either use file tests or try setting a dummy hash
entry inside an eval, which will trap the error.

Note that functions such as keys and values may return huge lists when used on large
DBM files. You may prefer to use the each function to iterate over large DBM files.
Example:

# print out history file offsets
dbmopen(%HIST,’/usr/lib/news/history’,0666);
while (($key,$val) = each %HIST) {

print $key, ’ = ’, unpack(’L’,$val), "\n";
}
dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons of the various
dbm approaches, as well as DB_File for a particularly rich implementation.

You can control which DBM library you use by loading that library before you call
dbmopen():

use DB_File;
dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")

or die "Can’t open netscape history file: $!";

defined EXPR
defined Returns a Boolean value telling whether EXPR has a value other than the undefined value

undef. If EXPR is not present, $_ will be checked.

Many operations return undef to indicate failure, end of file, system error, uninitialized
variable, and other exceptional conditions. This function allows you to distinguish undef
from other values. (A simple Boolean test will not distinguish among undef, zero, the
empty string, and "0", which are all equally false.) Note that since undef is a valid scalar,
its presence doesn’t necessarily indicate an exceptional condition: pop returns undef when
its argument is an empty array, or when the element to return happens to be undef.

You may also use defined(&func) to check whether subroutine &func has ever been
defined. The return value is unaffected by any forward declarations of &func. Note that a
subroutine which is not defined may still be callable: its package may have an AUTOLOAD

84 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

method that makes it spring into existence the first time that it is called — see perlsub.

Use of defined on aggregates (hashes and arrays) is deprecated. It used to report whether
memory for that aggregate has ever been allocated. This behavior may disappear in future
versions of Perl. You should instead use a simple test for size:

if (@an_array) { print "has array elements\n" }
if (%a_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not whether the key
exists in the hash. Use ‘‘exists’’ for the latter purpose.

Examples:

print if defined $switch{’D’};
print "$val\n" while defined($val = pop(@ary));
die "Can’t readlink $sym: $!"

unless defined($value = readlink $sym);
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Many folks tend to overuse defined, and then are surprised to discover that the
number 0 and "" (the zero-length string) are, in fact, defined values. For example, if you say

"ab" =˜ /a(.*)b/;

The pattern match succeeds, and $1 is defined, despite the fact that it matched ‘‘nothing’’.
But it didn’t really match nothing — rather, it matched something that happened to be zero
characters long. This is all very above-board and honest. When a function returns an
undefined value, it’s an admission that it couldn’t giv e you an honest answer. So you should
use defined only when you’re questioning the integrity of what you’re trying to do. At
other times, a simple comparison to 0 or "" is what you want.

See also ‘‘undef ’’, ‘‘exists’’, ‘‘ref ’’.

delete EXPR
Given an expression that specifies a hash element, array element, hash slice, or array slice,
deletes the specified element(s) from the hash or array. In the case of an array, if the array
elements happen to be at the end, the size of the array will shrink to the highest element that
tests true for exists() (or 0 if no such element exists).

Returns a list with the same number of elements as the number of elements for which
deletion was attempted. Each element of that list consists of either the value of the element
deleted, or the undefined value. In scalar context, this means that you get the value of the last
element deleted (or the undefined value if that element did not exist).

%hash = (foo => 11, bar => 22, baz => 33);
$scalar = delete $hash{foo}; # $scalar is 11
$scalar = delete @hash{qw(foo bar)}; # $scalar is 22
@array = delete @hash{qw(foo bar baz)}; # @array is (undef,undef,33)

Deleting from %ENV modifies the environment. Deleting from a hash tied to a DBM file
deletes the entry from the DBM file. Deleting from a tied hash or array may not necessarily
return anything.

Deleting an array element effectively returns that position of the array to its initial,
uninitialized state. Subsequently testing for the same element with exists() will return false.
Note that deleting array elements in the middle of an array will not shift the index of the ones
after them down — use splice() for that. See ‘‘exists’’.

The following (inefficiently) deletes all the values of %HASH and @ARRAY:

foreach $key (keys %HASH) {
delete $HASH{$key};

}

perl v5.8.3 2003-11-25 85



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

foreach $index (0 .. $#ARRAY) {
delete $ARRAY[$index];

}

And so do these:

delete @HASH{keys %HASH};

delete @ARRAY[0 .. $#ARRAY];

But both of these are slower than just assigning the empty list or undefining %HASH or
@ARRAY:

%HASH = (); # completely empty %HASH
undef %HASH; # forget %HASH ever existed

@ARRAY = (); # completely empty @ARRAY
undef @ARRAY; # forget @ARRAY ever existed

Note that the EXPR can be arbitrarily complicated as long as the final operation is a hash
element, array element, hash slice, or array slice lookup:

delete $ref->[$x][$y]{$key};
delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};

delete $ref->[$x][$y][$index];
delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];

die LIST Outside an eval, prints the value of LIST to STDERR and exits with the current value of $!
(errno). If $! is 0, exits with the value of ($? >> 8) (backtick ‘command‘ status). If
($? >> 8) is 0, exits with 255. Inside an eval(), the error message is stuffed into $@
and the eval is terminated with the undefined value. This makes die the way to raise an
exception.

Equivalent examples:

die "Can’t cd to spool: $!\n" unless chdir ’/usr/spool/news’;
chdir ’/usr/spool/news’ or die "Can’t cd to spool: $!\n"

If the last element of LIST does not end in a newline, the current script line number and input
line number (if any) are also printed, and a newline is supplied. Note that the ‘‘input line
number’’ (also known as ‘‘chunk’’) is subject to whatever notion of ‘‘line’’ happens to be
currently in effect, and is also available as the special variable $.. See ‘‘$/’’ in perlvar and
‘‘$.’’ in perlvar.

Hint: sometimes appending ", stopped" to your message will cause it to make better
sense when the string "at foo line 123" is appended. Suppose you are running script
‘‘canasta’’.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

See also exit(), warn(), and the Carp module.

If LIST is empty and $@ already contains a value (typically from a previous eval) that value is
reused after appending "\t...propagated". This is useful for propagating exceptions:

eval { ... };
die unless $@ =˜ /Expected exception/;

If LIST is empty and $@ contains an object reference that has a PROPAGATE method, that
method will be called with additional file and line number parameters. The return value
replaces the value in $@. ie. as if $@ = eval { $@−>PROPAGATE(__FILE_ _,
__LINE_ _) }; were called.

86 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

If $@ is empty then the string "Died" is used.

die() can also be called with a reference argument. If this happens to be trapped within an
eval(), $@ contains the reference. This behavior permits a more elaborate exception
handling implementation using objects that maintain arbitrary state about the nature of the
exception. Such a scheme is sometimes preferable to matching particular string values of $@
using regular expressions. Here’s an example:

eval { ... ; die Some::Module::Exception->new( FOO => "bar" ) };
if ($@) {

if (ref($@) && UNIVERSAL::isa($@,"Some::Module::Exception")) {
# handle Some::Module::Exception

}
else {

# handle all other possible exceptions
}

}

Because perl will stringify uncaught exception messages before displaying them, you may
want to overload stringification operations on such custom exception objects. See overload
for details about that.

You can arrange for a callback to be run just before the die does its deed, by setting the
$SIG{_ _DIE_ _} hook. The associated handler will be called with the error text and can
change the error message, if it sees fit, by calling die again. See ‘‘$SIG{expr}’’ in perlvar
for details on setting %SIG entries, and ‘‘eval BLOCK’’ for some examples. Although this
feature was meant to be run only right before your program was to exit, this is not currently
the case — the $SIG{_ _DIE_ _} hook is currently called even inside eval()ed
blocks/strings! If one wants the hook to do nothing in such situations, put

die @_ if $ˆS;

as the first line of the handler (see ‘‘$ˆS’’ in perlvar). Because this promotes strange action at
a distance, this counterintuitive behavior may be fixed in a future release.

do BLOCK
Not really a function. Returns the value of the last command in the sequence of commands
indicated by BLOCK. When modified by a loop modifier, executes the BLOCK once before
testing the loop condition. (On other statements the loop modifiers test the conditional first.)

do BLOCK does not count as a loop, so the loop control statements next, last, or redo
cannot be used to leave or restart the block. See perlsyn for alternative strategies.

do SUBROUTINE(LIST)
A deprecated form of subroutine call. See perlsub.

do EXPR
Uses the value of EXPR as a filename and executes the contents of the file as a Perl script. Its
primary use is to include subroutines from a Perl subroutine library.

do ’stat.pl’;

is just like

eval ‘cat stat.pl‘;

except that it’s more efficient and concise, keeps track of the current filename for error
messages, searches the @INC libraries, and updates %INC if the file is found. See
‘‘Predefined Names’’ in perlvar for these variables. It also differs in that code evaluated with
do FILENAME cannot see lexicals in the enclosing scope; eval STRING does. It’s the
same, however, in that it does reparse the file every time you call it, so you probably don’t
want to do this inside a loop.

If do cannot read the file, it returns undef and sets $! to the error. If do can read the file but
cannot compile it, it returns undef and sets an error message in $@. If the file is successfully
compiled, do returns the value of the last expression evaluated.

perl v5.8.3 2003-11-25 87



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Note that inclusion of library modules is better done with the use and require operators,
which also do automatic error checking and raise an exception if there’s a problem.

You might like to use do to read in a program configuration file. Manual error checking can
be done this way:

# read in config files: system first, then user
for $file ("/share/prog/defaults.rc",

"$ENV{HOME}/.someprogrc")
{

unless ($return = do $file) {
warn "couldn’t parse $file: $@" if $@;
warn "couldn’t do $file: $!" unless defined $return;
warn "couldn’t run $file" unless $return;

}
}

dump LABEL
dump This function causes an immediate core dump. See also the −u command-line switch in

perlrun, which does the same thing. Primarily this is so that you can use the undump
program (not supplied) to turn your core dump into an executable binary after having
initialized all your variables at the beginning of the program. When the new binary is
executed it will begin by executing a goto LABEL (with all the restrictions that goto
suffers). Think of it as a goto with an intervening core dump and reincarnation. If LABEL is
omitted, restarts the program from the top.

WARNING: Any files opened at the time of the dump will not be open any more when the
program is reincarnated, with possible resulting confusion on the part of Perl.

This function is now largely obsolete, partly because it’s very hard to convert a core file into
an executable, and because the real compiler backends for generating portable bytecode and
compilable C code have superseded it. That’s why you should now inv oke it as
CORE::dump(), if you don’t want to be warned against a possible typo.

If you’re looking to use dump to speed up your program, consider generating bytecode or
native C code as described in perlcc. If you’re just trying to accelerate a CGI script, consider
using the mod_perl extension to Apache, or the CPAN module, CGI::Fast. You might also
consider autoloading or selfloading, which at least make your program appear to run faster.

each HASH
When called in list context, returns a 2−element list consisting of the key and value for the
next element of a hash, so that you can iterate over it. When called in scalar context, returns
only the key for the next element in the hash.

Entries are returned in an apparently random order. The actual random order is subject to
change in future versions of perl, but it is guaranteed to be in the same order as either the
keys or values function would produce on the same (unmodified) hash. Since Perl 5.8.1
the ordering is different even between different runs of Perl for security reasons (see
‘‘Algorithmic Complexity Attacks’’ in perlsec).

When the hash is entirely read, a null array is returned in list context (which when assigned
produces a false (0) value), and undef in scalar context. The next call to each after that
will start iterating again. There is a single iterator for each hash, shared by all each, keys,
and values function calls in the program; it can be reset by reading all the elements from
the hash, or by evaluating keys HASH or values HASH. If you add or delete elements of
a hash while you’re iterating over it, you may get entries skipped or duplicated, so don’t.
Exception: It is always safe to delete the item most recently returned by each(), which
means that the following code will work:

while (($key, $value) = each %hash) {
print $key, "\n";
delete $hash{$key}; # This is safe

}

88 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

The following prints out your environment like the printenv (1) program, only in a different
order:

while (($key,$value) = each %ENV) {
print "$key=$value\n";

}

See also keys, values and sort.

eof FILEHANDLE
eof ()
eof Returns 1 if the next read on FILEHANDLE will return end of file, or if FILEHANDLE is not

open. FILEHANDLE may be an expression whose value gives the real filehandle. (Note that
this function actually reads a character and then ungetcs it, so isn’t very useful in an
interactive context.) Do not read from a terminal file (or call eof(FILEHANDLE) on it)
after end-of-file is reached. File types such as terminals may lose the end-of-file condition if
you do.

An eof without an argument uses the last file read. Using eof() with empty parentheses is
very different. It refers to the pseudo file formed from the files listed on the command line
and accessed via the <> operator. Since <> isn’t explicitly opened, as a normal filehandle is,
an eof() before <> has been used will cause @ARGV to be examined to determine if input is
available. Similarly, an eof() after <> has returned end-of-file will assume you are
processing another @ARGV list, and if you haven’t set @ARGV, will read input from STDIN;
see ‘‘I/O Operators’’ in perlop.

In a while (<>) loop, eof or eof(ARGV) can be used to detect the end of each file,
eof() will only detect the end of the last file. Examples:

# reset line numbering on each input file
while (<>) {

next if /ˆ\s*#/; # skip comments
print "$.\t$_";

} continue {
close ARGV if eof; # Not eof()!

}

# insert dashes just before last line of last file
while (<>) {

if (eof()) { # check for end of last file
print "--------------\n";

}
print;
last if eof(); # needed if we’re reading from a terminal

}

Practical hint: you almost never need to use eof in Perl, because the input operators
typically return undef when they run out of data, or if there was an error.

eval EXPR
eval BLOCK

In the first form, the return value of EXPR is parsed and executed as if it were a little Perl
program. The value of the expression (which is itself determined within scalar context) is
first parsed, and if there weren’t any errors, executed in the lexical context of the current Perl
program, so that any variable settings or subroutine and format definitions remain afterwards.
Note that the value is parsed every time the eval executes. If EXPR is omitted, evaluates $_.
This form is typically used to delay parsing and subsequent execution of the text of EXPR
until run time.

In the second form, the code within the BLOCK is parsed only once — at the same time the
code surrounding the eval itself was parsed — and executed within the context of the current
Perl program. This form is typically used to trap exceptions more efficiently than the first
(see below), while also providing the benefit of checking the code within BLOCK at compile
time.

perl v5.8.3 2003-11-25 89



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

The final semicolon, if any, may be omitted from the value of EXPR or within the BLOCK.

In both forms, the value returned is the value of the last expression evaluated inside the
mini−program; a return statement may be also used, just as with subroutines. The expression
providing the return value is evaluated in void, scalar, or list context, depending on the
context of the eval itself. See ‘‘wantarray’’ for more on how the evaluation context can be
determined.

If there is a syntax error or runtime error, or a die statement is executed, an undefined value
is returned by eval, and $@ is set to the error message. If there was no error, $@ is
guaranteed to be a null string. Beware that using eval neither silences perl from printing
warnings to STDERR, nor does it stuff the text of warning messages into $@. To do either of
those, you have to use the $SIG{_ _WARN_ _} facility, or turn off warnings inside the
BLOCK or EXPR using no warnings ’all’. See ‘‘warn’’, perlvar, warnings and
perllexwarn.

Note that, because eval traps otherwise-fatal errors, it is useful for determining whether a
particular feature (such as socket or symlink) is implemented. It is also Perl’s exception
trapping mechanism, where the die operator is used to raise exceptions.

If the code to be executed doesn’t vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still
returned in $@. Examples:

# make divide-by-zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

# same thing, but less efficient
eval ’$answer = $a / $b’; warn $@ if $@;

# a compile-time error
eval { $answer = }; # WRONG

# a run-time error
eval ’$answer =’; # sets $@

Due to the current arguably broken state of __DIE_ _ hooks, when using the eval{} form
as an exception trap in libraries, you may wish not to trigger any __DIE_ _ hooks that user
code may have installed. You can use the local $SIG{__DIE_ _} construct for this
purpose, as shown in this example:

# a very private exception trap for divide-by-zero
eval { local $SIG{’__DIE__’}; $answer = $a / $b; };
warn $@ if $@;

This is especially significant, given that __DIE_ _ hooks can call die again, which has the
effect of changing their error messages:

# __DIE__ hooks may modify error messages
{

local $SIG{’__DIE__’} =
sub { (my $x = $_[0]) =˜ s/foo/bar/g; die $x };

eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"

}

Because this promotes action at a distance, this counterintuitive behavior may be fixed in a
future release.

With an eval, you should be especially careful to remember what’s being looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2

eval ’$x’; # CASE 3
eval { $x }; # CASE 4

90 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

eval "\$$x++"; # CASE 5
$$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the variable $x.
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the code
’$x’, which does nothing but return the value of $x. (Case 4 is preferred for purely visual
reasons, but it also has the advantage of compiling at compile-time instead of at run−time.)
Case 5 is a place where normally you would like to use double quotes, except that in this
particular situation, you can just use symbolic references instead, as in case 6.

eval BLOCK does not count as a loop, so the loop control statements next, last, or
redo cannot be used to leave or restart the block.

Note that as a very special case, an eval ’’ executed within the DB package doesn’t see
the usual surrounding lexical scope, but rather the scope of the first non-DB piece of code
that called it. You don’t normally need to worry about this unless you are writing a Perl
debugger.

exec LIST
exec PROGRAM LIST

The exec function executes a system command and never returns−− use system instead of
exec if you want it to return. It fails and returns false only if the command does not exist
and it is executed directly instead of via your system’s command shell (see below).

Since it’s a common mistake to use exec instead of system, Perl warns you if there is a
following statement which isn’t die, warn, or exit (if −w is set − but you always do
that). If you really want to follow an exec with some other statement, you can use one of
these styles to avoid the warning:

exec (’foo’) or print STDERR "couldn’t exec foo: $!";
{ exec (’foo’) }; print STDERR "couldn’t exec foo: $!";

If there is more than one argument in LIST, or if LIST is an array with more than one value,
calls execvp (3) with the arguments in LIST. If there is only one scalar argument or an array
with one element in it, the argument is checked for shell metacharacters, and if there are any,
the entire argument is passed to the system’s command shell for parsing (this is /bin/sh
−c on Unix platforms, but varies on other platforms). If there are no shell metacharacters in
the argument, it is split into words and passed directly to execvp, which is more efficient.
Examples:

exec ’/bin/echo’, ’Your arguments are: ’, @ARGV;
exec "sort $outfile  uniq";

If you don’t really want to execute the first argument, but want to lie to the program you are
executing about its own name, you can specify the program you actually want to run as an
‘‘indirect object’’ (without a comma) in front of the LIST. (This always forces interpretation
of the LIST as a multivalued list, even if there is only a single scalar in the list.) Example:

$shell = ’/bin/csh’;
exec $shell ’-sh’; # pretend it’s a login shell

or, more directly,

exec {’/bin/csh’} ’-sh’; # pretend it’s a login shell

When the arguments get executed via the system shell, results will be subject to its quirks and
capabilities. See ‘‘‘STRING‘’’ in perlop for details.

Using an indirect object with exec or system is also more secure. This usage (which also
works fine with system()) forces interpretation of the arguments as a multivalued list, even if
the list had just one argument. That way you’re safe from the shell expanding wildcards or
splitting up words with whitespace in them.

@args = ( "echo surprise" );

perl v5.8.3 2003-11-25 91



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

exec @args; # subject to shell escapes
# if @args == 1

exec { $args[0] } @args; # safe even with one-arg list

The first version, the one without the indirect object, ran the echo program, passing it
"surprise" an argument. The second version didn’t — it tried to run a program literally
called ‘‘echo surprise’’, didn’t find it, and set $? to a non-zero value indicating failure.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before the exec,
but this may not be supported on some platforms (see perlport). To be safe, you may need to
set $ ($AUTOFLUSH in English) or call the autoflush() method of IO::Handle on
any open handles in order to avoid lost output.

Note that exec will not call your END blocks, nor will it call any DESTROY methods in your
objects.

exists EXPR
Given an expression that specifies a hash element or array element, returns true if the
specified element in the hash or array has ever been initialized, even if the corresponding
value is undefined. The element is not autovivified if it doesn’t exist.

print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};
print "True\n" if $hash{$key};

print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
print "True\n" if $array[$index];

A hash or array element can be true only if it’s defined, and defined if it exists, but the reverse
doesn’t necessarily hold true.

Given an expression that specifies the name of a subroutine, returns true if the specified
subroutine has ever been declared, even if it is undefined. Mentioning a subroutine name for
exists or defined does not count as declaring it. Note that a subroutine which does not exist
may still be callable: its package may have an AUTOLOAD method that makes it spring into
existence the first time that it is called — see perlsub.

print "Exists\n" if exists &subroutine;
print "Defined\n" if defined &subroutine;

Note that the EXPR can be arbitrarily complicated as long as the final operation is a hash or
array key lookup or subroutine name:

if (exists $ref->{A}->{B}->{$key}) { }
if (exists $hash{A}{B}{$key}) { }

if (exists $ref->{A}->{B}->[$ix]) { }
if (exists $hash{A}{B}[$ix]) { }

if (exists &{$ref->{A}{B}{$key}}) { }

Although the deepest nested array or hash will not spring into existence just because its
existence was tested, any intervening ones will. Thus $ref−>{"A"} and
$ref−>{"A"}−>{"B"} will spring into existence due to the existence test for the $key
element above. This happens anywhere the arrow operator is used, including even:

undef $ref;
if (exists $ref->{"Some key"}) { }
print $ref; # prints HASH(0x80d3d5c)

This surprising autovivification in what does not at first — or even second — glance appear to
be an lvalue context may be fixed in a future release.

See ‘‘Pseudo−hashes: Using an array as a hash’’ in perlref for specifics on how exists() acts
when used on a pseudo−hash.

Use of a subroutine call, rather than a subroutine name, as an argument to exists() is an error.

92 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

exists &sub; # OK
exists &sub(); # Error

exit EXPR
Evaluates EXPR and exits immediately with that value. Example:

$ans = <STDIN>;
exit 0 if $ans =˜ /ˆ[Xx]/;

See also die. If EXPR is omitted, exits with 0 status. The only universally recognized
values for EXPR are 0 for success and 1 for error; other values are subject to interpretation
depending on the environment in which the Perl program is running. For example, exiting 69
(EX_UNAVAILABLE) from a sendmail incoming-mail filter will cause the mailer to return the
item undelivered, but that’s not true everywhere.

Don’t use exit to abort a subroutine if there’s any chance that someone might want to trap
whatever error happened. Use die instead, which can be trapped by an eval.

The exit() function does not always exit immediately. It calls any defined END routines first,
but these END routines may not themselves abort the exit. Likewise any object destructors
that need to be called are called before the real exit. If this is a problem, you can call
POSIX:_exit($status) to avoid END and destructor processing. See perlmod for
details.

exp EXPR
exp Returns e (the natural logarithm base) to the power of EXPR. If EXPR is omitted, gives

exp($_).

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements the fcntl (2) function. You’ll probably have to say

use Fcntl;

first to get the correct constant definitions. Argument processing and value return works just
like ioctl below. For example:

use Fcntl;
fcntl($filehandle, F_GETFL, $packed_return_buffer)

or die "can’t fcntl F_GETFL: $!";

You don’t hav e to check for defined on the return from fcntl. Like ioctl, it maps a 0
return from the system call into "0 but true" in Perl. This string is true in boolean
context and 0 in numeric context. It is also exempt from the normal −w warnings on
improper numeric conversions.

Note that fcntl will produce a fatal error if used on a machine that doesn’t implement
fcntl (2). See the Fcntl module or your fcntl (2) manpage to learn what functions are available
on your system.

Here’s an example of setting a filehandle named REMOTE to be non-blocking at the system
level. You’ll have to negotiate $ on your own, though.

use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcntl(REMOTE, F_GETFL, 0)
or die "Can’t get flags for the socket: $!\n";

$flags = fcntl(REMOTE, F_SETFL, $flags  O_NONBLOCK)
or die "Can’t set flags for the socket: $!\n";

fileno FILEHANDLE
Returns the file descriptor for a filehandle, or undefined if the filehandle is not open. This is
mainly useful for constructing bitmaps for select and low-level POSIX tty-handling
operations. If FILEHANDLE is an expression, the value is taken as an indirect filehandle,
generally its name.

You can use this to find out whether two handles refer to the same underlying descriptor:

perl v5.8.3 2003-11-25 93



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

if (fileno(THIS) == fileno(THAT)) {
print "THIS and THAT are dups\n";

}

(Filehandles connected to memory objects via new features of open may return undefined
ev en though they are open.)

flock FILEHANDLE,OPERATION
Calls flock (2), or an emulation of it, on FILEHANDLE. Returns true for success, false on
failure. Produces a fatal error if used on a machine that doesn’t implement flock (2), fcntl (2)
locking, or lockf (3). flock is Perl’s portable file locking interface, although it locks only
entire files, not records.

Tw o potentially non-obvious but traditional flock semantics are that it waits indefinitely
until the lock is granted, and that its locks merely advisory. Such discretionary locks are
more flexible, but offer fewer guarantees. This means that files locked with flock may be
modified by programs that do not also use flock. See perlport, your port’s specific
documentation, or your system-specific local manpages for details. It’s best to assume
traditional behavior if you’re writing portable programs. (But if you’re not, you should as
always feel perfectly free to write for your own system’s idiosyncrasies (sometimes called
‘‘features’’). Slavish adherence to portability concerns shouldn’t get in the way of your
getting your job done.)

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
LOCK_NB. These constants are traditionally valued 1, 2, 8 and 4, but you can use the
symbolic names if you import them from the Fcntl module, either individually, or as a group
using the ’:flock’ tag. LOCK_SH requests a shared lock, LOCK_EX requests an exclusive
lock, and LOCK_UN releases a previously requested lock. If LOCK_NB is bitwise−or’ed with
LOCK_SH or LOCK_EX then flock will return immediately rather than blocking waiting for
the lock (check the return status to see if you got it).

To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE before locking or
unlocking it.

Note that the emulation built with lockf (3) doesn’t provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semantics that lockf (3) implements.
Most if not all systems implement lockf (3) in terms of fcntl (2) locking, though, so the
differing semantics shouldn’t bite too many people.

Note that the fcntl (2) emulation of flock (3) requires that FILEHANDLE be open with read
intent to use LOCK_SH and requires that it be open with write intent to use LOCK_EX.

Note also that some versions of flock cannot lock things over the network; you would need
to use the more system-specific fcntl for that. If you like you can force Perl to ignore your
system’s flock (2) function, and so provide its own fcntl (2)−based emulation, by passing the
switch −Ud_flock to the Configure program when you configure perl.

Here’s a mailbox appender for BSD systems.

use Fcntl ’:flock’; # import LOCK_* constants

sub lock {
flock(MBOX,LOCK_EX);
# and, in case someone appended
# while we were waiting...
seek(MBOX, 0, 2);

}

sub unlock {
flock(MBOX,LOCK_UN);

}

open(MBOX, ">>/usr/spool/mail/$ENV{’USER’}")
or die "Can’t open mailbox: $!";

94 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

lock();
print MBOX $msg,"\n\n";
unlock();

On systems that support a real flock(), locks are inherited across fork() calls, whereas those
that must resort to the more capricious fcntl() function lose the locks, making it harder to
write servers.

See also DB_File for other flock() examples.

fork Does a fork (2) system call to create a new process running the same program at the same
point. It returns the child pid to the parent process, 0 to the child process, or undef if the
fork is unsuccessful. File descriptors (and sometimes locks on those descriptors) are shared,
while everything else is copied. On most systems supporting fork(), great care has gone into
making it extremely efficient (for example, using copy-on-write technology on data pages),
making it the dominant paradigm for multitasking over the last few decades.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before forking the
child process, but this may not be supported on some platforms (see perlport). To be safe,
you may need to set $ ($AUTOFLUSH in English) or call the autoflush() method of
IO::Handle on any open handles in order to avoid duplicate output.

If you fork without ever waiting on your children, you will accumulate zombies. On some
systems, you can avoid this by setting $SIG{CHLD} to "IGNORE". See also perlipc for
more examples of forking and reaping moribund children.

Note that if your forked child inherits system file descriptors like STDIN and STDOUT that
are actually connected by a pipe or socket, even if you exit, then the remote server (such as,
say, a CGI script or a backgrounded job launched from a remote shell) won’t think you’re
done. You should reopen those to /dev/null if it’s any issue.

format Declare a picture format for use by the write function. For example:

format Something =
Test: @<<<<<<<< @ @>>>>>

$str, $%, ’$’ . int($num)
.

$str = "widget";
$num = $cost/$quantity;
$˜ = ’Something’;
write;

See perlform for many details and examples.

formline PICTURE,LIST
This is an internal function used by formats, though you may call it, too. It formats (see
perlform) a list of values according to the contents of PICTURE, placing the output into the
format output accumulator, $ˆA (or $ACCUMULATOR in English). Eventually, when a
write is done, the contents of $ˆA are written to some filehandle, but you could also read
$ˆA yourself and then set $ˆA back to "". Note that a format typically does one
formline per line of form, but the formline function itself doesn’t care how many
newlines are embedded in the PICTURE. This means that the ˜ and ˜˜ tokens will treat the
entire PICTURE as a single line. You may therefore need to use multiple formlines to
implement a single record format, just like the format compiler.

Be careful if you put double quotes around the picture, because an @ character may be taken
to mean the beginning of an array name. formline always returns true. See perlform for
other examples.

getc FILEHANDLE
getc Returns the next character from the input file attached to FILEHANDLE, or the undefined

value at end of file, or if there was an error (in the latter case $! is set). If FILEHANDLE is
omitted, reads from STDIN. This is not particularly efficient. However, it cannot be used by
itself to fetch single characters without waiting for the user to hit enter. For that, try
something more like:

perl v5.8.3 2003-11-25 95



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system "stty", ’-icanon’, ’eol’, "\001";
}

$key = getc(STDIN);

if ($BSD_STYLE) {
system "stty -cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system "stty", ’icanon’, ’eol’, ’ˆ@’; # ASCII null
}
print "\n";

Determination of whether $BSD_STYLE should be set is left as an exercise to the reader.

The POSIX::getattr function can do this more portably on systems purporting POSIX
compliance. See also the Term::ReadKey module from your nearest CPAN site; details on
CPAN can be found on ‘‘CPAN’’ in perlmodlib.

getlogin Implements the C library function of the same name, which on most systems returns the
current login from /etc/utmp, if any. If null, use getpwuid.

$login = getlogin  getpwuid($<)  "Kilroy";

Do not consider getlogin for authentication: it is not as secure as getpwuid.

getpeername SOCKET
Returns the packed sockaddr address of other end of the SOCKET connection.

use Socket;
$hersockaddr = getpeername(SOCK);
($port, $iaddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($iaddr, AF_INET);
$herstraddr = inet_ntoa($iaddr);

getpgrp PID
Returns the current process group for the specified PID. Use a PID of 0 to get the current
process group for the current process. Will raise an exception if used on a machine that
doesn’t implement getpgrp (2). If PID is omitted, returns process group of current process.
Note that the POSIX version of getpgrp does not accept a PID argument, so only PID==0
is truly portable.

getppid Returns the process id of the parent process.

Note for Linux users: on Linux, the C functions getpid() and getppid() return
different values from different threads. In order to be portable, this behavior is not reflected
by the perl-level function getppid(), that returns a consistent value across threads. If you
want to call the underlying getppid(), you may use the CPAN module Linux::Pid.

getpriority WHICH,WHO
Returns the current priority for a process, a process group, or a user. (See getpriority (2).)
Will raise a fatal exception if used on a machine that doesn’t implement getpriority (2).

getpwnam NAME
getgrnam NAME
gethostbyname NAME
getnetbyname NAME
getprotobyname NAME
getpwuid UID
getgrgid GID

96 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

getservbyname NAME,PROT O
gethostbyaddr ADDR,ADDRTYPE
getnetbyaddr ADDR,ADDRTYPE
getprotobynumber NUMBER
getservbyport PORT,PROT O
getpwent
getgrent
gethostent
getnetent
getprotoent
getservent
setpwent
setgrent
sethostent STAY OPEN
setnetent STAY OPEN
setprotoent STAY OPEN
setservent STAY OPEN
endpwent
endgrent
endhostent
endnetent
endprotoent
endservent

These routines perform the same functions as their counterparts in the system library. In list
context, the return values from the various get routines are as follows:

($name,$passwd,$uid,$gid,
$quota,$comment,$gcos,$dir,$shell,$expire) = getpw*

($name,$passwd,$gid,$members) = getgr*
($name,$aliases,$addrtype,$length,@addrs) = gethost*
($name,$aliases,$addrtype,$net) = getnet*
($name,$aliases,$proto) = getproto*
($name,$aliases,$port,$proto) = getserv*

(If the entry doesn’t exist you get a null list.)

The exact meaning of the $gcos field varies but it usually contains the real name of the user
(as opposed to the login name) and other information pertaining to the user. Bew are,
however, that in many system users are able to change this information and therefore it
cannot be trusted and therefore the $gcos is tainted (see perlsec). The $passwd and
$shell, user’s encrypted password and login shell, are also tainted, because of the same
reason.

In scalar context, you get the name, unless the function was a lookup by name, in which case
you get the other thing, whatever it is. (If the entry doesn’t exist you get the undefined
value.) For example:

$uid = getpwnam($name);
$name = getpwuid($num);
$name = getpwent();
$gid = getgrnam($name);
$name = getgrgid($num);
$name = getgrent();
#etc.

In getpw*() the fields $quota, $comment, and $expire are special cases in the sense
that in many systems they are unsupported. If the $quota is unsupported, it is an empty
scalar. If it is supported, it usually encodes the disk quota. If the $comment field is
unsupported, it is an empty scalar. If it is supported it usually encodes some administrative
comment about the user. In some systems the $quota field may be $change or $age,
fields that have to do with password aging. In some systems the $comment field may be
$class. The $expire field, if present, encodes the expiration period of the account or the

perl v5.8.3 2003-11-25 97



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

password. For the availability and the exact meaning of these fields in your system, please
consult your getpwnam (3) documentation and your pwd.h file. You can also find out from
within Perl what your $quota and $comment fields mean and whether you have the
$expire field by using the Config module and the values d_pwquota, d_pwage,
d_pwchange, d_pwcomment, and d_pwexpire. Shadow password files are only
supported if your vendor has implemented them in the intuitive fashion that calling the
regular C library routines gets the shadow versions if you’re running under privilege or if
there exists the shadow (3) functions as found in System V ( this includes Solaris and Linux.)
Those systems which implement a proprietary shadow password facility are unlikely to be
supported.

The $members value returned by getgr*() is a space separated list of the login names of the
members of the group.

For the gethost*() functions, if the h_errno variable is supported in C, it will be returned to
you via $? if the function call fails. The @addrs value returned by a successful call is a list
of the raw addresses returned by the corresponding system library call. In the Internet
domain, each address is four bytes long and you can unpack it by saying something like:

($a,$b,$c,$d) = unpack(’C4’,$addr[0]);

The Socket library makes this slightly easier:

use Socket;
$iaddr = inet_aton("127.1"); # or whatever address
$name = gethostbyaddr($iaddr, AF_INET);

# or going the other way
$straddr = inet_ntoa($iaddr);

If you get tired of remembering which element of the return list contains which return value,
by-name interfaces are provided in standard modules: File::stat, Net::hostent,
Net::netent, Net::protoent, Net::servent, Time::gmtime,
Time::localtime, and User::grent. These override the normal built−ins, supplying
versions that return objects with the appropriate names for each field. For example:

use File::stat;
use User::pwent;
$is_his = (stat($filename)->uid == pwent($whoever)->uid);

Even though it looks like they’re the same method calls (uid), they aren’t, because a
File::stat object is different from a User::pwent object.

getsockname SOCKET
Returns the packed sockaddr address of this end of the SOCKET connection, in case you don’t
know the address because you have sev eral different IPs that the connection might have come
in on.

use Socket;
$mysockaddr = getsockname(SOCK);
($port, $myaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",

scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);

getsockopt SOCKET,LEVEL,OPTNAME
Returns the socket option requested, or undef if there is an error.

glob EXPR
glob In list context, returns a (possibly empty) list of filename expansions on the value of EXPR

such as the standard Unix shell /bin/csh would do. In scalar context, glob iterates through
such filename expansions, returning undef when the list is exhausted. This is the internal
function implementing the <*.c> operator, but you can use it directly. If EXPR is omitted,
$_ is used. The <*.c> operator is discussed in more detail in ‘‘I/O Operators’’ in perlop.

Beginning with v5.6.0, this operator is implemented using the standard File::Glob

98 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

extension. See File::Glob for details.

gmtime EXPR
Converts a time as returned by the time function to an 8−element list with the time localized
for the standard Greenwich time zone. Typically used as follows:

# 0  1  2 3 4 5 6 7
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) =

gmtime(time);

All list elements are numeric, and come straight out of the C ‘struct tm’. $sec, $min, and
$hour are the seconds, minutes, and hours of the specified time. $mday is the day of the
month, and $mon is the month itself, in the range 0..11 with 0 indicating January and 11
indicating December. $year is the number of years since 1900. That is, $year is 123 in
year 2023. $wday is the day of the week, with 0 indicating Sunday and 3 indicating
Wednesday. $yday is the day of the year, in the range 0..364 (or 0..365 in leap years.)

Note that the $year element is not simply the last two digits of the year. If you assume it is,
then you create non−Y2K−compliant programs — and you wouldn’t want to do that, would
you?

The proper way to get a complete 4−digit year is simply:

$year += 1900;

And to get the last two digits of the year (e.g., ’01’ in 2001) do:

$year = sprintf("%02d", $year % 100);

If EXPR is omitted, gmtime() uses the current time (gmtime(time)).

In scalar context, gmtime() returns the ctime (3) value:

$now_string = gmtime; # e.g., "Thu Oct 13 04:54:34 1994"

Also see the timegm function provided by the Time::Local module, and the strftime (3)
function available via the POSIX module.

This scalar value is not locale dependent (see perllocale), but is instead a Perl builtin. Also
see the Time::Local module, and the strftime (3) and mktime (3) functions available via
the POSIX module. To get somewhat similar but locale dependent date strings, set up your
locale environment variables appropriately (please see perllocale) and try for example:

use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that the %a and %b escapes, which represent the short forms of the day of the week and
the month of the year, may not necessarily be three characters wide in all locales.

goto LABEL
goto EXPR
goto &NAME

The goto−LABEL form finds the statement labeled with LABEL and resumes execution
there. It may not be used to go into any construct that requires initialization, such as a
subroutine or a foreach loop. It also can’t be used to go into a construct that is optimized
aw ay, or to get out of a block or subroutine given to sort. It can be used to go almost
anywhere else within the dynamic scope, including out of subroutines, but it’s usually better
to use some other construct such as last or die. The author of Perl has never felt the need
to use this form of goto (in Perl, that is — C  is another matter). (The difference being that C
does not offer named loops combined with loop control. Perl does, and this replaces most
structured uses of goto in other languages.)

The goto−EXPR form expects a label name, whose scope will be resolved dynamically.
This allows for computed gotos per FORTRAN, but isn’t necessarily recommended if you’re
optimizing for maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

perl v5.8.3 2003-11-25 99



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

The goto−&NAME form is quite different from the other forms of goto. In fact, it isn’t a
goto in the normal sense at all, and doesn’t hav e the stigma associated with other gotos.
Instead, it exits the current subroutine (losing any changes set by local()) and immediately
calls in its place the named subroutine using the current value of @_. This is used by
AUTOLOAD subroutines that wish to load another subroutine and then pretend that the other
subroutine had been called in the first place (except that any modifications to @_ in the
current subroutine are propagated to the other subroutine.) After the goto, not even
caller will be able to tell that this routine was called first.

NAME needn’t be the name of a subroutine; it can be a scalar variable containing a code
reference, or a block which evaluates to a code reference.

grep BLOCK LIST
grep EXPR,LIST

This is similar in spirit to, but not the same as, grep (1) and its relatives. In particular, it is not
limited to using regular expressions.

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value consisting of those elements for which the expression evaluated to
true. In scalar context, returns the number of times the expression was true.

@foo = grep(!/ˆ#/, @bar); # weed out comments

or equivalently,

@foo = grep {!/ˆ#/} @bar; # weed out comments

Note that $_ is an alias to the list value, so it can be used to modify the elements of the LIST.
While this is useful and supported, it can cause bizarre results if the elements of LIST are not
variables. Similarly, grep returns aliases into the original list, much as a for loop’s index
variable aliases the list elements. That is, modifying an element of a list returned by grep (for
example, in a foreach, map or another grep) actually modifies the element in the original
list. This is usually something to be avoided when writing clear code.

See also ‘‘map’’ for a list composed of the results of the BLOCK or EXPR.

hex EXPR
hex Interprets EXPR as a hex string and returns the corresponding value. (To convert strings that

might start with either 0, 0x, or 0b, see ‘‘oct’’.) If EXPR is omitted, uses $_.

print hex ’0xAf’; # prints ’175’
print hex ’aF’; # same

Hex strings may only represent integers. Strings that would cause integer overflow trigger a
warning. Leading whitespace is not stripped, unlike oct().

import There is no builtin import function. It is just an ordinary method (subroutine) defined (or
inherited) by modules that wish to export names to another module. The use function calls
the import method for the package used. See also ‘‘use’’, perlmod, and Exporter.

index STR,SUBSTR,POSITION
index STR,SUBSTR

The index function searches for one string within another, but without the wildcard-like
behavior of a full regular-expression pattern match. It returns the position of the first
occurrence of SUBSTR in STR at or after POSITION. If POSITION is omitted, starts searching
from the beginning of the string. The return value is based at 0 (or whatever you’ve set the
$[ variable to — but don’t do that). If the substring is not found, returns one less than the
base, ordinarily −1.

int EXPR
int Returns the integer portion of EXPR. If EXPR is omitted, uses $_. You should not use this

function for rounding: one because it truncates towards 0, and two because machine
representations of floating point numbers can sometimes produce counterintuitive results.
For example, int(−6.725/0.025) produces −268 rather than the correct −269; that’s
because it’s really more like −268.99999999999994315658 instead. Usually, the sprintf,
printf, or the POSIX::floor and POSIX::ceil functions will serve you better than

100 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

will int().

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements the ioctl (2) function. You’ll probably first have to say

require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph

to get the correct function definitions. If ioctl.ph doesn’t exist or doesn’t hav e the correct
definitions you’ll have to roll your own, based on your C header files such as <sys/ioctl.h>.
(There is a Perl script called h2ph that comes with the Perl kit that may help you in this, but
it’s nontrivial.) SCALAR will be read and/or written depending on the FUNCTION — a
pointer to the string value of SCALAR will be passed as the third argument of the actual
ioctl call. (If SCALAR has no string value but does have a numeric value, that value will
be passed rather than a pointer to the string value. To guarantee this to be true, add a 0 to the
scalar before using it.) The pack and unpack functions may be needed to manipulate the
values of structures used by ioctl.

The return value of ioctl (and fcntl) is as follows:

if OS returns: then Perl returns:
-1 undefined value
0 string "0 but true"

anything else that number

Thus Perl returns true on success and false on failure, yet you can still easily determine the
actual value returned by the operating system:

$retval = ioctl(...)  -1;
printf "System returned %d\n", $retval;

The special string "0 but true" is exempt from −w complaints about improper numeric
conversions.

join EXPR,LIST
Joins the separate strings of LIST into a single string with fields separated by the value of
EXPR, and returns that new string. Example:

$rec = join(’:’, $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Beware that unlike split, join doesn’t take a pattern as its first argument. Compare
‘‘split’’.

keys HASH
Returns a list consisting of all the keys of the named hash. (In scalar context, returns the
number of keys.)

The keys are returned in an apparently random order. The actual random order is subject to
change in future versions of perl, but it is guaranteed to be the same order as either the
values or each function produces (given that the hash has not been modified). Since Perl
5.8.1 the ordering is different even between different runs of Perl for security reasons (see
‘‘Algorithmic Complexity Attacks’’ in perlsec).

As a side effect, calling keys() resets the HASH’s internal iterator, see ‘‘each’’. (In particular,
calling keys() in void context resets the iterator with no other overhead.)

Here is yet another way to print your environment:

@keys = keys %ENV;
@values = values %ENV;
while (@keys) {

print pop(@keys), ’=’, pop(@values), "\n";
}

or how about sorted by key:

perl v5.8.3 2003-11-25 101



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

foreach $key (sort(keys %ENV)) {
print $key, ’=’, $ENV{$key}, "\n";

}

The returned values are copies of the original keys in the hash, so modifying them will not
affect the original hash. Compare ‘‘values’’.

To sort a hash by value, you’ll need to use a sort function. Here’s a descending numeric
sort of a hash by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;

}

As an lvalue keys allows you to increase the number of hash buckets allocated for the given
hash. This can gain you a measure of efficiency if you know the hash is going to get big.
(This is similar to pre-extending an array by assigning a larger number to $#array.) If you
say

keys %hash = 200;

then %hash will have at least 200 buckets allocated for it−−256 of them, in fact, since it
rounds up to the next power of two. These buckets will be retained even if you do %hash =
(), use undef %hash if you want to free the storage while %hash is still in scope. You
can’t shrink the number of buckets allocated for the hash using keys in this way (but you
needn’t worry about doing this by accident, as trying has no effect).

See also each, values and sort.

kill SIGNAL, LIST
Sends a signal to a list of processes. Returns the number of processes successfully signaled
(which is not necessarily the same as the number actually killed).

$cnt = kill 1, $child1, $child2;
kill 9, @goners;

If SIGNAL is zero, no signal is sent to the process. This is a useful way to check that a child
process is alive and hasn’t changed its UID. See perlport for notes on the portability of this
construct.

Unlike in the shell, if SIGNAL is negative, it kills process groups instead of processes. (On
System V, a neg ative PROCESS number will also kill process groups, but that’s not portable.)
That means you usually want to use positive not negative signals. You may also use a signal
name in quotes.

See ‘‘Signals’’ in perlipc for more details.

last LABEL
last The last command is like the break statement in C (as used in loops); it immediately

exits the loop in question. If the LABEL is omitted, the command refers to the innermost
enclosing loop. The continue block, if any, is not executed:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with header
#...

}

last cannot be used to exit a block which returns a value such as eval {}, sub {} or
do {}, and should not be used to exit a grep() or map() operation.

Note that a block by itself is semantically identical to a loop that executes once. Thus last
can be used to effect an early exit out of such a block.

See also ‘‘continue’’ for an illustration of how last, next, and redo work.

lc EXPR
lc Returns a lowercased version of EXPR. This is the internal function implementing the \L

escape in double-quoted strings. Respects current LC_CTYPE locale if use locale in

102 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

force. See perllocale and perlunicode for more details about locale and Unicode support.

If EXPR is omitted, uses $_.

lcfirst EXPR
lcfirst Returns the value of EXPR with the first character lowercased. This is the internal function

implementing the \l escape in double-quoted strings. Respects current LC_CTYPE locale if
use locale in force. See perllocale and perlunicode for more details about locale and
Unicode support.

If EXPR is omitted, uses $_.

length EXPR
length Returns the length in characters of the value of EXPR. If EXPR is omitted, returns length of

$_. Note that this cannot be used on an entire array or hash to find out how many elements
these have. For that, use scalar @array and scalar keys %hash respectively.

Note the characters: if the EXPR is in Unicode, you will get the number of characters, not the
number of bytes. To get the length in bytes, use do { use bytes; length(EXPR)
}, see bytes.

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns true for success, false otherwise.

listen SOCKET,QUEUESIZE
Does the same thing that the listen system call does. Returns true if it succeeded, false
otherwise. See the example in ‘‘Sockets: Client/Server Communication’’ in perlipc.

local EXPR
You really probably want to be using my instead, because local isn’t what most people
think of as ‘‘local’’. See ‘‘Private Variables via my()’’ in perlsub for details.

A local modifies the listed variables to be local to the enclosing block, file, or eval. If more
than one value is listed, the list must be placed in parentheses. See ‘‘Temporary Values via
local()’’ in perlsub for details, including issues with tied arrays and hashes.

localtime EXPR
Converts a time as returned by the time function to a 9−element list with the time analyzed
for the local time zone. Typically used as follows:

# 0  1  2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);

All list elements are numeric, and come straight out of the C ‘struct tm’. $sec, $min, and
$hour are the seconds, minutes, and hours of the specified time. $mday is the day of the
month, and $mon is the month itself, in the range 0..11 with 0 indicating January and 11
indicating December. $year is the number of years since 1900. That is, $year is 123 in
year 2023. $wday is the day of the week, with 0 indicating Sunday and 3 indicating
Wednesday. $yday is the day of the year, in the range 0..364 (or 0..365 in leap years.)
$isdst is true if the specified time occurs during daylight savings time, false otherwise.

Note that the $year element is not simply the last two digits of the year. If you assume it is,
then you create non−Y2K−compliant programs — and you wouldn’t want to do that, would
you?

The proper way to get a complete 4−digit year is simply:

$year += 1900;

And to get the last two digits of the year (e.g., ’01’ in 2001) do:

$year = sprintf("%02d", $year % 100);

If EXPR is omitted, localtime() uses the current time (localtime(time)).

In scalar context, localtime() returns the ctime (3) value:

perl v5.8.3 2003-11-25 103



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

This scalar value is not locale dependent, see perllocale, but instead a Perl builtin. Also see
the Time::Local module (to convert the second, minutes, hours, ... back to seconds since
the stroke of midnight the 1st of January 1970, the value returned by time()), and the
strftime (3) and mktime (3) functions available via the POSIX module. To get somewhat
similar but locale dependent date strings, set up your locale environment variables
appropriately (please see perllocale) and try for example:

use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;

Note that the %a and %b, the short forms of the day of the week and the month of the year,
may not necessarily be three characters wide.

lock THING
This function places an advisory lock on a shared variable, or referenced object contained in
THING until the lock goes out of scope.

lock() is a ‘‘weak keyword’’ : this means that if you’ve defined a function by this name
(before any calls to it), that function will be called instead. (However, if you’ve said use
threads, lock() is always a keyword.) See threads.

log EXPR
log Returns the natural logarithm (base e) of EXPR. If EXPR is omitted, returns log of $_. To

get the log of another base, use basic algebra: The base-N log of a number is equal to the
natural log of that number divided by the natural log of N. For example:

sub log10 {
my $n = shift;
return log($n)/log(10);

}

See also ‘‘exp’’ for the inverse operation.

lstat EXPR
lstat Does the same thing as the stat function (including setting the special _ filehandle) but

stats a symbolic link instead of the file the symbolic link points to. If symbolic links are
unimplemented on your system, a normal stat is done. For much more detailed
information, please see the documentation for ‘‘stat’’.

If EXPR is omitted, stats $_.

m// The match operator. See perlop.

map BLOCK LIST
map EXPR,LIST

Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each element)
and returns the list value composed of the results of each such evaluation. In scalar context,
returns the total number of elements so generated. Evaluates BLOCK or EXPR in list context,
so each element of LIST may produce zero, one, or more elements in the returned value.

@chars = map(chr, @nums);

translates a list of numbers to the corresponding characters. And

%hash = map { getkey($_) => $_ } @array;

is just a funny way to write

%hash = ();
foreach $_ (@array) {

$hash{getkey($_)} = $_;
}

Note that $_ is an alias to the list value, so it can be used to modify the elements of the LIST.
While this is useful and supported, it can cause bizarre results if the elements of LIST are not
variables. Using a regular foreach loop for this purpose would be clearer in most cases.

104 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

See also ‘‘grep’’ for an array composed of those items of the original list for which the
BLOCK or EXPR evaluates to true.

{ starts both hash references and blocks, so map { ... could be either the start of map
BLOCK LIST or map EXPR, LIST. Because perl doesn’t look ahead for the closing } it has to
take a  guess at which its dealing with based what it finds just after the {. Usually it gets it
right, but if it doesn’t it won’t realize something is wrong until it gets to the } and encounters
the missing (or unexpected) comma. The syntax error will be reported close to the } but
you’ll need to change something near the { such as using a unary + to give perl some help:

%hash = map { "\L$_", 1 } @array # perl guesses EXPR. wrong
%hash = map { +"\L$_", 1 } @array # perl guesses BLOCK. right
%hash = map { ("\L$_", 1) } @array # this also works
%hash = map { lc($_), 1 } @array # as does this.
%hash = map +( lc($_), 1 ), @array # this is EXPR and works!

%hash = map ( lc($_), 1 ), @array # evaluates to (1, @array)

or to force an anon hash constructor use +{

@hashes = map +{ lc($_), 1 }, @array # EXPR, so needs , at end

and you get list of anonymous hashes each with only 1 entry.

mkdir FILENAME,MASK
mkdir FILENAME

Creates the directory specified by FILENAME, with permissions specified by MASK (as
modified by umask). If it succeeds it returns true, otherwise it returns false and sets $!
(errno). If omitted, MASK defaults to 0777.

In general, it is better to create directories with permissive MASK, and let the user modify
that with their umask, than it is to supply a restrictive MASK and give the user no way to be
more permissive. The exceptions to this rule are when the file or directory should be kept
private (mail files, for instance). The perlfunc (1) entry on umask discusses the choice of
MASK in more detail.

Note that according to the POSIX 1003.1−1996 the FILENAME may have any number of
trailing slashes. Some operating and filesystems do not get this right, so Perl automatically
removes all trailing slashes to keep everyone happy.

msgctl ID,CMD,ARG
Calls the System V IPC function msgctl (2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG must be a
variable which will hold the returned msqid_ds structure. Returns like ioctl: the
undefined value for error, "0 but true" for zero, or the actual return value otherwise.
See also ‘‘SysV IPC’’ in perlipc, IPC::SysV, and IPC::Semaphore documentation.

msgget KEY,FLAGS
Calls the System V IPC function msgget (2). Returns the message queue id, or the undefined
value if there is an error. See also ‘‘SysV IPC’’ in perlipc and IPC::SysV and IPC::Msg
documentation.

msgrcv ID,VAR,SIZE,TYPE,FLAGS
Calls the System V IPC function msgrcv to receive a message from message queue ID into
variable VAR with a maximum message size of SIZE. Note that when a message is received,
the message type as a native long integer will be the first thing in VAR, followed by the actual
message. This packing may be opened with unpack("l! a*"). Taints the variable.
Returns true if successful, or false if there is an error. See also ‘‘SysV IPC’’ in perlipc,
IPC::SysV, and IPC::SysV::Msg documentation.

msgsnd ID,MSG,FLAGS
Calls the System V IPC function msgsnd to send the message MSG to the message queue ID.
MSG must begin with the native long integer message type, and be followed by the length of
the actual message, and finally the message itself. This kind of packing can be achieved with

perl v5.8.3 2003-11-25 105



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

pack("l! a*", $type, $message). Returns true if successful, or false if there is
an error. See also IPC::SysV and IPC::SysV::Msg documentation.

my EXPR
my TYPE EXPR
my EXPR : ATTRS
my TYPE EXPR : ATTRS

A my declares the listed variables to be local (lexically) to the enclosing block, file, or eval.
If more than one value is listed, the list must be placed in parentheses.

The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE is currently
bound to the use of fields pragma, and attributes are handled using the attributes
pragma, or starting from Perl 5.8.0 also via the Attribute::Handlers module. See
‘‘Private Variables via my()’’ in perlsub for details, and fields, attributes, and
Attribute::Handlers.

next LABEL
next The next command is like the continue statement in C; it starts the next iteration of the

loop:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
#...

}

Note that if there were a continue block on the above, it would get executed even on
discarded lines. If the LABEL is omitted, the command refers to the innermost enclosing
loop.

next cannot be used to exit a block which returns a value such as eval {}, sub {} or
do {}, and should not be used to exit a grep() or map() operation.

Note that a block by itself is semantically identical to a loop that executes once. Thus next
will exit such a block early.

See also ‘‘continue’’ for an illustration of how last, next, and redo work.

no Module VERSION LIST
no Module VERSION
no Module LIST
no Module

See the use function, which no is the opposite of.

oct EXPR
oct Interprets EXPR as an octal string and returns the corresponding value. (If EXPR happens to

start off with 0x, interprets it as a hex string. If EXPR starts off with 0b, it is interpreted as a
binary string. Leading whitespace is ignored in all three cases.) The following will handle
decimal, binary, octal, and hex in the standard Perl or C notation:

$val = oct($val) if $val =˜ /ˆ0/;

If EXPR is omitted, uses $_. To go the other way (produce a number in octal), use sprintf()
or printf():

$perms = (stat("filename"))[2] & 07777;
$oct_perms = sprintf "%lo", $perms;

The oct() function is commonly used when a string such as 644 needs to be converted into a
file mode, for example. (Although perl will automatically convert strings into numbers as
needed, this automatic conversion assumes base 10.)

open FILEHANDLE,EXPR
open FILEHANDLE,MODE,EXPR
open FILEHANDLE,MODE,EXPR,LIST
open FILEHANDLE,MODE,REFERENCE

106 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

open FILEHANDLE
Opens the file whose filename is given by EXPR, and associates it with FILEHANDLE.

(The following is a comprehensive reference to open(): for a gentler introduction you may
consider perlopentut.)

If FILEHANDLE is an undefined scalar variable (or array or hash element) the variable is
assigned a reference to a new anonymous filehandle, otherwise if FILEHANDLE is an
expression, its value is used as the name of the real filehandle wanted. (This is considered a
symbolic reference, so use strict ’refs’ should not be in effect.)

If EXPR is omitted, the scalar variable of the same name as the FILEHANDLE contains the
filename. (Note that lexical variables — those declared with my−−will not work for this
purpose; so if you’re using my, specify EXPR in your call to open.)

If three or more arguments are specified then the mode of opening and the file name are
separate. If MODE is ’<’ or nothing, the file is opened for input. If MODE is ’>’, the file is
truncated and opened for output, being created if necessary. If MODE is ’>>’, the file is
opened for appending, again being created if necessary.

You can put a ’+’ in front of the ’>’ or ’<’ to indicate that you want both read and write
access to the file; thus ’+<’ is almost always preferred for read/write updates — the ’+>’
mode would clobber the file first. You can’t usually use either read-write mode for updating
textfiles, since they hav e variable length records. See the −i switch in perlrun for a better
approach. The file is created with permissions of 0666 modified by the process’ umask
value.

These various prefixes correspond to the fopen (3) modes of ’r’, ’r+’, ’w’, ’w+’, ’a’,
and ’a+’.

In the 2−arguments (and 1−argument) form of the call the mode and filename should be
concatenated (in this order), possibly separated by spaces. It is possible to omit the mode in
these forms if the mode is ’<’.

If the filename begins with ’’, the filename is interpreted as a command to which output is
to be piped, and if the filename ends with a ’’, the filename is interpreted as a command
which pipes output to us. See ‘‘Using open() for IPC’’ in perlipc for more examples of this.
(You are not allowed to open to a command that pipes both in and out, but see IPC::Open2,
IPC::Open3, and ‘‘Bidirectional Communication with Another Process’’ in perlipc for
alternatives.)

For three or more arguments if MODE is ’−’, the filename is interpreted as a command to
which output is to be piped, and if MODE is ’−’, the filename is interpreted as a command
which pipes output to us. In the 2−arguments (and 1−argument) form one should replace
dash (’−’) with the command. See ‘‘Using open() for IPC’’ in perlipc for more examples of
this. (You are not allowed to open to a command that pipes both in and out, but see
IPC::Open2, IPC::Open3, and ‘‘Bidirectional Communication’’ in perlipc for alternatives.)

In the three-or-more argument form of pipe opens, if LIST is specified (extra arguments after
the command name) then LIST becomes arguments to the command invoked if the platform
supports it. The meaning of open with more than three arguments for non-pipe modes is not
yet specified. Experimental ‘‘layers’’ may give extra LIST arguments meaning.

In the 2−arguments (and 1−argument) form opening ’−’ opens STDIN and opening ’>−’
opens STDOUT.

You may use the three-argument form of open to specify IO ‘‘layers’’ (sometimes also
referred to as ‘‘disciplines’’) to be applied to the handle that affect how the input and output
are processed (see open and PerlIO for more details). For example

open(FH, "<:utf8", "file")

will open the UTF−8 encoded file containing Unicode characters, see perluniintro. (Note that
if layers are specified in the three-arg form then default layers set by the open pragma are
ignored.)

perl v5.8.3 2003-11-25 107



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Open returns nonzero upon success, the undefined value otherwise. If the open involved a
pipe, the return value happens to be the pid of the subprocess.

If you’re running Perl on a system that distinguishes between text files and binary files, then
you should check out ‘‘binmode’’ for tips for dealing with this. The key distinction between
systems that need binmode and those that don’t is their text file formats. Systems like
Unix, Mac OS, and Plan 9, which delimit lines with a single character, and which encode that
character in C as "\n", do not need binmode. The rest need it.

When opening a file, it’s usually a bad idea to continue normal execution if the request failed,
so open is frequently used in connection with die. Even if die won’t do what you want
(say, in a CGI script, where you want to make a nicely formatted error message (but there are
modules that can help with that problem)) you should always check the return value from
opening a file. The infrequent exception is when working with an unopened filehandle is
actually what you want to do.

As a special case the 3 arg form with a read/write mode and the third argument being
undef:

open(TMP, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file. Also using ‘‘+<’’ works for symmetry,
but you really should consider writing something to the temporary file first. You will need to
seek() to do the reading.

File handles can be opened to ‘‘in memory’’ files held in Perl scalars via:

open($fh, ’>’, \$variable)  ..

Though if you try to re-open STDOUT or STDERR as an ‘‘in memory’’ file, you have to close
it first:

close STDOUT;
open STDOUT, ’>’, \$variable or die "Can’t open STDOUT: $!";

Examples:

$ARTICLE = 100;
open ARTICLE or die "Can’t find article $ARTICLE: $!\n";
while (<ARTICLE>) {...

open(LOG, ’>>/usr/spool/news/twitlog’); # (log is reserved)
# if the open fails, output is discarded

open(DBASE, ’+<’, ’dbase.mine’) # open for update
or die "Can’t open ’dbase.mine’ for update: $!";

open(DBASE, ’+<dbase.mine’) # ditto
or die "Can’t open ’dbase.mine’ for update: $!";

open(ARTICLE, ’-’, "caesar <$article") # decrypt article
or die "Can’t start caesar: $!";

open(ARTICLE, "caesar <$article ") # ditto
or die "Can’t start caesar: $!";

open(EXTRACT, "sort >/tmp/Tmp$$") # $$ is our process id
or die "Can’t start sort: $!";

# in memory files
open(MEMORY,’>’, \$var)

or die "Can’t open memory file: $!";
print MEMORY "foo!\n"; # output will end up in $var

# process argument list of files along with any includes

108 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

foreach $file (@ARGV) {
process($file, ’fh00’);

}

sub process {
my($filename, $input) = @_;
$input++; # this is a string increment
unless (open($input, $filename)) {

print STDERR "Can’t open $filename: $!\n";
return;

}

local $_;
while (<$input>) { # note use of indirection

if (/ˆ#include "(.*)"/) {
process($1, $input);
next;

}
#... # whatever

}
}

You may also, in the Bourne shell tradition, specify an EXPR beginning with ’>&’, in which
case the rest of the string is interpreted as the name of a filehandle (or file descriptor, if
numeric) to be duped (as dup (2)) and opened. You may use & after >, >>, <, +>, +>>, and
+<. The mode you specify should match the mode of the original filehandle. (Duping a
filehandle does not take into account any existing contents of IO buffers.) If you use the 3 arg
form then you can pass either a number, the name of a filehandle or the normal ‘‘reference to
a glob’’.

Here is a script that saves, redirects, and restores STDOUT and STDERR using various
methods:

#!/usr/bin/perl
open my $oldout, ">&STDOUT" or die "Can’t dup STDOUT: $!";
open OLDERR, ">&", \*STDERR or die "Can’t dup STDERR: $!";

open STDOUT, ’>’, "foo.out" or die "Can’t redirect STDOUT: $!";
open STDERR, ">&STDOUT" or die "Can’t dup STDOUT: $!";

select STDERR; $ = 1; # make unbuffered
select STDOUT; $ = 1; # make unbuffered

print STDOUT "stdout 1\n"; # this works for
print STDERR "stderr 1\n"; # subprocesses too

close STDOUT;
close STDERR;

open STDOUT, ">&", $oldout or die "Can’t dup \$oldout: $!";
open STDERR, ">&OLDERR" or die "Can’t dup OLDERR: $!";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify ’<&=X’, where X is a file descriptor number or a filehandle, then Perl will do
an equivalent of C’s fdopen of that file descriptor (and not call dup (2)); this is more
parsimonious of file descriptors. For example:

# open for input, reusing the fileno of $fd
open(FILEHANDLE, "<&=$fd")

or

open(FILEHANDLE, "<&=", $fd)

or

perl v5.8.3 2003-11-25 109



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

# open for append, using the fileno of OLDFH
open(FH, ">>&=", OLDFH)

or

open(FH, ">>&=OLDFH")

Being parsimonious on filehandles is also useful (besides being parsimonious) for example
when something is dependent on file descriptors, like for example locking using flock(). If
you do just open(A, ’>>&B’), the filehandle A will not have the same file descriptor as
B, and therefore flock(A) will not flock(B), and vice versa. But with open(A, ’>>&=B’)
the filehandles will share the same file descriptor.

Note that if you are using Perls older than 5.8.0, Perl will be using the standard C libraries’
fdopen() to implement the ‘‘=’’ functionality. On many UNIX systems fdopen() fails when
file descriptors exceed a certain value, typically 255. For Perls 5.8.0 and later, PerlIO is most
often the default.

You can see whether Perl has been compiled with PerlIO or not by running perl −V and
looking for useperlio= line. If useperlio is define, you have PerlIO, otherwise you
don’t.

If you open a pipe on the command ’−’, i.e., either ’−’ or ’−’ with 2−arguments (or
1−argument) form of open(), then there is an implicit fork done, and the return value of open
is the pid of the child within the parent process, and 0 within the child process. (Use
defined($pid) to determine whether the open was successful.) The filehandle behaves
normally for the parent, but i/o to that filehandle is piped from/to the STDOUT/STDIN of the
child process. In the child process the filehandle isn’t opened — i/o happens from/to the new
STDOUT or STDIN. Typically this is used like the normal piped open when you want to
exercise more control over just how the pipe command gets executed, such as when you are
running setuid, and don’t want to have to scan shell commands for metacharacters. The
following triples are more or less equivalent:

open(FOO, "tr ’[a-z]’ ’[A-Z]’");
open(FOO, ’-’, "tr ’[a-z]’ ’[A-Z]’");
open(FOO, ’-’)  exec ’tr’, ’[a-z]’, ’[A-Z]’;
open(FOO, ’-’, "tr", ’[a-z]’, ’[A-Z]’);

open(FOO, "cat -n ’$file’");
open(FOO, ’-’, "cat -n ’$file’");
open(FOO, ’-’)  exec ’cat’, ’-n’, $file;
open(FOO, ’-’, "cat", ’-n’, $file);

The last example in each block shows the pipe as ‘‘list form’’, which is not yet supported on
all platforms. A good rule of thumb is that if your platform has true fork() (in other
words, if your platform is UNIX) you can use the list form.

See ‘‘Safe Pipe Opens’’ in perlipc for more examples of this.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before any
operation that may do a fork, but this may not be supported on some platforms (see perlport).
To be safe, you may need to set $ ($AUTOFLUSH in English) or call the autoflush()
method of IO::Handle on any open handles.

On systems that support a close-on-exec flag on files, the flag will be set for the newly
opened file descriptor as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

Closing any piped filehandle causes the parent process to wait for the child to finish, and
returns the status value in $?.

The filename passed to 2−argument (or 1−argument) form of open() will have leading and
trailing whitespace deleted, and the normal redirection characters honored. This property,
known as ‘‘magic open’’, can often be used to good effect. A user could specify a filename
of ‘‘rsh cat file ’’, or you could change certain filenames as needed:

110 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$filename =˜ s/(.*\.gz)\s*$/gzip -dc < $1/;
open(FH, $filename) or die "Can’t open $filename: $!";

Use 3−argument form to open a file with arbitrary weird characters in it,

open(FOO, ’<’, $file);

otherwise it’s necessary to protect any leading and trailing whitespace:

$file =˜ s#ˆ(\s)#./$1#;
open(FOO, "< $file\0");

(this may not work on some bizarre filesystems). One should conscientiously choose
between the magic and 3−arguments form of open():

open IN, $ARGV[0];

will allow the user to specify an argument of the form "rsh cat file ", but will not
work on a filename which happens to have a trailing space, while

open IN, ’<’, $ARGV[0];

will have exactly the opposite restrictions.

If you want a ‘‘real’’ C open (see open (2) on your system), then you should use the
sysopen function, which involves no such magic (but may use subtly different filemodes
than Perl open(), which is mapped to C fopen()). This is another way to protect your
filenames from interpretation. For example:

use IO::Handle;
sysopen(HANDLE, $path, O_RDWRO_CREATO_EXCL)

or die "sysopen $path: $!";
$oldfh = select(HANDLE); $ = 1; select($oldfh);
print HANDLE "stuff $$\n";
seek(HANDLE, 0, 0);
print "File contains: ", <HANDLE>;

Using the constructor from the IO::Handle package (or one of its subclasses, such as
IO::File or IO::Socket), you can generate anonymous filehandles that have the scope
of whatever variables hold references to them, and automatically close whenever and
however you leave that scope:

use IO::File;
#...
sub read_myfile_munged {

my $ALL = shift;
my $handle = new IO::File;
open($handle, "myfile") or die "myfile: $!";
$first = <$handle>

or return (); # Automatically closed here.
mung $first or die "mung failed"; # Or here.
return $first, <$handle> if $ALL; # Or here.
$first; # Or here.

}

See ‘‘seek’’ for some details about mixing reading and writing.

opendir DIRHANDLE,EXPR
Opens a directory named EXPR for processing by readdir, telldir, seekdir,
rewinddir, and closedir. Returns true if successful. DIRHANDLE may be an
expression whose value can be used as an indirect dirhandle, usually the real dirhandle name.
If DIRHANDLE is an undefined scalar variable (or array or hash element), the variable is
assigned a reference to a new anonymous dirhandle. DIRHANDLEs have their own
namespace separate from FILEHANDLEs.

perl v5.8.3 2003-11-25 111



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

ord EXPR
ord Returns the numeric (the native 8−bit encoding, like ASCII or EBCDIC, or Unicode) value of

the first character of EXPR. If EXPR is omitted, uses $_.

For the reverse, see ‘‘chr’’. See perlunicode and encoding for more about Unicode.

our EXPR
our EXPR TYPE
our EXPR : ATTRS
our TYPE EXPR : ATTRS

An our declares the listed variables to be valid globals within the enclosing block, file, or
eval. That is, it has the same scoping rules as a ‘‘my’’ declaration, but does not create a
local variable. If more than one value is listed, the list must be placed in parentheses. The
our declaration has no semantic effect unless ‘‘use strict vars’’ is in effect, in which case it
lets you use the declared global variable without qualifying it with a package name. (But
only within the lexical scope of the our declaration. In this it differs from ‘‘use vars’’, which
is package scoped.)

An our declaration declares a global variable that will be visible across its entire lexical
scope, even across package boundaries. The package in which the variable is entered is
determined at the point of the declaration, not at the point of use. This means the following
behavior holds:

package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
print $bar; # prints 20

Multiple our declarations in the same lexical scope are allowed if they are in different
packages. If they happened to be in the same package, Perl will emit warnings if you have
asked for them.

use warnings;
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

our $bar; # emits warning

An our declaration may also have a list of attributes associated with it.

The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE is currently
bound to the use of fields pragma, and attributes are handled using the attributes
pragma, or starting from Perl 5.8.0 also via the Attribute::Handlers module. See
‘‘Private Variables via my()’’ in perlsub for details, and fields, attributes, and
Attribute::Handlers.

The only currently recognized our() attribute is unique which indicates that a single copy
of the global is to be used by all interpreters should the program happen to be running in a
multi-interpreter environment. (The default behaviour would be for each interpreter to have
its own copy of the global.) Examples:

our @EXPORT : unique = qw(foo);
our %EXPORT_TAGS : unique = (bar => [qw(aa bb cc)]);
our $VERSION : unique = "1.00";

Note that this attribute also has the effect of making the global readonly when the first new
interpreter is cloned (for example, when the first new thread is created).

Multi-interpreter environments can come to being either through the fork() emulation on

112 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Windows platforms, or by embedding perl in a multi-threaded application. The unique
attribute does nothing in all other environments.

pack TEMPLATE,LIST
Takes a LIST of values and converts it into a string using the rules given by the TEMPLATE.
The resulting string is the concatenation of the converted values. Typically, each converted
value looks like its machine-level representation. For example, on 32−bit machines a
converted integer may be represented by a sequence of 4 bytes.

The TEMPLATE is a sequence of characters that give the order and type of values, as follows:

a A string with arbitrary binary data, will be null padded.
A A text (ASCII) string, will be space padded.
Z A null terminated (ASCIZ) string, will be null padded.

b A bit string (ascending bit order inside each byte, like vec()).
B A bit string (descending bit order inside each byte).
h A hex string (low nybble first).
H A hex string (high nybble first).

c A signed char value.
C An unsigned char value. Only does bytes. See U for Unicode.

s A signed short value.
S An unsigned short value.

(This ’short’ is _exactly_ 16 bits, which may differ from
what a local C compiler calls ’short’. If you want
native-length shorts, use the ’!’ suffix.)

i A signed integer value.
I An unsigned integer value.

(This ’integer’ is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls ’int’,
and may even be larger than the ’long’ described in
the next item.)

l A signed long value.
L An unsigned long value.

(This ’long’ is _exactly_ 32 bits, which may differ from
what a local C compiler calls ’long’. If you want
native-length longs, use the ’!’ suffix.)

n An unsigned short in "network" (big-endian) order.
N An unsigned long in "network" (big-endian) order.
v An unsigned short in "VAX" (little-endian) order.
V An unsigned long in "VAX" (little-endian) order.

(These ’shorts’ and ’longs’ are _exactly_ 16 bits and
_exactly_ 32 bits, respectively.)

q A signed quad (64-bit) value.
Q An unsigned quad value.

(Quads are available only if your system supports 64-bit
integer values _and_ if Perl has been compiled to support those.
Causes a fatal error otherwise.)

j A signed integer value (a Perl internal integer, IV).
J An unsigned integer value (a Perl internal unsigned integer, UV).

f A single-precision float in the native format.
d A double-precision float in the native format.

perl v5.8.3 2003-11-25 113



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

F A floating point value in the native native format
(a Perl internal floating point value, NV).

D A long double-precision float in the native format.
(Long doubles are available only if your system supports long
double values _and_ if Perl has been compiled to support those.
Causes a fatal error otherwise.)

p A pointer to a null-terminated string.
P A pointer to a structure (fixed-length string).

u A uuencoded string.
U A Unicode character number. Encodes to UTF-8 internally

(or UTF-EBCDIC in EBCDIC platforms).

w A BER compressed integer. Its bytes represent an unsigned
integer in base 128, most significant digit first, with as
few digits as possible. Bit eight (the high bit) is set
on each byte except the last.

x A null byte.
X Back up a byte.
@ Null fill to absolute position, counted from the start of

the innermost ()-group.
( Start of a ()-group.

The following rules apply:

* Each letter may optionally be followed by a number giving a repeat count. With all
types except a, A, Z, b, B, h, H, @, x, X and P the pack function will gobble up that
many values from the LIST. A * for the repeat count means to use however many
items are left, except for @, x, X, where it is equivalent to 0, and u, where it is
equivalent to 1 (or 45, what is the same). A numeric repeat count may optionally
be enclosed in brackets, as in pack ’C[80]’, @arr.

One can replace the numeric repeat count by a template enclosed in brackets; then
the packed length of this template in bytes is used as a count. For example, x[L]
skips a long (it skips the number of bytes in a long); the template $t X[$t] $t
unpack()s twice what $t unpacks. If the template in brackets contains alignment
commands (such as x![d]), its packed length is calculated as if the start of the
template has the maximal possible alignment.

When used with Z, * results in the addition of a trailing null byte (so the packed
result will be one longer than the byte length of the item).

The repeat count for u is interpreted as the maximal number of bytes to encode per
line of output, with 0 and 1 replaced by 45.

* The a, A, and Z types gobble just one value, but pack it as a string of length count,
padding with nulls or spaces as necessary. When unpacking, A strips trailing
spaces and nulls, Z strips everything after the first null, and a returns data verbatim.
When packing, a, and Z are equivalent.

If the value-to-pack is too long, it is truncated. If too long and an explicit count is
provided, Z packs only $count−1 bytes, followed by a null byte. Thus Z always
packs a trailing null byte under all circumstances.

* Likewise, the b and B fields pack a string that many bits long. Each byte of the
input field of pack() generates 1 bit of the result. Each result bit is based on the
least-significant bit of the corresponding input byte, i.e., on ord($byte)%2. In
particular, bytes "0" and "1" generate bits 0 and 1, as do bytes "\0" and "\1".

Starting from the beginning of the input string of pack(), each 8−tuple of bytes is
converted to 1 byte of output. With format b the first byte of the 8−tuple
determines the least-significant bit of a byte, and with format B it determines the
most-significant bit of a byte.

114 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

If the length of the input string is not exactly divisible by 8, the remainder is
packed as if the input string were padded by null bytes at the end. Similarly, during
unpack()ing the ‘‘extra’’ bits are ignored.

If the input string of pack() is longer than needed, extra bytes are ignored. A * for
the repeat count of pack() means to use all the bytes of the input field. On
unpack()ing the bits are converted to a string of "0"s and "1"s.

* The h and H fields pack a string that many nybbles (4−bit groups, representable as
hexadecimal digits, 0−9a−f) long.

Each byte of the input field of pack() generates 4 bits of the result. For non-
alphabetical bytes the result is based on the 4 least-significant bits of the input byte,
i.e., on ord($byte)%16. In particular, bytes "0" and "1" generate nybbles 0
and 1, as do bytes "\0" and "\1". For bytes "a".."f" and "A".."F" the
result is compatible with the usual hexadecimal digits, so that "a" and "A" both
generate the nybble 0xa==10. The result for bytes "g".."z" and "G".."Z"
is not well−defined.

Starting from the beginning of the input string of pack(), each pair of bytes is
converted to 1 byte of output. With format h the first byte of the pair determines
the least-significant nybble of the output byte, and with format H it determines the
most-significant nybble.

If the length of the input string is not even, it behaves as if padded by a null byte at
the end. Similarly, during unpack()ing the ‘‘extra’’ nybbles are ignored.

If the input string of pack() is longer than needed, extra bytes are ignored. A * for
the repeat count of pack() means to use all the bytes of the input field. On
unpack()ing the bits are converted to a string of hexadecimal digits.

* The p type packs a pointer to a null-terminated string. You are responsible for
ensuring the string is not a temporary value (which can potentially get deallocated
before you get around to using the packed result). The P type packs a pointer to a
structure of the size indicated by the length. A NULL pointer is created if the
corresponding value for p or P is undef, similarly for unpack().

* The / template character allows packing and unpacking of strings where the
packed structure contains a byte count followed by the string itself. You write
length-item/string-item.

The length-item can be any pack template letter, and describes how the length
value is packed. The ones likely to be of most use are integer-packing ones like n
(for Java strings), w (for ASN.1 or SNMP) and N (for Sun XDR).

For pack, the string-item must, at present, be "A*", "a*" or "Z*". For unpack
the length of the string is obtained from the length-item, but if you put in the ’*’ it
will be ignored. For all other codes, unpack applies the length value to the next
item, which must not have a repeat count.

unpack ’C/a’, "\04Gurusamy"; gives ’Guru’
unpack ’a3/A* A*’, ’007 Bond J ’; gives (’ Bond’,’J’)
pack ’n/a* w/a*’,’hello,’,’world’; gives "\000\006hello,\005world"

The length-item is not returned explicitly from unpack.

Adding a count to the length-item letter is unlikely to do anything useful, unless
that letter is A, a or Z. Packing with a length-item of a or Z may introduce
"\000" characters, which Perl does not regard as legal in numeric strings.

* The integer types s, S, l, and L may be immediately followed by a ! suffix to
signify native shorts or longs — as you can see from above for example a bare l
does mean exactly 32 bits, the native long (as seen by the local C compiler) may
be larger. This is an issue mainly in 64−bit platforms. You can see whether using
! makes any difference by

perl v5.8.3 2003-11-25 115



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

print length(pack("s")), " ", length(pack("s!")), "\n";
print length(pack("l")), " ", length(pack("l!")), "\n";

i! and I! also work but only because of completeness; they are identical to i and
I.

The actual sizes (in bytes) of native shorts, ints, longs, and long longs on the
platform where Perl was built are also available via Config:

use Config;
print $Config{shortsize}, "\n";
print $Config{intsize}, "\n";
print $Config{longsize}, "\n";
print $Config{longlongsize}, "\n";

(The $Config{longlongsize} will be undefined if your system does not
support long longs.)

* The integer formats s, S, i, I, l, L, j, and J are inherently non-portable between
processors and operating systems because they obey the native byteorder and
endianness. For example a 4−byte integer 0x12345678 (305419896 decimal)
would be ordered natively (arranged in and handled by the CPU registers) into bytes
as

0x12 0x34 0x56 0x78 # big-endian
0x78 0x56 0x34 0x12 # little-endian

Basically, the Intel and VAX CPUs are little−endian, while everybody else, for
example Motorola m68k/88k, PPC, Sparc, HP PA, Power, and Cray are big−endian.
Alpha and MIPS can be either: Digital/Compaq used/uses them in little-endian
mode; SGI/Cray uses them in big-endian mode.

The names ‘big−endian’ and ‘little−endian’ are comic references to the classic
‘‘Gulliver’s Travels’’ (via the paper ‘‘On Holy Wars and a Plea for Peace’’ by
Danny Cohen, USC/ISI IEN 137, April 1, 1980) and the egg-eating habits of the
Lilliputians.

Some systems may have even weirder byte orders such as

0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56

You can see your system’s preference with

print join(" ", map { sprintf "%#02x", $_ }
unpack("C*",pack("L",0x12345678))), "\n";

The byteorder on the platform where Perl was built is also available via Config:

use Config;
print $Config{byteorder}, "\n";

Byteorders ’1234’ and ’12345678’ are little−endian, ’4321’ and
’87654321’ are big−endian.

If you want portable packed integers use the formats n, N, v, and V, their byte
endianness and size are known. See also perlport.

* Real numbers (floats and doubles) are in the native machine format only; due to the
multiplicity of floating formats around, and the lack of a standard ‘‘network’’
representation, no facility for interchange has been made. This means that packed
floating point data written on one machine may not be readable on another − even
if both use IEEE floating point arithmetic (as the endian-ness of the memory
representation is not part of the IEEE spec). See also perlport.

Note that Perl uses doubles internally for all numeric calculation, and converting
from double into float and thence back to double again will lose precision (i.e.,
unpack("f", pack("f", $foo)) will not in general equal $foo).

116 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

* If the pattern begins with a U, the resulting string will be treated as
UTF−8−encoded Unicode. You can force UTF−8 encoding on in a string with an
initial U0, and the bytes that follow will be interpreted as Unicode characters. If
you don’t want this to happen, you can begin your pattern with C0 (or anything
else) to force Perl not to UTF−8 encode your string, and then follow this with a U*
somewhere in your pattern.

* You must yourself do any alignment or padding by inserting for example enough
’x’es while packing. There is no way to pack() and unpack() could know where
the bytes are going to or coming from. Therefore pack (and unpack) handle
their output and input as flat sequences of bytes.

* A ()−group is a sub-TEMPLATE enclosed in parentheses. A group may take a
repeat count, both as postfix, and for unpack() also via the / template character.
Within each repetition of a group, positioning with @ starts again at 0. Therefore,
the result of

pack( ’@1A((@2A)@3A)’, ’a’, ’b’, ’c’ )

is the string ‘‘\0a\0\0bc’’.

* x and X accept ! modifier. In this case they act as alignment commands: they jump
forward/back to the closest position aligned at a multiple of count bytes. For
example, to pack() or unpack() C’s struct {char c; double d; char
cc[2]} one may need to use the template C x![d] d C[2]; this assumes that
doubles must be aligned on the double’s size.

For alignment commands count of 0 is equivalent to count of 1; both result in
no−ops.

* A comment in a TEMPLATE starts with # and goes to the end of line. White space
may be used to separate pack codes from each other, but a ! modifier and a repeat
count must follow immediately.

* If TEMPLATE requires more arguments to pack() than actually given, pack()
assumes additional "" arguments. If TEMPLATE requires less arguments to pack()
than actually given, extra arguments are ignored.

Examples:

$foo = pack("CCCC",65,66,67,68);
# foo eq "ABCD"
$foo = pack("C4",65,66,67,68);
# same thing
$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
# same thing with Unicode circled letters

$foo = pack("ccxxcc",65,66,67,68);
# foo eq "AB\0\0CD"

# note: the above examples featuring "C" and "c" are true
# only on ASCII and ASCII-derived systems such as ISO Latin 1
# and UTF-8. In EBCDIC the first example would be
# $foo = pack("CCCC",193,194,195,196);

$foo = pack("s2",1,2);
# "\1\0\2\0" on little-endian
# "\0\1\0\2" on big-endian

$foo = pack("a4","abcd","x","y","z");
# "abcd"

$foo = pack("aaaa","abcd","x","y","z");
# "axyz"

perl v5.8.3 2003-11-25 117



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$foo = pack("a14","abcdefg");
# "abcdefg\0\0\0\0\0\0\0"

$foo = pack("i9pl", gmtime);
# a real struct tm (on my system anyway)

$utmp_template = "Z8 Z8 Z16 L";
$utmp = pack($utmp_template, @utmp1);
# a struct utmp (BSDish)

@utmp2 = unpack($utmp_template, $utmp);
# "@utmp1" eq "@utmp2"

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, -32)));

}

$foo = pack(’sx2l’, 12, 34);
# short 12, two zero bytes padding, long 34
$bar = pack(’s@4l’, 12, 34);
# short 12, zero fill to position 4, long 34
# $foo eq $bar

The same template may generally also be used in unpack().

package NAMESPACE
package Declares the compilation unit as being in the given namespace. The scope of the package

declaration is from the declaration itself through the end of the enclosing block, file, or eval
(the same as the my operator). All further unqualified dynamic identifiers will be in this
namespace. A package statement affects only dynamic variables — including those you’ve
used local on — but not lexical variables, which are created with my. Typically it would be
the first declaration in a file to be included by the require or use operator. You can
switch into a package in more than one place; it merely influences which symbol table is used
by the compiler for the rest of that block. You can refer to variables and filehandles in other
packages by prefixing the identifier with the package name and a double colon:
$Package::Variable. If the package name is null, the main package as assumed.
That is, $::sail is equivalent to $main::sail (as well as to $main’sail, still seen in
older code).

If NAMESPACE is omitted, then there is no current package, and all identifiers must be fully
qualified or lexicals. However, you are strongly advised not to make use of this feature. Its
use can cause unexpected behaviour, even crashing some versions of Perl. It is deprecated,
and will be removed from a future release.

See ‘‘Packages’’ in perlmod for more information about packages, modules, and classes. See
perlsub for other scoping issues.

pipe READHANDLE,WRITEHANDLE
Opens a pair of connected pipes like the corresponding system call. Note that if you set up a
loop of piped processes, deadlock can occur unless you are very careful. In addition, note
that Perl’s pipes use IO buffering, so you may need to set $ to flush your WRITEHANDLE
after each command, depending on the application.

See IPC::Open2, IPC::Open3, and ‘‘Bidirectional Communication’’ in perlipc for examples
of such things.

On systems that support a close-on-exec flag on files, the flag will be set for the newly
opened file descriptors as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

pop ARRAY
pop Pops and returns the last value of the array, shortening the array by one element. Has an

effect similar to

$ARRAY[$#ARRAY--]

If there are no elements in the array, returns the undefined value (although this may happen at

118 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

other times as well). If ARRAY is omitted, pops the @ARGV array in the main program, and
the @_ array in subroutines, just like shift.

pos SCALAR
pos Returns the offset of where the last m//g search left off for the variable in question ($_ is

used when the variable is not specified). May be modified to change that offset. Such
modification will also influence the \G zero-width assertion in regular expressions. See
perlre and perlop.

print FILEHANDLE LIST
print LIST
print Prints a string or a list of strings. Returns true if successful. FILEHANDLE may be a scalar

variable name, in which case the variable contains the name of or a reference to the
filehandle, thus introducing one level of indirection. (NOTE: If FILEHANDLE is a variable
and the next token is a term, it may be misinterpreted as an operator unless you interpose a +
or put parentheses around the arguments.) If FILEHANDLE is omitted, prints by default to
standard output (or to the last selected output channel — see ‘‘select’’). If LIST is also
omitted, prints $_ to the currently selected output channel. To set the default output channel
to something other than STDOUT use the select operation. The current value of $, (if any) is
printed between each LIST item. The current value of $\ (if any) is printed after the entire
LIST has been printed. Because print takes a LIST, anything in the LIST is evaluated in list
context, and any subroutine that you call will have one or more of its expressions evaluated in
list context. Also be careful not to follow the print keyword with a left parenthesis unless
you want the corresponding right parenthesis to terminate the arguments to the
print — interpose a + or put parentheses around all the arguments.

Note that if you’re storing FILEHANDLES in an array or other expression, you will have to
use a block returning its value instead:

print { $files[$i] } "stuff\n";
print { $OK ? STDOUT : STDERR } "stuff\n";

printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

Equivalent to print FILEHANDLE sprintf(FORMAT, LIST), except that $\ (the
output record separator) is not appended. The first argument of the list will be interpreted as
the printf format. See sprintf for an explanation of the format argument. If use
locale is in effect, the character used for the decimal point in formatted real numbers is
affected by the LC_NUMERIC locale. See perllocale.

Don’t fall into the trap of using a printf when a simple print would do. The print is
more efficient and less error prone.

prototype FUNCTION
Returns the prototype of a function as a string (or undef if the function has no prototype).
FUNCTION is a reference to, or the name of, the function whose prototype you want to
retrieve.

If FUNCTION is a string starting with CORE::, the rest is taken as a name for Perl builtin. If
the builtin is not overridable (such as qw//) or its arguments cannot be expressed by a
prototype (such as system) returns undef because the builtin does not really behave like a
Perl function. Otherwise, the string describing the equivalent prototype is returned.

push ARRAY,LIST
Treats ARRAY as a stack, and pushes the values of LIST onto the end of ARRAY. The length
of ARRAY increases by the length of LIST. Has the same effect as

for $value (LIST) {
$ARRAY[++$#ARRAY] = $value;

}

but is more efficient. Returns the new number of elements in the array.

perl v5.8.3 2003-11-25 119



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

q/STRING/
qq/STRING/
qr/STRING/
qx/STRING/
qw/STRING/

Generalized quotes. See ‘‘Regexp Quote-Like Operators’’ in perlop.

quotemeta EXPR
quotemeta

Returns the value of EXPR with all non−‘‘word’’ characters backslashed. (That is, all
characters not matching /[A−Za−z_0−9]/ will be preceded by a backslash in the returned
string, regardless of any locale settings.) This is the internal function implementing the \Q
escape in double-quoted strings.

If EXPR is omitted, uses $_.

rand EXPR
rand Returns a random fractional number greater than or equal to 0 and less than the value of

EXPR. (EXPR should be positive.) If EXPR is omitted, the value 1 is used. Currently EXPR
with the value 0 is also special-cased as 1 − this has not been documented before perl 5.8.0
and is subject to change in future versions of perl. Automatically calls srand unless srand
has already been called. See also srand.

Apply int() to the value returned by rand() if you want random integers instead of
random fractional numbers. For example,

int(rand(10))

returns a random integer between 0 and 9, inclusive.

(Note: If your rand function consistently returns numbers that are too large or too small, then
your version of Perl was probably compiled with the wrong number of RANDBITS.)

read FILEHANDLE,SCALAR,LENGTH,OFFSET
read FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH characters of data into variable SCALAR from the specified
FILEHANDLE. Returns the number of characters actually read, 0 at end of file, or undef if
there was an error (in the latter case $! is also set). SCALAR will be grown or shrunk so that
the last character actually read is the last character of the scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. A negative OFFSET specifies placement at that many characters counting
backwards from the end of the string. A positive OFFSET greater than the length of SCALAR
results in the string being padded to the required size with "\0" bytes before the result of the
read is appended.

The call is actually implemented in terms of either Perl’s or system’s fread() call. To get a
true read (2) system call, see sysread.

Note the characters: depending on the status of the filehandle, either (8−bit) bytes or
characters are read. By default all filehandles operate on bytes, but for example if the
filehandle has been opened with the :utf8 I/O layer (see ‘‘open’’, and the open pragma,
open), the I/O will operate on UTF−8 encoded Unicode characters, not bytes. Similarly for
the :encoding pragma: in that case pretty much any characters can be read.

readdir DIRHANDLE
Returns the next directory entry for a directory opened by opendir. If used in list context,
returns all the rest of the entries in the directory. If there are no more entries, returns an
undefined value in scalar context or a null list in list context.

If you’re planning to filetest the return values out of a readdir, you’d better prepend the
directory in question. Otherwise, because we didn’t chdir there, it would have been testing
the wrong file.

120 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

opendir(DIR, $some_dir)  die "can’t opendir $some_dir: $!";
@dots = grep { /ˆ\./ && -f "$some_dir/$_" } readdir(DIR);
closedir DIR;

readline EXPR
Reads from the filehandle whose typeglob is contained in EXPR. In scalar context, each call
reads and returns the next line, until end-of-file is reached, whereupon the subsequent call
returns undef. In list context, reads until end-of-file is reached and returns a list of lines.
Note that the notion of ‘‘line’’ used here is however you may have defined it with $/ or
$INPUT_RECORD_SEPARATOR). See ‘‘$/’’ in perlvar.

When $/ is set to undef, when readline() is in scalar context (i.e. file slurp mode), and
when an empty file is read, it returns ’’ the first time, followed by undef subsequently.

This is the internal function implementing the <EXPR> operator, but you can use it directly.
The <EXPR> operator is discussed in more detail in ‘‘I/O Operators’’ in perlop.

$line = <STDIN>;
$line = readline(*STDIN); # same thing

If readline encounters an operating system error, $! will be set with the corresponding error
message. It can be helpful to check $! when you are reading from filehandles you don’t
trust, such as a tty or a socket. The following example uses the operator form of readline,
and takes the necessary steps to ensure that readline was successful.

for (;;) {
undef $!;
unless (defined( $line = <> )) {

die $! if $!;
last; # reached EOF

}
# ...

}

readlink EXPR
readlink Returns the value of a symbolic link, if symbolic links are implemented. If not, gives a fatal

error. If there is some system error, returns the undefined value and sets $! (errno). If EXPR
is omitted, uses $_.

readpipe EXPR
EXPR is executed as a system command. The collected standard output of the command is
returned. In scalar context, it comes back as a single (potentially multi−line) string. In list
context, returns a list of lines (however you’ve defined lines with $/ or
$INPUT_RECORD_SEPARATOR). This is the internal function implementing the
qx/EXPR/ operator, but you can use it directly. The qx/EXPR/ operator is discussed in
more detail in ‘‘I/O Operators’’ in perlop.

recv SOCKET,SCALAR,LENGTH,FLAGS
Receives a message on a socket. Attempts to receive LENGTH characters of data into
variable SCALAR from the specified SOCKET filehandle. SCALAR will be grown or shrunk
to the length actually read. Takes the same flags as the system call of the same name.
Returns the address of the sender if SOCKET’s protocol supports this; returns an empty string
otherwise. If there’s an error, returns the undefined value. This call is actually implemented
in terms of recvfrom (2) system call. See ‘‘UDP: Message Passing’’ in perlipc for examples.

Note the characters: depending on the status of the socket, either (8−bit) bytes or characters
are received. By default all sockets operate on bytes, but for example if the socket has been
changed using binmode() to operate with the :utf8 I/O layer (see the open pragma, open),
the I/O will operate on UTF−8 encoded Unicode characters, not bytes. Similarly for the
:encoding pragma: in that case pretty much any characters can be read.

redo LABEL
redo The redo command restarts the loop block without evaluating the conditional again. The

continue block, if any, is not executed. If the LABEL is omitted, the command refers to
the innermost enclosing loop. This command is normally used by programs that want to lie

perl v5.8.3 2003-11-25 121



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

to themselves about what was just input:

# a simpleminded Pascal comment stripper
# (warning: assumes no { or } in strings)
LINE: while (<STDIN>) {

while (s({.*}.*){.*}$1 ) {}
s{.*} ;
if (s{.* ) {

$front = $_;
while (<STDIN>) {

if (/}/) { # end of comment?
sˆ$front\{;
redo LINE;

}
}

}
print;

}

redo cannot be used to retry a block which returns a value such as eval {}, sub {} or
do {}, and should not be used to exit a grep() or map() operation.

Note that a block by itself is semantically identical to a loop that executes once. Thus redo
inside such a block will effectively turn it into a looping construct.

See also ‘‘continue’’ for an illustration of how last, next, and redo work.

ref EXPR
ref Returns a non-empty string if EXPR is a reference, the empty string otherwise. If EXPR is not

specified, $_ will be used. The value returned depends on the type of thing the reference is a
reference to. Builtin types include:

SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE

If the referenced object has been blessed into a package, then that package name is returned
instead. You can think of ref as a typeof operator.

if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

}
unless (ref($r)) {

print "r is not a reference at all.\n";
}
if (UNIVERSAL::isa($r, "HASH")) { # for subclassing

print "r is a reference to something that isa hash.\n";
}

See also perlref.

rename OLDNAME,NEWNAME
Changes the name of a file; an existing file NEWNAME will be clobbered. Returns true for
success, false otherwise.

Behavior of this function varies wildly depending on your system implementation. For
example, it will usually not work across file system boundaries, even though the system mv
command sometimes compensates for this. Other restrictions include whether it works on
directories, open files, or pre-existing files. Check perlport and either the rename (2)
manpage or equivalent system documentation for details.

122 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

require VERSION
require EXPR
require Demands a version of Perl specified by VERSION, or demands some semantics specified by

EXPR or by $_ if EXPR is not supplied.

VERSION may be either a numeric argument such as 5.006, which will be compared to $], or
a literal of the form v5.6.1, which will be compared to $ˆV (aka $PERL_VERSION). A
fatal error is produced at run time if VERSION is greater than the version of the current Perl
interpreter. Compare with ‘‘use’’, which can do a similar check at compile time.

Specifying VERSION as a literal of the form v5.6.1 should generally be avoided, because it
leads to misleading error messages under earlier versions of Perl which do not support this
syntax. The equivalent numeric version should be used instead.

require v5.6.1; # run time version check
require 5.6.1; # ditto
require 5.006_001; # ditto; preferred for backwards compatibility

Otherwise, demands that a library file be included if it hasn’t already been included. The file
is included via the do-FILE mechanism, which is essentially just a variety of eval. Has
semantics similar to the following subroutine:

sub require {
my ($filename) = @_;
if (exists $INC{$filename}) {

return 1 if $INC{$filename};
die "Compilation failed in require";

}
my ($realfilename,$result);
ITER: {

foreach $prefix (@INC) {
$realfilename = "$prefix/$filename";
if (-f $realfilename) {

$INC{$filename} = $realfilename;
$result = do $realfilename;
last ITER;

}
}
die "Can’t find $filename in \@INC";

}
if ($@) {

$INC{$filename} = undef;
die $@;

} elsif (!$result) {
delete $INC{$filename};
die "$filename did not return true value";

} else {
return $result;

}
}

Note that the file will not be included twice under the same specified name.

The file must return true as the last statement to indicate successful execution of any
initialization code, so it’s customary to end such a file with 1; unless you’re sure it’ll return
true otherwise. But it’s better just to put the 1;, in case you add more statements.

If EXPR is a bareword, the require assumes a ".pm‘‘ extension and replaces ’’::‘‘ with ’’/" in
the filename for you, to make it easy to load standard modules. This form of loading of
modules does not risk altering your namespace.

In other words, if you try this:

perl v5.8.3 2003-11-25 123



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

require Foo::Bar; # a splendid bareword

The require function will actually look for the "Foo/Bar.pm" file in the directories specified in
the @INC array.

But if you try this:

$class = ’Foo::Bar’;
require $class; # $class is not a bareword

#or
require "Foo::Bar"; # not a bareword because of the ""

The require function will look for the "Foo::Bar‘‘ file in the @INC array and will complain
about not finding ’’Foo::Bar" there. In this case you can do:

eval "require $class";

Now that you understand how require looks for files in the case of a bareword argument,
there is a little extra functionality going on behind the scenes. Before require looks for a
".pm‘‘ extension, it will first look for a filename with a ’’.pmc" extension. A file with this
extension is assumed to be Perl bytecode generated by B::Bytecode. If this file is found, and
it’s modification time is newer than a coinciding ".pm‘‘ non-compiled file, it will be loaded in
place of that non-compiled file ending in a ’’.pm" extension.

You can also insert hooks into the import facility, by putting directly Perl code into the @INC
array. There are three forms of hooks: subroutine references, array references and blessed
objects.

Subroutine references are the simplest case. When the inclusion system walks through @INC
and encounters a subroutine, this subroutine gets called with two parameters, the first being a
reference to itself, and the second the name of the file to be included (e.g. "Foo/Bar.pm").
The subroutine should return undef or a filehandle, from which the file to include will be
read. If undef is returned, require will look at the remaining elements of @INC.

If the hook is an array reference, its first element must be a subroutine reference. This
subroutine is called as above, but the first parameter is the array reference. This enables to
pass indirectly some arguments to the subroutine.

In other words, you can write:

push @INC, \&my_sub;
sub my_sub {

my ($coderef, $filename) = @_; # $coderef is \&my_sub
...

}

or:

push @INC, [ \&my_sub, $x, $y, ... ];
sub my_sub {

my ($arrayref, $filename) = @_;
# Retrieve $x, $y, ...
my @parameters = @$arrayref[1..$#$arrayref];
...

}

If the hook is an object, it must provide an INC method, that will be called as above, the first
parameter being the object itself. (Note that you must fully qualify the sub’s name, as it is
always forced into package main.) Here is a typical code layout:

124 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

# In Foo.pm
package Foo;
sub new { ... }
sub Foo::INC {

my ($self, $filename) = @_;
...

}

# In the main program
push @INC, new Foo(...);

Note that these hooks are also permitted to set the %INC entry corresponding to the files they
have loaded. See ‘‘%INC’’ in perlvar.

For a yet-more-powerful import facility, see ‘‘use’’ and perlmod.

reset EXPR
reset Generally used in a continue block at the end of a loop to clear variables and reset ??

searches so that they work again. The expression is interpreted as a list of single characters
(hyphens allowed for ranges). All variables and arrays beginning with one of those letters are
reset to their pristine state. If the expression is omitted, one-match searches (?pattern?)
are reset to match again. Resets only variables or searches in the current package. Always
returns 1. Examples:

reset ’X’; # reset all X variables
reset ’a-z’; # reset lower case variables
reset; # just reset ?one-time? searches

Resetting "A−Z" is not recommended because you’ll wipe out your @ARGV and @INC arrays
and your %ENV hash. Resets only package variables — lexical variables are unaffected, but
they clean themselves up on scope exit anyway, so you’ll probably want to use them instead.
See ‘‘my’’.

return EXPR
return Returns from a subroutine, eval, or do FILE with the value given in EXPR. Evaluation of

EXPR may be in list, scalar, or void context, depending on how the return value will be used,
and the context may vary from one execution to the next (see wantarray). If no EXPR is
given, returns an empty list in list context, the undefined value in scalar context, and (of
course) nothing at all in a void context.

(Note that in the absence of an explicit return, a  subroutine, eval, or do FILE will
automatically return the value of the last expression evaluated.)

reverse LIST
In list context, returns a list value consisting of the elements of LIST in the opposite order. In
scalar context, concatenates the elements of LIST and returns a string value with all
characters in the opposite order.

print reverse <>; # line tac, last line first

undef $/; # for efficiency of <>
print scalar reverse <>; # character tac, last line tsrif

This operator is also handy for inverting a hash, although there are some caveats. If a value is
duplicated in the original hash, only one of those can be represented as a key in the inverted
hash. Also, this has to unwind one hash and build a whole new one, which may take some
time on a large hash, such as from a DBM file.

%by_name = reverse %by_address; # Invert the hash

rewinddir DIRHANDLE
Sets the current position to the beginning of the directory for the readdir routine on
DIRHANDLE.

rindex STR,SUBSTR,POSITION

perl v5.8.3 2003-11-25 125



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

rindex STR,SUBSTR
Works just like index() except that it returns the position of the LAST occurrence of SUBSTR
in STR. If POSITION is specified, returns the last occurrence at or before that position.

rmdir FILENAME
rmdir Deletes the directory specified by FILENAME if that directory is empty. If it succeeds it

returns true, otherwise it returns false and sets $! (errno). If FILENAME is omitted, uses $_.

s/// The substitution operator. See perlop.

scalar EXPR
Forces EXPR to be interpreted in scalar context and returns the value of EXPR.

@counts = ( scalar @a, scalar @b, scalar @c );

There is no equivalent operator to force an expression to be interpolated in list context
because in practice, this is never needed. If you really wanted to do so, however, you could
use the construction @{[ (some expression) ]}, but usually a simple (some
expression) suffices.

Because scalar is unary operator, if you accidentally use for EXPR a parenthesized list, this
behaves as a scalar comma expression, evaluating all but the last element in void context and
returning the final element evaluated in scalar context. This is seldom what you want.

The following single statement:

print uc(scalar(&foo,$bar)),$baz;

is the moral equivalent of these two:

&foo;
print(uc($bar),$baz);

See perlop for more details on unary operators and the comma operator.

seek FILEHANDLE,POSITION,WHENCE
Sets FILEHANDLE’s position, just like the fseek call of stdio. FILEHANDLE may be an
expression whose value gives the name of the filehandle. The values for WHENCE are 0 to
set the new position in bytes to POSITION, 1 to set it to the current position plus POSITION,
and 2 to set it to EOF plus POSITION (typically negative). For WHENCE you may use the
constants SEEK_SET, SEEK_CUR, and SEEK_END (start of the file, current position, end of
the file) from the Fcntl module. Returns 1 upon success, 0 otherwise.

Note the in bytes: even if the filehandle has been set to operate on characters (for example by
using the :utf8 open layer), tell() will return byte offsets, not character offsets (because
implementing that would render seek() and tell() rather slow).

If you want to position file for sysread or syswrite, don’t use seek−−buffering makes
its effect on the file’s system position unpredictable and non−portable. Use sysseek
instead.

Due to the rules and rigors of ANSI C, on some systems you have to do a seek whenever you
switch between reading and writing. Amongst other things, this may have the effect of
calling stdio’s clearerr (3). A WHENCE of 1 (SEEK_CUR) is useful for not moving the file
position:

seek(TEST,0,1);

This is also useful for applications emulating tail −f. Once you hit EOF on your read,
and then sleep for a while, you might have to stick in a seek() to reset things. The seek
doesn’t change the current position, but it does clear the end-of-file condition on the handle,
so that the next <FILE> makes Perl try again to read something. We hope.

If that doesn’t work (some IO implementations are particularly cantankerous), then you may
need something more like this:

126 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

for (;;) {
for ($curpos = tell(FILE); $_ = <FILE>;

$curpos = tell(FILE)) {
# search for some stuff and put it into files

}
sleep($for_a_while);
seek(FILE, $curpos, 0);

}

seekdir DIRHANDLE,POS
Sets the current position for the readdir routine on DIRHANDLE. POS must be a value
returned by telldir. Has the same caveats about possible directory compaction as the
corresponding system library routine.

select FILEHANDLE
select Returns the currently selected filehandle. Sets the current default filehandle for output, if

FILEHANDLE is supplied. This has two effects: first, a write or a print without a
filehandle will default to this FILEHANDLE. Second, references to variables related to output
will refer to this output channel. For example, if you have to set the top of form format for
more than one output channel, you might do the following:

select(REPORT1);
$ˆ = ’report1_top’;
select(REPORT2);
$ˆ = ’report2_top’;

FILEHANDLE may be an expression whose value gives the name of the actual filehandle.
Thus:

$oldfh = select(STDERR); $ = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to
write the last example as:

use IO::Handle;
STDERR->autoflush(1);

select RBITS,WBITS,EBITS,TIMEOUT
This calls the select (2) system call with the bit masks specified, which can be constructed
using fileno and vec, along these lines:

$rin = $win = $ein = ’’;
vec($rin,fileno(STDIN),1) = 1;
vec($win,fileno(STDOUT),1) = 1;
$ein = $rin  $win;

If you want to select on many filehandles you might wish to write a subroutine:

sub fhbits {
my(@fhlist) = split(’ ’,$_[0]);
my($bits);
for (@fhlist) {

vec($bits,fileno($_),1) = 1;
}
$bits;

}
$rin = fhbits(’STDIN TTY SOCK’);

The usual idiom is:

($nfound,$timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this

perl v5.8.3 2003-11-25 127



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Most systems do not bother to return anything useful in $timeleft, so calling select() in
scalar context just returns $nfound.

Any of the bit masks can also be undef. The timeout, if specified, is in seconds, which may
be fractional. Note: not all implementations are capable of returning the $timeleft. If
not, they always return $timeleft equal to the supplied $timeout.

You can effect a sleep of 250 milliseconds this way:

select(undef, undef, undef, 0.25);

Note that whether select gets restarted after signals (say, SIGALRM) is
implementation−dependent.

WARNING: One should not attempt to mix buffered I/O (like read or <FH>) with select,
except as permitted by POSIX, and even then only on POSIX systems. You have to use
sysread instead.

semctl ID,SEMNUM,CMD,ARG
Calls the System V IPC function semctl. You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT or GETALL, then ARG must
be a variable which will hold the returned semid_ds structure or semaphore value array.
Returns like ioctl: the undefined value for error, "0 but true" for zero, or the actual
return value otherwise. The ARG must consist of a vector of native short integers, which may
be created with pack("s!",(0)x$nsem). See also ‘‘SysV IPC’’ in perlipc,
IPC::SysV, IPC::Semaphore documentation.

semget KEY,NSEMS,FLAGS
Calls the System V IPC function semget. Returns the semaphore id, or the undefined value if
there is an error. See also ‘‘SysV IPC’’ in perlipc, IPC::SysV,
IPC::SysV::Semaphore documentation.

semop KEY,OPSTRING
Calls the System V IPC function semop to perform semaphore operations such as signalling
and waiting. OPSTRING must be a packed array of semop structures. Each semop structure
can be generated with pack("s!3", $semnum, $semop, $semflag). The number
of semaphore operations is implied by the length of OPSTRING. Returns true if successful, or
false if there is an error. As an example, the following code waits on semaphore $semnum
of semaphore id $semid:

$semop = pack("s!3", $semnum, -1, 0);
die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace −1 with 1. See also ‘‘SysV IPC’’ in perlipc, IPC::SysV,
and IPC::SysV::Semaphore documentation.

send SOCKET,MSG,FLAGS,TO
send SOCKET,MSG,FLAGS

Sends a message on a socket. Attempts to send the scalar MSG to the SOCKET filehandle.
Takes the same flags as the system call of the same name. On unconnected sockets you must
specify a destination to send TO, in which case it does a C sendto. Returns the number of
characters sent, or the undefined value if there is an error. The C system call sendmsg (2) is
currently unimplemented. See ‘‘UDP: Message Passing’’ in perlipc for examples.

Note the characters: depending on the status of the socket, either (8−bit) bytes or characters
are sent. By default all sockets operate on bytes, but for example if the socket has been
changed using binmode() to operate with the :utf8 I/O layer (see ‘‘open’’, or the open
pragma, open), the I/O will operate on UTF−8 encoded Unicode characters, not bytes.
Similarly for the :encoding pragma: in that case pretty much any characters can be sent.

128 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

setpgrp PID,PGRP
Sets the current process group for the specified PID, 0 for the current process. Will produce a
fatal error if used on a machine that doesn’t implement POSIX setpgid (2) or BSD setpgrp (2).
If the arguments are omitted, it defaults to 0,0. Note that the BSD 4.2 version of setpgrp
does not accept any arguments, so only setpgrp(0,0) is portable. See also
POSIX::setsid().

setpriority WHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a user. (See setpriority (2).) Will
produce a fatal error if used on a machine that doesn’t implement setpriority (2).

setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undefined if there is an error. OPTVAL may be
specified as undef if you don’t want to pass an argument.

shift ARRAY
shift Shifts the first value of the array off and returns it, shortening the array by 1 and moving

ev erything down. If there are no elements in the array, returns the undefined value. If
ARRAY is omitted, shifts the @_ array within the lexical scope of subroutines and formats,
and the @ARGV array at file scopes or within the lexical scopes established by the eval ’’,
BEGIN {}, INIT {}, CHECK {}, and END {} constructs.

See also unshift, push, and pop. shift and unshift do the same thing to the left
end of an array that pop and push do to the right end.

shmctl ID,CMD,ARG
Calls the System V IPC function shmctl. You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions. If CMD is IPC_STAT, then ARG must be a
variable which will hold the returned shmid_ds structure. Returns like ioctl: the undefined
value for error, "0 but true" for zero, or the actual return value otherwise. See also ‘‘SysV
IPC’’ in perlipc and IPC::SysV documentation.

shmget KEY,SIZE,FLAGS
Calls the System V IPC function shmget. Returns the shared memory segment id, or the
undefined value if there is an error. See also ‘‘SysV IPC’’ in perlipc and IPC::SysV
documentation.

shmread ID,VAR,POS,SIZE
shmwrite ID,STRING,POS,SIZE

Reads or writes the System V shared memory segment ID starting at position POS for size
SIZE by attaching to it, copying in/out, and detaching from it. When reading, VAR must be a
variable that will hold the data read. When writing, if STRING is too long, only SIZE bytes
are used; if STRING is too short, nulls are written to fill out SIZE bytes. Return true if
successful, or false if there is an error. shmread() taints the variable. See also ‘‘SysV IPC’’ in
perlipc, IPC::SysV documentation, and the IPC::Shareable module from CPAN.

shutdown SOCKET,HOW
Shuts down a socket connection in the manner indicated by HOW, which has the same
interpretation as in the system call of the same name.

shutdown(SOCKET, 0); # I/we have stopped reading data
shutdown(SOCKET, 1); # I/we have stopped writing data
shutdown(SOCKET, 2); # I/we have stopped using this socket

This is useful with sockets when you want to tell the other side you’re done writing but not
done reading, or vice versa. It’s also a more insistent form of close because it also disables
the file descriptor in any forked copies in other processes.

sin EXPR
sin Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns sine of $_.

For the inverse sine operation, you may use the Math::Trig::asin function, or use this
relation:

perl v5.8.3 2003-11-25 129



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }

sleep EXPR
sleep Causes the script to sleep for EXPR seconds, or forever if no EXPR. May be interrupted if the

process receives a signal such as SIGALRM. Returns the number of seconds actually slept.
You probably cannot mix alarm and sleep calls, because sleep is often implemented
using alarm.

On some older systems, it may sleep up to a full second less than what you requested,
depending on how it counts seconds. Most modern systems always sleep the full amount.
They may appear to sleep longer than that, however, because your process might not be
scheduled right away in a busy multitasking system.

For delays of finer granularity than one second, you may use Perl’s syscall interface to
access setitimer (2) if your system supports it, or else see ‘‘select’’ above. The Time::HiRes
module (from CPAN, and starting from Perl 5.8 part of the standard distribution) may also
help.

See also the POSIX module’s pause function.

socket SOCKET,DOMAIN,TYPE,PROT OCOL
Opens a socket of the specified kind and attaches it to filehandle SOCKET. DOMAIN, TYPE,
and PROT OCOL are specified the same as for the system call of the same name. You should
use Socket first to get the proper definitions imported. See the examples in ‘‘Sockets:
Client/Server Communication’’ in perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly
opened file descriptor, as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROT OCOL
Creates an unnamed pair of sockets in the specified domain, of the specified type. DOMAIN,
TYPE, and PROT OCOL are specified the same as for the system call of the same name. If
unimplemented, yields a fatal error. Returns true if successful.

On systems that support a close-on-exec flag on files, the flag will be set for the newly
opened file descriptors, as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

Some systems defined pipe in terms of socketpair, in which a call to pipe(Rdr,
Wtr) is essentially:

use Socket;
socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown(Rdr, 1); # no more writing for reader
shutdown(Wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use. Perl 5.8 and later will emulate socketpair using
IP sockets to localhost if your system implements sockets but not socketpair.

sort SUBNAME LIST
sort BLOCK LIST
sort LIST

In list context, this sorts the LIST and returns the sorted list value. In scalar context, the
behaviour of sort() is undefined.

If SUBNAME or BLOCK is omitted, sorts in standard string comparison order. If
SUBNAME is specified, it gives the name of a subroutine that returns an integer less than,
equal to, or greater than 0, depending on how the elements of the list are to be ordered. (The
<=> and cmp operators are extremely useful in such routines.) SUBNAME may be a scalar
variable name (unsubscripted), in which case the value provides the name of (or a reference
to) the actual subroutine to use. In place of a SUBNAME, you can provide a BLOCK as an
anonymous, in-line sort subroutine.

If the subroutine’s prototype is ($$), the elements to be compared are passed by reference in
@_, as for a normal subroutine. This is slower than unprototyped subroutines, where the
elements to be compared are passed into the subroutine as the package global variables $a
and $b (see example below). Note that in the latter case, it is usually counter-productive to

130 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

declare $a and $b as lexicals.

In either case, the subroutine may not be recursive. The values to be compared are always
passed by reference, so don’t modify them.

You also cannot exit out of the sort block or subroutine using any of the loop control
operators described in perlsyn or with goto.

When use locale is in effect, sort LIST sorts LIST according to the current collation
locale. See perllocale.

Perl 5.6 and earlier used a quicksort algorithm to implement sort. That algorithm was not
stable, and could go quadratic. (A stable sort preserves the input order of elements that
compare equal. Although quicksort’s run time is O(NlogN) when averaged over all arrays of
length N, the time can be O(N**2), quadratic behavior, for some inputs.) In 5.7, the
quicksort implementation was replaced with a stable mergesort algorithm whose worst case
behavior is O(NlogN). But benchmarks indicated that for some inputs, on some platforms,
the original quicksort was faster. 5.8 has a sort pragma for limited control of the sort. Its
rather blunt control of the underlying algorithm may not persist into future perls, but the
ability to characterize the input or output in implementation independent ways quite probably
will. See sort.

Examples:

# sort lexically
@articles = sort @files;

# same thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;

# now case-insensitively
@articles = sort {uc($a) cmp uc($b)} @files;

# same thing in reversed order
@articles = sort {$b cmp $a} @files;

# sort numerically ascending
@articles = sort {$a <=> $b} @files;

# sort numerically descending
@articles = sort {$b <=> $a} @files;

# this sorts the %age hash by value instead of key
# using an in-line function
@eldest = sort { $age{$b} <=> $age{$a} } keys %age;

# sort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}
@sortedclass = sort byage @class;

sub backwards { $b cmp $a }
@harry = qw(dog cat x Cain Abel);
@george = qw(gone chased yz Punished Axed);
print sort @harry;

# prints AbelCaincatdogx
print sort backwards @harry;

# prints xdogcatCainAbel
print sort @george, ’to’, @harry;

# prints AbelAxedCainPunishedcatchaseddoggonetoxyz

# inefficiently sort by descending numeric compare using
# the first integer after the first = sign, or the
# whole record case-insensitively otherwise

perl v5.8.3 2003-11-25 131



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

@new = sort {
($b =˜ /=(\d+)/)[0] <=> ($a =˜ /=(\d+)/)[0]


uc($a) cmp uc($b)

} @old;

# same thing, but much more efficiently;
# we’ll build auxiliary indices instead
# for speed
@nums = @caps = ();
for (@old) {

push @nums, /=(\d+)/;
push @caps, uc($_);

}

@new = @old[ sort {
$nums[$b] <=> $nums[$a]


$caps[$a] cmp $caps[$b]
} 0..$#old

];

# same thing, but without any temps
@new = map { $_->[0] }

sort { $b->[1] <=> $a->[1]


$a->[2] cmp $b->[2]
} map { [$_, /=(\d+)/, uc($_)] } @old;

# using a prototype allows you to use any comparison subroutine
# as a sort subroutine (including other package’s subroutines)
package other;
sub backwards ($$) { $_[1] cmp $_[0]; } # $a and $b are not set here

package main;
@new = sort other::backwards @old;

# guarantee stability, regardless of algorithm
use sort ’stable’;
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

# force use of mergesort (not portable outside Perl 5.8)
use sort ’_mergesort’; # note discouraging _
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

If you’re using strict, you must not declare $a and $b as lexicals. They are package globals.
That means if you’re in the main package and type

@articles = sort {$b <=> $a} @files;

then $a and $b are $main::a and $main::b (or $::a and $::b), but if you’re in the
FooPack package, it’s the same as typing

@articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behave. If it returns inconsistent results (sometimes
saying $x[1] is less than $x[2] and sometimes saying the opposite, for example) the
results are not well−defined.

Because <=> returns undef when either operand is NaN (not−a−number), and because
sort will trigger a fatal error unless the result of a comparison is defined, when sorting with
a comparison function like $a <=> $b, be careful about lists that might contain a NaN.
The following example takes advantage of the fact that NaN != NaN to eliminate any NaNs
from the input.

132 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

@result = sort { $a <=> $b } grep { $_ == $_ } @input;

splice ARRAY,OFFSET,LENGTH,LIST
splice ARRAY,OFFSET,LENGTH
splice ARRAY,OFFSET
splice ARRAY

Removes the elements designated by OFFSET and LENGTH from an array, and replaces them
with the elements of LIST, if any. In list context, returns the elements removed from the
array. In scalar context, returns the last element removed, or undef if no elements are
removed. The array grows or shrinks as necessary. If OFFSET is negative then it starts that
far from the end of the array. If LENGTH is omitted, removes everything from OFFSET
onward. If LENGTH is negative, removes the elements from OFFSET onward except for
−LENGTH elements at the end of the array. If both OFFSET and LENGTH are omitted,
removes everything. If OFFSET is past the end of the array, perl issues a warning, and splices
at the end of the array.

The following equivalences hold (assuming $[ == 0 and $#a >= $i )

push(@a,$x,$y) splice(@a,@a,0,$x,$y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
$a[$i] = $y splice(@a,$i,1,$y)

Example, assuming array lengths are passed before arrays:

sub aeq { # compare two list values
my(@a) = splice(@_,0,shift);
my(@b) = splice(@_,0,shift);
return 0 unless @a == @b; # same len?
while (@a) {

return 0 if pop(@a) ne pop(@b);
}
return 1;

}
if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split Splits a string into a list of strings and returns that list. By default, empty leading fields are

preserved, and empty trailing ones are deleted.

In scalar context, returns the number of fields found and splits into the @_ array. Use of split
in scalar context is deprecated, however, because it clobbers your subroutine arguments.

If EXPR is omitted, splits the $_ string. If PATTERN is also omitted, splits on whitespace
(after skipping any leading whitespace). Anything matching PATTERN is taken to be a
delimiter separating the fields. (Note that the delimiter may be longer than one character.)

If LIMIT is specified and positive, it represents the maximum number of fields the EXPR will
be split into, though the actual number of fields returned depends on the number of times
PATTERN matches within EXPR. If LIMIT is unspecified or zero, trailing null fields are
stripped (which potential users of pop would do well to remember). If LIMIT is negative, it
is treated as if an arbitrarily large LIMIT had been specified. Note that splitting an EXPR that
evaluates to the empty string always returns the empty list, regardless of the LIMIT specified.

A pattern matching the null string (not to be confused with a null pattern //, which is just
one member of the set of patterns matching a null string) will split the value of EXPR into
separate characters at each point it matches that way. For example:

print join(’:’, split(/ */, ’hi there’));

produces the output ’h:i:t:h:e:r:e’.

perl v5.8.3 2003-11-25 133



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Using the empty pattern // specifically matches the null string, and is not be confused with
the use of // to mean ‘‘the last successful pattern match’’.

Empty leading (or trailing) fields are produced when there are positive width matches at the
beginning (or end) of the string; a zero-width match at the beginning (or end) of the string
does not produce an empty field. For example:

print join(’:’, split(/(?=\w)/, ’hi there!’));

produces the output ’h:i :t:h:e:r:e!’.

The LIMIT parameter can be used to split a line partially

($login, $passwd, $remainder) = split(/:/, $_, 3);

When assigning to a list, if LIMIT is omitted, or zero, Perl supplies a LIMIT one larger than
the number of variables in the list, to avoid unnecessary work. For the list above LIMIT
would have been 4 by default. In time critical applications it behooves you not to split into
more fields than you really need.

If the PATTERN contains parentheses, additional list elements are created from each matching
substring in the delimiter.

split(/([,-])/, "1-10,20", 3);

produces the list value

(1, ’-’, 10, ’,’, 20)

If you had the entire header of a normal Unix email message in $header, you could split it
up into fields and their values this way:

$header =˜ s/\n\s+/ /g; # fix continuation lines
%hdrs = (UNIX_FROM => split /ˆ(\S*?):\s*/m, $header);

The pattern /PATTERN/ may be replaced with an expression to specify patterns that vary at
runtime. (To do runtime compilation only once, use /$variable/o.)

As a special case, specifying a PATTERN of space (’ ’) will split on white space just as
split with no arguments does. Thus, split(’ ’) can be used to emulate awk’s default
behavior, whereas split(/ /) will give you as many null initial fields as there are leading
spaces. A split on /\s+/ is like a split(’ ’) except that any leading whitespace
produces a null first field. A split with no arguments really does a split(’ ’, $_)
internally.

A PATTERN of /ˆ/ is treated as if it were /ˆ/m, since it isn’t much use otherwise.

Example:

open(PASSWD, ’/etc/passwd’);
while (<PASSWD>) {

chomp;
($login, $passwd, $uid, $gid,
$gcos, $home, $shell) = split(/:/);
#...

}

As with regular pattern matching, any capturing parentheses that are not matched in a
split() will be set to undef when returned:

@fields = split /(A)B/, "1A2B3";
# @fields is (1, ’A’, 2, undef, 3)

sprintf FORMAT, LIST
Returns a string formatted by the usual printf conventions of the C library function
sprintf. See below for more details and see sprintf (3) or printf (3) on your system for an
explanation of the general principles.

For example:

134 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

# Format number with up to 8 leading zeroes
$result = sprintf("%08d", $number);

# Round number to 3 digits after decimal point
$rounded = sprintf("%.3f", $number);

Perl does its own sprintf formatting — it emulates the C function sprintf, but it
doesn’t use it (except for floating-point numbers, and even then only the standard modifiers
are allowed). As a result, any non-standard extensions in your local sprintf are not
available from Perl.

Unlike printf, sprintf does not do what you probably mean when you pass it an array
as your first argument. The array is given scalar context, and instead of using the 0th element
of the array as the format, Perl will use the count of elements in the array as the format,
which is almost never useful.

Perl’s sprintf permits the following universally-known conversions:

%% a percent sign
%c a character with the given number
%s a string
%d a signed integer, in decimal
%u an unsigned integer, in decimal
%o an unsigned integer, in octal
%x an unsigned integer, in hexadecimal
%e a floating-point number, in scientific notation
%f a floating-point number, in fixed decimal notation
%g a floating-point number, in %e or %f notation

In addition, Perl permits the following widely-supported conversions:

%X like %x, but using upper-case letters
%E like %e, but using an upper-case "E"
%G like %g, but with an upper-case "E" (if applicable)
%b an unsigned integer, in binary
%p a pointer (outputs the Perl value’s address in hexadecimal)
%n special: *stores* the number of characters output so far

into the next variable in the parameter list

Finally, for backward (and we do mean ‘‘backward’’) compatibility, Perl permits these
unnecessary but widely-supported conversions:

%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%O a synonym for %lo
%F a synonym for %f

Note that the number of exponent digits in the scientific notation produced by %e, %E, %g
and %G for numbers with the modulus of the exponent less than 100 is system−dependent: it
may be three or less (zero−padded as necessary). In other words, 1.23 times ten to the 99th
may be either ‘‘1.23e99’’ or ‘‘1.23e099’’.

Between the % and the format letter, you may specify a number of additional attributes
controlling the interpretation of the format. In order, these are:

format parameter index
An explicit format parameter index, such as 2$. By default sprintf will format the next
unused argument in the list, but this allows you to take the arguments out of order. Eg:

printf ’%2$d %1$d’, 12, 34; # prints "34 12"
printf ’%3$d %d %1$d’, 1, 2, 3; # prints "3 1 1"

flags
one or more of:

space prefix positive number with a space

perl v5.8.3 2003-11-25 135



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

+ prefix positive number with a plus sign
− left-justify within the field
0 use zeros, not spaces, to right-justify
# prefix non-zero octal with ‘‘0’’, non-zero hex with ‘‘0x’’,

non-zero binary with ‘‘0b’’

For example:

printf ’<% d>’, 12; # prints "< 12>"
printf ’<%+d>’, 12; # prints "<+12>"
printf ’<%6s>’, 12; # prints "< 12>"
printf ’<%-6s>’, 12; # prints "<12 >"
printf ’<%06s>’, 12; # prints "<000012>"
printf ’<%#x>’, 12; # prints "<0xc>"

vector flag
The vector flag v, optionally specifying the join string to use. This flag tells perl to
interpret the supplied string as a vector of integers, one for each character in the string,
separated by a given string (a dot . by default). This can be useful for displaying ordinal
values of characters in arbitrary strings:

printf "version is v%vd\n", $ˆV; # Perl’s version

Put an asterisk * before the v to override the string to use to separate the numbers:

printf "address is %*vX\n", ":", $addr; # IPv6 address
printf "bits are %0*v8b\n", " ", $bits; # random bitstring

You can also explicitly specify the argument number to use for the join string using eg
*2$v:

printf ’%*4$vX %*4$vX %*4$vX’, @addr[1..3], ":"; # 3 IPv6 addresses

(minimum) width
Arguments are usually formatted to be only as wide as required to display the given
value. You can override the width by putting a number here, or get the width from the
next argument (with *) or from a specified argument (with eg *2$):

printf ’<%s>’, "a"; # prints "<a>"
printf ’<%6s>’, "a"; # prints "< a>"
printf ’<%*s>’, 6, "a"; # prints "< a>"
printf ’<%*2$s>’, "a", 6; # prints "< a>"
printf ’<%2s>’, "long"; # prints "<long>" (does not truncate)

If a field width obtained through * is negative, it has the same effect as the − flag:
left−justification.

precision, or maximum width
You can specify a precision (for numeric conversions) or a maximum width (for string
conversions) by specifying a . followed by a number. For floating point formats, with
the exception of ’g’ and ’G’, this specifies the number of decimal places to show (the
default being 6), eg:

# these examples are subject to system-specific variation
printf ’<%f>’, 1; # prints "<1.000000>"
printf ’<%.1f>’, 1; # prints "<1.0>"
printf ’<%.0f>’, 1; # prints "<1>"
printf ’<%e>’, 10; # prints "<1.000000e+01>"
printf ’<%.1e>’, 10; # prints "<1.0e+01>"

For ’g’ and ’G’, this specifies the maximum number of digits to show, including prior to
the decimal point as well as after it, eg:

136 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

# these examples are subject to system-specific variation
printf ’<%g>’, 1; # prints "<1>"
printf ’<%.10g>’, 1; # prints "<1>"
printf ’<%g>’, 100; # prints "<100>"
printf ’<%.1g>’, 100; # prints "<1e+02>"
printf ’<%.2g>’, 100.01; # prints "<1e+02>"
printf ’<%.5g>’, 100.01; # prints "<100.01>"
printf ’<%.4g>’, 100.01; # prints "<100>"

For integer conversions, specifying a precision implies that the output of the number
itself should be zero-padded to this width:

printf ’<%.6x>’, 1; # prints "<000001>"
printf ’<%#.6x>’, 1; # prints "<0x000001>"
printf ’<%-10.6x>’, 1; # prints "<000001 >"

For string conversions, specifying a precision truncates the string to fit in the specified
width:

printf ’<%.5s>’, "truncated"; # prints "<trunc>"
printf ’<%10.5s>’, "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using .*:

printf ’<%.6x>’, 1; # prints "<000001>"
printf ’<%.*x>’, 6, 1; # prints "<000001>"

You cannot currently get the precision from a specified number, but it is intended that
this will be possible in the future using eg .*2$:

printf ’<%.*2$x>’, 1, 6; # INVALID, but in future will print "<000001>"

size
For numeric conversions, you can specify the size to interpret the number as using l, h,
V, q, L, or ll. For integer conversions (d u o x X b i D U O), numbers are
usually assumed to be whatever the default integer size is on your platform (usually 32
or 64 bits), but you can override this to use instead one of the standard C types, as
supported by the compiler used to build Perl:

l interpret integer as C type "long" or "unsigned long"
h interpret integer as C type "short" or "unsigned short"
q, L or ll interpret integer as C type "long long", "unsigned long long".

or "quads" (typically 64-bit integers)

The last will produce errors if Perl does not understand ‘‘quads’’ in your installation.
(This requires that either the platform natively supports quads or Perl was specifically
compiled to support quads.) You can find out whether your Perl supports quads via
Config:

use Config;
($Config{use64bitint} eq ’define’  $Config{longsize} >= 8) &&

print "quads\n";

For floating point conversions (e f g E F G), numbers are usually assumed to be the
default floating point size on your platform (double or long double), but you can force
’long double’ with q, L, or ll if your platform supports them. You can find out whether
your Perl supports long doubles via Config:

use Config;
$Config{d_longdbl} eq ’define’ && print "long doubles\n";

You can find out whether Perl considers ’long double’ to be the default floating point
size to use on your platform via Config:

perl v5.8.3 2003-11-25 137



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

use Config;
($Config{uselongdouble} eq ’define’) &&

print "long doubles by default\n";

It can also be the case that long doubles and doubles are the same thing:

use Config;
($Config{doublesize} == $Config{longdblsize}) &&

print "doubles are long doubles\n";

The size specifier V has no effect for Perl code, but it is supported for compatibility with
XS code; it means ’use the standard size for a Perl integer (or floating-point number)’,
which is already the default for Perl code.

order of arguments
Normally, sprintf takes the next unused argument as the value to format for each format
specification. If the format specification uses * to require additional arguments, these are
consumed from the argument list in the order in which they appear in the format
specification before the value to format. Where an argument is specified using an
explicit index, this does not affect the normal order for the arguments (even when the
explicitly specified index would have been the next argument in any case).

So:

printf ’<%*.*s>’, $a, $b, $c;

would use $a for the width, $b for the precision and $c as the value to format, while:

print ’<%*1$.*s>’, $a, $b;

would use $a for the width and the precision, and $b as the value to format.

Here are some more examples − beware that when using an explicit index, the $ may
need to be escaped:

printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"

If use locale is in effect, the character used for the decimal point in formatted real
numbers is affected by the LC_NUMERIC locale. See perllocale.

sqrt EXPR
sqrt Return the square root of EXPR. If EXPR is omitted, returns square root of $_. Only works

on non-negative operands, unless you’ve loaded the standard Math::Complex module.

use Math::Complex;
print sqrt(-2); # prints 1.4142135623731i

srand EXPR
srand Sets the random number seed for the rand operator.

The point of the function is to ‘‘seed’’ the rand function so that rand can produce a
different sequence each time you run your program.

If srand() is not called explicitly, it is called implicitly at the first use of the rand operator.
However, this was not the case in versions of Perl before 5.004, so if your script will run
under older Perl versions, it should call srand.

Most programs won’t even call srand() at all, except those that need a cryptographically-
strong starting point rather than the generally acceptable default, which is based on time of
day, process ID, and memory allocation, or the /dev/urandom device, if available.

You can call srand($seed) with the same $seed to reproduce the same sequence from
rand(), but this is usually reserved for generating predictable results for testing or debugging.
Otherwise, don’t call srand() more than once in your program.

Do not call srand() (i.e. without an argument) more than once in a script. The internal state

138 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

of the random number generator should contain more entropy than can be provided by any
seed, so calling srand() again actually loses randomness.

Most implementations of srand take an integer and will silently truncate decimal numbers.
This means srand(42) will usually produce the same results as srand(42.1). To be
safe, always pass srand an integer.

In versions of Perl prior to 5.004 the default seed was just the current time. This isn’t a
particularly good seed, so many old programs supply their own seed value (often time ˆ
$$ or time ˆ ($$ + ($$ << 15))), but that isn’t necessary any more.

Note that you need something much more random than the default seed for cryptographic
purposes. Checksumming the compressed output of one or more rapidly changing operating
system status programs is the usual method. For example:

srand (time ˆ $$ ˆ unpack "%L*", ‘ps axww  gzip‘);

If you’re particularly concerned with this, see the Math::TrulyRandom module in CPAN.

Frequently called programs (like CGI scripts) that simply use

time ˆ $$

for a seed can fall prey to the mathematical property that

aˆb == (a+1)ˆ(b+1)

one-third of the time. So don’t do that.

stat FILEHANDLE
stat EXPR
stat Returns a 13−element list giving the status info for a file, either the file opened via

FILEHANDLE, or named by EXPR. If EXPR is omitted, it stats $_. Returns a null list if the
stat fails. Typically used as follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
$atime,$mtime,$ctime,$blksize,$blocks)

= stat($filename);

Not all fields are supported on all filesystem types. Here are the meaning of the fields:

0 dev device number of filesystem
1 ino inode number
2 mode file mode (type and permissions)
3 nlink number of (hard) links to the file
4 uid numeric user ID of file’s owner
5 gid numeric group ID of file’s owner
6 rdev the device identifier (special files only)
7 size total size of file, in bytes
8 atime last access time in seconds since the epoch
9 mtime last modify time in seconds since the epoch
10 ctime inode change time in seconds since the epoch (*)
11 blksize preferred block size for file system I/O
12 blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 1970 GMT.)

(*) The ctime field is non−portable, in particular you cannot expect it to be a ‘‘creation time’’,
see ‘‘Files and Filesystems’’ in perlport for details.

If stat is passed the special filehandle consisting of an underline, no stat is done, but the
current contents of the stat structure from the last stat or filetest are returned. Example:

if (-x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";

}

(This works on machines only for which the device number is negative under NFS.)

perl v5.8.3 2003-11-25 139



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Because the mode contains both the file type and its permissions, you should mask off the file
type portion and (s)printf using a "%o" if you want to see the real permissions.

$mode = (stat($filename))[2];
printf "Permissions are %04o\n", $mode & 07777;

In scalar context, stat returns a boolean value indicating success or failure, and, if
successful, sets the information associated with the special filehandle _.

The File::stat module provides a convenient, by-name access mechanism:

use File::stat;
$sb = stat($filename);
printf "File is %s, size is %s, perm %04o, mtime %s\n",

$filename, $sb->size, $sb->mode & 07777,
scalar localtime $sb->mtime;

You can import symbolic mode constants (S_IF*) and functions (S_IS*) from the Fcntl
module:

use Fcntl ’:mode’;

$mode = (stat($filename))[2];

$user_rwx = ($mode & S_IRWXU) >> 6;
$group_read = ($mode & S_IRGRP) >> 3;
$other_execute = $mode & S_IXOTH;

printf "Permissions are %04o\n", S_IMODE($mode), "\n";

$is_setuid = $mode & S_ISUID;
$is_setgid = S_ISDIR($mode);

You could write the last two using the −u and −d operators. The commonly available S_IF*
constants are

# Permissions: read, write, execute, for user, group, others.

S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S_IRWXG S_IRGRP S_IWGRP S_IXGRP
S_IRWXO S_IROTH S_IWOTH S_IXOTH

# Setuid/Setgid/Stickiness/SaveText.
# Note that the exact meaning of these is system dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT

# File types. Not necessarily all are available on your system.

S_IFREG S_IFDIR S_IFLNK S_IFBLK S_ISCHR S_IFIFO S_IFSOCK S_IFWHT S_ENFMT

# The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUSR.

S_IREAD S_IWRITE S_IEXEC

and the S_IF* functions are

S_IMODE($mode) the part of $mode containing the permission bits
and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type
which can be bit-anded with e.g. S_IFREG
or with the following functions

# The operators -f, -d, -l, -b, -c, -p, and -s.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

140 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

# No direct -X operator counterpart, but for the first one
# the -g operator is often equivalent. The ENFMT stands for
# record flocking enforcement, a platform-dependent feature.

S_ISENFMT($mode) S_ISWHT($mode)

See your native chmod (2) and stat (2) documentation for more details about the S_*
constants.

To get status info for a symbolic link instead of the target file behind the link, use the lstat
function, see ‘‘stat’’.

study SCALAR
study Takes extra time to study SCALAR ($_ if unspecified) in anticipation of doing many pattern

matches on the string before it is next modified. This may or may not save time, depending
on the nature and number of patterns you are searching on, and on the distribution of
character frequencies in the string to be searched — you probably want to compare run times
with and without it to see which runs faster. Those loops which scan for many short constant
strings (including the constant parts of more complex patterns) will benefit most. You may
have only one study active at a time — if you study a different scalar the first is
‘‘unstudied’’. (The way study works is this: a linked list of every character in the string to
be searched is made, so we know, for example, where all the ’k’ characters are. From each
search string, the rarest character is selected, based on some static frequency tables
constructed from some C programs and English text. Only those places that contain this
‘‘rarest’’ character are examined.)

For example, here is a loop that inserts index producing entries before any line containing a
certain pattern:

while (<>) {
study;
print ".IX foo\n" if /\bfoo\b/;
print ".IX bar\n" if /\bbar\b/;
print ".IX blurfl\n" if /\bblurfl\b/;
# ...
print;

}

In searching for /\bfoo\b/, only those locations in $_ that contain f will be looked at,
because f is rarer than o. In general, this is a big win except in pathological cases. The only
question is whether it saves you more time than it took to build the linked list in the first
place.

Note that if you have to look for strings that you don’t know till runtime, you can build an
entire loop as a string and eval that to avoid recompiling all your patterns all the time.
Together with undefining $/ to input entire files as one record, this can be very fast, often
faster than specialized programs like fgrep (1). The following scans a list of files (@files)
for a list of words (@words), and prints out the names of those files that contain a match:

$search = ’while (<>) { study;’;
foreach $word (@words) {

$search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
}
$search .= "}";
@ARGV = @files;
undef $/;
eval $search; # this screams
$/ = "\n"; # put back to normal input delimiter
foreach $file (sort keys(%seen)) {

print $file, "\n";
}

perl v5.8.3 2003-11-25 141



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

sub NAME BLOCK
sub NAME (PROT O) BLOCK
sub NAME : ATTRS BLOCK
sub NAME (PROT O) : ATTRS BLOCK

This is subroutine definition, not a real function per se. Without a BLOCK it’s just a forward
declaration. Without a NAME, it’s an anonymous function declaration, and does actually
return a value: the CODE ref of the closure you just created.

See perlsub and perlref for details about subroutines and references, and attributes and
Attribute::Handlers for more information about attributes.

substr EXPR,OFFSET,LENGTH,REPLACEMENT
substr EXPR,OFFSET,LENGTH
substr EXPR,OFFSET

Extracts a substring out of EXPR and returns it. First character is at offset 0, or whatever
you’ve set $[ to (but don’t do that). If OFFSET is negative (or more precisely, less than $[),
starts that far from the end of the string. If LENGTH is omitted, returns everything to the end
of the string. If LENGTH is negative, leaves that many characters off the end of the string.

You can use the substr() function as an lvalue, in which case EXPR must itself be an lvalue.
If you assign something shorter than LENGTH, the string will shrink, and if you assign
something longer than LENGTH, the string will grow to accommodate it. To keep the string
the same length you may need to pad or chop your value using sprintf.

If OFFSET and LENGTH specify a substring that is partly outside the string, only the part
within the string is returned. If the substring is beyond either end of the string, substr()
returns the undefined value and produces a warning. When used as an lvalue, specifying a
substring that is entirely outside the string is a fatal error. Here’s an example showing the
behavior for boundary cases:

my $name = ’fred’;
substr($name, 4) = ’dy’; # $name is now ’freddy’
my $null = substr $name, 6, 2; # returns ’’ (no warning)
my $oops = substr $name, 7; # returns undef, with warning
substr($name, 7) = ’gap’; # fatal error

An alternative to using substr() as an lvalue is to specify the replacement string as the 4th
argument. This allows you to replace parts of the EXPR and return what was there before in
one operation, just as you can with splice().

If the lvalue returned by substr is used after the EXPR is changed in any way, the behaviour
may not be as expected and is subject to change. This caveat includes code such as
print(substr($foo,$a,$b)=$bar) or (substr($foo,$a,$b)=$bar)=$fud
(where $foo is changed via the substring assignment, and then the substr is used again), or
where a substr() is aliased via a foreach loop or passed as a parameter or a reference to it
is taken and then the alias, parameter, or deref ’d reference either is used after the original
EXPR has been changed or is assigned to and then used a second time.

symlink OLDFILE,NEWFILE
Creates a new filename symbolically linked to the old filename. Returns 1 for success, 0
otherwise. On systems that don’t support symbolic links, produces a fatal error at run time.
To check for that, use eval:

$symlink_exists = eval { symlink("",""); 1 };

syscall NUMBER, LIST
Calls the system call specified as the first element of the list, passing the remaining elements
as arguments to the system call. If unimplemented, produces a fatal error. The arguments are
interpreted as follows: if a given argument is numeric, the argument is passed as an int. If
not, the pointer to the string value is passed. You are responsible to make sure a string is pre-
extended long enough to receive any result that might be written into a string. You can’t use
a string literal (or other read-only string) as an argument to syscall because Perl has to
assume that any string pointer might be written through. If your integer arguments are not
literals and have nev er been interpreted in a numeric context, you may need to add 0 to them

142 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

to force them to look like numbers. This emulates the syswrite function (or vice versa):

require ’syscall.ph’; # may need to run h2ph
$s = "hi there\n";
syscall(&SYS_write, fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your system call, which in
practice should usually suffice.

Syscall returns whatever value returned by the system call it calls. If the system call fails,
syscall returns −1 and sets $! (errno). Note that some system calls can legitimately
return −1. The proper way to handle such calls is to assign $!=0; before the call and check
the value of $! if syscall returns −1.

There’s a problem with syscall(&SYS_pipe): it returns the file number of the read end
of the pipe it creates. There is no way to retrieve the file number of the other end. You can
avoid this problem by using pipe instead.

sysopen FILEHANDLE,FILENAME,MODE
sysopen FILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it with FILEHANDLE.
If FILEHANDLE is an expression, its value is used as the name of the real filehandle wanted.
This function calls the underlying operating system’s open function with the parameters
FILENAME, MODE, PERMS.

The possible values and flag bits of the MODE parameter are system−dependent; they are
available via the standard module Fcntl. See the documentation of your operating system’s
open to see which values and flag bits are available. You may combine several flags using
the −operator.

Some of the most common values are O_RDONLY for opening the file in read-only mode,
O_WRONLY for opening the file in write-only mode, and O_RDWR for opening the file in
read-write mode, and.

For historical reasons, some values work on almost every system supported by perl: zero
means read−only, one means write−only, and two means read/write. We know that these
values do not work under OS/390 & VM/ESA Unix and on the Macintosh; you probably don’t
want to use them in new code.

If the file named by FILENAME does not exist and the open call creates it (typically because
MODE includes the O_CREAT flag), then the value of PERMS specifies the permissions of the
newly created file. If you omit the PERMS argument to sysopen, Perl uses the octal value
0666. These permission values need to be in octal, and are modified by your process’s
current umask.

In many systems the O_EXCL flag is available for opening files in exclusive mode. This is
not locking: exclusiveness means here that if the file already exists, sysopen() fails. The
O_EXCL wins O_TRUNC.

Sometimes you may want to truncate an already-existing file: O_TRUNC.

You should seldom if ever use 0644 as argument to sysopen, because that takes away the
user’s option to have a more permissive umask. Better to omit it. See the perlfunc (1) entry
on umask for more on this.

Note that sysopen depends on the fdopen() C library function. On many UNIX systems,
fdopen() is known to fail when file descriptors exceed a certain value, typically 255. If you
need more file descriptors than that, consider rebuilding Perl to use the sfio library, or
perhaps using the POSIX::open() function.

See perlopentut for a kinder, gentler explanation of opening files.

sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
sysread FILEHANDLE,SCALAR,LENGTH

Attempts to read LENGTH bytes of data into variable SCALAR from the specified
FILEHANDLE, using the system call read (2). It bypasses buffered IO, so mixing this with

perl v5.8.3 2003-11-25 143



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

other kinds of reads, print, write, seek, tell, or eof can cause confusion because the
perlio or stdio layers usually buffers data. Returns the number of bytes actually read, 0 at
end of file, or undef if there was an error (in the latter case $! is also set). SCALAR will be
grown or shrunk so that the last byte actually read is the last byte of the scalar after the read.

An OFFSET may be specified to place the read data at some place in the string other than the
beginning. A negative OFFSET specifies placement at that many characters counting
backwards from the end of the string. A positive OFFSET greater than the length of SCALAR
results in the string being padded to the required size with "\0" bytes before the result of the
read is appended.

There is no syseof() function, which is ok, since eof() doesn’t work very well on device files
(like ttys) anyway. Use sysread() and check for a return value for 0 to decide whether you’re
done.

Note that if the filehandle has been marked as :utf8 Unicode characters are read instead of
bytes (the LENGTH, OFFSET, and the return value of sysread() are in Unicode characters).
The :encoding(...) layer implicitly introduces the :utf8 layer. See ‘‘binmode’’,
‘‘open’’, and the open pragma, open.

sysseek FILEHANDLE,POSITION,WHENCE
Sets FILEHANDLE’s system position in bytes using the system call lseek (2). FILEHANDLE
may be an expression whose value gives the name of the filehandle. The values for WHENCE
are 0 to set the new position to POSITION, 1 to set the it to the current position plus
POSITION, and 2 to set it to EOF plus POSITION (typically negative).

Note the in bytes: even if the filehandle has been set to operate on characters (for example by
using the :utf8 I/O layer), tell() will return byte offsets, not character offsets (because
implementing that would render sysseek() very slow).

sysseek() bypasses normal buffered IO, so mixing this with reads (other than sysread, for
example &gt;&lt or read()) print, write, seek, tell, or eof may cause confusion.

For WHENCE, you may also use the constants SEEK_SET, SEEK_CUR, and SEEK_END
(start of the file, current position, end of the file) from the Fcntl module. Use of the constants
is also more portable than relying on 0, 1, and 2. For example to define a ‘‘systell’’ function:

use Fcntl ’SEEK_CUR’;
sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the new position, or the undefined value on failure. A position of zero is returned as
the string "0 but true"; thus sysseek returns true on success and false on failure, yet
you can still easily determine the new position.

system LIST
system PROGRAM LIST

Does exactly the same thing as exec LIST, except that a fork is done first, and the parent
process waits for the child process to complete. Note that argument processing varies
depending on the number of arguments. If there is more than one argument in LIST, or if
LIST is an array with more than one value, starts the program given by the first element of the
list with arguments given by the rest of the list. If there is only one scalar argument, the
argument is checked for shell metacharacters, and if there are any, the entire argument is
passed to the system’s command shell for parsing (this is /bin/sh −c on Unix platforms,
but varies on other platforms). If there are no shell metacharacters in the argument, it is split
into words and passed directly to execvp, which is more efficient.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before any
operation that may do a fork, but this may not be supported on some platforms (see perlport).
To be safe, you may need to set $ ($AUTOFLUSH in English) or call the autoflush()
method of IO::Handle on any open handles.

The return value is the exit status of the program as returned by the wait call. To get the
actual exit value shift right by eight (see below). See also ‘‘exec’’. This is not what you want
to use to capture the output from a command, for that you should use merely backticks or
qx//, as described in ‘‘‘STRING‘’’ in perlop. Return value of −1 indicates a failure to start

144 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

the program (inspect $! for the reason).

Like exec, system allows you to lie to a program about its name if you use the system
PROGRAM LIST syntax. Again, see ‘‘exec’’.

Because system and backticks block SIGINT and SIGQUIT, killing the program they’re
running doesn’t actually interrupt your program.

@args = ("command", "arg1", "arg2");
system(@args) == 0

or die "system @args failed: $?"

You can check all the failure possibilities by inspecting $? like this:

if ($? == -1) {
print "failed to execute: $!\n";

}
elsif ($? & 127) {

printf "child died with signal %d, %s coredump\n",
($? & 127), ($? & 128) ? ’with’ : ’without’;

}
else {

printf "child exited with value %d\n", $? >> 8;
}

or more portably by using the W*() calls of the POSIX extension; see perlport for more
information.

When the arguments get executed via the system shell, results and return codes will be
subject to its quirks and capabilities. See ‘‘‘STRING‘’’ in perlop and ‘‘exec’’ for details.

syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
syswrite FILEHANDLE,SCALAR,LENGTH
syswrite FILEHANDLE,SCALAR

Attempts to write LENGTH bytes of data from variable SCALAR to the specified
FILEHANDLE, using the system call write (2). If LENGTH is not specified, writes whole
SCALAR. It bypasses buffered IO, so mixing this with reads (other than sysread()),
print, write, seek, tell, or eof may cause confusion because the perlio and stdio
layers usually buffers data. Returns the number of bytes actually written, or undef if there
was an error (in this case the errno variable $! is also set). If the LENGTH is greater than the
available data in the SCALAR after the OFFSET, only as much data as is available will be
written.

An OFFSET may be specified to write the data from some part of the string other than the
beginning. A negative OFFSET specifies writing that many characters counting backwards
from the end of the string. In the case the SCALAR is empty you can use OFFSET but only
zero offset.

Note that if the filehandle has been marked as :utf8, Unicode characters are written instead
of bytes (the LENGTH, OFFSET, and the return value of syswrite() are in UTF−8 encoded
Unicode characters). The :encoding(...) layer implicitly introduces the :utf8 layer.
See ‘‘binmode’’, ‘‘open’’, and the open pragma, open.

tell FILEHANDLE
tell Returns the current position in bytes for FILEHANDLE, or −1 on error. FILEHANDLE may be

an expression whose value gives the name of the actual filehandle. If FILEHANDLE is
omitted, assumes the file last read.

Note the in bytes: even if the filehandle has been set to operate on characters (for example by
using the :utf8 open layer), tell() will return byte offsets, not character offsets (because that
would render seek() and tell() rather slow).

The return value of tell() for the standard streams like the STDIN depends on the operating
system: it may return −1 or something else. tell() on pipes, fifos, and sockets usually returns
−1.

perl v5.8.3 2003-11-25 145



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

There is no systell function. Use sysseek(FH, 0, 1) for that.

Do not use tell() on a filehandle that has been opened using sysopen(), use sysseek() for that
as described above. Why? Because sysopen() creates unbuffered, ‘‘raw’’, filehandles, while
open() creates buffered filehandles. sysseek() make sense only on the first kind, tell() only
makes sense on the second kind.

telldir DIRHANDLE
Returns the current position of the readdir routines on DIRHANDLE. Value may be given
to seekdir to access a particular location in a directory. Has the same caveats about
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST
This function binds a variable to a package class that will provide the implementation for the
variable. VARIABLE is the name of the variable to be enchanted. CLASSNAME is the name
of a class implementing objects of correct type. Any additional arguments are passed to the
new method of the class (meaning TIESCALAR, TIEHANDLE, TIEARRAY, or TIEHASH).
Typically these are arguments such as might be passed to the dbm_open() function of C.
The object returned by the new method is also returned by the tie function, which would be
useful if you want to access other methods in CLASSNAME.

Note that functions such as keys and values may return huge lists when used on large
objects, like DBM files. You may prefer to use the each function to iterate over such.
Example:

# print out history file offsets
use NDBM_File;
tie(%HIST, ’NDBM_File’, ’/usr/lib/news/history’, 1, 0);
while (($key,$val) = each %HIST) {

print $key, ’ = ’, unpack(’L’,$val), "\n";
}
untie(%HIST);

A class implementing a hash should have the following methods:

TIEHASH classname, LIST
FETCH this, key
STORE this, key, value
DELETE this, key
CLEAR this
EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey
SCALAR this
DESTROY this
UNTIE this

A class implementing an ordinary array should have the following methods:

146 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

TIEARRAY classname, LIST
FETCH this, key
STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this
PUSH this, LIST
POP this
SHIFT this
UNSHIFT this, LIST
SPLICE this, offset, length, LIST
EXTEND this, count
DESTROY this
UNTIE this

A class implementing a file handle should have the following methods:

TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this
GETC this
WRITE this, scalar, length, offset
PRINT this, LIST
PRINTF this, format, LIST
BINMODE this
EOF this
FILENO this
SEEK this, position, whence
TELL this
OPEN this, mode, LIST
CLOSE this
DESTROY this
UNTIE this

A class implementing a scalar should have the following methods:

TIESCALAR classname, LIST
FETCH this,
STORE this, value
DESTROY this
UNTIE this

Not all methods indicated above need be implemented. See perltie, Tie::Hash, Tie::Array,
Tie::Scalar, and Tie::Handle.

Unlike dbmopen, the tie function will not use or require a module for you — you need to
do that explicitly yourself. See DB_File or the Config module for interesting tie
implementations.

For further details see perltie, ‘‘tied VARIABLE’’.

tied VARIABLE
Returns a reference to the object underlying VARIABLE (the same value that was originally
returned by the tie call that bound the variable to a package.) Returns the undefined value
if VARIABLE isn’t tied to a package.

time Returns the number of non-leap seconds since whatever time the system considers to be the
epoch (that’s 00:00:00, January 1, 1904 for Mac OS, and 00:00:00 UTC, January 1, 1970 for
most other systems). Suitable for feeding to gmtime and localtime.

For measuring time in better granularity than one second, you may use either the
Time::HiRes module (from CPAN, and starting from Perl 5.8 part of the standard
distribution), or if you have gettimeofday (2), you may be able to use the syscall interface
of Perl. See perlfaq8 for details.

perl v5.8.3 2003-11-25 147



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

times Returns a four-element list giving the user and system times, in seconds, for this process and
the children of this process.

($user,$system,$cuser,$csystem) = times;

In scalar context, times returns $user.

tr/// The transliteration operator. Same as y///. See perlop.

truncate FILEHANDLE,LENGTH
truncate EXPR,LENGTH

Truncates the file opened on FILEHANDLE, or named by EXPR, to the specified length.
Produces a fatal error if truncate isn’t implemented on your system. Returns true if
successful, the undefined value otherwise.

The behavior is undefined if LENGTH is greater than the length of the file.

uc EXPR
uc Returns an uppercased version of EXPR. This is the internal function implementing the \U

escape in double-quoted strings. Respects current LC_CTYPE locale if use locale in
force. See perllocale and perlunicode for more details about locale and Unicode support. It
does not attempt to do titlecase mapping on initial letters. See ucfirst for that.

If EXPR is omitted, uses $_.

ucfirst EXPR
ucfirst Returns the value of EXPR with the first character in uppercase (titlecase in Unicode). This is

the internal function implementing the \u escape in double-quoted strings. Respects current
LC_CTYPE locale if use locale in force. See perllocale and perlunicode for more details
about locale and Unicode support.

If EXPR is omitted, uses $_.

umask EXPR
umask Sets the umask for the process to EXPR and returns the previous value. If EXPR is omitted,

merely returns the current umask.

The Unix permission rwxr−x−−− is represented as three sets of three bits, or three octal
digits: 0750 (the leading 0 indicates octal and isn’t one of the digits). The umask value is
such a number representing disabled permissions bits. The permission (or ‘‘mode’’) values
you pass mkdir or sysopen are modified by your umask, so even if you tell sysopen to
create a file with permissions 0777, if your umask is 0022 then the file will actually be
created with permissions 0755. If your umask were 0027 (group can’t write; others can’t
read, write, or execute), then passing sysopen 0666 would create a file with mode 0640
(0666 &˜ 027 is 0640).

Here’s some advice: supply a creation mode of 0666 for regular files (in sysopen) and one
of 0777 for directories (in mkdir) and executable files. This gives users the freedom of
choice: if they want protected files, they might choose process umasks of 022, 027, or even
the particularly antisocial mask of 077. Programs should rarely if ever make policy
decisions better left to the user. The exception to this is when writing files that should be
kept private: mail files, web browser cookies, .rhosts files, and so on.

If umask (2) is not implemented on your system and you are trying to restrict access for
yourself (i.e., (EXPR & 0700) > 0), produces a fatal error at run time. If umask (2) is not
implemented and you are not trying to restrict access for yourself, returns undef.

Remember that a umask is a number, usually given in octal; it is not a string of octal digits.
See also ‘‘oct’’, if all you have is a string.

undef EXPR
undef Undefines the value of EXPR, which must be an lvalue. Use only on a scalar value, an array

(using @), a hash (using %), a subroutine (using &), or a typeglob (using *). (Saying undef
$hash{$key} will probably not do what you expect on most predefined variables or DBM
list values, so don’t do that; see delete.) Always returns the undefined value. You can omit
the EXPR, in which case nothing is undefined, but you still get an undefined value that you
could, for instance, return from a subroutine, assign to a variable or pass as a parameter.

148 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

Examples:

undef $foo;
undef $bar{’blurfl’}; # Compare to: delete $bar{’blurfl’};
undef @ary;
undef %hash;
undef &mysub;
undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
select undef, undef, undef, 0.25;
($a, $b, undef, $c) = &foo; # Ignore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST
unlink Deletes a list of files. Returns the number of files successfully deleted.

$cnt = unlink ’a’, ’b’, ’c’;
unlink @goners;
unlink <*.bak>;

Note: unlink will not delete directories unless you are superuser and the −U flag is
supplied to Perl. Even if these conditions are met, be warned that unlinking a directory can
inflict damage on your filesystem. Use rmdir instead.

If LIST is omitted, uses $_.

unpack TEMPLATE,EXPR
unpack does the reverse of pack: it takes a string and expands it out into a list of values.
(In scalar context, it returns merely the first value produced.)

The string is broken into chunks described by the TEMPLATE. Each chunk is converted
separately to a value. Typically, either the string is a result of pack, or the bytes of the string
represent a C structure of some kind.

The TEMPLATE has the same format as in the pack function. Here’s a subroutine that does
substring:

sub substr {
my($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there’s

sub ordinal { unpack("c",$_[0]); } # same as ord()

In addition to fields allowed in pack(), you may prefix a field with a %<number> to indicate
that you want a <number>−bit checksum of the items instead of the items themselves.
Default is a 16−bit checksum. Checksum is calculated by summing numeric values of
expanded values (for string fields the sum of ord($char) is taken, for bit fields the sum of
zeroes and ones).

For example, the following computes the same number as the System V sum program:

$checksum = do {
local $/; # slurp!
unpack("%32C*",<>) % 65535;

};

The following efficiently counts the number of set bits in a bit vector:

$setbits = unpack("%32b*", $selectmask);

The p and P formats should be used with care. Since Perl has no way of checking whether
the value passed to unpack() corresponds to a valid memory location, passing a pointer
value that’s not known to be valid is likely to have disastrous consequences.

perl v5.8.3 2003-11-25 149



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

If there are more pack codes or if the repeat count of a field or a group is larger than what the
remainder of the input string allows, the result is not well defined: in some cases, the repeat
count is decreased, or unpack() will produce null strings or zeroes, or terminate with an
error. If the input string is longer than one described by the TEMPLATE, the rest is ignored.

See ‘‘pack’’ for more examples and notes.

untie VARIABLE
Breaks the binding between a variable and a package. (See tie.) Has no effect if the
variable is not tied.

unshift ARRAY,LIST
Does the opposite of a shift. Or the opposite of a push, depending on how you look at it.
Prepends list to the front of the array, and returns the new number of elements in the array.

unshift(@ARGV, ’-e’) unless $ARGV[0] =˜ /ˆ-/;

Note the LIST is prepended whole, not one element at a time, so the prepended elements stay
in the same order. Use reverse to do the reverse.

use Module VERSION LIST
use Module VERSION
use Module LIST
use Module
use VERSION

Imports some semantics into the current package from the named module, generally by
aliasing certain subroutine or variable names into your package. It is exactly equivalent to

BEGIN { require Module; import Module LIST; }

except that Module must be a bareword.

VERSION may be either a numeric argument such as 5.006, which will be compared to $], or
a literal of the form v5.6.1, which will be compared to $ˆV (aka $PERL_VERSION. A fatal
error is produced if VERSION is greater than the version of the current Perl interpreter; Perl
will not attempt to parse the rest of the file. Compare with ‘‘require’’, which can do a similar
check at run time.

Specifying VERSION as a literal of the form v5.6.1 should generally be avoided, because it
leads to misleading error messages under earlier versions of Perl which do not support this
syntax. The equivalent numeric version should be used instead.

use v5.6.1; # compile time version check
use 5.6.1; # ditto
use 5.006_001; # ditto; preferred for backwards compatibility

This is often useful if you need to check the current Perl version before useing library
modules that have changed in incompatible ways from older versions of Perl. (We try not to
do this more than we have to.)

The BEGIN forces the require and import to happen at compile time. The require
makes sure the module is loaded into memory if it hasn’t been yet. The import is not a
builtin — it’s just an ordinary static method call into the Module package to tell the module
to import the list of features back into the current package. The module can implement its
import method any way it likes, though most modules just choose to derive their import
method via inheritance from the Exporter class that is defined in the Exporter module.
See Exporter. If no import method can be found then the call is skipped.

If you do not want to call the package’s import method (for instance, to stop your
namespace from being altered), explicitly supply the empty list:

use Module ();

That is exactly equivalent to

BEGIN { require Module }

If the VERSION argument is present between Module and LIST, then the use will call the

150 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

VERSION method in class Module with the given version as an argument. The default
VERSION method, inherited from the UNIVERSAL class, croaks if the given version is larger
than the value of the variable $Module::VERSION.

Again, there is a distinction between omitting LIST (import called with no arguments) and
an explicit empty LIST () (import not called). Note that there is no comma after
VERSION!

Because this is a wide-open interface, pragmas (compiler directives) are also implemented
this way. Currently implemented pragmas are:

use constant;
use diagnostics;
use integer;
use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);
use subs qw(afunc blurfl);
use warnings qw(all);
use sort qw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current block scope (like strict
or integer, unlike ordinary modules, which import symbols into the current package
(which are effective through the end of the file).

There’s a corresponding no command that unimports meanings imported by use, i.e., it calls
unimport Module LIST instead of import.

no integer;
no strict ’refs’;
no warnings;

See perlmodlib for a list of standard modules and pragmas. See perlrun for the −M and −m
command-line options to perl that give use functionality from the command−line.

utime LIST
Changes the access and modification times on each file of a list of files. The first two
elements of the list must be the NUMERICAL access and modification times, in that order.
Returns the number of files successfully changed. The inode change time of each file is set to
the current time. For example, this code has the same effect as the Unix touch (1) command
when the files already exist.

#!/usr/bin/perl
$atime = $mtime = time;
utime $atime, $mtime, @ARGV;

Since perl 5.7.2, if the first two elements of the list are undef, then the utime (2) function in
the C library will be called with a null second argument. On most systems, this will set the
file’s access and modification times to the current time (i.e. equivalent to the example above.)

utime undef, undef, @ARGV;

Under NFS this will use the time of the NFS server, not the time of the local machine. If there
is a time synchronization problem, the NFS server and local machine will have different
times. The Unix touch (1) command will in fact normally use this form instead of the one
shown in the first example.

Note that only passing one of the first two elements as undef will be equivalent of passing it
as 0 and will not have the same effect as described when they are both undef. This case
will also trigger an uninitialized warning.

values HASH
Returns a list consisting of all the values of the named hash. (In a scalar context, returns the
number of values.)

The values are returned in an apparently random order. The actual random order is subject to
change in future versions of perl, but it is guaranteed to be the same order as either the keys

perl v5.8.3 2003-11-25 151



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

or each function would produce on the same (unmodified) hash. Since Perl 5.8.1 the
ordering is different even between different runs of Perl for security reasons (see
‘‘Algorithmic Complexity Attacks’’ in perlsec).

As a side effect, calling values() resets the HASH’s internal iterator, see ‘‘each’’. (In
particular, calling values() in void context resets the iterator with no other overhead.)

Note that the values are not copied, which means modifying them will modify the contents of
the hash:

for (values %hash) { s/foo/bar/g } # modifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g } # same

See also keys, each, and sort.

vec EXPR,OFFSET,BITS
Treats the string in EXPR as a bit vector made up of elements of width BITS, and returns the
value of the element specified by OFFSET as an unsigned integer. BITS therefore specifies the
number of bits that are reserved for each element in the bit vector. This must be a power of
two from 1 to 32 (or 64, if your platform supports that).

If BITS is 8, ‘‘elements’’ coincide with bytes of the input string.

If BITS is 16 or more, bytes of the input string are grouped into chunks of size BITS/8, and
each group is converted to a number as with pack()/unpack() with big-endian formats n/N
(and analogously for BITS==64). See ‘‘pack’’ for details.

If bits is 4 or less, the string is broken into bytes, then the bits of each byte are broken into
8/BITS groups. Bits of a byte are numbered in a little-endian-ish way, as in 0x01, 0x02,
0x04, 0x08, 0x10, 0x20, 0x40, 0x80. For example, breaking the single input byte
chr(0x36) into two groups gives a list (0x6, 0x3); breaking it into 4 groups gives
(0x2, 0x1, 0x3, 0x0).

vec may also be assigned to, in which case parentheses are needed to give the expression the
correct precedence as in

vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned. If an element off the end
of the string is written to, Perl will first extend the string with sufficiently many zero bytes.
It is an error to try to write off the beginning of the string (i.e. negative OFFSET).

The string should not contain any character with the value > 255 (which can only happen if
you’re using UTF−8 encoding). If it does, it will be treated as something which is not UTF−8
encoded. When the vec was assigned to, other parts of your program will also no longer
consider the string to be UTF−8 encoded. In other words, if you do have such characters in
your string, vec() will operate on the actual byte string, and not the conceptual character
string.

Strings created with vec can also be manipulated with the logical operators , &, ˆ, and ˜.
These operators will assume a bit vector operation is desired when both operands are strings.
See ‘‘Bitwise String Operators’’ in perlop.

The following code will build up an ASCII string saying ’PerlPerlPerl’. The
comments show the string after each step. Note that this code works in the same way on big-
endian or little-endian machines.

my $foo = ’’;
vec($foo, 0, 32) = 0x5065726C; # ’Perl’

# $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
print vec($foo, 0, 8); # prints 80 == 0x50 == ord(’P’)

152 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

vec($foo, 2, 16) = 0x5065; # ’PerlPe’
vec($foo, 3, 16) = 0x726C; # ’PerlPerl’
vec($foo, 8, 8) = 0x50; # ’PerlPerlP’
vec($foo, 9, 8) = 0x65; # ’PerlPerlPe’
vec($foo, 20, 4) = 2; # ’PerlPerlPe’ . "\x02"
vec($foo, 21, 4) = 7; # ’PerlPerlPer’

# ’r’ is "\x72"
vec($foo, 45, 2) = 3; # ’PerlPerlPer’ . "\x0c"
vec($foo, 93, 1) = 1; # ’PerlPerlPer’ . "\x2c"
vec($foo, 94, 1) = 1; # ’PerlPerlPerl’

# ’l’ is "\x6c"

To transform a bit vector into a string or list of 0’s and 1’s, use these:

$bits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

Here is an example to illustrate how the bits actually fall in place:

#!/usr/bin/perl -wl

print <<’EOT’;
0 1 2 3

unpack("V",$_) 01234567890123456789012345678901
------------------------------------------------------------------
EOT

for $w (0..3) {
$width = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {

for ($off=0; $off < 32/$width; ++$off) {
$str = pack("B*", "0"x32);
$bits = (1<<$shift);
vec($str, $off, $width) = $bits;
$res = unpack("b*",$str);
$val = unpack("V", $str);
write;

}
}

}

format STDOUT =
vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
$off, $width, $bits, $val, $res
.
__END__

Regardless of the machine architecture on which it is run, the above example should print the
following table:

perl v5.8.3 2003-11-25 153



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

0 1 2 3
unpack("V",$_) 01234567890123456789012345678901

------------------------------------------------------------------
vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000
vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000
vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000
vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000
vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000
vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000
vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000
vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000
vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000
vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000
vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000
vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000
vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000
vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000
vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000
vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000
vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000
vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000
vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000
vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000
vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000
vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000
vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000
vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000
vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000
vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000
vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000
vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000
vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100
vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010
vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001
vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000
vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000
vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000
vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000
vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000
vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000
vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000
vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000
vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000
vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000
vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000
vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000
vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000
vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000
vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010
vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000
vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000
vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000
vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000
vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000
vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000
vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000

154 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000
vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000
vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000
vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000
vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000
vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000
vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100
vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001
vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000
vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000
vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000
vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000
vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000
vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000
vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000
vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000
vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000
vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000
vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000
vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000
vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000
vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100
vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000
vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000
vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000
vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000
vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000
vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000
vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010
vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000
vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000
vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000
vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000
vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000
vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000
vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001
vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000
vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000
vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000
vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000
vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000
vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000
vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000
vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000
vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000
vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000
vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000
vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000
vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000
vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000
vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000

perl v5.8.3 2003-11-25 155



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000
vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000
vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000
vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000
vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100
vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000
vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000
vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000
vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010
vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000
vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000
vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000
vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001

wait Behaves like the wait (2) system call on your system: it waits for a child process to terminate
and returns the pid of the deceased process, or −1 if there are no child processes. The status
is returned in $?. Note that a return value of −1 could mean that child processes are being
automatically reaped, as described in perlipc.

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the deceased process,
or −1 if there is no such child process. On some systems, a value of 0 indicates that there are
processes still running. The status is returned in $?. If you say

use POSIX ":sys_wait_h";
#...
do {

$kid = waitpid(-1, WNOHANG);
} until $kid > 0;

then you can do a non-blocking wait for all pending zombie processes. Non-blocking wait is
available on machines supporting either the waitpid (2) or wait4 (2) system calls. However,
waiting for a particular pid with FLAGS of 0 is implemented everywhere. (Perl emulates the
system call by remembering the status values of processes that have exited but have not been
harvested by the Perl script yet.)

Note that on some systems, a return value of −1 could mean that child processes are being
automatically reaped. See perlipc for details, and for other examples.

wantarray
Returns true if the context of the currently executing subroutine is looking for a list value.
Returns false if the context is looking for a scalar. Returns the undefined value if the context
is looking for no value (void context).

return unless defined wantarray; # don’t bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";

This function should have been named wantlist() instead.

warn LIST
Produces a message on STDERR just like die, but doesn’t exit or throw an exception.

If LIST is empty and $@ already contains a value (typically from a previous eval) that value is
used after appending "\t...caught" to $@. This is useful for staying almost, but not
entirely similar to die.

If $@ is empty then the string "Warning: Something’s wrong" is used.

No message is printed if there is a $SIG{_ _WARN_ _} handler installed. It is the handler’s
responsibility to deal with the message as it sees fit (like, for instance, converting it into a
die). Most handlers must therefore make arrangements to actually display the warnings that
they are not prepared to deal with, by calling warn again in the handler. Note that this is
quite safe and will not produce an endless loop, since __WARN_ _ hooks are not called from
inside one.

156 2003-11-25 perl v5.8.3



PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

You will find this behavior is slightly different from that of $SIG{_ _DIE_ _} handlers
(which don’t suppress the error text, but can instead call die again to change it).

Using a __WARN_ _ handler provides a powerful way to silence all warnings (even the so-
called mandatory ones). An example:

# wipe out *all* compile-time warnings
BEGIN { $SIG{’__WARN__’} = sub { warn $_[0] if $DOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,

# but hey, you asked for it!
# no compile-time or run-time warnings before here
$DOWARN = 1;

# run-time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on setting %SIG entries, and for more examples. See the Carp module
for other kinds of warnings using its carp() and cluck() functions.

write FILEHANDLE
write EXPR
write Writes a formatted record (possibly multi−line) to the specified FILEHANDLE, using the

format associated with that file. By default the format for a file is the one having the same
name as the filehandle, but the format for the current output channel (see the select
function) may be set explicitly by assigning the name of the format to the $˜ variable.

Top of form processing is handled automatically: if there is insufficient room on the current
page for the formatted record, the page is advanced by writing a form feed, a special top-of-
page format is used to format the new page header, and then the record is written. By default
the top-of-page format is the name of the filehandle with ‘‘_TOP’’ appended, but it may be
dynamically set to the format of your choice by assigning the name to the $ˆ variable while
the filehandle is selected. The number of lines remaining on the current page is in variable
$−, which can be set to 0 to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts
out as STDOUT but may be changed by the select operator. If the FILEHANDLE is an
EXPR, then the expression is evaluated and the resulting string is used to look up the name of
the FILEHANDLE at run time. For more on formats, see perlform.

Note that write is not the opposite of read. Unfortunately.

y/// The transliteration operator. Same as tr///. See perlop.

perl v5.8.3 2003-11-25 157



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

NAME
perlvar − Perl predefined variables

DESCRIPTION
Predefined Names

The following names have special meaning to Perl. Most punctuation names have reasonable
mnemonics, or analogs in the shells. Nevertheless, if you wish to use long variable names, you need
only say

use English;

at the top of your program. This aliases all the short names to the long names in the current package.
Some even hav e medium names, generally borrowed from awk. In general, it’s best to use the

use English ’-no_match_vars’;

invocation if you don’t need $PREMATCH, $MATCH, or $POSTMATCH, as it avoids a certain
performance hit with the use of regular expressions. See English.

Variables that depend on the currently selected filehandle may be set by calling an appropriate object
method on the IO::Handle object, although this is less efficient than using the regular built-in variables.
(Summary lines below for this contain the word HANDLE.) First you must say

use IO::Handle;

after which you may use either

method HANDLE EXPR

or more safely,

HANDLE->method(EXPR)

Each method returns the old value of the IO::Handle attribute. The methods each take an optional
EXPR, which, if supplied, specifies the new value for the IO::Handle attribute in question. If not
supplied, most methods do nothing to the current value — except for autoflush(), which will assume a 1
for you, just to be different.

Because loading in the IO::Handle class is an expensive operation, you should learn how to use the
regular built-in variables.

A few of these variables are considered ‘‘read−only’’. This means that if you try to assign to this
variable, either directly or indirectly through a reference, you’ll raise a run-time exception.

You should be very careful when modifying the default values of most special variables described in
this document. In most cases you want to localize these variables before changing them, since if you
don’t, the change may affect other modules which rely on the default values of the special variables that
you have changed. This is one of the correct ways to read the whole file at once:

open my $fh, "foo" or die $!;
local $/; # enable localized slurp mode
my $content = <$fh>;
close $fh;

But the following code is quite bad:

open my $fh, "foo" or die $!;
undef $/; # enable slurp mode
my $content = <$fh>;
close $fh;

since some other module, may want to read data from some file in the default ‘‘line mode’’, so if the
code we have just presented has been executed, the global value of $/ is now changed for any other
code running inside the same Perl interpreter.

Usually when a variable is localized you want to make sure that this change affects the shortest scope
possible. So unless you are already inside some short {} block, you should create one yourself. For
example:

158 2003-11-25 perl v5.8.3



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

my $content = ’’;
open my $fh, "foo" or die $!;
{

local $/;
$content = <$fh>;

}
close $fh;

Here is an example of how your own code can go broken:

for (1..5){
nasty_break();
print "$_ ";

}
sub nasty_break {

$_ = 5;
# do something with $_

}

You probably expect this code to print:

1 2 3 4 5

but instead you get:

5 5 5 5 5

Why? Because nasty_break() modifies $_ without localizing it first. The fix is to add local():

local $_ = 5;

It’s easy to notice the problem in such a short example, but in more complicated code you are looking
for trouble if you don’t localize changes to the special variables.

The following list is ordered by scalar variables first, then the arrays, then the hashes.

$ARG
$_ The default input and pattern-searching space. The following pairs are equivalent:

while (<>) {...} # equivalent only in while!
while (defined($_ = <>)) {...}

/ˆSubject:/
$_ =˜ /ˆSubject:/

tr/a-z/A-Z/
$_ =˜ tr/a-z/A-Z/

chomp
chomp($_)

Here are the places where Perl will assume $_ ev en if you don’t use it:

* Various unary functions, including functions like ord() and int(), as well as the all file
tests (−f, −d) except for −t, which defaults to STDIN.

* Various list functions like print() and unlink().

* The pattern matching operations m//, s///, and tr/// when used without an =˜
operator.

* The default iterator variable in a foreach loop if no other variable is supplied.

* The implicit iterator variable in the grep() and map() functions.

* The default place to put an input record when a <FH> operation’s result is tested by itself
as the sole criterion of a while test. Outside a while test, this will not happen.

(Mnemonic: underline is understood in certain operations.)

$a

perl v5.8.3 2003-11-25 159



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

$b Special package variables when using sort(), see ‘‘sort’’ in perlfunc. Because of this
specialness $a and $b don’t need to be declared (using use vars, or our()) even when using
the strict ’vars’ pragma. Don’t lexicalize them with my $a or my $b if you want to
be able to use them in the sort() comparison block or function.

$<digits>
Contains the subpattern from the corresponding set of capturing parentheses from the last
pattern match, not counting patterns matched in nested blocks that have been exited already.
(Mnemonic: like \digits.) These variables are all read-only and dynamically scoped to the
current BLOCK.

$MATCH
$& The string matched by the last successful pattern match (not counting any matches hidden

within a BLOCK or eval() enclosed by the current BLOCK). (Mnemonic: like & in some
editors.) This variable is read-only and dynamically scoped to the current BLOCK.

The use of this variable anywhere in a program imposes a considerable performance penalty
on all regular expression matches. See ‘‘BUGS’’.

$PREMATCH
$‘ The string preceding whatever was matched by the last successful pattern match (not

counting any matches hidden within a BLOCK or eval enclosed by the current BLOCK).
(Mnemonic: ‘ often precedes a quoted string.) This variable is read−only.

The use of this variable anywhere in a program imposes a considerable performance penalty
on all regular expression matches. See ‘‘BUGS’’.

$POSTMATCH
$’ The string following whatever was matched by the last successful pattern match (not

counting any matches hidden within a BLOCK or eval() enclosed by the current BLOCK).
(Mnemonic: ’ often follows a quoted string.) Example:

local $_ = ’abcdefghi’;
/def/;
print "$‘:$&:$’\n"; # prints abc:def:ghi

This variable is read-only and dynamically scoped to the current BLOCK.

The use of this variable anywhere in a program imposes a considerable performance penalty
on all regular expression matches. See ‘‘BUGS’’.

$LAST_PAREN_MATCH
$+ The text matched by the last bracket of the last successful search pattern. This is useful if

you don’t know which one of a set of alternative patterns matched. For example:

/Version: (.*)Revision: (.*)/ && ($rev = $+);

(Mnemonic: be positive and forward looking.) This variable is read-only and dynamically
scoped to the current BLOCK.

$ˆN The text matched by the used group most-recently closed (i.e. the group with the rightmost
closing parenthesis) of the last successful search pattern. (Mnemonic: the (possibly) Nested
parenthesis that most recently closed.)

This is primarily used inside (?{...}) blocks for examining text recently matched. For
example, to effectively capture text to a variable (in addition to $1, $2, etc.), replace (...)
with

(?:(...)(?{ $var = $ˆN }))

By setting and then using $var in this way relieves you from having to worry about exactly
which numbered set of parentheses they are.

This variable is dynamically scoped to the current BLOCK.

@LAST_MATCH_END
@+ This array holds the offsets of the ends of the last successful submatches in the currently

active dynamic scope. $+[0] is the offset into the string of the end of the entire match.

160 2003-11-25 perl v5.8.3



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

This is the same value as what the pos function returns when called on the variable that was
matched against. The nth element of this array holds the offset of the nth submatch, so
$+[1] is the offset past where $1 ends, $+[2] the offset past where $2 ends, and so on.
You can use $#+ to determine how many subgroups were in the last successful match. See
the examples given for the @− variable.

$* Set to a non-zero integer value to do multi-line matching within a string, 0 (or undefined) to
tell Perl that it can assume that strings contain a single line, for the purpose of optimizing
pattern matches. Pattern matches on strings containing multiple newlines can produce
confusing results when $* is 0 or undefined. Default is undefined. (Mnemonic: * matches
multiple things.) This variable influences the interpretation of only ˆ and $. A literal newline
can be searched for even when $* == 0.

Use of $* is deprecated in modern Perl, supplanted by the /s and /m modifiers on pattern
matching.

Assigning a non-numerical value to $* triggers a warning (and makes $* act if $* == 0),
while assigning a numerical value to $* makes that an implicit int is applied on the value.

HANDLE−>input_line_number(EXPR)
$INPUT_LINE_NUMBER
$NR
$. Current line number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that have been read from it. (Depending
on the value of $/, Perl’s idea of what constitutes a line may not match yours.) When a line
is read from a filehandle (via readline() or <>), or when tell() or seek() is called on it, $.
becomes an alias to the line counter for that filehandle.

You can adjust the counter by assigning to $., but this will not actually move the seek
pointer. Localizing $. will not localize the filehandle’s line count. Instead, it will localize
perl’s notion of which filehandle $. is currently aliased to.

$. is reset when the filehandle is closed, but not when an open filehandle is reopened
without an intervening close(). For more details, see "I/O Operators" in perlop. Because <>
never does an explicit close, line numbers increase across ARGV files (but see examples in
‘‘eof ’’ in perlfunc).

You can also use HANDLE−>input_line_number(EXPR) to access the line counter for
a giv en filehandle without having to worry about which handle you last accessed.

(Mnemonic: many programs use ‘‘.’’ to mean the current line number.)

IO::Handle−>input_record_separator(EXPR)
$INPUT_RECORD_SEPARATOR
$RS
$/ The input record separator, newline by default. This influences Perl’s idea of what a ‘‘line’’

is. Works like awk’s RS variable, including treating empty lines as a terminator if set to the
null string. (An empty line cannot contain any spaces or tabs.) You may set it to a multi-
character string to match a multi-character terminator, or to undef to read through the end
of file. Setting it to "\n\n" means something slightly different than setting to "", if the file
contains consecutive empty lines. Setting to "" will treat two or more consecutive empty
lines as a single empty line. Setting to "\n\n" will blindly assume that the next input
character belongs to the next paragraph, even if it’s a newline. (Mnemonic: / delimits line
boundaries when quoting poetry.)

local $/; # enable "slurp" mode
local $_ = <FH>; # whole file now here
s/\n[ \t]+/ /g;

Remember: the value of $/ is a string, not a regex. awk has to be better for something. :−)

Setting $/ to a reference to an integer, scalar containing an integer, or scalar that’s
convertible to an integer will attempt to read records instead of lines, with the maximum
record size being the referenced integer. So this:

perl v5.8.3 2003-11-25 161



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

local $/ = \32768; # or \"32768", or \$var_containing_32768
open my $fh, $myfile or die $!;
local $_ = <$fh>;

will read a record of no more than 32768 bytes from FILE. If you’re not reading from a
record-oriented file (or your OS doesn’t hav e record-oriented files), then you’ll likely get a
full chunk of data with every read. If a record is larger than the record size you’ve set, you’ll
get the record back in pieces.

On VMS, record reads are done with the equivalent of sysread, so it’s best not to mix
record and non-record reads on the same file. (This is unlikely to be a problem, because any
file you’d want to read in record mode is probably unusable in line mode.) Non-VMS
systems do normal I/O, so it’s safe to mix record and non-record reads of a file.

See also ‘‘Newlines’’ in perlport. Also see $..

HANDLE−>autoflush(EXPR)
$OUTPUT_AUTOFLUSH
$ If set to nonzero, forces a flush right away and after every write or print on the currently

selected output channel. Default is 0 (regardless of whether the channel is really buffered by
the system or not; $ tells you only whether you’ve asked Perl explicitly to flush after each
write). STDOUT will typically be line buffered if output is to the terminal and block buffered
otherwise. Setting this variable is useful primarily when you are outputting to a pipe or
socket, such as when you are running a Perl program under rsh and want to see the output as
it’s happening. This has no effect on input buffering. See ‘‘getc’’ in perlfunc for that.
(Mnemonic: when you want your pipes to be piping hot.)

IO::Handle−>output_field_separator EXPR
$OUTPUT_FIELD_SEPARATOR
$OFS
$, The output field separator for the print operator. Ordinarily the print operator simply prints

out its arguments without further adornment. To get behavior more like awk, set this variable
as you would set awk’s OFS variable to specify what is printed between fields. (Mnemonic:
what is printed when there is a ‘‘,’’ in your print statement.)

IO::Handle−>output_record_separator EXPR
$OUTPUT_RECORD_SEPARATOR
$ORS
$\ The output record separator for the print operator. Ordinarily the print operator simply prints

out its arguments as is, with no trailing newline or other end-of-record string added. To get
behavior more like awk, set this variable as you would set awk’s ORS variable to specify
what is printed at the end of the print. (Mnemonic: you set $\ instead of adding ‘‘\n’’ at the
end of the print. Also, it’s just like $/, but it’s what you get ‘‘back’’ from Perl.)

$LIST_SEPARATOR
$" This is like $, except that it applies to array and slice values interpolated into a double-

quoted string (or similar interpreted string). Default is a space. (Mnemonic: obvious, I
think.)

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; The subscript separator for multidimensional array emulation. If you refer to a hash element

as

$foo{$a,$b,$c}

it really means

$foo{join($;, $a, $b, $c)}

But don’t put

@foo{$a,$b,$c} # a slice--note the @

which means

162 2003-11-25 perl v5.8.3



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

($foo{$a},$foo{$b},$foo{$c})

Default is ‘‘\034’’, the same as SUBSEP in awk. If your keys contain binary data there might
not be any safe value for $;. (Mnemonic: comma (the syntactic subscript separator) is a
semi−semicolon. Yeah, I know, it’s pretty lame, but $, is already taken for something more
important.)

Consider using ‘‘real’’ multidimensional arrays as described in perllol.

$# The output format for printed numbers. This variable is a half-hearted attempt to emulate
awk’s OFMT variable. There are times, however, when awk and Perl have differing notions
of what counts as numeric. The initial value is "%.ng", where n is the value of the macro
DBL_DIG from your system’s float.h. This is different from awk’s default OFMT setting of
‘‘%.6g’’, so you need to set $# explicitly to get awk’s value. (Mnemonic: # is the number
sign.)

Use of $# is deprecated.

HANDLE−>format_page_number(EXPR)
$FORMAT_PAGE_NUMBER
$% The current page number of the currently selected output channel. Used with formats.

(Mnemonic: % is page number in nroff.)

HANDLE−>format_lines_per_page(EXPR)
$FORMAT_LINES_PER_PAGE
$= The current page length (printable lines) of the currently selected output channel. Default is

60. Used with formats. (Mnemonic: = has horizontal lines.)

HANDLE−>format_lines_left(EXPR)
$FORMAT_LINES_LEFT
$− The number of lines left on the page of the currently selected output channel. Used with

formats. (Mnemonic: lines_on_page − lines_printed.)

@LAST_MATCH_START
@− $−[0] is the offset of the start of the last successful match. $−[n] is the offset of the start of

the substring matched by n−th subpattern, or undef if the subpattern did not match.

Thus after a match against $_, $& coincides with substr $_, $−[0], $+[0] −
$−[0]. Similarly, $n coincides with substr $_, $−[n], $+[n] − $−[n] if
$−[n] is defined, and $+ coincides with substr $_, $−[$#−], $+[$#−]. One can
use $#− to find the last matched subgroup in the last successful match. Contrast with $#+,
the number of subgroups in the regular expression. Compare with @+.

This array holds the offsets of the beginnings of the last successful submatches in the
currently active dynamic scope. $−[0] is the offset into the string of the beginning of the
entire match. The nth element of this array holds the offset of the nth submatch, so $−[1] is
the offset where $1 begins, $−[2] the offset where $2 begins, and so on.

After a match against some variable $var:

$‘ is the same as substr($var, 0, $−[0])
$& is the same as substr($var, $−[0], $+[0] − $−[0])
$’ is the same as substr($var, $+[0])
$1 is the same as substr($var, $−[1], $+[1] − $−[1])
$2 is the same as substr($var, $−[2], $+[2] − $−[2])
$3 is the same as substr $var, $−[3], $+[3] − $−[3])

HANDLE−>format_name(EXPR)
$FORMAT_NAME
$˜ The name of the current report format for the currently selected output channel. Default is

the name of the filehandle. (Mnemonic: brother to $ˆ.)

HANDLE−>format_top_name(EXPR)
$FORMAT_TOP_NAME
$ˆ The name of the current top-of-page format for the currently selected output channel.

Default is the name of the filehandle with _TOP appended. (Mnemonic: points to top of
page.)

perl v5.8.3 2003-11-25 163



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

IO::Handle−>format_line_break_characters EXPR
$FORMAT_LINE_BREAK_CHARACTERS
$: The current set of characters after which a string may be broken to fill continuation fields

(starting with ˆ) in a format. Default is ‘‘ \n−’’, to break on whitespace or hyphens.
(Mnemonic: a ‘‘colon’’ in poetry is a part of a line.)

IO::Handle−>format_formfeed EXPR
$FORMAT_FORMFEED
$ˆL What formats output as a form feed. Default is \f.

$ACCUMULATOR
$ˆA The current value of the write() accumulator for format() lines. A format contains formline()

calls that put their result into $ˆA. After calling its format, write() prints out the contents of
$ˆA and empties. So you never really see the contents of $ˆA unless you call formline()
yourself and then look at it. See perlform and ‘‘formline()’’ in perlfunc.

$CHILD_ERROR
$? The status returned by the last pipe close, backtick (‘‘) command, successful call to wait()

or waitpid(), or from the system() operator. This is just the 16−bit status word returned by the
wait() system call (or else is made up to look like it). Thus, the exit value of the subprocess
is really ($? >> 8), and $? & 127 gives which signal, if any, the process died from, and
$? & 128 reports whether there was a core dump. (Mnemonic: similar to sh and ksh.)

Additionally, if the h_errno variable is supported in C, its value is returned via $? if any
gethost*() function fails.

If you have installed a signal handler for SIGCHLD, the value of $? will usually be wrong
outside that handler.

Inside an END subroutine $? contains the value that is going to be given to exit(). You
can modify $? in an END subroutine to change the exit status of your program. For example:

END {
$? = 1 if $? == 255; # die would make it 255

}

Under VMS, the pragma use vmsish ’status’ makes $? reflect the actual VMS exit
status, instead of the default emulation of POSIX status; see ‘‘$?’’ in perlvms for details.

Also see ‘‘Error Indicators’’.

${ˆENCODING}
The object reference to the Encode object that is used to convert the source code to Unicode.
Thanks to this variable your perl script does not have to be written in UTF−8. Default is
undef. The direct manipulation of this variable is highly discouraged. See encoding for more
details.

$OS_ERROR
$ERRNO
$! If used numerically, yields the current value of the C errno variable, or in other words, if a

system or library call fails, it sets this variable. This means that the value of $! is
meaningful only immediately after a failure:

if (open(FH, $filename)) {
# Here $! is meaningless.
...

} else {
# ONLY here is $! meaningful.
...
# Already here $! might be meaningless.

}
# Since here we might have either success or failure,
# here $! is meaningless.

In the above meaningless stands for anything: zero, non−zero, undef. A successful system
or library call does not set the variable to zero.

164 2003-11-25 perl v5.8.3



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

If used as a string, yields the corresponding system error string. You can assign a number to
$! to set errno if, for instance, you want "$!" to return the string for error n, or you want to
set the exit value for the die() operator. (Mnemonic: What just went bang?)

Also see ‘‘Error Indicators’’.

%! Each element of %! has a true value only if $! is set to that value. For example,
$!{ENOENT} is true if and only if the current value of $! is ENOENT; that is, if the most
recent error was ‘‘No such file or directory’’ (or its moral equivalent: not all operating
systems give that exact error, and certainly not all languages). To check if a particular key is
meaningful on your system, use exists $!{the_key}; for a list of legal keys, use keys
%!. See Errno for more information, and also see above for the validity of $!.

$EXTENDED_OS_ERROR
$ˆE Error information specific to the current operating system. At the moment, this differs from

$! under only VMS, OS/2, and Win32 (and for MacPerl). On all other platforms, $ˆE is
always just the same as $!.

Under VMS, $ˆE provides the VMS status value from the last system error. This is more
specific information about the last system error than that provided by $!. This is particularly
important when $! is set to EVMSERR.

Under OS/2, $ˆE is set to the error code of the last call to OS/2 API either via CRT, or directly
from perl.

Under Win32, $ˆE always returns the last error information reported by the Win32 call
GetLastError() which describes the last error from within the Win32 API. Most
Win32−specific code will report errors via $ˆE. ANSI C and Unix-like calls set errno and
so most portable Perl code will report errors via $!.

Caveats mentioned in the description of $! generally apply to $ˆE, also. (Mnemonic: Extra
error explanation.)

Also see ‘‘Error Indicators’’.

$EVAL_ERROR
$@ The Perl syntax error message from the last eval() operator. If $@ is the null string, the last

eval() parsed and executed correctly (although the operations you invoked may have failed in
the normal fashion). (Mnemonic: Where was the syntax error ‘‘at’’?)

Warning messages are not collected in this variable. You can, however, set up a routine to
process warnings by setting $SIG{_ _WARN_ _} as described below.

Also see ‘‘Error Indicators’’.

$PROCESS_ID
$PID
$$ The process number of the Perl running this script. You should consider this variable

read−only, although it will be altered across fork() calls. (Mnemonic: same as shells.)

Note for Linux users: on Linux, the C functions getpid() and getppid() return
different values from different threads. In order to be portable, this behavior is not reflected
by $$, whose value remains consistent across threads. If you want to call the underlying
getpid(), you may use the CPAN module Linux::Pid.

$REAL_USER_ID
$UID
$< The real uid of this process. (Mnemonic: it’s the uid you came from, if you’re running

setuid.) You can change both the real uid and the effective uid at the same time by using
POSIX::setuid().

$EFFECTIVE_USER_ID
$EUID
$> The effective uid of this process. Example:

perl v5.8.3 2003-11-25 165



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

$< = $>; # set real to effective uid
($<,$>) = ($>,$<); # swap real and effective uid

You can change both the effective uid and the real uid at the same time by using
POSIX::setuid().

(Mnemonic: it’s the uid you went to, if you’re running setuid.) $< and $> can be swapped
only on machines supporting setreuid().

$REAL_GROUP_ID
$GID
$( The real gid of this process. If you are on a machine that supports membership in multiple

groups simultaneously, giv es a space separated list of groups you are in. The first number is
the one returned by getgid(), and the subsequent ones by getgroups(), one of which may be
the same as the first number.

However, a value assigned to $( must be a single number used to set the real gid. So the
value given by $( should not be assigned back to $( without being forced numeric, such as
by adding zero.

You can change both the real gid and the effective gid at the same time by using
POSIX::setgid().

(Mnemonic: parentheses are used to group things. The real gid is the group you left, if you’re
running setgid.)

$EFFECTIVE_GROUP_ID
$EGID
$) The effective gid of this process. If you are on a machine that supports membership in

multiple groups simultaneously, giv es a space separated list of groups you are in. The first
number is the one returned by getegid(), and the subsequent ones by getgroups(), one of
which may be the same as the first number.

Similarly, a value assigned to $) must also be a space-separated list of numbers. The first
number sets the effective gid, and the rest (if any) are passed to setgroups(). To get the effect
of an empty list for setgroups(), just repeat the new effective gid; that is, to force an effective
gid of 5 and an effectively empty setgroups() list, say $) = "5 5" .

You can change both the effective gid and the real gid at the same time by using
POSIX::setgid() (use only a single numeric argument).

(Mnemonic: parentheses are used to group things. The effective gid is the group that’s right
for you, if you’re running setgid.)

$<, $>, $( and $) can be set only on machines that support the corresponding
set[re][ug]id() routine. $( and $) can be swapped only on machines supporting setregid().

$PROGRAM_NAME
$0 Contains the name of the program being executed.

On some (read: not all) operating systems assigning to $0 modifies the argument area that
the ps program sees. On some platforms you may have to use special ps options or a
different ps to see the changes. Modifying the $0 is more useful as a way of indicating the
current program state than it is for hiding the program you’re running. (Mnemonic: same as
sh and ksh.)

Note that there are platform specific limitations on the the maximum length of $0. In the
most extreme case it may be limited to the space occupied by the original $0.

In some platforms there may be arbitrary amount of padding, for example space characters,
after the modified name as shown by ps. In some platforms this padding may extend all the
way to the original length of the argument area, no matter what you do (this is the case for
example with Linux 2.2).

Note for BSD users: setting $0 does not completely remove ‘‘perl’’ from the ps (1) output.
For example, setting $0 to "foobar" may result in "perl: foobar (perl)"
(whether both the "perl: " prefix and the ‘‘ (perl)’’ suffix are shown depends on your

166 2003-11-25 perl v5.8.3



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

exact BSD variant and version). This is an operating system feature, Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so that any thread may modify its copy
of the $0 and the change becomes visible to ps (1) (assuming the operating system plays
along). Note that the the view of $0 the other threads have will not change since they hav e
their own copies of it.

$[ The index of the first element in an array, and of the first character in a substring. Default is
0, but you could theoretically set it to 1 to make Perl behave more like awk (or Fortran) when
subscripting and when evaluating the index() and substr() functions. (Mnemonic: [ begins
subscripts.)

As of release 5 of Perl, assignment to $[ is treated as a compiler directive, and cannot
influence the behavior of any other file. (That’s why you can only assign compile-time
constants to it.) Its use is highly discouraged.

Note that, unlike other compile-time directives (such as strict), assignment to $[ can be seen
from outer lexical scopes in the same file. However, you can use local() on it to strictly
bound its value to a lexical block.

$] The version + patchlevel / 1000 of the Perl interpreter. This variable can be used to
determine whether the Perl interpreter executing a script is in the right range of versions.
(Mnemonic: Is this version of perl in the right bracket?) Example:

warn "No checksumming!\n" if $] < 3.019;

See also the documentation of use VERSION and require VERSION for a convenient
way to fail if the running Perl interpreter is too old.

When testing the variable, to steer clear of floating point inaccuracies you might want to
prefer the inequality tests < and > to the tests containing equivalence: <=, ==, and >=.

The floating point representation can sometimes lead to inaccurate numeric comparisons.
See $ˆV for a more modern representation of the Perl version that allows accurate string
comparisons.

$COMPILING
$ˆC The current value of the flag associated with the −c switch. Mainly of use with −MO=... to

allow code to alter its behavior when being compiled, such as for example to AUTOLOAD at
compile time rather than normal, deferred loading. See perlcc. Setting $ˆC = 1 is similar
to calling B::minus_c.

$DEBUGGING
$ˆD The current value of the debugging flags. (Mnemonic: value of −D switch.) May be read or

set. Like its command-line equivalent, you can use numeric or symbolic values, eg $ˆD =
10 or $ˆD = "st".

$SYSTEM_FD_MAX
$ˆF The maximum system file descriptor, ordinarily 2. System file descriptors are passed to

exec()ed processes, while higher file descriptors are not. Also, during an open(), system file
descriptors are preserved even if the open() fails. (Ordinary file descriptors are closed before
the open() is attempted.) The close-on-exec status of a file descriptor will be decided
according to the value of $ˆF when the corresponding file, pipe, or socket was opened, not
the time of the exec().

$ˆH WARNING: This variable is strictly for internal use only. Its availability, behavior, and
contents are subject to change without notice.

This variable contains compile-time hints for the Perl interpreter. At the end of compilation
of a BLOCK the value of this variable is restored to the value when the interpreter started to
compile the BLOCK.

When perl begins to parse any block construct that provides a lexical scope (e.g., eval body,
required file, subroutine body, loop body, or conditional block), the existing value of $ˆH is
saved, but its value is left unchanged. When the compilation of the block is completed, it
regains the saved value. Between the points where its value is saved and restored, code that
executes within BEGIN blocks is free to change the value of $ˆH.

perl v5.8.3 2003-11-25 167



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

This behavior provides the semantic of lexical scoping, and is used in, for instance, the use
strict pragma.

The contents should be an integer; different bits of it are used for different pragmatic flags.
Here’s an example:

sub add_100 { $ˆH = 0x100 }

sub foo {
BEGIN { add_100() }
bar->baz($boon);

}

Consider what happens during execution of the BEGIN block. At this point the BEGIN block
has already been compiled, but the body of foo() is still being compiled. The new value of
$ˆH will therefore be visible only while the body of foo() is being compiled.

Substitution of the above BEGIN block with:

BEGIN { require strict; strict->import(’vars’) }

demonstrates how use strict ’vars’ is implemented. Here’s a  conditional version of
the same lexical pragma:

BEGIN { require strict; strict->import(’vars’) if $condition }

%ˆH WARNING: This variable is strictly for internal use only. Its availability, behavior, and
contents are subject to change without notice.

The %ˆH hash provides the same scoping semantic as $ˆH. This makes it useful for
implementation of lexically scoped pragmas.

$INPLACE_EDIT
$ˆI The current value of the inplace-edit extension. Use undef to disable inplace editing.

(Mnemonic: value of −i switch.)

$ˆM By default, running out of memory is an untrappable, fatal error. Howev er, if suitably built,
Perl can use the contents of $ˆM as an emergency memory pool after die()ing. Suppose that
your Perl were compiled with −DPERL_EMERGENCY_SBRK and used Perl’s malloc.
Then

$ˆM = ’a’ x (1 << 16);

would allocate a 64K buffer for use in an emergency. See the INSTALL file in the Perl
distribution for information on how to enable this option. To discourage casual use of this
advanced feature, there is no English long name for this variable.

$OSNAME
$ˆO The name of the operating system under which this copy of Perl was built, as determined

during the configuration process. The value is identical to $Config{’osname’}. See
also Config and the −V command-line switch documented in perlrun.

In Windows platforms, $ˆO is not very helpful: since it is always MSWin32, it doesn’t tell the
difference between 95/98/ME/NT/2000/XP/CE/.NET. Use Win32::GetOSName() or
Win32::GetOSVersion() (see Win32 and perlport) to distinguish between the variants.

${ˆOPEN}
An internal variable used by PerlIO. A string in two parts, separated by a \0 byte, the first
part describes the input layers, the second part describes the output layers.

$PERLDB
$ˆP The internal variable for debugging support. The meanings of the various bits are subject to

change, but currently indicate:

0x01 Debug subroutine enter/exit.

0x02 Line-by-line debugging.

0x04 Switch off optimizations.

168 2003-11-25 perl v5.8.3



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

0x08 Preserve more data for future interactive inspections.

0x10 Keep info about source lines on which a subroutine is defined.

0x20 Start with single-step on.

0x40 Use subroutine address instead of name when reporting.

0x80 Report goto &subroutine as well.

0x100 Provide informative ‘‘file’’ names for evals based on the place they were compiled.

0x200 Provide informative names to anonymous subroutines based on the place they were
compiled.

0x400 Debug assertion subroutines enter/exit.

Some bits may be relevant at compile-time only, some at run-time only. This is a new
mechanism and the details may change.

$LAST_REGEXP_CODE_RESULT
$ˆR The result of evaluation of the last successful (?{ code }) regular expression assertion

(see perlre). May be written to.

$EXCEPTIONS_BEING_CAUGHT
$ˆS Current state of the interpreter.

$ˆS State
--------- -------------------
undef Parsing module/eval
true (1) Executing an eval
false (0) Otherwise

The first state may happen in $SIG{_ _DIE_ _} and $SIG{_ _WARN_ _} handlers.

$BASETIME
$ˆT The time at which the program began running, in seconds since the epoch (beginning of

1970). The values returned by the −M, −A, and −C filetests are based on this value.

${ˆTAINT}
Reflects if taint mode is on or off. 1 for on (the program was run with −T), 0 for off, −1
when only taint warnings are enabled (i.e. with −t or −TU).

${ˆUNICODE}
Reflects certain Unicode settings of Perl. See perlrun documentation for the −C switch for
more information about the possible values. This variable is set during Perl startup and is
thereafter read−only.

$PERL_VERSION
$ˆV The revision, version, and subversion of the Perl interpreter, represented as a string composed

of characters with those ordinals. Thus in Perl v5.6.0 it equals chr(5) . chr(6) .
chr(0) and will return true for $ˆV eq v5.6.0. Note that the characters in this string
value can potentially be in Unicode range.

This can be used to determine whether the Perl interpreter executing a script is in the right
range of versions. (Mnemonic: use ˆV for Version Control.) Example:

warn "No \"our\" declarations!\n" if $ˆV and $ˆV lt v5.6.0;

To convert $ˆV into its string representation use sprintf()’s "%vd" conversion:

printf "version is v%vd\n", $ˆV; # Perl’s version

See the documentation of use VERSION and require VERSION for a convenient way
to fail if the running Perl interpreter is too old.

See also $] for an older representation of the Perl version.

$WARNING
$ˆW The current value of the warning switch, initially true if −w was used, false otherwise, but

directly modifiable. (Mnemonic: related to the −w switch.) See also warnings.

perl v5.8.3 2003-11-25 169



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

${ˆWARNING_BITS}
The current set of warning checks enabled by the use warnings pragma. See the
documentation of warnings for more details.

$EXECUTABLE_NAME
$ˆX The name used to execute the current copy of Perl, from C’s argv[0].

Depending on the host operating system, the value of $ˆX may be a relative or absolute
pathname of the perl program file, or may be the string used to invoke perl but not the
pathname of the perl program file. Also, most operating systems permit invoking programs
that are not in the PATH environment variable, so there is no guarantee that the value of $ˆX is
in PATH. For VMS, the value may or may not include a version number.

You usually can use the value of $ˆX to re-invoke an independent copy of the same perl that
is currently running, e.g.,

@first_run = ‘$ˆX -le "print int rand 100 for 1..100"‘;

But recall that not all operating systems support forking or capturing of the output of
commands, so this complex statement may not be portable.

It is not safe to use the value of $ˆX as a path name of a file, as some operating systems that
have a mandatory suffix on executable files do not require use of the suffix when invoking a
command. To convert the value of $ˆX to a path name, use the following statements:

# Build up a set of file names (not command names).
use Config;
$this_perl = $ˆX;

if ($ˆO ne ’VMS’)
{$this_perl .= $Config{_exe}

unless $this_perl =˜ m/$Config{_exe}$/i;}

Because many operating systems permit anyone with read access to the Perl program file to
make a copy of it, patch the copy, and then execute the copy, the security-conscious Perl
programmer should take care to invoke the installed copy of perl, not the copy referenced by
$ˆX. The following statements accomplish this goal, and produce a pathname that can be
invoked as a command or referenced as a file.

use Config;
$secure_perl_path = $Config{perlpath};
if ($ˆO ne ’VMS’)

{$secure_perl_path .= $Config{_exe}
unless $secure_perl_path =˜ m/$Config{_exe}$/i;}

ARGV The special filehandle that iterates over command-line filenames in @ARGV. Usually written
as the null filehandle in the angle operator <>. Note that currently ARGV only has its magical
effect within the <> operator; elsewhere it is just a plain filehandle corresponding to the last
file opened by <>. In particular, passing \*ARGV as a parameter to a function that expects a
filehandle may not cause your function to automatically read the contents of all the files in
@ARGV.

$ARGV contains the name of the current file when reading from <>.

@ARGV
The array @ARGV contains the command-line arguments intended for the script. $#ARGV is
generally the number of arguments minus one, because $ARGV[0] is the first argument, not
the program’s command name itself. See $0 for the command name.

ARGVOUT
The special filehandle that points to the currently open output file when doing edit-in-place
processing with −i. Useful when you have to do a lot of inserting and don’t want to keep
modifying $_. See perlrun for the −i switch.

@F The array @F contains the fields of each line read in when autosplit mode is turned on. See
perlrun for the −a switch. This array is package−specific, and must be declared or given a
full package name if not in package main when running under strict ’vars’.

170 2003-11-25 perl v5.8.3



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

@INC The array @INC contains the list of places that the do EXPR, require, or use constructs
look for their library files. It initially consists of the arguments to any −I command-line
switches, followed by the default Perl library, probably /usr/local/lib/perl, followed by ‘‘.’’, to
represent the current directory. (‘‘.’’ will not be appended if taint checks are enabled, either
by −T or by −t.) If you need to modify this at runtime, you should use the use lib
pragma to get the machine-dependent library properly loaded also:

use lib ’/mypath/libdir/’;
use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl code directly into
@INC. Those hooks may be subroutine references, array references or blessed objects. See
‘‘require’’ in perlfunc for details.

@_ Within a subroutine the array @_ contains the parameters passed to that subroutine. See
perlsub.

%INC The hash %INC contains entries for each filename included via the do, require, or use
operators. The key is the filename you specified (with module names converted to
pathnames), and the value is the location of the file found. The require operator uses this
hash to determine whether a particular file has already been included.

If the file was loaded via a hook (e.g. a subroutine reference, see ‘‘require’’ in perlfunc for a
description of these hooks), this hook is by default inserted into %INC in place of a filename.
Note, however, that the hook may have set the %INC entry by itself to provide some more
specific info.

%ENV
$ENV{expr}

The hash %ENV contains your current environment. Setting a value in ENV changes the
environment for any child processes you subsequently fork() off.

%SIG
$SIG{expr}

The hash %SIG contains signal handlers for signals. For example:

sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig--shutting down\n";
close(LOG);
exit(0);

}

$SIG{’INT’} = \&handler;
$SIG{’QUIT’} = \&handler;
...
$SIG{’INT’} = ’DEFAULT’; # restore default action
$SIG{’QUIT’} = ’IGNORE’; # ignore SIGQUIT

Using a value of ’IGNORE’ usually has the effect of ignoring the signal, except for the
CHLD signal. See perlipc for more about this special case.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not recommended)
$SIG{"PIPE"} = \&Plumber; # just fine; assume current Plumber
$SIG{"PIPE"} = *Plumber; # somewhat esoteric
$SIG{"PIPE"} = Plumber(); # oops, what did Plumber() return??

Be sure not to use a bareword as the name of a signal handler, lest you inadvertently call it.

If your system has the sigaction() function then signal handlers are installed using it. This
means you get reliable signal handling.

The default delivery policy of signals changed in Perl 5.8.0 from immediate (also known as
‘‘unsafe’’) to deferred, also known as ‘‘safe signals’’. See perlipc for more information.

perl v5.8.3 2003-11-25 171



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Certain internal hooks can be also set using the %SIG hash. The routine indicated by
$SIG{_ _WARN_ _} is called when a warning message is about to be printed. The warning
message is passed as the first argument. The presence of a _ _WARN_ _ hook causes the
ordinary printing of warnings to STDERR to be suppressed. You can use this to save
warnings in a variable, or turn warnings into fatal errors, like this:

local $SIG{__WARN__} = sub { die $_[0] };
eval $proggie;

The routine indicated by $SIG{_ _DIE_ _} is called when a fatal exception is about to be
thrown. The error message is passed as the first argument. When a _ _DIE_ _ hook routine
returns, the exception processing continues as it would have in the absence of the hook,
unless the hook routine itself exits via a goto, a loop exit, or a die(). The __DIE_ _
handler is explicitly disabled during the call, so that you can die from a __DIE_ _ handler.
Similarly for __WARN_ _.

Due to an implementation glitch, the $SIG{_ _DIE_ _} hook is called even inside an
eval(). Do not use this to rewrite a pending exception in $@, or as a bizarre substitute for
overriding CORE::GLOBAL::die(). This strange action at a distance may be fixed in a future
release so that $SIG{_ _DIE_ _} is only called if your program is about to exit, as was the
original intent. Any other use is deprecated.

__DIE_ _/__WARN_ _ handlers are very special in one respect: they may be called to
report (probable) errors found by the parser. In such a case the parser may be in inconsistent
state, so any attempt to evaluate Perl code from such a handler will probably result in a
segfault. This means that warnings or errors that result from parsing Perl should be used with
extreme caution, like this:

require Carp if defined $ˆS;
Carp::confess("Something wrong") if defined &Carp::confess;
die "Something wrong, but could not load Carp to give backtrace...

To see backtrace try starting Perl with -MCarp switch";

Here the first line will load Carp unless it is the parser who called the handler. The second
line will print backtrace and die if Carp was available. The third line will be executed only if
Carp was not available.

See ‘‘die’’ in perlfunc, ‘‘warn’’ in perlfunc, ‘‘eval’’ in perlfunc, and warnings for additional
information.

Error Indicators

The variables $@, $!, $ˆE, and $? contain information about different types of error conditions that
may appear during execution of a Perl program. The variables are shown ordered by the ‘‘distance’’
between the subsystem which reported the error and the Perl process. They correspond to errors
detected by the Perl interpreter, C library, operating system, or an external program, respectively.

To illustrate the differences between these variables, consider the following Perl expression, which uses
a single-quoted string:

eval q{
open my $pipe, "/cdrom/install " or die $!;
my @res = <$pipe>;
close $pipe or die "bad pipe: $?, $!";

};

After execution of this statement all 4 variables may have been set.

$@ is set if the string to be eval−ed did not compile (this may happen if open or close were
imported with bad prototypes), or if Perl code executed during evaluation die()d .  In these cases the
value of $@ is the compile error, or the argument to die (which will interpolate $! and $?!). (See
also Fatal, though.)

When the eval() expression above is executed, open(), <PIPE>, and close are translated to calls in
the C run-time library and thence to the operating system kernel. $! is set to the C library’s errno if
one of these calls fails.

172 2003-11-25 perl v5.8.3



PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

Under a few operating systems, $ˆE may contain a more verbose error indicator, such as in this case,
‘‘CDROM tray not closed.’’ Systems that do not support extended error messages leave $ˆE the same
as $!.

Finally, $? may be set to non−0 value if the external program /cdrom/install fails. The upper eight bits
reflect specific error conditions encountered by the program (the program’s exit() value). The lower
eight bits reflect mode of failure, like signal death and core dump information See wait (2) for details.
In contrast to $! and $ˆE, which are set only if error condition is detected, the variable $? is set on
each wait or pipe close, overwriting the old value. This is more like $@, which on every eval() is
always set on failure and cleared on success.

For more details, see the individual descriptions at $@, $!, $ˆE, and $?.

Technical Note on the Syntax of Variable Names

Variable names in Perl can have sev eral formats. Usually, they must begin with a letter or underscore,
in which case they can be arbitrarily long (up to an internal limit of 251 characters) and may contain
letters, digits, underscores, or the special sequence :: or ’. In this case, the part before the last :: or
’ is taken to be a package qualifier; see perlmod.

Perl variable names may also be a sequence of digits or a single punctuation or control character.
These names are all reserved for special uses by Perl; for example, the all-digits names are used to hold
data captured by backreferences after a regular expression match. Perl has a special syntax for the
single-control-character names: It understands ˆX (caret X) to mean the control−X character. For
example, the notation $ˆW (dollar−sign caret W) is the scalar variable whose name is the single
character control−W. This is better than typing a literal control−W into your program.

Finally, new in Perl 5.6, Perl variable names may be alphanumeric strings that begin with control
characters (or better yet, a caret). These variables must be written in the form ${ˆFoo}; the braces
are not optional. ${ˆFoo} denotes the scalar variable whose name is a control−F followed by two
o’s. These variables are reserved for future special uses by Perl, except for the ones that begin with ˆ_
(control−underscore or caret−underscore). No control-character name that begins with ˆ_ will acquire
a special meaning in any future version of Perl; such names may therefore be used safely in programs.
$ˆ_ itself, however, is reserved.

Perl identifiers that begin with digits, control characters, or punctuation characters are exempt from the
effects of the package declaration and are always forced to be in package main; they are also exempt
from strict ’vars’ errors. A few other names are also exempt in these ways:

ENV STDIN
INC STDOUT
ARGV STDERR
ARGVOUT _
SIG

In particular, the new special ${ˆ_XYZ} variables are always taken to be in package main, reg ardless
of any package declarations presently in scope.

BUGS
Due to an unfortunate accident of Perl’s implementation, use English imposes a considerable
performance penalty on all regular expression matches in a program, regardless of whether they occur
in the scope of use English. For that reason, saying use English in libraries is strongly
discouraged. See the Devel::SawAmpersand module documentation from CPAN (
http://www.cpan.org/modules/by−module/Devel/ ) for more information.

Having to even think about the $ˆS variable in your exception handlers is simply wrong.
$SIG{_ _DIE_ _} as currently implemented invites grievous and difficult to track down errors.
Av oid it and use an END{} or CORE::GLOBAL::die override instead.

perl v5.8.3 2003-11-25 173



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

NAME
perlrun − how to execute the Perl interpreter

SYNOPSIS
perl [ −sTtuUWX ] [ −hv ] [ −V[:configvar] ]

[ −cw ] [ −d[:debugger] ] [ −D[number/list] ]
[ −pna ] [ −Fpattern ] [ −l[octal] ] [ −0[octal/hexadecimal] ]
[ −Idir ] [ −m[−]module ] [ −M[−]’module...’ ] [ −P ] [ −S ]
[ −x[dir] ]  [ −i[extension] ]
[ −e ’command’ ] [ −− ] [ programfile ] [ argument ]... [ −C [number/list] ] ]>

DESCRIPTION
The normal way to run a Perl program is by making it directly executable, or else by passing the name
of the source file as an argument on the command line. (An interactive Perl environment is also
possible — see perldebug for details on how to do that.) Upon startup, Perl looks for your program in
one of the following places:

1. Specified line by line via −e switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that systems
supporting the #! notation invoke interpreters this way. See ‘‘Location of Perl’’.)

3. Passed in implicitly via standard input. This works only if there are no filename arguments — to
pass arguments to a STDIN-read program you must explicitly specify a ‘‘−’’ for the program
name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you’ve specified a −x
switch, in which case it scans for the first line starting with #! and containing the word ‘‘perl’’, and
starts there instead. This is useful for running a program embedded in a larger message. (In this case
you would indicate the end of the program using the __END_ _ token.)

The #! line is always examined for switches as the line is being parsed. Thus, if you’re on a machine
that allows only one argument with the #! line, or worse, doesn’t even recognize the #! line, you still
can get consistent switch behavior regardless of how Perl was invoked, even if −x was used to find the
beginning of the program.

Because historically some operating systems silently chopped off kernel interpretation of the #! line
after 32 characters, some switches may be passed in on the command line, and some may not; you
could even get a ‘‘−’’ without its letter, if you’re not careful. You probably want to make sure that all
your switches fall either before or after that 32−character boundary. Most switches don’t actually care
if they’re processed redundantly, but getting a ‘‘−’’ instead of a complete switch could cause Perl to try
to execute standard input instead of your program. And a partial −I switch could also cause odd
results.

Some switches do care if they are processed twice, for instance combinations of −l and −0. Either put
all the switches after the 32−character boundary (if applicable), or replace the use of −0digits by
BEGIN{ $/ = "\0digits"; }.

Parsing of the #! switches starts wherever ‘‘perl’’ is mentioned in the line. The sequences ‘‘−*’’ and ‘‘−
’’ are specifically ignored so that you could, if you were so inclined, say

#!/bin/sh -- # -*- perl -*- -p
eval ’exec perl -wS $0 ${1+"$@"}’

if $running_under_some_shell;

to let Perl see the −p switch.

A similar trick involves the env program, if you have it.

#!/usr/bin/env perl

The examples above use a relative path to the perl interpreter, getting whatever version is first in the
user’s path. If you want a specific version of Perl, say, perl5.005_57, you should place that directly in
the #! line’s path.

If the #! line does not contain the word ‘‘perl’’, the program named after the #! is executed instead of
the Perl interpreter. This is slightly bizarre, but it helps people on machines that don’t do #!, because
they can tell a program that their SHELL is /usr/bin/perl, and Perl will then dispatch the program to the

174 2003-11-25 perl v5.8.3



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

correct interpreter for them.

After locating your program, Perl compiles the entire program to an internal form. If there are any
compilation errors, execution of the program is not attempted. (This is unlike the typical shell script,
which might run part-way through before finding a syntax error.)

If the program is syntactically correct, it is executed. If the program runs off the end without hitting an
exit() or die() operator, an implicit exit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems

Unix’s #! technique can be simulated on other systems:

OS/2
Put

extproc perl -S -your_switches

as the first line in *.cmd file (−S due to a bug in cmd.exe’s ‘extproc’ handling).

MS-DOS
Create a batch file to run your program, and codify it in ALTERNATE_SHEBANG (see the dosish.h
file in the source distribution for more information).

Win95/NT
The Win95/NT installation, when using the ActiveState installer for Perl, will modify the Registry
to associate the .pl extension with the perl interpreter. If you install Perl by other means
(including building from the sources), you may have to modify the Registry yourself. Note that
this means you can no longer tell the difference between an executable Perl program and a Perl
library file.

Macintosh
A Macintosh perl program will have the appropriate Creator and Type, so that double-clicking
them will invoke the perl application.

VMS
Put

$ perl -mysw ’f$env("procedure")’ ’p1’ ’p2’ ’p3’ ’p4’ ’p5’ ’p6’ ’p7’ ’p8’ !
$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, where −mysw are any command line switches you want to pass to
Perl. You can now inv oke the program directly, by saying perl program, or as a DCL
procedure, by saying @program (or implicitly via DCL$PATH by just using the name of the
program).

This incantation is a bit much to remember, but Perl will display it for you if you say perl
"−V:startperl".

Command-interpreters on non-Unix systems have rather different ideas on quoting than Unix shells.
You’ll need to learn the special characters in your command-interpreter (*, \ and " are common) and
how to protect whitespace and these characters to run one-liners (see −e below).

On some systems, you may have to change single-quotes to double ones, which you must not do on
Unix or Plan 9 systems. You might also have to change a single % to a %%.

For example:

# Unix
perl -e ’print "Hello world\n"’

# MS-DOS, etc.
perl -e "print \"Hello world\n\""

# Macintosh
print "Hello world\n"
(then Run "Myscript" or Shift-Command-R)

perl v5.8.3 2003-11-25 175



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

# VMS
perl -e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the command and it is entirely possible
neither works. If 4DOS were the command shell, this would probably work better:

perl -e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

CMD.EXE in Windows NT slipped a lot of standard Unix functionality in when nobody was looking,
but just try to find documentation for its quoting rules.

Under the Macintosh, it depends which environment you are using. The MacPerl shell, or MPW, is
much like Unix shells in its support for several quoting variants, except that it makes free use of the
Macintosh’s non-ASCII characters as control characters.

There is no general solution to all of this. It’s just a mess.

Location of Perl

It may seem obvious to say, but Perl is useful only when users can easily find it. When possible, it’s
good for both /usr/bin/perl and /usr/local/bin/perl to be symlinks to the actual binary. If that can’t be
done, system administrators are strongly encouraged to put (symlinks to) perl and its accompanying
utilities into a directory typically found along a user’s PATH, or in some other obvious and convenient
place.

In this documentation, #!/usr/bin/perl on the first line of the program will stand in for whatever
method works on your system. You are advised to use a specific path if you care about a specific
version.

#!/usr/local/bin/perl5.00554

or if you just want to be running at least version, place a statement like this at the top of your program:

use 5.005_54;

Command Switches

As with all standard commands, a single-character switch may be clustered with the following switch,
if any.

#!/usr/bin/perl -spi.orig # same as -s -p -i.orig

Switches include:

−0[octal/hexadecimal]
specifies the input record separator ($/) as an octal or hexadecimal number. If there are no
digits, the null character is the separator. Other switches may precede or follow the digits. For
example, if you have a version of find which can print filenames terminated by the null character,
you can say this:

find . -name ’*.orig’ -print0  perl -n0e unlink

The special value 00 will cause Perl to slurp files in paragraph mode. The value 0777 will cause
Perl to slurp files whole because there is no legal byte with that value.

If you want to specify any Unicode character, use the hexadecimal format: −0xHHH..., where
the H are valid hexadecimal digits. (This means that you cannot use the −x with a directory
name that consists of hexadecimal digits.)

−a turns on autosplit mode when used with a −n or −p. An implicit split command to the @F array
is done as the first thing inside the implicit while loop produced by the −n or −p.

perl -ane ’print pop(@F), "\n";’

is equivalent to

while (<>) {
@F = split(’ ’);
print pop(@F), "\n";

}

176 2003-11-25 perl v5.8.3



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

An alternate delimiter may be specified using −F.

−C [number/list]
The −C flag controls some Unicode of the Perl Unicode features.

As of 5.8.1, the −C can be followed either by a number or a list of option letters. The letters,
their numeric values, and effects are as follows; listing the letters is equal to summing the
numbers.

I 1 STDIN is assumed to be in UTF-8
O 2 STDOUT will be in UTF-8
E 4 STDERR will be in UTF-8
S 7 I + O + E
i 8 UTF-8 is the default PerlIO layer for input streams
o 16 UTF-8 is the default PerlIO layer for output streams
D 24 i + o
A 32 the @ARGV elements are expected to be strings encoded in UTF-8
L 64 normally the "IOEioA" are unconditional,

the L makes them conditional on the locale environment
variables (the LC_ALL, LC_TYPE, and LANG, in the order
of decreasing precedence) -- if the variables indicate
UTF-8, then the selected "IOEioA" are in effect

For example, −COE and −C6 will both turn on UTF−8−ness on both STDOUT and STDERR.
Repeating letters is just redundant, not cumulative nor toggling.

The io options mean that any subsequent open() (or similar I/O operations) will have the :utf8
PerlIO layer implicitly applied to them, in other words, UTF−8 is expected from any input stream,
and UTF−8 is produced to any output stream. This is just the default, with explicit layers in
open() and with binmode() one can manipulate streams as usual.

−C on its own (not followed by any number or option list), or the empty string "" for the
PERL_UNICODE environment variable, has the same effect as −CSDL. In other words, the
standard I/O handles and the default open() layer are UTF−8−fied but only if the locale
environment variables indicate a UTF−8 locale. This behaviour follows the implicit (and
problematic) UTF−8 behaviour of Perl 5.8.0.

You can use −C0 (or "0" for PERL_UNICODE) to explicitly disable all the above Unicode
features.

The read-only magic variable ${ˆUNICODE} reflects the numeric value of this setting. This is
variable is set during Perl startup and is thereafter read−only. If you want runtime effects, use the
three-arg open() (see ‘‘open’’ in perlfunc), the two-arg binmode() (see ‘‘binmode’’ in perlfunc),
and the open pragma (see open).

(In Perls earlier than 5.8.1 the −C switch was a Win32−only switch that enabled the use of
Unicode-aware ‘‘wide system call’’ Win32 APIs. This feature was practically unused, however,
and the command line switch was therefore ‘‘recycled’’.)

−c causes Perl to check the syntax of the program and then exit without executing it. Actually, it
will execute BEGIN, CHECK, and use blocks, because these are considered as occurring outside
the execution of your program. INIT and END blocks, however, will be skipped.

−d runs the program under the Perl debugger. See perldebug.

−d:foo[=bar,baz]
runs the program under the control of a debugging, profiling, or tracing module installed as
Devel::foo. E.g., −d:DProf executes the program using the Devel::DProf profiler. As with the
−M flag, options may be passed to the Devel::foo package where they will be received and
interpreted by the Devel::foo::import routine. The comma-separated list of options must follow a
= character. See perldebug.

−Dletters
−Dnumber

sets debugging flags. To watch how it executes your program, use −Dtls. (This works only if
debugging is compiled into your Perl.) Another nice value is −Dx, which lists your compiled

perl v5.8.3 2003-11-25 177



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

syntax tree. And −Dr displays compiled regular expressions; the format of the output is
explained in perldebguts.

As an alternative, specify a number instead of list of letters (e.g., −D14 is equivalent to −Dtls):

1 p Tokenizing and parsing
2 s Stack snapshots

with v, displays all stacks
4 l Context (loop) stack processing
8 t Trace execution
16 o Method and overloading resolution
32 c String/numeric conversions
64 P Print profiling info, preprocessor command for -P, source file input state
128 m Memory allocation
256 f Format processing
512 r Regular expression parsing and execution
1024 x Syntax tree dump
2048 u Tainting checks
4096 (Obsolete, previously used for LEAKTEST)
8192 H Hash dump -- usurps values()
16384 X Scratchpad allocation
32768 D Cleaning up
65536 S Thread synchronization
131072 T Tokenising
262144 R Include reference counts of dumped variables (eg when using -Ds)
524288 J Do not s,t,P-debug (Jump over) opcodes within package DB
1048576 v Verbose: use in conjunction with other flags
2097152 C Copy On Write

All these flags require −DDEBUGGING when you compile the Perl executable (but see
Devel::Peek, re which may change this). See the INSTALL file in the Perl source distribution for
how to do this. This flag is automatically set if you include −g option when Configure asks
you about optimizer/debugger flags.

If you’re just trying to get a print out of each line of Perl code as it executes, the way that sh −x
provides for shell scripts, you can’t use Perl’s −D switch. Instead do this

# If you have "env" utility
env=PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

# Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

# csh syntax
% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl -dS program)

See perldebug for details and variations.

−e commandline
may be used to enter one line of program. If −e is given, Perl will not look for a filename in the
argument list. Multiple −e commands may be given to build up a multi-line script. Make sure to
use semicolons where you would in a normal program.

−Fpattern
specifies the pattern to split on if −a is also in effect. The pattern may be surrounded by //, "",
or ’’, otherwise it will be put in single quotes.

−h prints a summary of the options.

−i[extension]
specifies that files processed by the <> construct are to be edited in−place. It does this by
renaming the input file, opening the output file by the original name, and selecting that output file
as the default for print() statements. The extension, if supplied, is used to modify the name of
the old file to make a backup copy, following these rules:

If no extension is supplied, no backup is made and the current file is overwritten.

178 2003-11-25 perl v5.8.3



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

If the extension doesn’t contain a *, then it is appended to the end of the current filename as a
suffix. If the extension does contain one or more * characters, then each * is replaced with the
current filename. In Perl terms, you could think of this as:

($backup = $extension) =˜ s/\*/$file_name/g;

This allows you to add a prefix to the backup file, instead of (or in addition to) a suffix:

$ perl -pi’orig_*’ -e ’s/bar/baz/’ fileA # backup to ’orig_fileA’

Or even to place backup copies of the original files into another directory (provided the directory
already exists):

$ perl -pi’old/*.orig’ -e ’s/bar/baz/’ fileA # backup to ’old/fileA.orig’

These sets of one-liners are equivalent:

$ perl -pi -e ’s/bar/baz/’ fileA # overwrite current file
$ perl -pi’*’ -e ’s/bar/baz/’ fileA # overwrite current file

$ perl -pi’.orig’ -e ’s/bar/baz/’ fileA # backup to ’fileA.orig’
$ perl -pi’*.orig’ -e ’s/bar/baz/’ fileA # backup to ’fileA.orig’

From the shell, saying

$ perl -p -i.orig -e "s/foo/bar/; ... "

is the same as using the program:

#!/usr/bin/perl -pi.orig
s/foo/bar/;

which is equivalent to

#!/usr/bin/perl
$extension = ’.orig’;
LINE: while (<>) {

if ($ARGV ne $oldargv) {
if ($extension !˜ /\*/) {

$backup = $ARGV . $extension;
}
else {

($backup = $extension) =˜ s/\*/$ARGV/g;
}
rename($ARGV, $backup);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV;

}
s/foo/bar/;

}
continue {

print; # this prints to original filename
}
select(STDOUT);

except that the −i form doesn’t need to compare $ARGV to $oldargv to know when the
filename has changed. It does, however, use ARGVOUT for the selected filehandle. Note that
STDOUT is restored as the default output filehandle after the loop.

As shown above, Perl creates the backup file whether or not any output is actually changed. So
this is just a fancy way to copy files:

$ perl -p -i’/some/file/path/*’ -e 1 file1 file2 file3...
or

$ perl -p -i’.orig’ -e 1 file1 file2 file3...

You can use eof without parentheses to locate the end of each input file, in case you want to

perl v5.8.3 2003-11-25 179



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

append to each file, or reset line numbering (see example in ‘‘eof ’’ in perlfunc).

If, for a given file, Perl is unable to create the backup file as specified in the extension then it will
skip that file and continue on with the next one (if it exists).

For a discussion of issues surrounding file permissions and −i, see ‘‘Why does Perl let me delete
read-only files? Why does −i clobber protected files? Isn’t this a bug in Perl?’’ in perlfaq5.

You cannot use −i to create directories or to strip extensions from files.

Perl does not expand ˜ in filenames, which is good, since some folks use it for their backup files:

$ perl -pi˜ -e ’s/foo/bar/’ file1 file2 file3...

Finally, the −i switch does not impede execution when no files are given on the command line.
In this case, no backup is made (the original file cannot, of course, be determined) and processing
proceeds from STDIN to STDOUT as might be expected.

−Idirectory
Directories specified by −I are prepended to the search path for modules (@INC), and also tells
the C preprocessor where to search for include files. The C preprocessor is invoked with −P; by
default it searches /usr/include and /usr/lib/perl.

−l[octnum]
enables automatic line-ending processing. It has two separate effects. First, it automatically
chomps $/ (the input record separator) when used with −n or −p. Second, it assigns $\ (the
output record separator) to have the value of octnum so that any print statements will have that
separator added back on. If octnum is omitted, sets $\ to the current value of $/. For instance,
to trim lines to 80 columns:

perl -lpe ’substr($_, 80) = ""’

Note that the assignment $\ = $/ is done when the switch is processed, so the input record
separator can be different than the output record separator if the −l switch is followed by a −0
switch:

gnufind / -print0  perl -ln0e ’print "found $_" if -p’

This sets $\ to newline and then sets $/ to the null character.

−m[−]module
−M[−]module
−M[−]’module ...’
−[mM][−]module=arg[,arg]...

−mmodule executes use module (); before executing your program.

−Mmodule executes use module ; before executing your program. You can use quotes to add
extra code after the module name, e.g., ’−Mmodule qw(foo bar)’.

If the first character after the −M or −m is a dash (−) then the ’use’ is replaced with ’no’.

A little builtin syntactic sugar means you can also say −mmodule=foo,bar or
−Mmodule=foo,bar as a shortcut for ’−Mmodule qw(foo bar)’. This avoids the need to
use quotes when importing symbols. The actual code generated by −Mmodule=foo,bar is use
module split(/,/,q{foo,bar}). Note that the = form removes the distinction between
−m and −M.

−n causes Perl to assume the following loop around your program, which makes it iterate over
filename arguments somewhat like sed −n or awk:

LINE:
while (<>) {

... # your program goes here
}

Note that the lines are not printed by default. See −p to have lines printed. If a file named by an
argument cannot be opened for some reason, Perl warns you about it and moves on to the next
file.

180 2003-11-25 perl v5.8.3



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

Here is an efficient way to delete all files that haven’t been modifed for at least a week:

find . -mtime +7 -print  perl -nle unlink

This is faster than using the −exec switch of find because you don’t hav e to start a process on
ev ery filename found. It does suffer from the bug of mishandling newlines in pathnames, which
you can fix if you follow the example under −0.

BEGIN and END blocks may be used to capture control before or after the implicit program loop,
just as in awk.

−p causes Perl to assume the following loop around your program, which makes it iterate over
filename arguments somewhat like sed:

LINE:
while (<>) {

... # your program goes here
} continue {

print or die "-p destination: $!\n";
}

If a file named by an argument cannot be opened for some reason, Perl warns you about it, and
moves on to the next file. Note that the lines are printed automatically. An error occurring
during printing is treated as fatal. To suppress printing use the −n switch. A −p overrides a −n
switch.

BEGIN and END blocks may be used to capture control before or after the implicit loop, just as
in awk.

−P NOTE: Use of −P is strongly discouraged because of its inherent problems, including poor
portability.

This option causes your program to be run through the C preprocessor before compilation by
Perl. Because both comments and cpp directives begin with the # character, you should avoid
starting comments with any words recognized by the C preprocessor such as "if", "else", or
"define".

If you’re considering using −P, you might also want to look at the Filter::cpp module from
CPAN.

The problems of −P include, but are not limited to:

* The #! line is stripped, so any switches there don’t apply.

* A −P on a #! line doesn’t work.

* All lines that begin with (whitespace and) a # but do not look like cpp commands,
are stripped, including anything inside Perl strings, regular expressions, and here-
docs .

* In some platforms the C preprocessor knows too much: it knows about the C++ −style
until-end-of-line comments starting with "//". This will cause problems with
common Perl constructs like

s/foo//;

because after −P this will became illegal code

s/foo

The workaround is to use some other quoting separator than "/", like for example
"!":

s!foo!!;

* It requires not only a working C preprocessor but also a working sed. If not on
UNIX, you are probably out of luck on this.

* Script line numbers are not preserved.

perl v5.8.3 2003-11-25 181



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

* The −x does not work with −P.

−s enables rudimentary switch parsing for switches on the command line after the program name
but before any filename arguments (or before an argument of −−). This means you can have
switches with two leading dashes (−−help). Any switch found there is removed from @ARGV
and sets the corresponding variable in the Perl program. The following program prints ‘‘1’’ if the
program is invoked with a −xyz switch, and ‘‘abc’’ if it is inv oked with −xyz=abc.

#!/usr/bin/perl -s
if ($xyz) { print "$xyz\n" }

Do note that −−help creates the variable ${−help}, which is not compliant with strict refs.

−S makes Perl use the PATH environment variable to search for the program (unless the name of the
program contains directory separators).

On some platforms, this also makes Perl append suffixes to the filename while searching for it.
For example, on Win32 platforms, the ‘‘.bat’’ and ‘‘.cmd’’ suffixes are appended if a lookup for
the original name fails, and if the name does not already end in one of those suffixes. If your Perl
was compiled with DEBUGGING turned on, using the −Dp switch to Perl shows how the search
progresses.

Typically this is used to emulate #! startup on platforms that don’t support #!. This example
works on many platforms that have a shell compatible with Bourne shell:

#!/usr/bin/perl
eval ’exec /usr/bin/perl -wS $0 ${1+"$@"}’

if $running_under_some_shell;

The system ignores the first line and feeds the program to /bin/sh, which proceeds to try to
execute the Perl program as a shell script. The shell executes the second line as a normal shell
command, and thus starts up the Perl interpreter. On some systems $0 doesn’t always contain
the full pathname, so the −S tells Perl to search for the program if necessary. After Perl locates
the program, it parses the lines and ignores them because the variable
$running_under_some_shell is never true. If the program will be interpreted by csh,
you will need to replace ${1+"$@"} with $*, even though that doesn’t understand embedded
spaces (and such) in the argument list. To start up sh rather than csh, some systems may have to
replace the #! line with a line containing just a colon, which will be politely ignored by Perl.
Other systems can’t control that, and need a totally devious construct that will work under any of
csh, sh, or Perl, such as the following:

eval ’(exit $?0)’ && eval ’exec perl -wS $0 ${1+"$@"}’
& eval ’exec /usr/bin/perl -wS $0 $argv:q’

if $running_under_some_shell;

If the filename supplied contains directory separators (i.e., is an absolute or relative pathname),
and if that file is not found, platforms that append file extensions will do so and try to look for the
file with those extensions added, one by one.

On DOS-like platforms, if the program does not contain directory separators, it will first be
searched for in the current directory before being searched for on the PATH. On Unix platforms,
the program will be searched for strictly on the PATH.

−t Like −T, but taint checks will issue warnings rather than fatal errors. These warnings can be
controlled normally with no warnings qw(taint).

NOTE: this is not a substitute for −T. This is meant only to be used as a temporary development
aid while securing legacy code: for real production code and for new secure code written from
scratch always use the real −T.

−T forces ‘‘taint’’ checks to be turned on so you can test them. Ordinarily these checks are done
only when running setuid or setgid. It’s a good idea to turn them on explicitly for programs that
run on behalf of someone else whom you might not necessarily trust, such as CGI programs or
any internet servers you might write in Perl. See perlsec for details. For security reasons, this
option must be seen by Perl quite early; usually this means it must appear early on the command
line or in the #! line for systems which support that construct.

182 2003-11-25 perl v5.8.3



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

−u This obsolete switch causes Perl to dump core after compiling your program. You can then in
theory take this core dump and turn it into an executable file by using the undump program (not
supplied). This speeds startup at the expense of some disk space (which you can minimize by
stripping the executable). (Still, a ‘‘hello world’’ executable comes out to about 200K on my
machine.) If you want to execute a portion of your program before dumping, use the dump()
operator instead. Note: availability of undump is platform specific and may not be available for
a specific port of Perl.

This switch has been superseded in favor of the new Perl code generator backends to the
compiler. See B and B::Bytecode for details.

−U allows Perl to do unsafe operations. Currently the only ‘‘unsafe’’ operations are the unlinking of
directories while running as superuser, and running setuid programs with fatal taint checks turned
into warnings. Note that the −w switch (or the $ˆW variable) must be used along with this option
to actually generate the taint-check warnings.

−v prints the version and patchlevel of your perl executable.

−V prints summary of the major perl configuration values and the current values of @INC.

−V:name
Prints to STDOUT the value of the named configuration variable. For example,

$ perl -V:man.dir

will provide strong clues about what your MANPATH variable should be set to in order to access
the Perl documentation.

−w prints warnings about dubious constructs, such as variable names that are mentioned only once
and scalar variables that are used before being set, redefined subroutines, references to undefined
filehandles or filehandles opened read-only that you are attempting to write on, values used as a
number that doesn’t look like numbers, using an array as though it were a scalar, if your
subroutines recurse more than 100 deep, and innumerable other things.

This switch really just enables the internal $ˆW variable. You can disable or promote into fatal
errors specific warnings using __WARN_ _ hooks, as described in perlvar and ‘‘warn’’ in
perlfunc. See also perldiag and perltrap. A new, fine-grained warning facility is also available if
you want to manipulate entire classes of warnings; see warnings or perllexwarn.

−W Enables all warnings regardless of no warnings or $ˆW. See perllexwarn.

−X Disables all warnings regardless of use warnings or $ˆW. See perllexwarn.

−x directory
tells Perl that the program is embedded in a larger chunk of unrelated ASCII text, such as in a
mail message. Leading garbage will be discarded until the first line that starts with #! and
contains the string ‘‘perl’’. Any meaningful switches on that line will be applied. If a directory
name is specified, Perl will switch to that directory before running the program. The −x switch
controls only the disposal of leading garbage. The program must be terminated with __END_ _
if there is trailing garbage to be ignored (the program can process any or all of the trailing
garbage via the DATA filehandle if desired).

ENVIRONMENT
HOME Used if chdir has no argument.

LOGDIR Used if chdir has no argument and HOME is not set.

PATH Used in executing subprocesses, and in finding the program if −S is used.

PERL5LIB A list of directories in which to look for Perl library files before looking in the standard
library and the current directory. Any architecture-specific directories under the
specified locations are automatically included if they exist. If PERL5LIB is not defined,
PERLLIB is used. Directories are separated (like in PATH) by a colon on unixish
platforms and by a semicolon on Windows (the proper path separator being given by the
command perl −V:path_sep).

When running taint checks (either because the program was running setuid or setgid, or
the −T switch was used), neither variable is used. The program should instead say:

perl v5.8.3 2003-11-25 183



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

use lib "/my/directory";

PERL5OPT Command-line options (switches). Switches in this variable are taken as if they were on
ev ery Perl command line. Only the −[DIMUdmtw] switches are allowed. When
running taint checks (because the program was running setuid or setgid, or the −T
switch was used), this variable is ignored. If PERL5OPT begins with −T, tainting will be
enabled, and any subsequent options ignored.

PERLIO A space (or colon) separated list of PerlIO layers. If perl is built to use PerlIO system for
IO (the default) these layers effect perl’s IO.

It is conventional to start layer names with a colon e.g. :perlio to emphasise their
similarity to variable ‘‘attributes’’. But the code that parses layer specification strings
(which is also used to decode the PERLIO environment variable) treats the colon as a
separator.

An unset or empty PERLIO is equivalent to :stdio.

The list becomes the default for all perl’s IO. Consequently only built-in layers can
appear in this list, as external layers (such as :encoding()) need IO in order to load
them!. See ‘‘open pragma’’ for how to add external encodings as defaults.

The layers that it makes sense to include in the PERLIO environment variable are briefly
summarised below. For more details see PerlIO.

:bytes A pseudolayer that turns off the :utf8 flag for the layer below. Unlikely to
be useful on its own in the global PERLIO environment variable. You perhaps
were thinking of :crlf:bytes or :perlio:bytes.

:crlf A layer which does CRLF to ‘‘\n’’ translation distinguishing ‘‘text’’ and
‘‘binary’’ files in the manner of MS-DOS and similar operating systems. (It
currently does not mimic MS-DOS as far as treating of Control-Z as being an
end-of-file marker.)

:mmap A layer which implements ‘‘reading’’ of files by using mmap() to make
(whole) file appear in the process’s address space, and then using that as
PerlIO’s ‘‘buffer’’.

:perlio This is a re-implementation of ‘‘stdio−like’’ buffering written as a PerlIO
‘‘layer’’. As such it will call whatever layer is below it for its operations
(typically :unix).

:pop An experimental pseudolayer that removes the topmost layer. Use with the
same care as is reserved for nitroglycerin.

:raw A pseudolayer that manipulates other layers. Applying the <:raw> layer is
equivalent to calling binmode($fh). It makes the stream pass each byte
as-is without any translation. In particular CRLF translation, and/or :utf8
intuited from locale are disabled.

Unlike in the earlier versions of Perl :raw is not just the inverse of :crlf −
other layers which would affect the binary nature of the stream are also
removed or disabled.

:stdio This layer provides PerlIO interface by wrapping system’s ANSI C ‘‘stdio’’
library calls. The layer provides both buffering and IO. Note that :stdio
layer does not do CRLF translation even if that is platforms normal behaviour.
You will need a :crlf layer above it to do that.

:unix Low lev el layer which calls read, write and lseek etc.

:utf8 A pseudolayer that turns on a flag on the layer below to tell perl that output
should be in utf8 and that input should be regarded as already in utf8 form.
May be useful in PERLIO environment variable to make UTF−8 the default.
(To turn off that behaviour use :bytes layer.)

:win32 On Win32 platforms this experimental layer uses native ‘‘handle’’ IO rather
than unix-like numeric file descriptor layer. Known to be buggy in this release.

184 2003-11-25 perl v5.8.3



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

On all platforms the default set of layers should give acceptable results.

For UNIX platforms that will equivalent of ‘‘unix perlio’’ or ‘‘stdio’’. Configure is setup
to prefer ‘‘stdio’’ implementation if system’s library provides for fast access to the
buffer, otherwise it uses the ‘‘unix perlio’’ implementation.

On Win32 the default in this release is ‘‘unix crlf’’. Win32’s ‘‘stdio’’ has a number of
bugs/mis−features for perl IO which are somewhat C compiler vendor/version
dependent. Using our own crlf layer as the buffer avoids those issues and makes
things more uniform. The crlf layer provides CRLF to/from ‘‘\n’’ conversion as well
as buffering.

This release uses unix as the bottom layer on Win32 and so still uses C compiler’s
numeric file descriptor routines. There is an experimental native win32 layer which is
expected to be enhanced and should eventually be the default under Win32.

PERLIO_DEBUG
If set to the name of a file or device then certain operations of PerlIO sub-system will be
logged to that file (opened as append). Typical uses are UNIX:

PERLIO_DEBUG=/dev/tty perl script ...

and Win32 approximate equivalent:

set PERLIO_DEBUG=CON
perl script ...

PERLLIB A list of directories in which to look for Perl library files before looking in the standard
library and the current directory. If PERL5LIB is defined, PERLLIB is not used.

PERL5DB The command used to load the debugger code. The default is:

BEGIN { require ’perl5db.pl’ }

PERL5SHELL (specific to the Win32 port)
May be set to an alternative shell that perl must use internally for executing ‘‘backtick’’
commands or system(). Default is cmd.exe /x/d/c on WindowsNT and
command.com /c on Windows95. The value is considered to be space−separated.
Precede any character that needs to be protected (like a space or backslash) with a
backslash.

Note that Perl doesn’t use COMSPEC for this purpose because COMSPEC has a high
degree of variability among users, leading to portability concerns. Besides, perl can use
a shell that may not be fit for interactive use, and setting COMSPEC to such a shell may
interfere with the proper functioning of other programs (which usually look in
COMSPEC to find a shell fit for interactive use).

PERL_DEBUG_MSTATS
Relevant only if perl is compiled with the malloc included with the perl distribution (that
is, if perl −V:d_mymalloc is ’define’). If set, this causes memory statistics to be
dumped after execution. If set to an integer greater than one, also causes memory
statistics to be dumped after compilation.

PERL_DESTRUCT_LEVEL
Relevant only if your perl executable was built with −DDEBUGGING, this controls the
behavior of global destruction of objects and other references. See
‘‘PERL_DESTRUCT_LEVEL’’ in perlhack for more information.

PERL_DL_NONLAZY
Set to one to have perl resolve all undefined symbols when it loads a dynamic library.
The default behaviour is to resolve symbols when they are used. Setting this variable is
useful during testing of extensions as it ensures that you get an error on misspelled
function names even if the test suite doesn’t call it.

PERL_ENCODING
If using the encoding pragma without an explicit encoding name, the
PERL_ENCODING environment variable is consulted for an encoding name.

perl v5.8.3 2003-11-25 185



PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

PERL_HASH_SEED
(Since Perl 5.8.1.) Used to randomise Perl’s internal hash function. To emulate the
pre−5.8.1 behaviour, set to an integer (zero means exactly the same order as 5.8.0).
‘‘Pre−5.8.1’’ means, among other things, that hash keys will be ordered the same
between different runs of Perl.

The default behaviour is to randomise unless the PERL_HASH_SEED is set. If Perl has
been compiled with −DUSE_HASH_SEED_EXPLICIT, the default behaviour is not to
randomise unless the PERL_HASH_SEED is set.

If PERL_HASH_SEED is unset or set to a non-numeric string, Perl uses the
pseudorandom seed supplied by the operating system and libraries. This means that
each different run of Perl will have a different ordering of the results of keys(), values(),
and each().

Please note that the hash seed is sensitive information. Hashes are randomized to
protect against local and remote attacks against Perl code. By manually setting a seed
this protection may be partially or completely lost.

See ‘‘Algorithmic Complexity Attacks’’ in perlsec and ‘‘PERL_HASH_SEED_DEBUG’’
for more information.

PERL_HASH_SEED_DEBUG
(Since Perl 5.8.1.) Set to one to display (to STDERR) the value of the hash seed at the
beginning of execution. This, combined with ‘‘PERL_HASH_SEED’’ is intended to aid
in debugging nondeterministic behavior caused by hash randomization.

Note that the hash seed is sensitive information: by knowing it one can craft a denial-
of-service attack against Perl code, even remotely, see ‘‘Algorithmic Complexity
Attacks’’ in perlsec for more information. Do not disclose the hash seed to people who
don’t need to know it. See also hash_seed() of Hash::Util.

PERL_ROOT (specific to the VMS port)
A translation concealed rooted logical name that contains perl and the logical device for
the @INC path on VMS only. Other logical names that affect perl on VMS include
PERLSHR, PERL_ENV_TABLES, and SYS$TIMEZONE_DIFFERENTIAL but are optional
and discussed further in perlvms and in README.vms in the Perl source distribution.

PERL_SIGNALS
In Perls 5.8.1 and later. If set to unsafe the pre−Perl−5.8.0 signals behaviour
(immediate but unsafe) is restored. If set to safe the safe (or deferred) signals are
used. See ‘‘Deferred Signals (Safe signals)’’ in perlipc.

PERL_UNICODE
Equivalent to the −C command-line switch. Note that this is not a boolean variable —
setting this to "1" is not the right way to ‘‘enable Unicode’’ (whatever that would
mean). You can use "0" to ‘‘disable Unicode’’, though (or alternatively unset
PERL_UNICODE in your shell before starting Perl). See the description of the −C switch
for more information.

SYS$LOGIN (specific to the VMS port)
Used if chdir has no argument and HOME and LOGDIR are not set.

Perl also has environment variables that control how Perl handles data specific to particular natural
languages. See perllocale.

Apart from these, Perl uses no other environment variables, except to make them available to the
program being executed, and to child processes. However, programs running setuid would do well to
execute the following lines before doing anything else, just to keep people honest:

$ENV{PATH} = ’/bin:/usr/bin’; # or whatever you need
$ENV{SHELL} = ’/bin/sh’ if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

186 2003-11-25 perl v5.8.3



PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

NAME
perlreftut − Mark’s very short tutorial about references

DESCRIPTION
One of the most important new features in Perl 5 was the capability to manage complicated data
structures like multidimensional arrays and nested hashes. To enable these, Perl 5 introduced a feature
called ‘references’, and using references is the key to managing complicated, structured data in Perl.
Unfortunately, there’s a lot of funny syntax to learn, and the main manual page can be hard to follow.
The manual is quite complete, and sometimes people find that a problem, because it can be hard to tell
what is important and what isn’t.

Fortunately, you only need to know 10% of what’s in the main page to get 90% of the benefit. This
page will show you that 10%.

Who Needs Complicated Data Structures?
One problem that came up all the time in Perl 4 was how to represent a hash whose values were lists.
Perl 4 had hashes, of course, but the values had to be scalars; they couldn’t be lists.

Why would you want a hash of lists? Let’s take a simple example: You have a file of city and country
names, like this:

Chicago, USA
Frankfurt, Germany
Berlin, Germany
Washington, USA
Helsinki, Finland
New York, USA

and you want to produce an output like this, with each country mentioned once, and then an
alphabetical list of the cities in that country:

Finland: Helsinki.
Germany: Berlin, Frankfurt.
USA: Chicago, New York, Washington.

The natural way to do this is to have a hash whose keys are country names. Associated with each
country name key is a list of the cities in that country. Each time you read a line of input, split it into a
country and a city, look up the list of cities already known to be in that country, and append the new
city to the list. When you’re done reading the input, iterate over the hash as usual, sorting each list of
cities before you print it out.

If hash values can’t be lists, you lose. In Perl 4, hash values can’t be lists; they can only be strings.
You lose. You’d probably have to combine all the cities into a single string somehow, and then when
time came to write the output, you’d hav e to break the string into a list, sort the list, and turn it back
into a string. This is messy and error−prone. And it’s frustrating, because Perl already has perfectly
good lists that would solve the problem if only you could use them.

The Solution
By the time Perl 5 rolled around, we were already stuck with this design: Hash values must be scalars.
The solution to this is references.

A reference is a scalar value that refers to an entire array or an entire hash (or to just about anything
else). Names are one kind of reference that you’re already familiar with. Think of the President of the
United States: a messy, inconvenient bag of blood and bones. But to talk about him, or to represent
him in a computer program, all you need is the easy, convenient scalar string ‘‘George Bush’’.

References in Perl are like names for arrays and hashes. They’re Perl’s private, internal names, so you
can be sure they’re unambiguous. Unlike ‘‘George Bush’’, a reference only refers to one thing, and you
always know what it refers to. If you have a reference to an array, you can recover the entire array from
it. If you have a reference to a hash, you can recover the entire hash. But the reference is still an easy,
compact scalar value.

You can’t hav e a hash whose values are arrays; hash values can only be scalars. We’re stuck with that.
But a single reference can refer to an entire array, and references are scalars, so you can have a hash of
references to arrays, and it’ll act a lot like a hash of arrays, and it’ll be just as useful as a hash of arrays.

We’ll come back to this city-country problem later, after we’ve seen some syntax for managing

perl v5.8.3 2003-11-25 187



PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

references.

Syntax
There are just two ways to make a reference, and just two ways to use it once you have it.

Making References

Make Rule 1

If you put a \ in front of a variable, you get a reference to that variable.

$aref = \@array; # $aref now holds a reference to @array
$href = \%hash; # $href now holds a reference to %hash

Once the reference is stored in a variable like $aref or $href, you can copy it or store it just the
same as any other scalar value:

$xy = $aref; # $xy now holds a reference to @array
$p[3] = $href; # $p[3] now holds a reference to %hash
$z = $p[3]; # $z now holds a reference to %hash

These examples show how to make references to variables with names. Sometimes you want to make
an array or a hash that doesn’t hav e a name. This is analogous to the way you like to be able to use the
string "\n" or the number 80 without having to store it in a named variable first.

Make Rule 2

[ ITEMS ] makes a new, anonymous array, and returns a reference to that array. { ITEMS }
makes a new, anonymous hash, and returns a reference to that hash.

$aref = [ 1, "foo", undef, 13 ];
# $aref now holds a reference to an array

$href = { APR => 4, AUG => 8 };
# $href now holds a reference to a hash

The references you get from rule 2 are the same kind of references that you get from rule 1:

# This:
$aref = [ 1, 2, 3 ];

# Does the same as this:
@array = (1, 2, 3);
$aref = \@array;

The first line is an abbreviation for the following two lines, except that it doesn’t create the superfluous
array variable @array.

If you write just [], you get a new, empty anonymous array. If you write just {}, you get a new,
empty anonymous hash.

Using References

What can you do with a reference once you have it? It’s a scalar value, and we’ve seen that you can
store it as a scalar and get it back again just like any scalar. There are just two more ways to use it:

Use Rule 1

You can always use an array reference, in curly braces, in place of the name of an array. For example,
@{$aref} instead of @array.

Here are some examples of that:

Arrays:

@a @{$aref} An array
reverse @a reverse @{$aref} Reverse the array
$a[3] ${$aref}[3] An element of the array
$a[3] = 17; ${$aref}[3] = 17 Assigning an element

On each line are two expressions that do the same thing. The left-hand versions operate on the array
@a. The right-hand versions operate on the array that is referred to by $aref. Once they find the
array they’re operating on, both versions do the same things to the arrays.

188 2003-11-25 perl v5.8.3



PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

Using a hash reference is exactly the same:

%h %{$href} A hash
keys %h keys %{$href} Get the keys from the hash
$h{’red’} ${$href}{’red’} An element of the hash
$h{’red’} = 17 ${$href}{’red’} = 17 Assigning an element

Whatever you want to do with a reference, Use Rule 1 tells you how to do it. You just write the Perl
code that you would have written for doing the same thing to a regular array or hash, and then replace
the array or hash name with {$reference}. ‘‘How do I loop over an array when all I have is a
reference?’’ Well, to loop over an array, you would write

for my $element (@array) {
...

}

so replace the array name, @array, with the reference:

for my $element (@{$aref}) {
...

}

‘‘How do I print out the contents of a hash when all I have is a reference?’’ First write the code for
printing out a hash:

for my $key (keys %hash) {
print "$key => $hash{$key}\n";

}

And then replace the hash name with the reference:

for my $key (keys %{$href}) {
print "$key => ${$href}{$key}\n";

}

Use Rule 2

Use Rule 1 is all you really need, because it tells you how to to absolutely everything you ever need to
do with references. But the most common thing to do with an array or a hash is to extract a single
element, and the Use Rule 1 notation is cumbersome. So there is an abbreviation.

${$aref}[3] is too hard to read, so you can write $aref−>[3] instead.

${$href}{red} is too hard to read, so you can write $href−>{red} instead.

If $aref holds a reference to an array, then $aref−>[3] is the fourth element of the array. Don’t
confuse this with $aref[3], which is the fourth element of a totally different array, one deceptively
named @aref. $aref and @aref are unrelated the same way that $item and @item are.

Similarly, $href−>{’red’} is part of the hash referred to by the scalar variable $href, perhaps
ev en one with no name. $href{’red’} is part of the deceptively named %href hash. It’s easy to
forget to leave out the −>, and if you do, you’ll get bizarre results when your program gets array and
hash elements out of totally unexpected hashes and arrays that weren’t the ones you wanted to use.

An Example

Let’s see a quick example of how all this is useful.

First, remember that [1, 2, 3] makes an anonymous array containing (1, 2, 3), and gives you
a reference to that array.

Now think about

@a = ( [1, 2, 3],
[4, 5, 6],
[7, 8, 9]

);

@a is an array with three elements, and each one is a reference to another array.

$a[1] is one of these references. It refers to an array, the array containing (4, 5, 6), and because

perl v5.8.3 2003-11-25 189



PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

it is a reference to an array, Use Rule 2 says that we can write $a[1]−>[2] to get the third element
from that array. $a[1]−>[2] is the 6. Similarly, $a[0]−>[1] is the 2. What we have here is like
a two-dimensional array; you can write $a[ROW]−>[COLUMN] to get or set the element in any row
and any column of the array.

The notation still looks a little cumbersome, so there’s one more abbreviation:

Arrow Rule

In between two subscripts, the arrow is optional.

Instead of $a[1]−>[2], we can write $a[1][2]; it means the same thing. Instead of
$a[0]−>[1] = 23, we can write $a[0][1] = 23; it means the same thing.

Now it really looks like two-dimensional arrays!

You can see why the arrows are important. Without them, we would have had to write ${$a[1]}[2]
instead of $a[1][2]. For three-dimensional arrays, they let us write $x[2][3][5] instead of the
unreadable ${${$x[2]}[3]}[5].

Solution
Here’s the answer to the problem I posed earlier, of reformatting a file of city and country names.

1 my %table;

2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

8 foreach $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join ’, ’, sort @cities;
12 print ".\n";
13 }

The program has two pieces: Lines 2−−7 read the input and build a data structure, and lines 8−13
analyze the data and print out the report. We’re going to have a hash, %table, whose keys are country
names, and whose values are references to arrays of city names. The data structure will look like this:

%table
+-------+---+
   +-----------+--------+
Germany *----> Frankfurt  Berlin 
   +-----------+--------+
+-------+---+
   +----------+
Finland *----> Helsinki 
   +----------+
+-------+---+
   +---------+------------+----------+
 USA  *----> Chicago  Washington  New York 
   +---------+------------+----------+
+-------+---+

We’ll look at output first. Supposing we already have this structure, how do we print it out?

8 foreach $country (sort keys %table) {
9 print "$country: ";
10 my @cities = @{$table{$country}};
11 print join ’, ’, sort @cities;
12 print ".\n";
13 }

190 2003-11-25 perl v5.8.3



PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

%table is an ordinary hash, and we get a list of keys from it, sort the keys, and loop over the keys as
usual. The only use of references is in line 10. $table{$country} looks up the key $country
in the hash and gets the value, which is a reference to an array of cities in that country. Use Rule 1
says that we can recover the array by saying @{$table{$country}}. Line 10 is just like

@cities = @array;

except that the name array has been replaced by the reference {$table{$country}}. The @
tells Perl to get the entire array. Having gotten the list of cities, we sort it, join it, and print it out as
usual.

Lines 2−7 are responsible for building the structure in the first place. Here they are again:

2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

Lines 2−4 acquire a city and country name. Line 5 looks to see if the country is already present as a
key in the hash. If it’s not, the program uses the [] notation (Make Rule 2) to manufacture a new,
empty anonymous array of cities, and installs a reference to it into the hash under the appropriate key.

Line 6 installs the city name into the appropriate array. $table{$country} now holds a reference
to the array of cities seen in that country so far. Line 6 is exactly like

push @array, $city;

except that the name array has been replaced by the reference {$table{$country}}. The
push adds a city name to the end of the referred-to array.

There’s one fine point I skipped. Line 5 is unnecessary, and we can get rid of it.

2 while (<>) {
3 chomp;
4 my ($city, $country) = split /, /;
5 #### $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

If there’s already an entry in %table for the current $country, then nothing is different. Line 6 will
locate the value in $table{$country}, which is a reference to an array, and push $city into the
array. But what does it do when $country holds a key, say Greece, that is not yet in %table?

This is Perl, so it does the exact right thing. It sees that you want to push Athens onto an array that
doesn’t exist, so it helpfully makes a new, empty, anonymous array for you, installs it into %table,
and then pushes Athens onto it. This is called ‘autovivification’−−bringing things to life
automatically. Perl saw that they key wasn’t in the hash, so it created a new hash entry automatically.
Perl saw that you wanted to use the hash value as an array, so it created a new empty array and installed
a reference to it in the hash automatically. And as usual, Perl made the array one element longer to
hold the new city name.

The Rest
I promised to give you 90% of the benefit with 10% of the details, and that means I left out 90% of the
details. Now that you have an overview of the important parts, it should be easier to read the perlref
manual page, which discusses 100% of the details.

Some of the highlights of perlref:

• You can make references to anything, including scalars, functions, and other references.

• In Use Rule 1, you can omit the curly brackets whenever the thing inside them is an atomic scalar
variable like $aref. For example, @$aref is the same as @{$aref}, and $$aref[1] is the
same as ${$aref}[1]. If you’re just starting out, you may want to adopt the habit of always
including the curly brackets.

• This doesn’t copy the underlying array:

perl v5.8.3 2003-11-25 191



PERLREFTUT(1) Perl Programmers Reference Guide PERLREFTUT(1)

$aref2 = $aref1;

You get two references to the same array. If you modify $aref1−>[23] and then look at
$aref2−>[23] you’ll see the change.

To copy the array, use

$aref2 = [@{$aref1}];

This uses [...] notation to create a new anonymous array, and $aref2 is assigned a reference
to the new array. The new array is initialized with the contents of the array referred to by
$aref1.

Similarly, to copy an anonymous hash, you can use

$href2 = {%{$href1}};

• To see if a variable contains a reference, use the ref function. It returns true if its argument is a
reference. Actually it’s a little better than that: It returns HASH for hash references and ARRAY for
array references.

• If you try to use a reference like a string, you get strings like

ARRAY(0x80f5dec) or HASH(0x826afc0)

If you ever see a string that looks like this, you’ll know you printed out a reference by mistake.

A side effect of this representation is that you can use eq to see if two references refer to the same
thing. (But you should usually use == instead because it’s much faster.)

• You can use a string as if it were a reference. If you use the string "foo" as an array reference,
it’s taken to be a reference to the array @foo. This is called a soft reference or symbolic reference.
The declaration use strict ’refs’ disables this feature, which can cause all sorts of trouble
if you use it by accident.

You might prefer to go on to perllol instead of perlref; it discusses lists of lists and multidimensional
arrays in detail. After that, you should move on to perldsc; it’s a Data Structure Cookbook that shows
recipes for using and printing out arrays of hashes, hashes of arrays, and other kinds of data.

Summary
Everyone needs compound data structures, and in Perl the way you get them is with references. There
are four important rules for managing references: Two for making references and two for using them.
Once you know these rules you can do most of the important things you need to do with references.

Credits
Author: Mark Jason Dominus, Plover Systems (mjd−perl−ref+@plover.com)

This article originally appeared in The Perl Journal ( http://www.tpj.com/ ) volume 3, #2. Reprinted
with permission.

The original title was Understand References Today.

Distribution Conditions

Copyright 1998 The Perl Journal.

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespective of its distribution, all code examples in these files are hereby placed into the public
domain. You are permitted and encouraged to use this code in your own programs for fun or for profit
as you see fit. A simple comment in the code giving credit would be courteous but is not required.

192 2003-11-25 perl v5.8.3



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

NAME
perldsc − Perl Data Structures Cookbook

DESCRIPTION
The single feature most sorely lacking in the Perl programming language prior to its 5.0 release was
complex data structures. Even without direct language support, some valiant programmers did manage
to emulate them, but it was hard work and not for the faint of heart. You could occasionally get away
with the $m{$AoA,$b} notation borrowed from awk in which the keys are actually more like a single
concatenated string "$AoA$b", but traversal and sorting were difficult. More desperate programmers
ev en hacked Perl’s internal symbol table directly, a strategy that proved hard to develop and
maintain — to put it mildly.

The 5.0 release of Perl let us have complex data structures. You may now write something like this and
all of a sudden, you’d hav e an array with three dimensions!

for $x (1 .. 10) {
for $y (1 .. 10) {

for $z (1 .. 10) {
$AoA[$x][$y][$z] =

$x ** $y + $z;
}

}
}

Alas, however simple this may appear, underneath it’s a much more elaborate construct than meets the
eye!

How do you print it out? Why can’t you say just print @AoA? How do you sort it? How can you
pass it to a function or get one of these back from a function? Is it an object? Can you save it to disk to
read back later? How do you access whole rows or columns of that matrix? Do all the values have to
be numeric?

As you see, it’s quite easy to become confused. While some small portion of the blame for this can be
attributed to the reference-based implementation, it’s really more due to a lack of existing
documentation with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts of
data structures you might want to develop. It should also serve as a cookbook of examples. That way,
when you need to create one of these complex data structures, you can just pinch, pilfer, or purloin a
drop-in example from here.

Let’s look at each of these possible constructs in detail. There are separate sections on each of the
following:

* arrays of arrays
* hashes of arrays
* arrays of hashes
* hashes of hashes
* more elaborate constructs

But for now, let’s look at general issues common to all these types of data structures.

REFERENCES
The most important thing to understand about all data structures in Perl — including multidimensional
arrays — is that even though they might appear otherwise, Perl @ARRAYs and %HASHes are all
internally one−dimensional. They can hold only scalar values (meaning a string, number, or a
reference). They cannot directly contain other arrays or hashes, but instead contain references to other
arrays or hashes.

You can’t use a reference to an array or hash in quite the same way that you would a real array or hash.
For C or C++ programmers unused to distinguishing between arrays and pointers to the same, this can be
confusing. If so, just think of it as the difference between a structure and a pointer to a structure.

You can (and should) read more about references in the perlref (1) man page. Briefly, references are
rather like pointers that know what they point to. (Objects are also a kind of reference, but we won’t be
needing them right away — if ever.) This means that when you have something which looks to you like

perl v5.8.3 2003-11-25 193



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

an access to a two-or-more-dimensional array and/or hash, what’s really going on is that the base type
is merely a one-dimensional entity that contains references to the next level. It’s just that you can use it
as though it were a two-dimensional one. This is actually the way almost all C multidimensional arrays
work as well.

$array[7][12] # array of arrays
$array[7]{string} # array of hashes
$hash{string}[7] # hash of arrays
$hash{string}{’another string’} # hash of hashes

Now, because the top level contains only references, if you try to print out your array in with a simple
print() function, you’ll get something that doesn’t look very nice, like this:

@AoA = ( [2, 3], [4, 5, 7], [0] );
print $AoA[1][2];

7
print @AoA;

ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

That’s because Perl doesn’t (ev er) implicitly dereference your variables. If you want to get at the thing
a reference is referring to, then you have to do this yourself using either prefix typing indicators, like
${$blah}, @{$blah}, @{$blah[$i]}, or else postfix pointer arrows, like $a−>[3],
$h−>{fred}, or even $ob−>method()−>[3].

COMMON MISTAKES
The two most common mistakes made in constructing something like an array of arrays is either
accidentally counting the number of elements or else taking a reference to the same memory location
repeatedly. Here’s the case where you just get the count instead of a nested array:

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = @array; # WRONG!

}

That’s just the simple case of assigning an array to a scalar and getting its element count. If that’s what
you really and truly want, then you might do well to consider being a tad more explicit about it, like
this:

for $i (1..10) {
@array = somefunc($i);
$counts[$i] = scalar @array;

}

Here’s the case of taking a reference to the same memory location again and again:

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = \@array; # WRONG!

}

So, what’s the big problem with that? It looks right, doesn’t it? After all, I just told you that you need
an array of references, so by golly, you’ve made me one!

Unfortunately, while this is true, it’s still broken. All the references in @AoA refer to the very same
place, and they will therefore all hold whatever was last in @array! It’s similar to the problem
demonstrated in the following C program:

#include <pwd.h>
main() {

struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam("root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp->pw_name, rp->pw_name);

}

Which will print

194 2003-11-25 perl v5.8.3



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

daemon name is daemon
root name is daemon

The problem is that both rp and dp are pointers to the same location in memory! In C, you’d hav e to
remember to malloc() yourself some new memory. In Perl, you’ll want to use the array constructor []
or the hash constructor {} instead. Here’s the right way to do the preceding broken code fragments:

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = [ @array ];

}

The square brackets make a reference to a new array with a copy of what’s in @array at the time of
the assignment. This is what you want.

Note that this will produce something similar, but it’s much harder to read:

for $i (1..10) {
@array = 0 .. $i;
@{$AoA[$i]} = @array;

}

Is it the same? Well, maybe so — and maybe not. The subtle difference is that when you assign
something in square brackets, you know for sure it’s always a brand new reference with a new copy of
the data. Something else could be going on in this new case with the @{$AoA[$i]}} dereference on
the left-hand-side of the assignment. It all depends on whether $AoA[$i] had been undefined to start
with, or whether it already contained a reference. If you had already populated @AoA with references,
as in

$AoA[3] = \@another_array;

Then the assignment with the indirection on the left-hand-side would use the existing reference that
was already there:

@{$AoA[3]} = @array;

Of course, this would have the ‘‘interesting’’ effect of clobbering @another_array. (Have you ever
noticed how when a programmer says something is ‘‘interesting’’, that rather than meaning
‘‘intriguing’’, they’re disturbingly more apt to mean that it’s ‘‘annoying’’, ‘‘difficult’’, or both? :−)

So just remember always to use the array or hash constructors with [] or {}, and you’ll be fine,
although it’s not always optimally efficient.

Surprisingly, the following dangerous-looking construct will actually work out fine:

for $i (1..10) {
my @array = somefunc($i);
$AoA[$i] = \@array;

}

That’s because my() is more of a run-time statement than it is a compile-time declaration per se. This
means that the my() variable is remade afresh each time through the loop. So even though it looks as
though you stored the same variable reference each time, you actually did not! This is a subtle
distinction that can produce more efficient code at the risk of misleading all but the most experienced of
programmers. So I usually advise against teaching it to beginners. In fact, except for passing
arguments to functions, I seldom like to see the gimme-a-reference operator (backslash) used much at
all in code. Instead, I advise beginners that they (and most of the rest of us) should try to use the much
more easily understood constructors [] and {} instead of relying upon lexical (or dynamic) scoping
and hidden reference-counting to do the right thing behind the scenes.

In summary:

$AoA[$i] = [ @array ]; # usually best
$AoA[$i] = \@array; # perilous; just how my() was that array?
@{ $AoA[$i] } = @array; # way too tricky for most programmers

CAVEAT ON PRECEDENCE
Speaking of things like @{$AoA[$i]}, the following are actually the same thing:

perl v5.8.3 2003-11-25 195



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

$aref->[2][2] # clear
$$aref[2][2] # confusing

That’s because Perl’s precedence rules on its five prefix dereferencers (which look like someone
swearing: $ @ * % &) make them bind more tightly than the postfix subscripting brackets or braces!
This will no doubt come as a great shock to the C or C++ programmer, who is quite accustomed to using
*a[i] to mean what’s pointed to by the i’th element of a. That is, they first take the subscript, and
only then dereference the thing at that subscript. That’s fine in C, but this isn’t C.

The seemingly equivalent construct in Perl, $$aref[$i] first does the deref of $aref, making it
take $aref as a reference to an array, and then dereference that, and finally tell you the i’th value of
the array pointed to by $AoA. If you wanted the C notion, you’d hav e to write ${$AoA[$i]} to force
the $AoA[$i] to get evaluated first before the leading $ dereferencer.

WHY YOU SHOULD ALWA YS use strict
If this is starting to sound scarier than it’s worth, relax. Perl has some features to help you avoid its
most common pitfalls. The best way to avoid getting confused is to start every program like this:

#!/usr/bin/perl -w
use strict;

This way, you’ll be forced to declare all your variables with my() and also disallow accidental
‘‘symbolic dereferencing’’. Therefore if you’d done this:

my $aref = [
[ "fred", "barney", "pebbles", "bambam", "dino", ],
[ "homer", "bart", "marge", "maggie", ],
[ "george", "jane", "elroy", "judy", ],

];

print $aref[2][2];

The compiler would immediately flag that as an error at compile time, because you were accidentally
accessing @aref, an undeclared variable, and it would thereby remind you to write instead:

print $aref->[2][2]

DEBUGGING
Before version 5.002, the standard Perl debugger didn’t do a very nice job of printing out complex data
structures. With 5.002 or above, the debugger includes several new features, including command line
editing as well as the x command to dump out complex data structures. For example, given the
assignment to $AoA above, here’s the debugger output:

DB<1> x $AoA
$AoA = ARRAY(0x13b5a0)

0 ARRAY(0x1f0a24)
0 ’fred’
1 ’barney’
2 ’pebbles’
3 ’bambam’
4 ’dino’

1 ARRAY(0x13b558)
0 ’homer’
1 ’bart’
2 ’marge’
3 ’maggie’

2 ARRAY(0x13b540)
0 ’george’
1 ’jane’
2 ’elroy’
3 ’judy’

CODE EXAMPLES
Presented with little comment (these will get their own manpages someday) here are short code
examples illustrating access of various types of data structures.

196 2003-11-25 perl v5.8.3



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

ARRAYS OF ARRAYS
Declaration of an ARRAY OF ARRAYS

@AoA = (
[ "fred", "barney" ],
[ "george", "jane", "elroy" ],
[ "homer", "marge", "bart" ],

);

Generation of an ARRAY OF ARRAYS

# reading from file
while ( <> ) {

push @AoA, [ split ];
}

# calling a function
for $i ( 1 .. 10 ) {

$AoA[$i] = [ somefunc($i) ];
}

# using temp vars
for $i ( 1 .. 10 ) {

@tmp = somefunc($i);
$AoA[$i] = [ @tmp ];

}

# add to an existing row
push @{ $AoA[0] }, "wilma", "betty";

Access and Printing of an ARRAY OF ARRAYS

# one element
$AoA[0][0] = "Fred";

# another element
$AoA[1][1] =˜ s/(\w)/\u$1/;

# print the whole thing with refs
for $aref ( @AoA ) {

print "\t [ @$aref ],\n";
}

# print the whole thing with indices
for $i ( 0 .. $#AoA ) {

print "\t [ @{$AoA[$i]} ],\n";
}

# print the whole thing one at a time
for $i ( 0 .. $#AoA ) {

for $j ( 0 .. $#{ $AoA[$i] } ) {
print "elt $i $j is $AoA[$i][$j]\n";

}
}

HASHES OF ARRAYS
Declaration of a HASH OF ARRAYS

%HoA = (
flintstones => [ "fred", "barney" ],
jetsons => [ "george", "jane", "elroy" ],
simpsons => [ "homer", "marge", "bart" ],

);

perl v5.8.3 2003-11-25 197



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

Generation of a HASH OF ARRAYS

# reading from file
# flintstones: fred barney wilma dino
while ( <> ) {

next unless s/ˆ(.*?):\s*//;
$HoA{$1} = [ split ];

}

# reading from file; more temps
# flintstones: fred barney wilma dino
while ( $line = <> ) {

($who, $rest) = split /:\s*/, $line, 2;
@fields = split ’ ’, $rest;
$HoA{$who} = [ @fields ];

}

# calling a function that returns a list
for $group ( "simpsons", "jetsons", "flintstones" ) {

$HoA{$group} = [ get_family($group) ];
}

# likewise, but using temps
for $group ( "simpsons", "jetsons", "flintstones" ) {

@members = get_family($group);
$HoA{$group} = [ @members ];

}

# append new members to an existing family
push @{ $HoA{"flintstones"} }, "wilma", "betty";

Access and Printing of a HASH OF ARRAYS

# one element
$HoA{flintstones}[0] = "Fred";

# another element
$HoA{simpsons}[1] =˜ s/(\w)/\u$1/;

# print the whole thing
foreach $family ( keys %HoA ) {

print "$family: @{ $HoA{$family} }\n"
}

# print the whole thing with indices
foreach $family ( keys %HoA ) {

print "family: ";
foreach $i ( 0 .. $#{ $HoA{$family} } ) {

print " $i = $HoA{$family}[$i]";
}
print "\n";

}

# print the whole thing sorted by number of members
foreach $family ( sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA ) {

print "$family: @{ $HoA{$family} }\n"
}

198 2003-11-25 perl v5.8.3



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

# print the whole thing sorted by number of members and name
foreach $family ( sort {

@{$HoA{$b}} <=> @{$HoA{$a}}


$a cmp $b
} keys %HoA )

{
print "$family: ", join(", ", sort @{ $HoA{$family} }), "\n";

}

ARRAYS OF HASHES
Declaration of an ARRAY OF HASHES

@AoH = (
{

Lead => "fred",
Friend => "barney",

},
{

Lead => "george",
Wife => "jane",
Son => "elroy",

},
{

Lead => "homer",
Wife => "marge",
Son => "bart",

}
);

Generation of an ARRAY OF HASHES

# reading from file
# format: LEAD=fred FRIEND=barney
while ( <> ) {

$rec = {};
for $field ( split ) {

($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}
push @AoH, $rec;

}

# reading from file
# format: LEAD=fred FRIEND=barney
# no temp
while ( <> ) {

push @AoH, { split /[\s+=]/ };
}

# calling a function that returns a key/value pair list, like
# "lead","fred","daughter","pebbles"
while ( %fields = getnextpairset() ) {

push @AoH, { %fields };
}

# likewise, but using no temp vars
while (<>) {

push @AoH, { parsepairs($_) };
}

perl v5.8.3 2003-11-25 199



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

# add key/value to an element
$AoH[0]{pet} = "dino";
$AoH[2]{pet} = "santa’s little helper";

Access and Printing of an ARRAY OF HASHES

# one element
$AoH[0]{lead} = "fred";

# another element
$AoH[1]{lead} =˜ s/(\w)/\u$1/;

# print the whole thing with refs
for $href ( @AoH ) {

print "{ ";
for $role ( keys %$href ) {

print "$role=$href->{$role} ";
}
print "}\n";

}

# print the whole thing with indices
for $i ( 0 .. $#AoH ) {

print "$i is { ";
for $role ( keys %{ $AoH[$i] } ) {

print "$role=$AoH[$i]{$role} ";
}
print "}\n";

}

# print the whole thing one at a time
for $i ( 0 .. $#AoH ) {

for $role ( keys %{ $AoH[$i] } ) {
print "elt $i $role is $AoH[$i]{$role}\n";

}
}

HASHES OF HASHES
Declaration of a HASH OF HASHES

%HoH = (
flintstones => {

lead => "fred",
pal => "barney",

},
jetsons => {

lead => "george",
wife => "jane",
"his boy" => "elroy",

},
simpsons => {

lead => "homer",
wife => "marge",
kid => "bart",

},
);

Generation of a HASH OF HASHES

200 2003-11-25 perl v5.8.3



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

# reading from file
# flintstones: lead=fred pal=barney wife=wilma pet=dino
while ( <> ) {

next unless s/ˆ(.*?):\s*//;
$who = $1;
for $field ( split ) {

($key, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;

}

# reading from file; more temps
while ( <> ) {

next unless s/ˆ(.*?):\s*//;
$who = $1;
$rec = {};
$HoH{$who} = $rec;
for $field ( split ) {

($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}
}

# calling a function that returns a key,value hash
for $group ( "simpsons", "jetsons", "flintstones" ) {

$HoH{$group} = { get_family($group) };
}

# likewise, but using temps
for $group ( "simpsons", "jetsons", "flintstones" ) {

%members = get_family($group);
$HoH{$group} = { %members };

}

# append new members to an existing family
%new_folks = (

wife => "wilma",
pet => "dino",

);

for $what (keys %new_folks) {
$HoH{flintstones}{$what} = $new_folks{$what};

}

Access and Printing of a HASH OF HASHES

# one element
$HoH{flintstones}{wife} = "wilma";

# another element
$HoH{simpsons}{lead} =˜ s/(\w)/\u$1/;

# print the whole thing
foreach $family ( keys %HoH ) {

print "$family: { ";
for $role ( keys %{ $HoH{$family} } ) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

perl v5.8.3 2003-11-25 201



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

# print the whole thing somewhat sorted
foreach $family ( sort keys %HoH ) {

print "$family: { ";
for $role ( sort keys %{ $HoH{$family} } ) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

# print the whole thing sorted by number of members
foreach $family ( sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} } keys %HoH ) {

print "$family: { ";
for $role ( sort keys %{ $HoH{$family} } ) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

# establish a sort order (rank) for each role
$i = 0;
for ( qw(lead wife son daughter pal pet) ) { $rank{$_} = ++$i }

# now print the whole thing sorted by number of members
foreach $family ( sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } } keys %HoH ) {

print "$family: { ";
# and print these according to rank order
for $role ( sort { $rank{$a} <=> $rank{$b} } keys %{ $HoH{$family} } ) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

MORE ELABORATE RECORDS
Declaration of MORE ELABORATE RECORDS

Here’s a sample showing how to create and use a record whose fields are of many different sorts:

$rec = {
TEXT => $string,
SEQUENCE => [ @old_values ],
LOOKUP => { %some_table },
THATCODE => \&some_function,
THISCODE => sub { $_[0] ** $_[1] },
HANDLE => \*STDOUT,

};

print $rec->{TEXT};

print $rec->{SEQUENCE}[0];
$last = pop @ { $rec->{SEQUENCE} };

print $rec->{LOOKUP}{"key"};
($first_k, $first_v) = each %{ $rec->{LOOKUP} };

$answer = $rec->{THATCODE}->($arg);
$answer = $rec->{THISCODE}->($arg1, $arg2);

# careful of extra block braces on fh ref
print { $rec->{HANDLE} } "a string\n";

use FileHandle;
$rec->{HANDLE}->autoflush(1);
$rec->{HANDLE}->print(" a string\n");

202 2003-11-25 perl v5.8.3



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

Declaration of a HASH OF COMPLEX RECORDS

%TV = (
flintstones => {

series => "flintstones",
nights => [ qw(monday thursday friday) ],
members => [

{ name => "fred", role => "lead", age => 36, },
{ name => "wilma", role => "wife", age => 31, },
{ name => "pebbles", role => "kid", age => 4, },

],
},

jetsons => {
series => "jetsons",
nights => [ qw(wednesday saturday) ],
members => [

{ name => "george", role => "lead", age => 41, },
{ name => "jane", role => "wife", age => 39, },
{ name => "elroy", role => "kid", age => 9, },

],
},

simpsons => {
series => "simpsons",
nights => [ qw(monday) ],
members => [

{ name => "homer", role => "lead", age => 34, },
{ name => "marge", role => "wife", age => 37, },
{ name => "bart", role => "kid", age => 11, },

],
},

);

Generation of a HASH OF COMPLEX RECORDS

# reading from file
# this is most easily done by having the file itself be
# in the raw data format as shown above. perl is happy
# to parse complex data structures if declared as data, so
# sometimes it’s easiest to do that

# here’s a piece by piece build up
$rec = {};
$rec->{series} = "flintstones";
$rec->{nights} = [ find_days() ];

@members = ();
# assume this file in field=value syntax
while (<>) {

%fields = split /[\s=]+/;
push @members, { %fields };

}
$rec->{members} = [ @members ];

# now remember the whole thing
$TV{ $rec->{series} } = $rec;

perl v5.8.3 2003-11-25 203



PERLDSC(1) Perl Programmers Reference Guide PERLDSC(1)

###########################################################
# now, you might want to make interesting extra fields that
# include pointers back into the same data structure so if
# change one piece, it changes everywhere, like for example
# if you wanted a {kids} field that was a reference
# to an array of the kids’ records without having duplicate
# records and thus update problems.
###########################################################
foreach $family (keys %TV) {

$rec = $TV{$family}; # temp pointer
@kids = ();
for $person ( @{ $rec->{members} } ) {

if ($person->{role} =˜ /kidsondaughter/) {
push @kids, $person;

}
}
# REMEMBER: $rec and $TV{$family} point to same data!!
$rec->{kids} = [ @kids ];

}

# you copied the array, but the array itself contains pointers
# to uncopied objects. this means that if you make bart get
# older via

$TV{simpsons}{kids}[0]{age}++;

# then this would also change in
print $TV{simpsons}{members}[2]{age};

# because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]
# both point to the same underlying anonymous hash table

# print the whole thing
foreach $family ( keys %TV ) {

print "the $family";
print " is on during @{ $TV{$family}{nights} }\n";
print "its members are:\n";
for $who ( @{ $TV{$family}{members} } ) {

print " $who->{name} ($who->{role}), age $who->{age}\n";
}
print "it turns out that $TV{$family}{lead} has ";
print scalar ( @{ $TV{$family}{kids} } ), " kids named ";
print join (", ", map { $_->{name} } @{ $TV{$family}{kids} } );
print "\n";

}

Database Ties
You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first
problem is that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have
problems with how references are to be represented on disk. One experimental module that does
partially attempt to address this need is the MLDBM module. Check your nearest CPAN site as
described in perlmodlib for source code to MLDBM.

SEE ALSO
perlref (1), perllol (1), perldata (1), perlobj (1)

AUTHOR
Tom Christiansen <tchrist@perl.com>

Last update: Wed Oct 23 04:57:50 MET DST 1996

204 2003-11-25 perl v5.8.3



PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

NAME
perlrequick − Perl regular expressions quick start

DESCRIPTION
This page covers the very basics of understanding, creating and using regular expressions (’regexes’) in
Perl.

The Guide
Simple word matching

The simplest regex is simply a word, or more generally, a string of characters. A regex consisting of a
word matches any string that contains that word:

"Hello World" =˜ /World/; # matches

In this statement, World is a regex and the // enclosing /World/ tells perl to search a string for a
match. The operator =˜ associates the string with the regex match and produces a true value if the
regex matched, or false if the regex did not match. In our case, World matches the second word in
"Hello World", so the expression is true. This idea has several variations.

Expressions like this are useful in conditionals:

print "It matches\n" if "Hello World" =˜ /World/;

The sense of the match can be reversed by using !˜ operator:

print "It doesn’t match\n" if "Hello World" !˜ /World/;

The literal string in the regex can be replaced by a variable:

$greeting = "World";
print "It matches\n" if "Hello World" =˜ /$greeting/;

If you’re matching against $_, the $_ =˜ part can be omitted:

$_ = "Hello World";
print "It matches\n" if /World/;

Finally, the // default delimiters for a match can be changed to arbitrary delimiters by putting an ’m’
out front:

"Hello World" =˜ m!World!; # matches, delimited by ’!’
"Hello World" =˜ m{World}; # matches, note the matching ’{}’
"/usr/bin/perl" =˜ m"/perl"; # matches after ’/usr/bin’,

# ’/’ becomes an ordinary char

Regexes must match a part of the string exactly in order for the statement to be true:

"Hello World" =˜ /world/; # doesn’t match, case sensitive
"Hello World" =˜ /o W/; # matches, ’ ’ is an ordinary char
"Hello World" =˜ /World /; # doesn’t match, no ’ ’ at end

perl will always match at the earliest possible point in the string:

"Hello World" =˜ /o/; # matches ’o’ in ’Hello’
"That hat is red" =˜ /hat/; # matches ’hat’ in ’That’

Not all characters can be used ’as is’ in a match. Some characters, called metacharacters, are reserved
for use in regex notation. The metacharacters are

{}[]()ˆ$.*+?\

A metacharacter can be matched by putting a backslash before it:

"2+2=4" =˜ /2+2/; # doesn’t match, + is a metacharacter
"2+2=4" =˜ /2\+2/; # matches, \+ is treated like an ordinary +
’C:\WIN32’ =˜ /C:\\WIN/; # matches
"/usr/bin/perl" =˜ /\/usr\/bin\/perl/; # matches

In the last regex, the forward slash ’/’ is also backslashed, because it is used to delimit the regex.

Non-printable ASCII characters are represented by escape sequences. Common examples are \t for a
tab, \n for a newline, and \r for a carriage return. Arbitrary bytes are represented by octal escape
sequences, e.g., \033, or hexadecimal escape sequences, e.g., \x1B:

perl v5.8.3 2003-11-25 205



PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

"1000\t2000" =˜ m(0\t2) # matches
"cat" =˜ /\143\x61\x74/ # matches, but a weird way to spell cat

Regexes are treated mostly as double quoted strings, so variable substitution works:

$foo = ’house’;
’cathouse’ =˜ /cat$foo/; # matches
’housecat’ =˜ /${foo}cat/; # matches

With all of the regexes above, if the regex matched anywhere in the string, it was considered a match.
To specify where it should match, we would use the anchor metacharacters ˆ and $. The anchor ˆ
means match at the beginning of the string and the anchor $ means match at the end of the string, or
before a newline at the end of the string. Some examples:

"housekeeper" =˜ /keeper/; # matches
"housekeeper" =˜ /ˆkeeper/; # doesn’t match
"housekeeper" =˜ /keeper$/; # matches
"housekeeper\n" =˜ /keeper$/; # matches
"housekeeper" =˜ /ˆhousekeeper$/; # matches

Using character classes

A character class allows a set of possible characters, rather than just a single character, to match at a
particular point in a regex. Character classes are denoted by brackets [...], with the set of characters
to be possibly matched inside. Here are some examples:

/cat/; # matches ’cat’
/[bcr]at/; # matches ’bat’, ’cat’, or ’rat’
"abc" =˜ /[cab]/; # matches ’a’

In the last statement, even though ’c’ is the first character in the class, the earliest point at which the
regex can match is ’a’.

/[yY][eE][sS]/; # match ’yes’ in a case-insensitive way
# ’yes’, ’Yes’, ’YES’, etc.

/yes/i; # also match ’yes’ in a case-insensitive way

The last example shows a match with an ’i’ modifier, which makes the match case−insensitive.

Character classes also have ordinary and special characters, but the sets of ordinary and special
characters inside a character class are different than those outside a character class. The special
characters for a character class are −]\ˆ$ and are matched using an escape:

/[\]c]def/; # matches ’]def’ or ’cdef’
$x = ’bcr’;
/[$x]at/; # matches ’bat, ’cat’, or ’rat’
/[\$x]at/; # matches ’$at’ or ’xat’
/[\\$x]at/; # matches ’\at’, ’bat, ’cat’, or ’rat’

The special character ’−’ acts as a range operator within character classes, so that the unwieldy
[0123456789] and [abc...xyz] become the svelte [0−9] and [a−z]:

/item[0-9]/; # matches ’item0’ or ... or ’item9’
/[0-9a-fA-F]/; # matches a hexadecimal digit

If ’−’ is the first or last character in a character class, it is treated as an ordinary character.

The special character ˆ in the first position of a character class denotes a negated character class,
which matches any character but those in the brackets. Both [...] and [ˆ...] must match a
character, or the match fails. Then

/[ˆa]at/; # doesn’t match ’aat’ or ’at’, but matches
# all other ’bat’, ’cat, ’0at’, ’%at’, etc.

/[ˆ0-9]/; # matches a non-numeric character
/[aˆ]at/; # matches ’aat’ or ’ˆat’; here ’ˆ’ is ordinary

Perl has several abbreviations for common character classes:

• \d is a digit and represents

206 2003-11-25 perl v5.8.3



PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

[0-9]

• \s is a whitespace character and represents

[\ \t\r\n\f]

• \w is a word character (alphanumeric or _) and represents

[0-9a-zA-Z_]

• \D is a neg ated \d; it represents any character but a digit

[ˆ0-9]

• \S is a neg ated \s; it represents any non-whitespace character

[ˆ\s]

• \W is a neg ated \w; it represents any non-word character

[ˆ\w]

• The period ’.’ matches any character but ‘‘\n’’

The \d\s\w\D\S\W abbreviations can be used both inside and outside of character classes. Here are
some in use:

/\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format
/[\d\s]/; # matches any digit or whitespace character
/\w\W\w/; # matches a word char, followed by a

# non-word char, followed by a word char
/..rt/; # matches any two chars, followed by ’rt’
/end\./; # matches ’end.’
/end[.]/; # same thing, matches ’end.’

The word anchor \b matches a boundary between a word character and a non-word character \w\W
or \W\w:

$x = "Housecat catenates house and cat";
$x =˜ /\bcat/; # matches cat in ’catenates’
$x =˜ /cat\b/; # matches cat in ’housecat’
$x =˜ /\bcat\b/; # matches ’cat’ at end of string

In the last example, the end of the string is considered a word boundary.

Matching this or that

We can match different character strings with the alternation metacharacter ’’. To match dog or
cat, we form the regex dogcat. As before, perl will try to match the regex at the earliest possible
point in the string. At each character position, perl will first try to match the first alternative, dog. If
dog doesn’t match, perl will then try the next alternative, cat. If cat doesn’t match either, then the
match fails and perl moves to the next position in the string. Some examples:

"cats and dogs" =˜ /catdogbird/; # matches "cat"
"cats and dogs" =˜ /dogcatbird/; # matches "cat"

Even though dog is the first alternative in the second regex, cat is able to match earlier in the string.

"cats" =˜ /ccacatcats/; # matches "c"
"cats" =˜ /catscatcac/; # matches "cats"

At a given character position, the first alternative that allows the regex match to succeed will be the one
that matches. Here, all the alternatives match at the first string position, so the first matches.

Grouping things and hierarchical matching

The grouping metacharacters () allow a part of a regex to be treated as a single unit. Parts of a regex
are grouped by enclosing them in parentheses. The regex house(catkeeper) means match
house followed by either cat or keeper. Some more examples are

perl v5.8.3 2003-11-25 207



PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

/(ab)b/; # matches ’ab’ or ’bb’
/(ˆab)c/; # matches ’ac’ at start of string or ’bc’ anywhere

/house(cat)/; # matches either ’housecat’ or ’house’
/house(cat(s))/; # matches either ’housecats’ or ’housecat’ or

# ’house’. Note groups can be nested.

"20" =˜ /(1920)\d\d/; # matches the null alternative ’()\d\d’,
# because ’20\d\d’ can’t match

Extracting matches

The grouping metacharacters () also allow the extraction of the parts of a string that matched. For
each grouping, the part that matched inside goes into the special variables $1, $2, etc. They can be
used just as ordinary variables:

# extract hours, minutes, seconds
$time =˜ /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss format
$hours = $1;
$minutes = $2;
$seconds = $3;

In list context, a match /regex/ with groupings will return the list of matched values
($1,$2,...). So we could rewrite it as

($hours, $minutes, $second) = ($time =˜ /(\d\d):(\d\d):(\d\d)/);

If the groupings in a regex are nested, $1 gets the group with the leftmost opening parenthesis, $2 the
next opening parenthesis, etc. For example, here is a complex regex and the matching variables
indicated below it:

/(ab(cdef)((gi)j))/;
1 2  34

Associated with the matching variables $1, $2, ... are the backreferences \1, \2, ... Backreferences
are matching variables that can be used inside a regex:

/(\w\w\w)\s\1/; # find sequences like ’the the’ in string

$1, $2, ... should only be used outside of a regex, and \1, \2, ... only inside a regex.

Matching repetitions

The quantifier metacharacters ?, *, +, and {} allow us to determine the number of repeats of a portion
of a regex we consider to be a match. Quantifiers are put immediately after the character, character
class, or grouping that we want to specify. They hav e the following meanings:

• a? = match ’a’ 1 or 0 times

• a* = match ’a’ 0 or more times, i.e., any number of times

• a+ = match ’a’ 1 or more times, i.e., at least once

• a{n,m} = match at least n times, but not more than m times.

• a{n,} = match at least n or more times

• a{n} = match exactly n times

Here are some examples:

/[a-z]+\s+\d*/; # match a lowercase word, at least some space, and
# any number of digits

/(\w+)\s+\1/; # match doubled words of arbitrary length
$year =˜ /\d{2,4}/; # make sure year is at least 2 but not more

# than 4 digits
$year =˜ /\d{4}\d{2}/; # better match; throw out 3 digit dates

These quantifiers will try to match as much of the string as possible, while still allowing the regex to
match. So we have

208 2003-11-25 perl v5.8.3



PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

$x = ’the cat in the hat’;
$x =˜ /ˆ(.*)(at)(.*)$/; # matches,

# $1 = ’the cat in the h’
# $2 = ’at’
# $3 = ’’ (0 matches)

The first quantifier .* grabs as much of the string as possible while still having the regex match. The
second quantifier .* has no string left to it, so it matches 0 times.

More matching

There are a few more things you might want to know about matching operators. In the code

$pattern = ’Seuss’;
while (<>) {

print if /$pattern/;
}

perl has to re-evaluate $pattern each time through the loop. If $pattern won’t be changing, use
the //o modifier, to only perform variable substitutions once. If you don’t want any substitutions at
all, use the special delimiter m’’:

$pattern = ’Seuss’;
m’$pattern’; # matches ’$pattern’, not ’Seuss’

The global modifier //g allows the matching operator to match within a string as many times as
possible. In scalar context, successive matches against a string will have //g jump from match to
match, keeping track of position in the string as it goes along. You can get or set the position with the
pos() function. For example,

$x = "cat dog house"; # 3 words
while ($x =˜ /(\w+)/g) {

print "Word is $1, ends at position ", pos $x, "\n";
}

prints

Word is cat, ends at position 3
Word is dog, ends at position 7
Word is house, ends at position 13

A failed match or changing the target string resets the position. If you don’t want the position reset
after failure to match, add the //c, as in /regex/gc.

In list context, //g returns a list of matched groupings, or if there are no groupings, a list of matches to
the whole regex. So

@words = ($x =˜ /(\w+)/g); # matches,
# $word[0] = ’cat’
# $word[1] = ’dog’
# $word[2] = ’house’

Search and replace

Search and replace is performed using s/regex/replacement/modifiers. The
replacement is a Perl double quoted string that replaces in the string whatever is matched with the
regex. The operator =˜ is also used here to associate a string with s///. If matching against $_,
the $_ =˜ can be dropped. If there is a match, s/// returns the number of substitutions made,
otherwise it returns false. Here are a few examples:

$x = "Time to feed the cat!";
$x =˜ s/cat/hacker/; # $x contains "Time to feed the hacker!"
$y = "’quoted words’";
$y =˜ s/ˆ’(.*)’$/$1/; # strip single quotes,

# $y contains "quoted words"

With the s/// operator, the matched variables $1, $2, etc. are immediately available for use in the
replacement expression. With the global modifier, s///g will search and replace all occurrences of the

perl v5.8.3 2003-11-25 209



PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

regex in the string:

$x = "I batted 4 for 4";
$x =˜ s/4/four/; # $x contains "I batted four for 4"
$x = "I batted 4 for 4";
$x =˜ s/4/four/g; # $x contains "I batted four for four"

The evaluation modifier s///e wraps an eval{...} around the replacement string and the
evaluated result is substituted for the matched substring. Some examples:

# reverse all the words in a string
$x = "the cat in the hat";
$x =˜ s/(\w+)/reverse $1/ge; # $x contains "eht tac ni eht tah"

# convert percentage to decimal
$x = "A 39% hit rate";
$x =˜ s!(\d+)%!$1/100!e; # $x contains "A 0.39 hit rate"

The last example shows that s/// can use other delimiters, such as s!!! and s{}{}, and even
s{}//. If single quotes are used s’’’, then the regex and replacement are treated as single quoted
strings.

The split operator

split /regex/, string splits string into a list of substrings and returns that list. The regex
determines the character sequence that string is split with respect to. For example, to split a string
into words, use

$x = "Calvin and Hobbes";
@word = split /\s+/, $x; # $word[0] = ’Calvin’

# $word[1] = ’and’
# $word[2] = ’Hobbes’

To extract a comma-delimited list of numbers, use

$x = "1.618,2.718, 3.142";
@const = split /,\s*/, $x; # $const[0] = ’1.618’

# $const[1] = ’2.718’
# $const[2] = ’3.142’

If the empty regex // is used, the string is split into individual characters. If the regex has groupings,
then the list produced contains the matched substrings from the groupings as well:

$x = "/usr/bin";
@parts = split m!(/)!, $x; # $parts[0] = ’’

# $parts[1] = ’/’
# $parts[2] = ’usr’
# $parts[3] = ’/’
# $parts[4] = ’bin’

Since the first character of $x matched the regex, split prepended an empty initial element to the
list.

BUGS
None.

SEE ALSO
This is just a quick start guide. For a more in-depth tutorial on regexes, see perlretut and for the
reference page, see perlre.

AUTHOR AND COPYRIGHT
Copyright (c) 2000 Mark Kvale All rights reserved.

This document may be distributed under the same terms as Perl itself.

210 2003-11-25 perl v5.8.3



PERLREQUICK(1) Perl Programmers Reference Guide PERLREQUICK(1)

Acknowledgments

The author would like to thank Mark-Jason Dominus, Tom Christiansen, Ilya Zakharevich, Brad
Hughes, and Mike Giroux for all their helpful comments.

perl v5.8.3 2003-11-25 211



PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

NAME
perlstyle − Perl style guide

DESCRIPTION
Each programmer will, of course, have his or her own preferences in regards to formatting, but there
are some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to run your programs under the −w flag at all times. You may turn it off
explicitly for particular portions of code via the no warnings pragma or the $ˆW variable if you
must. You should also always run under use strict or know the reason why not. The use
sigtrap and even use diagnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closing
curly bracket of a multi-line BLOCK should line up with the keyword that started the construct.
Beyond that, he has other preferences that aren’t so strong:

• 4−column indent.

• Opening curly on same line as keyword, if possible, otherwise line up.

• Space before the opening curly of a multi-line BLOCK.

• One-line BLOCK may be put on one line, including curlies.

• No space before the semicolon.

• Semicolon omitted in ‘‘short’’ one-line BLOCK.

• Space around most operators.

• Space around a ‘‘complex’’ subscript (inside brackets).

• Blank lines between chunks that do different things.

• Uncuddled elses.

• No space between function name and its opening parenthesis.

• Space after each comma.

• Long lines broken after an operator (except ‘‘and’’ and ‘‘or’’).

• Space after last parenthesis matching on current line.

• Line up corresponding items vertically.

• Omit redundant punctuation as long as clarity doesn’t suffer.

Larry has his reasons for each of these things, but he doesn’t claim that everyone else’s mind works the
same as his does.

Here are some other more substantive style issues to think about:

• Just because you CAN do something a particular way doesn’t mean that you SHOULD do it that
way. Perl is designed to give you several ways to do anything, so consider picking the most
readable one. For instance

open(FOO,$foo)  die "Can’t open $foo: $!";

is better than

die "Can’t open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier. On the other hand

print "Starting analysis\n" if $verbose;

is better than

$verbose && print "Starting analysis\n";

because the main point isn’t whether the user typed −v or not.

Similarly, just because an operator lets you assume default arguments doesn’t mean that you have
to make use of the defaults. The defaults are there for lazy systems programmers writing one-shot
programs. If you want your program to be readable, consider supplying the argument.

212 2003-11-25 perl v5.8.3



PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

Along the same lines, just because you CAN omit parentheses in many places doesn’t mean that
you ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the % key
in vi.

Even if you aren’t in doubt, consider the mental welfare of the person who has to maintain the
code after you, and who will probably put parentheses in the wrong place.

• Don’t go through silly contortions to exit a loop at the top or the bottom, when Perl provides the
last operator so you can exit in the middle. Just ‘‘outdent’’ it a little to make it more visible:

LINE:
for (;;) {

statements;
last LINE if $foo;
next LINE if /ˆ#/;
statements;

}

• Don’t be afraid to use loop labels — they’re there to enhance readability as well as to allow
multilevel loop breaks. See the previous example.

• Avoid using grep() (or map()) or ‘backticks‘ in a void context, that is, when you just throw away
their return values. Those functions all have return values, so use them. Otherwise use a foreach()
loop or the system() function instead.

• For portability, when using features that may not be implemented on every machine, test the
construct in an eval to see if it fails. If you know what version or patchlevel a particular feature
was implemented, you can test $] ($PERL_VERSION in English) to see if it will be there.
The Config module will also let you interrogate values determined by the Configure program
when Perl was installed.

• Choose mnemonic identifiers. If you can’t remember what mnemonic means, you’ve got a
problem.

• While short identifiers like $gotit are probably ok, use underscores to separate words. It is
generally easier to read $var_names_like_this than $VarNamesLikeThis, especially
for non-native speakers of English. It’s also a simple rule that works consistently with
VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves lowercase
module names for ‘‘pragma’’ modules like integer and strict. Other modules should begin
with a capital letter and use mixed case, but probably without underscores due to limitations in
primitive file systems’ representations of module names as files that must fit into a few sparse
bytes.

• You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)
$Some_Caps_Here package-wide global/static
$no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercase. E.g., $obj−>as_string().

You can use a leading underscore to indicate that a variable or function should not be used outside
the package that defined it.

• If you have a really hairy regular expression, use the /x modifier and put in some whitespace to
make it look a little less like line noise. Don’t use slash as a delimiter when your regexp has
slashes or backslashes.

• Use the new ‘‘and’’ and ‘‘or’’ operators to avoid having to parenthesize list operators so much, and
to reduce the incidence of punctuation operators like && and . Call your subroutines as if they
were functions or list operators to avoid excessive ampersands and parentheses.

perl v5.8.3 2003-11-25 213



PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

• Use here documents instead of repeated print() statements.

• Line up corresponding things vertically, especially if it’d be too long to fit on one line anyway.

$IDX = $ST_MTIME;
$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if $opt_c;
$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can’t mkdir $tmpdir: $!";
chdir($tmpdir) or die "can’t chdir $tmpdir: $!";
mkdir ’tmp’, 0777 or die "can’t mkdir $tmpdir/tmp: $!";

• Always check the return codes of system calls. Good error messages should go to STDERR,
include which program caused the problem, what the failed system call and arguments were, and
(VERY IMPORTANT) should contain the standard system error message for what went wrong.
Here’s a simple but sufficient example:

opendir(D, $dir) or die "can’t opendir $dir: $!";

• Line up your transliterations when it makes sense:

tr [abc]
[xyz];

• Think about reusability. Why waste brainpower on a one-shot when you might want to do
something like it again? Consider generalizing your code. Consider writing a module or object
class. Consider making your code run cleanly with use strict and use warnings (or −w)
in effect. Consider giving away your code. Consider changing your whole world view.
Consider... oh, never mind.

• Be consistent.

• Be nice.

214 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

NAME
perltrap − Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting to use warnings or use the −w switch; see perllexwarn and
perlrun. The second biggest trap is not making your entire program runnable under use strict.
The third biggest trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps

Accustomed awk users should take special note of the following:

• A Perl program executes only once, not once for each input line. You can do an implicit loop with
−n or −p.

• The English module, loaded via

use English;

allows you to refer to special variables (like $/) with names (like $RS), as though they were in
awk; see perlvar for details.

• Semicolons are required after all simple statements in Perl (except at the end of a block). Newline
is not a statement delimiter.

• Curly brackets are required on ifs and whiles.

• Variables begin with ‘‘$’’, ‘‘@’’ or ‘‘%’’ in Perl.

• Arrays index from 0. Likewise string positions in substr() and index().

• You have to decide whether your array has numeric or string indices.

• Hash values do not spring into existence upon mere reference.

• You have to decide whether you want to use string or numeric comparisons.

• Reading an input line does not split it for you. You get to split it to an array yourself. And the
split() operator has different arguments than awk’s.

• The current input line is normally in $_, not $0. It generally does not have the newline stripped.
($0 is the name of the program executed.) See perlvar.

• $<digit> does not refer to fields — it refers to substrings matched by the last match pattern.

• The print() statement does not add field and record separators unless you set $, and $\. You can
set $OFS and $ORS if you’re using the English module.

• You must open your files before you print to them.

• The range operator is ‘‘..’’, not comma. The comma operator works as in C.

• The match operator is ‘‘=˜’’, not ‘‘˜’’. (‘‘˜’’ is the one’s complement operator, as in C.)

• The exponentiation operator is ‘‘**’’, not ‘‘ˆ’’. ‘‘ˆ’’ is the XOR operator, as in C. (You know, one
could get the feeling that awk is basically incompatible with C.)

• The concatenation operator is ‘‘.’’, not the null string. (Using the null string would render /pat/
/pat/ unparsable, because the third slash would be interpreted as a division operator — the
tokenizer is in fact slightly context sensitive for operators like ‘‘/’’, ‘‘?’’, and ‘‘>’’. And in fact,
‘‘.’’ itself can be the beginning of a number.)

• The next, exit, and continue keywords work differently.

• The following variables work differently:

perl v5.8.3 2003-11-25 215



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

Awk Perl
ARGC scalar @ARGV (compare with $#ARGV)
ARGV[0] $0
FILENAME $ARGV
FNR $. - something
FS (whatever you like)
NF $#Fld, or some such
NR $.
OFMT $#
OFS $,
ORS $\
RLENGTH length($&)
RS $/
RSTART length($‘)
SUBSEP $;

• You cannot set $RS to a pattern, only a string.

• When in doubt, run the awk construct through a2p and see what it gives you.

C/C++ Traps

Cerebral C and C++ programmers should take note of the following:

• Curly brackets are required on if’s and while’s.

• You must use elsif rather than else if.

• The break and continue keywords from C become in Perl last and next, respectively.
Unlike in C, these do not work within a do { } while construct. See ‘‘Loop Control’’ in
perlsyn.

• There’s no switch statement. (But it’s easy to build one on the fly, see ‘‘Basic BLOCKs and
Switch Statements’’ in perlsyn)

• Variables begin with ‘‘$’’, ‘‘@’’ or ‘‘%’’ in Perl.

• Comments begin with ‘‘#’’, not ‘‘/*’’ or ‘‘//’’. Perl may interpret C/C++ comments as division
operators, unterminated regular expressions or the defined-or operator.

• You can’t take the address of anything, although a similar operator in Perl is the backslash, which
creates a reference.

• ARGV must be capitalized. $ARGV[0] is C’s argv[1], and argv[0] ends up in $0.

• System calls such as link(), unlink(), rename(), etc. return nonzero for success, not 0. (system(),
however, returns zero for success.)

• Signal handlers deal with signal names, not numbers. Use kill −l to find their names on your
system.

Sed Traps

Seasoned sed programmers should take note of the following:

• A Perl program executes only once, not once for each input line. You can do an implicit loop with
−n or −p.

• Backreferences in substitutions use ‘‘$’’ rather than ‘‘\’’.

• The pattern matching metacharacters ‘‘(’’, ‘‘)’’, and ‘‘’’ do not have backslashes in front.

• The range operator is ..., rather than comma.

Shell Traps

Sharp shell programmers should take note of the following:

• The backtick operator does variable interpolation without regard to the presence of single quotes
in the command.

216 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

• The backtick operator does no translation of the return value, unlike csh.

• Shells (especially csh) do sev eral levels of substitution on each command line. Perl does
substitution in only certain constructs such as double quotes, backticks, angle brackets, and search
patterns.

• Shells interpret scripts a little bit at a time. Perl compiles the entire program before executing it
(except for BEGIN blocks, which execute at compile time).

• The arguments are available via @ARGV, not $1, $2, etc.

• The environment is not automatically made available as separate scalar variables.

Perl Traps

Practicing Perl Programmers should take note of the following:

• Remember that many operations behave differently in a list context than they do in a scalar one.
See perldata for details.

• Avoid barewords if you can, especially all lowercase ones. You can’t tell by just looking at it
whether a bareword is a function or a string. By using quotes on strings and parentheses on
function calls, you won’t ever get them confused.

• You cannot discern from mere inspection which builtins are unary operators (like chop() and
chdir()) and which are list operators (like print() and unlink()). (Unless prototyped, user-defined
subroutines can only be list operators, never unary ones.) See perlop and perlsub.

• People have a hard time remembering that some functions default to $_, or @ARGV, or whatever,
but that others which you might expect to do not.

• The <FH> construct is not the name of the filehandle, it is a readline operation on that handle. The
data read is assigned to $_ only if the file read is the sole condition in a while loop:

while (<FH>) { }
while (defined($_ = <FH>)) { }..
<FH>; # data discarded!

• Remember not to use = when you need =˜; these two constructs are quite different:

$x = /foo/;
$x =˜ /foo/;

• The do {} construct isn’t a real loop that you can use loop control on.

• Use my() for local variables whenever you can get away with it (but see perlform for where you
can’t). Using local() actually gives a local value to a global variable, which leaves you open to
unforeseen side-effects of dynamic scoping.

• If you localize an exported variable in a module, its exported value will not change. The local
name becomes an alias to a new value but the external name is still an alias for the original.

Perl4 to Perl5 Traps

Practicing Perl4 Programmers should take note of the following Perl4−to−Perl5 specific traps.

They’re crudely ordered according to the following list:

Discontinuance, Deprecation, and BugFix traps
Anything that’s been fixed as a perl4 bug, removed as a perl4 feature or deprecated as a perl4
feature with the intent to encourage usage of some other perl5 feature.

Parsing Traps
Traps that appear to stem from the new parser.

Numerical Traps
Traps having to do with numerical or mathematical operators.

General data type traps
Traps involving perl standard data types.

perl v5.8.3 2003-11-25 217



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

Context Traps − scalar, list contexts
Traps related to context within lists, scalar statements/declarations.

Precedence Traps
Traps related to the precedence of parsing, evaluation, and execution of code.

General Regular Expression Traps using s///, etc.
Traps related to the use of pattern matching.

Subroutine, Signal, Sorting Traps
Traps related to the use of signals and signal handlers, general subroutines, and sorting, along with
sorting subroutines.

OS Traps
OS-specific traps.

DBM Traps
Traps specific to the use of dbmopen(), and specific dbm implementations.

Unclassified Traps
Everything else.

If you find an example of a conversion trap that is not listed here, please submit it to
<perlbug@perl.org> for inclusion. Also note that at least some of these can be caught with the use
warnings pragma or the −w switch.

Discontinuance, Deprecation, and BugFix traps

Anything that has been discontinued, deprecated, or fixed as a bug from perl4.

* Discontinuance
Symbols starting with ‘‘_’’ are no longer forced into package main, except for $_ itself (and @_,
etc.).

package test;
$_legacy = 1;

package main;
print "\$_legacy is ",$_legacy,"\n";

# perl4 prints: $_legacy is 1
# perl5 prints: $_legacy is

* Deprecation
Double-colon is now a valid package separator in a variable name. Thus these behave differently
in perl4 vs. perl5, because the packages don’t exist.

$a=1;$b=2;$c=3;$var=4;
print "$a::$b::$c ";
print "$var::abc::xyz\n";

# perl4 prints: 1::2::3 4::abc::xyz
# perl5 prints: 3

Given that :: is now the preferred package delimiter, it is debatable whether this should be
classed as a bug or not. (The older package delimiter, ’ ,is used here)

$x = 10 ;
print "x=${’x}\n" ;

# perl4 prints: x=10
# perl5 prints: Can’t find string terminator "’" anywhere before EOF

You can avoid this problem, and remain compatible with perl4, if you always explicitly include the
package name:

$x = 10 ;
print "x=${main’x}\n" ;

Also see precedence traps, for parsing $:.

218 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

* BugFix
The second and third arguments of splice() are now evaluated in scalar context (as the Camel
says) rather than list context.

sub sub1{return(0,2) } # return a 2-element list
sub sub2{ return(1,2,3)} # return a 3-element list
@a1 = ("a","b","c","d","e");
@a2 = splice(@a1,&sub1,&sub2);
print join(’ ’,@a2),"\n";

# perl4 prints: a b
# perl5 prints: c d e

* Discontinuance
You can’t do a goto into a block that is optimized away. Darn.

goto marker1;

for(1){
marker1:

print "Here I is!\n";
}

# perl4 prints: Here I is!
# perl5 errors: Can’t "goto" into the middle of a foreach loop

* Discontinuance
It is no longer syntactically legal to use whitespace as the name of a variable, or as a delimiter for
any kind of quote construct. Double darn.

$a = ("foo bar");
$b = q baz ;
print "a is $a, b is $b\n";

# perl4 prints: a is foo bar, b is baz
# perl5 errors: Bareword found where operator expected

* Discontinuance
The archaic while/if BLOCK BLOCK syntax is no longer supported.

if { 1 } {
print "True!";

}
else {

print "False!";
}

# perl4 prints: True!
# perl5 errors: syntax error at test.pl line 1, near "if {"

* BugFix
The ** operator now binds more tightly than unary minus. It was documented to work this way
before, but didn’t.

print -4**2,"\n";

# perl4 prints: 16
# perl5 prints: -16

* Discontinuance
The meaning of foreach{} has changed slightly when it is iterating over a list which is not an
array. This used to assign the list to a temporary array, but no longer does so (for efficiency). This
means that you’ll now be iterating over the actual values, not over copies of the values.
Modifications to the loop variable can change the original values.

perl v5.8.3 2003-11-25 219



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

@list = (’ab’,’abc’,’bcd’,’def’);
foreach $var (grep(/ab/,@list)){

$var = 1;
}
print (join(’:’,@list));

# perl4 prints: ab:abc:bcd:def
# perl5 prints: 1:1:bcd:def

To retain Perl4 semantics you need to assign your list explicitly to a temporary array and then
iterate over that. For example, you might need to change

foreach $var (grep(/ab/,@list)){

to

foreach $var (@tmp = grep(/ab/,@list)){

Otherwise changing $var will clobber the values of @list. (This most often happens when you
use $_ for the loop variable, and call subroutines in the loop that don’t properly localize $_.)

* Discontinuance
split with no arguments now behaves like split ’ ’ (which doesn’t return an initial null
field if $_ starts with whitespace), it used to behave like split /\s+/ (which does).

$_ = ’ hi mom’;
print join(’:’, split);

# perl4 prints: :hi:mom
# perl5 prints: hi:mom

* BugFix
Perl 4 would ignore any text which was attached to an −e switch, always taking the code snippet
from the following arg. Additionally, it would silently accept an −e switch without a following
arg. Both of these behaviors have been fixed.

perl -e’print "attached to -e"’ ’print "separate arg"’

# perl4 prints: separate arg
# perl5 prints: attached to -e

perl -e

# perl4 prints:
# perl5 dies: No code specified for -e.

* Discontinuance
In Perl 4 the return value of push was undocumented, but it was actually the last value being
pushed onto the target list. In Perl 5 the return value of push is documented, but has changed, it
is the number of elements in the resulting list.

@x = (’existing’);
print push(@x, ’first new’, ’second new’);

# perl4 prints: second new
# perl5 prints: 3

* Deprecation
Some error messages will be different.

* Discontinuance
In Perl 4, if in list context the delimiters to the first argument of split() were ??, the result
would be placed in @_ as well as being returned. Perl 5 has more respect for your subroutine
arguments.

* Discontinuance
Some bugs may have been inadvertently removed. :−)

220 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

Parsing Traps

Perl4−to−Perl5 traps from having to do with parsing.

* Parsing
Note the space between . and =

$string . = "more string";
print $string;

# perl4 prints: more string
# perl5 prints: syntax error at - line 1, near ". ="

* Parsing
Better parsing in perl 5

sub foo {}
&foo
print("hello, world\n");

# perl4 prints: hello, world
# perl5 prints: syntax error

* Parsing
‘‘if it looks like a function, it is a function’’ rule.

print
($foo == 1) ? "is one\n" : "is zero\n";

# perl4 prints: is zero
# perl5 warns: "Useless use of a constant in void context" if using -w

* Parsing
String interpolation of the $#array construct differs when braces are to used around the name.

@a = (1..3);
print "${#a}";

# perl4 prints: 2
# perl5 fails with syntax error

@ = (1..3);
print "$#{a}";

# perl4 prints: {a}
# perl5 prints: 2

* Parsing
When perl sees map { (or grep {), it has to guess whether the { starts a BLOCK or a hash
reference. If it guesses wrong, it will report a syntax error near the } and the missing (or
unexpected) comma.

Use unary + before { on a hash reference, and unary + applied to the first thing in a BLOCK (after
{), for perl to guess right all the time. (See ‘‘map’’ in perlfunc.)

Numerical Traps

Perl4−to−Perl5 traps having to do with numerical operators, operands, or output from same.

* Numerical
Formatted output and significant digits. In general, Perl 5 tries to be more precise. For example,
on a Solaris Sparc:

print 7.373504 - 0, "\n";
printf "%20.18f\n", 7.373504 - 0;

# Perl4 prints:
7.3750399999999996141
7.375039999999999614

perl v5.8.3 2003-11-25 221



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

# Perl5 prints:
7.373504
7.375039999999999614

Notice how the first result looks better in Perl 5.

Your results may vary, since your floating point formatting routines and even floating point
format may be slightly different.

* Numerical
This specific item has been deleted. It demonstrated how the auto-increment operator would not
catch when a number went over the signed int limit. Fixed in version 5.003_04. But always be
wary when using large integers. If in doubt:

use Math::BigInt;

* Numerical
Assignment of return values from numeric equality tests does not work in perl5 when the test
evaluates to false (0). Logical tests now return a null, instead of 0

$p = ($test == 1);
print $p,"\n";

# perl4 prints: 0
# perl5 prints:

Also see ‘‘General Regular Expression Traps using s///, etc.’’ for another example of this new
feature...

* Bitwise string ops
When bitwise operators which can operate upon either numbers or strings (&  ˆ ˜) are given
only strings as arguments, perl4 would treat the operands as bitstrings so long as the program
contained a call to the vec() function. perl5 treats the string operands as bitstrings. (See
‘‘Bitwise String Operators’’ in perlop for more details.)

$fred = "10";
$barney = "12";
$betty = $fred & $barney;
print "$betty\n";
# Uncomment the next line to change perl4’s behavior
# ($dummy) = vec("dummy", 0, 0);

# Perl4 prints:
8

# Perl5 prints:
10

# If vec() is used anywhere in the program, both print:
10

General data type traps

Perl4−to−Perl5 traps involving most data−types, and their usage within certain expressions and/or
context.

* (Arrays)
Negative array subscripts now count from the end of the array.

@a = (1, 2, 3, 4, 5);
print "The third element of the array is $a[3] also expressed as $a[-2] \n";

# perl4 prints: The third element of the array is 4 also expressed as
# perl5 prints: The third element of the array is 4 also expressed as 4

* (Arrays)
Setting $#array lower now discards array elements, and makes them impossible to recover.

222 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

@a = (a,b,c,d,e);
print "Before: ",join(’’,@a);
$#a =1;
print ", After: ",join(’’,@a);
$#a =3;
print ", Recovered: ",join(’’,@a),"\n";

# perl4 prints: Before: abcde, After: ab, Recovered: abcd
# perl5 prints: Before: abcde, After: ab, Recovered: ab

* (Hashes)
Hashes get defined before use

local($s,@a,%h);
die "scalar \$s defined" if defined($s);
die "array \@a defined" if defined(@a);
die "hash \%h defined" if defined(%h);

# perl4 prints:
# perl5 dies: hash %h defined

Perl will now generate a warning when it sees defined(@a) and defined(%h).

* (Globs)
glob assignment from variable to variable will fail if the assigned variable is localized subsequent
to the assignment

@a = ("This is Perl 4");
*b = *a;
local(@a);
print @b,"\n";

# perl4 prints: This is Perl 4
# perl5 prints:

* (Globs)
Assigning undef to a glob has no effect in Perl 5. In Perl 4 it undefines the associated scalar
(but may have other side effects including SEGVs). Perl 5 will also warn if undef is assigned to
a typeglob. (Note that assigning undef to a typeglob is different than calling the undef
function on a typeglob (undef *foo), which has quite a few effects.

$foo = "bar";
*foo = undef;
print $foo;

# perl4 prints:
# perl4 warns: "Use of uninitialized variable" if using -w
# perl5 prints: bar
# perl5 warns: "Undefined value assigned to typeglob" if using -w

* (Scalar String)
Changes in unary negation (of strings) This change effects both the return value and what it does
to auto(magic)increment.

$x = "aaa";
print ++$x," : ";
print -$x," : ";
print ++$x,"\n";

# perl4 prints: aab : -0 : 1
# perl5 prints: aab : -aab : aac

* (Constants)
perl 4 lets you modify constants:

perl v5.8.3 2003-11-25 223



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

$foo = "x";
&mod($foo);
for ($x = 0; $x < 3; $x++) {

&mod("a");
}
sub mod {

print "before: $_[0]";
$_[0] = "m";
print " after: $_[0]\n";

}

# perl4:
# before: x after: m
# before: a after: m
# before: m after: m
# before: m after: m

# Perl5:
# before: x after: m
# Modification of a read-only value attempted at foo.pl line 12.
# before: a

* (Scalars)
The behavior is slightly different for:

print "$x", defined $x

# perl 4: 1
# perl 5: <no output, $x is not called into existence>

* (Variable Suicide)
Variable suicide behavior is more consistent under Perl 5. Perl5 exhibits the same behavior for
hashes and scalars, that perl4 exhibits for only scalars.

$aGlobal{ "aKey" } = "global value";
print "MAIN:", $aGlobal{"aKey"}, "\n";
$GlobalLevel = 0;
&test( *aGlobal );

sub test {
local( *theArgument ) = @_;
local( %aNewLocal ); # perl 4 != 5.001l,m
$aNewLocal{"aKey"} = "this should never appear";
print "SUB: ", $theArgument{"aKey"}, "\n";
$aNewLocal{"aKey"} = "level $GlobalLevel"; # what should print
$GlobalLevel++;
if( $GlobalLevel<4 ) {

&test( *aNewLocal );
}

}

# Perl4:
# MAIN:global value
# SUB: global value
# SUB: level 0
# SUB: level 1
# SUB: level 2

224 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

# Perl5:
# MAIN:global value
# SUB: global value
# SUB: this should never appear
# SUB: this should never appear
# SUB: this should never appear

Context Traps − scalar, list contexts

* (list context)
The elements of argument lists for formats are now evaluated in list context. This means you can
interpolate list values now.

@fmt = ("foo","bar","baz");
format STDOUT=
@<<<<< @ @>>>>>
@fmt;
.
write;

# perl4 errors: Please use commas to separate fields in file
# perl5 prints: foo bar baz

* (scalar context)
The caller() function now returns a false value in a scalar context if there is no caller. This
lets library files determine if they’re being required.

caller() ? (print "You rang?\n") : (print "Got a 0\n");

# perl4 errors: There is no caller
# perl5 prints: Got a 0

* (scalar context)
The comma operator in a scalar context is now guaranteed to give a scalar context to its
arguments.

@y= (’a’,’b’,’c’);
$x = (1, 2, @y);
print "x = $x\n";

# Perl4 prints: x = c  # Thinks list context interpolates list
# Perl5 prints: x = 3  # Knows scalar uses length of list

* (list, builtin)
sprintf() is prototyped as ($;@), so its first argument is given scalar context. Thus, if passed
an array, it will probably not do what you want, unlike Perl 4:

@z = (’%s%s’, ’foo’, ’bar’);
$x = sprintf(@z);
print $x;

# perl4 prints: foobar
# perl5 prints: 3

printf() works the same as it did in Perl 4, though:

@z = (’%s%s’, ’foo’, ’bar’);
printf STDOUT (@z);

# perl4 prints: foobar
# perl5 prints: foobar

perl v5.8.3 2003-11-25 225



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

Precedence Traps

Perl4−to−Perl5 traps involving precedence order.

Perl 4 has almost the same precedence rules as Perl 5 for the operators that they both have. Perl 4
however, seems to have had some inconsistencies that made the behavior differ from what was
documented.

* Precedence
LHS vs. RHS of any assignment operator. LHS is evaluated first in perl4, second in perl5; this can
affect the relationship between side-effects in sub−expressions.

@arr = ( ’left’, ’right’ );
$a{shift @arr} = shift @arr;
print join( ’ ’, keys %a );

# perl4 prints: left
# perl5 prints: right

* Precedence
These are now semantic errors because of precedence:

@list = (1,2,3,4,5);
%map = ("a",1,"b",2,"c",3,"d",4);
$n = shift @list + 2; # first item in list plus 2
print "n is $n, ";
$m = keys %map + 2; # number of items in hash plus 2
print "m is $m\n";

# perl4 prints: n is 3, m is 6
# perl5 errors and fails to compile

* Precedence
The precedence of assignment operators is now the same as the precedence of assignment. Perl 4
mistakenly gav e them the precedence of the associated operator. So you now must parenthesize
them in expressions like

/foo/ ? ($a += 2) : ($a -= 2);

Otherwise

/foo/ ? $a += 2 : $a -= 2

would be erroneously parsed as

(/foo/ ? $a += 2 : $a) -= 2;

On the other hand,

$a += /foo/ ? 1 : 2;

now works as a C programmer would expect.

* Precedence
open FOO  die;

is now incorrect. You need parentheses around the filehandle. Otherwise, perl5 leaves the
statement as its default precedence:

open(FOO  die);

# perl4 opens or dies
# perl5 opens FOO, dying only if ’FOO’ is false, i.e. never

* Precedence
perl4 gives the special variable, $: precedence, where perl5 treats $:: as main package

$a = "x"; print "$::a";

226 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

# perl 4 prints: -:a
# perl 5 prints: x

* Precedence
perl4 had buggy precedence for the file test operators vis-a-vis the assignment operators. Thus,
although the precedence table for perl4 leads one to believe −e $foo .= "q" should parse as
((−e $foo) .= "q"), it actually parses as (−e ($foo .= "q")). In perl5, the
precedence is as documented.

-e $foo .= "q"

# perl4 prints: no output
# perl5 prints: Can’t modify -e in concatenation

* Precedence
In perl4, keys(), each() and values() were special high-precedence operators that operated on a
single hash, but in perl5, they are regular named unary operators. As documented, named unary
operators have lower precedence than the arithmetic and concatenation operators + − ., but the
perl4 variants of these operators actually bind tighter than + − .. Thus, for:

%foo = 1..10;
print keys %foo - 1

# perl4 prints: 4
# perl5 prints: Type of arg 1 to keys must be hash (not subtraction)

The perl4 behavior was probably more useful, if less consistent.

General Regular Expression Traps using s///, etc.

All types of RE traps.

* Regular Expression
s’$lhs’$rhs’ now does no interpolation on either side. It used to interpolate $lhs but not
$rhs. (And still does not match a literal ’$’ in string)

$a=1;$b=2;
$string = ’1 2 $a $b’;
$string =˜ s’$a’$b’;
print $string,"\n";

# perl4 prints: $b 2 $a $b
# perl5 prints: 1 2 $a $b

* Regular Expression
m//g now attaches its state to the searched string rather than the regular expression. (Once the
scope of a block is left for the sub, the state of the searched string is lost)

$_ = "ababab";
while(m/ab/g){

&doit("blah");
}
sub doit{local($_) = shift; print "Got $_ "}

# perl4 prints: Got blah Got blah Got blah Got blah
# perl5 prints: infinite loop blah...

* Regular Expression
Currently, if you use the m//o qualifier on a regular expression within an anonymous sub, all
closures generated from that anonymous sub will use the regular expression as it was compiled
when it was used the very first time in any such closure. For instance, if you say

perl v5.8.3 2003-11-25 227



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

sub build_match {
my($left,$right) = @_;
return sub { $_[0] =˜ /$left stuff $right/o; };

}
$good = build_match(’foo’,’bar’);
$bad = build_match(’baz’,’blarch’);
print $good->(’foo stuff bar’) ? "ok\n" : "not ok\n";
print $bad->(’baz stuff blarch’) ? "ok\n" : "not ok\n";
print $bad->(’foo stuff bar’) ? "not ok\n" : "ok\n";

For most builds of Perl5, this will print: ok not ok not ok

build_match() will always return a sub which matches the contents of $left and $right as
they were the first time that build_match() was called, not as they are in the current call.

* Regular Expression
If no parentheses are used in a match, Perl4 sets $+ to the whole match, just like $&. Perl5 does
not.

"abcdef" =˜ /b.*e/;
print "\$+ = $+\n";

# perl4 prints: bcde
# perl5 prints:

* Regular Expression
substitution now returns the null string if it fails

$string = "test";
$value = ($string =˜ s/foo//);
print $value, "\n";

# perl4 prints: 0
# perl5 prints:

Also see ‘‘Numerical Traps’’ for another example of this new feature.

* Regular Expression
s‘lhs‘rhs‘ (using backticks) is now a normal substitution, with no backtick expansion

$string = "";
$string =˜ s‘ˆ‘hostname‘;
print $string, "\n";

# perl4 prints: <the local hostname>
# perl5 prints: hostname

* Regular Expression
Stricter parsing of variables used in regular expressions

s/ˆ([ˆ$grpc]*$grpc[$opt$plus$rep]?)//o;

# perl4: compiles w/o error
# perl5: with Scalar found where operator expected ..., near "$opt$plus"

an added component of this example, apparently from the same script, is the actual value of the
s’d string after the substitution. [$opt] is a character class in perl4 and an array subscript in
perl5

$grpc = ’a’;
$opt = ’r’;
$_ = ’bar’;
s/ˆ([ˆ$grpc]*$grpc[$opt]?)/foo/;
print ;

# perl4 prints: foo
# perl5 prints: foobar

228 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

* Regular Expression
Under perl5, m?x? matches only once, like ?x?. Under perl4, it matched repeatedly, like /x/ or
m!x!.

$test = "once";
sub match { $test =˜ m?once?; }
&match();
if( &match() ) {

# m?x? matches more then once
print "perl4\n";

} else {
# m?x? matches only once
print "perl5\n";

}

# perl4 prints: perl4
# perl5 prints: perl5

* Regular Expression
Unlike in Ruby, failed matches in Perl do not reset the match variables ($1, $2, ..., $‘, ...).

Subroutine, Signal, Sorting Traps

The general group of Perl4−to−Perl5 traps having to do with Signals, Sorting, and their related
subroutines, as well as general subroutine traps. Includes some OS-Specific traps.

* (Signals)
Barewords that used to look like strings to Perl will now look like subroutine calls if a subroutine
by that name is defined before the compiler sees them.

sub SeeYa { warn"Hasta la vista, baby!" }
$SIG{’TERM’} = SeeYa;
print "SIGTERM is now $SIG{’TERM’}\n";

# perl4 prints: SIGTERM is now main’SeeYa
# perl5 prints: SIGTERM is now main::1 (and warns "Hasta la vista, baby!")

Use −w to catch this one

* (Sort Subroutine)
reverse is no longer allowed as the name of a sort subroutine.

sub reverse{ print "yup "; $a <=> $b }
print sort reverse (2,1,3);

# perl4 prints: yup yup 123
# perl5 prints: 123
# perl5 warns (if using -w): Ambiguous call resolved as CORE::reverse()

* warn() won’t let you specify a filehandle.
Although it _always_ printed to STDERR, warn() would let you specify a filehandle in perl4.
With perl5 it does not.

warn STDERR "Foo!";

# perl4 prints: Foo!
# perl5 prints: String found where operator expected

OS Traps

* (SysV)
Under HPUX, and some other SysV OSes, one had to reset any signal handler, within the signal
handler function, each time a signal was handled with perl4. With perl5, the reset is now done
correctly. Any code relying on the handler _not_ being reset will have to be rew orked.

Since version 5.002, Perl uses sigaction() under SysV.

perl v5.8.3 2003-11-25 229



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

sub gotit {
print "Got @_... ";

}
$SIG{’INT’} = ’gotit’;

$ = 1;
$pid = fork;
if ($pid) {

kill(’INT’, $pid);
sleep(1);
kill(’INT’, $pid);

} else {
while (1) {sleep(10);}

}

# perl4 (HPUX) prints: Got INT...
# perl5 (HPUX) prints: Got INT... Got INT...

* (SysV)
Under SysV OSes, seek() on a file opened to append >> now does the right thing w.r.t. the
fopen() manpage. e.g., − When a file is opened for append, it is impossible to overwrite
information already in the file.

open(TEST,">>seek.test");
$start = tell TEST ;
foreach(1 .. 9){

print TEST "$_ ";
}
$end = tell TEST ;
seek(TEST,$start,0);
print TEST "18 characters here";

# perl4 (solaris) seek.test has: 18 characters here
# perl5 (solaris) seek.test has: 1 2 3 4 5 6 7 8 9 18 characters here

Interpolation Traps

Perl4−to−Perl5 traps having to do with how things get interpolated within certain expressions,
statements, contexts, or whatever.

* Interpolation
@ now always interpolates an array in double-quotish strings.

print "To: someone@somewhere.com\n";

# perl4 prints: To:someone@somewhere.com
# perl < 5.6.1, error : In string, @somewhere now must be written as \@somewhere
# perl >= 5.6.1, warning : Possible unintended interpolation of @somewhere in string

* Interpolation
Double-quoted strings may no longer end with an unescaped $.

$foo = "foo$";
print "foo is $foo\n";

# perl4 prints: foo is foo$
# perl5 errors: Final $ should be \$ or $name

Note: perl5 DOES NOT error on the terminating @ in $bar

* Interpolation
Perl now sometimes evaluates arbitrary expressions inside braces that occur within double quotes
(usually when the opening brace is preceded by $ or @).

230 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

@www = "buz";
$foo = "foo";
$bar = "bar";
sub foo { return "bar" };
print "@{w.w.w}${main’foo}";

# perl4 prints: @{w.w.w}foo
# perl5 prints: buzbar

Note that you can use strict; to ward off such trappiness under perl5.

* Interpolation
The construct ‘‘this is $$x’’ used to interpolate the pid at that point, but now tries to dereference
$x. $$ by itself still works fine, however.

$s = "a reference";
$x = *s;
print "this is $$x\n";

# perl4 prints: this is XXXx (XXX is the current pid)
# perl5 prints: this is a reference

* Interpolation
Creation of hashes on the fly with eval "EXPR" now requires either both $’s to be protected
in the specification of the hash name, or both curlies to be protected. If both curlies are
protected, the result will be compatible with perl4 and perl5. This is a very common practice,
and should be changed to use the block form of eval{} if possible.

$hashname = "foobar";
$key = "baz";
$value = 1234;
eval "\$$hashname{’$key’} = q$value";
(defined($foobar{’baz’})) ? (print "Yup") : (print "Nope");

# perl4 prints: Yup
# perl5 prints: Nope

Changing

eval "\$$hashname{’$key’} = q$value";

to

eval "\$\$hashname{’$key’} = q$value";

causes the following result:

# perl4 prints: Nope
# perl5 prints: Yup

or, changing to

eval "\$$hashname\{’$key’\} = q$value";

causes the following result:

# perl4 prints: Yup
# perl5 prints: Yup
# and is compatible for both versions

* Interpolation
perl4 programs which unconsciously rely on the bugs in earlier perl versions.

perl -e ’$bar=q/not/; print "This is $foo{$bar} perl5"’

# perl4 prints: This is not perl5
# perl5 prints: This is perl5

perl v5.8.3 2003-11-25 231



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

* Interpolation
You also have to be careful about array and hash brackets during interpolation.

print "$foo["

perl 4 prints: [
perl 5 prints: syntax error

print "$foo{"

perl 4 prints: {
perl 5 prints: syntax error

Perl 5 is expecting to find an index or key name following the respective brackets, as well as an
ending bracket of the appropriate type. In order to mimic the behavior of Perl 4, you must escape
the bracket like so.

print "$foo\[";
print "$foo\{";

* Interpolation
Similarly, watch out for:

$foo = "baz";
print "\$$foo{bar}\n";

# perl4 prints: $baz{bar}
# perl5 prints: $

Perl 5 is looking for $foo{bar} which doesn’t exist, but perl 4 is happy just to expand $foo
to ‘‘baz’’ by itself. Watch out for this especially in eval’s.

* Interpolation
qq() string passed to eval

eval qq(
foreach \$y (keys %\$x\) {

\$count++;
}

);

# perl4 runs this ok
# perl5 prints: Can’t find string terminator ")"

DBM Traps

General DBM traps.

* DBM
Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the same
script, run under perl5, to fail. The build of perl5 must have been linked with the same
dbm/ndbm as the default for dbmopen() to function properly without tie’ing to an extension
dbm implementation.

dbmopen (%dbm, "file", undef);
print "ok\n";

# perl4 prints: ok
# perl5 prints: ok (IFF linked with -ldbm or -lndbm)

* DBM
Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the same
script, run under perl5, to fail. The error generated when exceeding the limit on the key/value
size will cause perl5 to exit immediately.

dbmopen(DB, "testdb",0600)  die "couldn’t open db! $!";
$DB{’trap’} = "x" x 1024; # value too large for most dbm/ndbm
print "YUP\n";

232 2003-11-25 perl v5.8.3



PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

# perl4 prints:
dbm store returned -1, errno 28, key "trap" at - line 3.
YUP

# perl5 prints:
dbm store returned -1, errno 28, key "trap" at - line 3.

Unclassified Traps

Everything else.

* require/do trap using returned value
If the file doit.pl has:

sub foo {
$rc = do "./do.pl";
return 8;

}
print &foo, "\n";

And the do.pl file has the following single line:

return 3;

Running doit.pl gives the following:

# perl 4 prints: 3 (aborts the subroutine early)
# perl 5 prints: 8

Same behavior if you replace do with require.

* split on empty string with LIMIT specified
$string = ’’;
@list = split(/foo/, $string, 2)

Perl4 returns a one element list containing the empty string but Perl5 returns an empty list.

As always, if any of these are ever officially declared as bugs, they’ll be fixed and removed.

perl v5.8.3 2003-11-25 233



PERLBOOK(1) Perl Programmers Reference Guide PERLBOOK(1)

NAME
perlbook − Perl book information

DESCRIPTION
The Camel Book, officially known as Programming Perl, Third Edition, by Larry Wall et al, is the
definitive reference work covering nearly all of Perl. You can order it and other Perl books from
O’Reilly & Associates, 1−800−998−9938. Local/overseas is +1 707 829 0515. If you can locate an
O’Reilly order form, you can also fax to +1 707 829 0104. If you’re web−connected, you can even
mosey on over to http://www.oreilly.com/ for an online order form.

Other Perl books from various publishers and authors can be found listed in perlfaq2.

234 2003-11-25 perl v5.8.3


