
7 — DIFFERENCE EQUATIONS

Many problems in Probability give rise to difference equations. Difference equations relate
to differential equations as discrete mathematics relates to continuous mathematics.

Anyone who has made a study of differential equations will know that even supposedly
elementary examples can be hard to solve. By contrast, elementary difference equations
are relatively easy to deal with.

Aside from Probability, Computer Scientists take an interest in difference equations for a
number of reasons. For example, difference equations frequently arise when determining
the cost of an algorithm in big-O notation. Since difference equations are readily handled
by program, a standard approach to solving a nasty differential equation is to convert it
to an approximately equivalent difference equation.

Classification of Difference Equations

As with differential equations, one can refer to the order of a difference equation and note
whether it is linear or non-linear and whether it is homogeneous or inhomogeneous.

The present discussion will almost exclusively be confined to linear second order difference
equations both homogeneous and inhomogeneous.

Notation Convention

A trivial example stems from considering the sequence of odd numbers starting from 1.
The associated difference equation might be specified as:

f(n) = f(n− 1) + 2 given that f(1) = 1

In words: term n in the sequence is two more than term n−1. The proviso, f(1) = 1,
constitutes an initial condition. The first term in the sequence is 1.

A term like f(n) so strongly suggests a continuous function that many writers prefer to
use a subscript notation. The present difference equation would be presented as:

un = un−1 + 2 given that u1 = 1 (7.1)

This is the notation which will be used below. It is strongly implicit that n is an integer.

In simple cases, a difference equation gives rise to an associated auxiliary equation (first
explained in (7.2) overleaf). In the case of (7.1) the associated auxiliary equation is:

w1 − 1 = 0

The highest power of the polynomial in w is 1 and, accordingly, (7.1) is said to be a first
order difference equation. If the constant term 2 were absent from (7.1), the equation
would be homogeneous but its presence makes it inhomogeneous.

Some standard techniques for solving elementary difference equations analytically will now
be presented. . .
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Second Order Homogeneous Linear Difference Equation — I

To solve:
un = un−1 + un−2 given that u0 = 1 and u1 = 1

transfer all the terms to the left-hand side:

un − un−1 − un−2 = 0

The zero on the right-hand side signifies that this is a homogeneous difference equation.

Guess:
un = Awn

so:
Awn −Awn−1 −Awn−2 = 0

and:
w2 − w − 1 = 0 (7.2)

This is the auxiliary equation associated with the difference equation. Being a quadratic,
the auxiliary equation signifies that the difference equation is of second order.

The two roots are readily determined:

w1 =
1 +
√

5

2
and w2 =

1−
√

5

2

For any A1 substituting A1w
n
1 for un in un − un−1 − un−2 yields zero.

For any A2 substituting A2w
n
2 for un in un − un−1 − un−2 yields zero.

This suggests a general solution:

un = A1w
n
1 +A2w

n
2

Check by substituting into un − un−1 − un−2 thus:

(A1w
n
1 +A2w

n
2 )− (A1w

n−1
1 +A2w

n−1
2 )− (A1w

n−2
1 +A2w

n−2
2 )

This, rearranged, is:

A1w
n−2
1 (w2

1 − w1 − 1) +A2w
n−2
2 (w2

2 − w2 − 1)

and this is zero because both expressions in brackets are zero.

On substituting the values of w1 and w2 the general solution is:

un = A1

(
1 +
√

5

2

)n
+A2

(
1−
√

5

2

)n
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but, by noting initial conditions, values for A1 and A2 can be obtained. . .

Note:
u0 = 1 so A1 +A2 = 1 and A2 = 1−A1

Likewise:

u1 = 1 so
A1

(
1 +
√

5
)

+ (1−A1)
(
1−
√

5
)

2
= 1

so:
A1

(
1 +
√

5
)

+
(
1−
√

5
)
−A1

(
1−
√

5
)

= 2

A1

(
1 +
√

5− 1 +
√

5
)

= 2− 1 +
√

5

A1

(
2
√

5
)

= 1 +
√

5

Hence:

A1 =
1 +
√

5

2
√

5

and:

A2 = 1−A1 = 1− 1 +
√

5

2
√

5
=

2
√

5− 1−
√

5

2
√

5
=
−1 +

√
5

2
√

5
= −1−

√
5

2
√

5

In consequence:

un =
1 +
√

5

2
√

5

(
1 +
√

5

2

)n
− 1−

√
5

2
√

5

(
1−
√

5

2

)n

giving:

un =
1√
5

[(
1 +
√

5

2

)n+1

−
(

1−
√

5

2

)n+1
]

(7.3)

as the final solution.

Observe that despite the
√

5s:

u0 = 1, u1 = 1, u2 = 2, u3 = 3, u4 = 5, etc.
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Second Order Homogeneous Linear Difference Equation — II

To solve:

un = p un+1 + q un−1 given that u0 = 0, ul = 1 and p+ q = 1

Transfer all the terms to the left-hand side:

p un+1 − un + q un−1 = 0

Guess:
un = Awn

so:
pAwn+1 −Awn + qAwn−1 = 0

pw2 − w + q = 0

pw2 − (p+ q)w + q = 0

(w − 1)(pw − q) = 0

The two roots are:
w1 = 1 and w2 =

q

p

This suggests a general solution:

un = A1(1)n +A2

(
q

p

)n
provided p 6= q (7.4)

Check by substituting into p un+1 − un + q un−1 thus:
[
pA1(1)n+1 + pA2

(
q

p

)n+1
]
−
[
A1(1)n +A2

(
q

p

)n]
+

[
qA1(1)n−1 + qA2

(
q

p

)n−1
]

This, rearranged, is:

A1[p− 1 + q] +A2

(
q

p

)n−1
[
p

(
q

p

)2

− q

p
+ q

]

which, given that p+ q = 1, is:

A2

(
q

p

)n−1
[
q2

p
− q

p
+ q

]
= A2

(
q

p

)n−1
[
q

p
(q − 1) + q

]
= A2

(
q

p

)n−1
[
q

p
(−p) + q

]
= 0

The next step is to determine values for A1 and A2 in the general solution. . .
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The general solution was determined to be:

un = A1(1)n +A2

(
q

p

)n
provided p 6= q

Note:

u0 = 0 so A1 +A2 = 0

Likewise:

ul = 1 so A1 +A2

(
q

p

)l
= 1

so:

−A2 +A2

(
q

p

)l
= 1 and thus 1 = A2

[
−1 +

(
q

p

)l]
giving A2 =

1
(
q
p

)l − 1

and:

A1 = −A2 =
−1

(
q
p

)l − 1

In consequence:

un =
−1

(
q
p

)l − 1
+

(
q
p

)n
(
q
p

)l − 1

giving:

un =

(
q
p

)n − 1
(
q
p

)l − 1

as the final solution.

Observations about the solution:

First, u0 = 0 and ul = 1 as required.

Secondly, suppose 0� n� l (e.g.: l = 57 and n = 41). . .

If q
p < 1 [when

(
q
p

)i → 0 for large i] the solution un → 0−1
0−1 → 1.

If q
p > 1 the solution un →

( qp )n
[
1−( pq )n

]

( qp )l
[
1−( pq )l

] → 1
( qp )l−n

[
1− 0

1− 0

]
→ 0

In simple terms, provided n is well clear of the extremes 0 and l, un will tend to 1 or to 0
depending on whether q < p or q > p. (It has been assumed that p 6= q.)
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What about the case p = q (as for an even coin)?

Recall that w1 = 1 and w2 = q
p so the case p = q implies twin roots, w1 = w2 = 1.

The general solution un = A1w
n
1 +A2w

n
2 would be un = A1 +A2 which is silly.

In such cases, try a different guess:

un = (A1 +A2n)wn where w is the twin root

In the present case, try:
un = (A1 +A2n) (1)n (7.5)

as the general solution.

Check by substituting into p un+1 − un + q un−1 thus:

p [A1 +A2(n+ 1)]− [A1 +A2n] + q [A1 +A2(n− 1)]

This, rearranged, is:
A1[p− 1 + q] +A2[pn+ p− n+ qn− q]

which, remembering that p+ q = 1, is zero.

The next step is to determine values for A1 and A2 in the general solution whose revised
form is:

un = (A1 +A2n) (1)n

Note:
u0 = 0 so A1 = 0

Likewise:

ul = 1 so 0 +A2l = 1 giving A2 =
1

l

In consequence:

un = 0 +
1

l
n

giving:

un =
n

l

as the final solution when the special case p = q applies.
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Second Order Inhomogeneous Linear Difference Equation

To solve:

vn = 1 + p vn+1 + q vn−1 given that v0 = vl = 0 and p+ q = 1

Transfer all the terms except the 1 to the left-hand side:

p vn+1 − vn + q vn−1 = −1

If the right-hand side were zero, this would be identical to the homogeneous equation just
discussed. The new equation is solved in two steps. First, deem the right-hand side to be
zero and solve as for the homogeneous case:

vn = A1(1)n +A2

(
q

p

)n
provided p 6= q

Then, augment this solution by some f(n) which has to be given further thought:

vn = A1(1)n +A2

(
q

p

)n
+ f(n)

This augmented vn has to be such that when substituted into p vn+1 − vn + q vn−1 the
result is −1.

From previous experience with un, it is known that substituting A1(1)n +A2

(
q
p

)n
gives a

result of zero. In consequence, the property required of f(n) is that on substituting it into
p vn+1 − vn + q vn−1 the result must be −1.

In this course, it will always be possible to express f(n) as the quadratic a+ bn+ cn2 with
only one of the constants a, b and c non-zero. In the present case try f(n) = k n and
therefore require:

p k(n+ 1)− k n+ q k(n− 1) = −1

so:

p k n+ p k − k n+ q k n− q k = −1

Hence (p− q) k = −1 so k = 1
q−p

giving:

vn = A1 +A2

(
q

p

)n
+

n

q − p (7.6)

as the general solution appropriate to the inhomogeneous difference equation. It is left as
an exercise for the reader to determine values for A1 and A2 appropriate for the initial
conditions given.
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What about the case p = q?

When p = q the equation:
p vn+1 − vn + q vn−1 = −1

can be solved in two steps as before. First, deem the right-hand side to be zero and solve
as for the homogeneous case:

vn = (A1 +A2n)(1)n

Then, augment this solution by some f(n) which has to be given further thought:

vn = (A1 +A2n)(1)n + f(n)

As before, this augmented vn has to be such that when substituted into p vn+1−vn+q vn−1

the result is −1 but remember that p = q this time.

Again, from previous experience with un, it is known that substituting (A1 + A2n)(1)n

gives a result of zero. Once more, the property required of f(n) is that on substituting it
into p vn+1 − vn + q vn−1 the result must be −1.

Since p = q, it is no use this time employing the previous approach which was to try
f(n) = k n and derive k = 1

q−p . This is not a helpful value for k!

The appropriate approach now is to try f(n) = k n2 and require:

p k(n+ 1)2 − k n2 + q k(n− 1)2 = −1

so:
p k n2 + 2p k n+ p k − k n2 + q k n2 − 2q k n+ q k = −1

Hence (p+ q) k = −1 so k = −1

giving:
vn = A1 +A2n− n2 (7.7)

as the general solution appropriate to the inhomogeneous difference equation when p = q.
Note that A1 + A2n is the solution to the homogeneous equation when p = q and −n2 is
the required augmentation.

Given the initial conditions v0 = vl = 0, it is easy to determine that A1 = 0 and A2 = l
giving:

vn = n (l − n)

as the final solution when the special case p = q applies.

Glossary

The following technical terms have been introduced:

difference equations
order
linear

non-linear
homogeneous
inhomogeneous

initial condition
auxiliary equation
twin roots
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Exercises — VII

When solving the inhomogeneous difference equations presented in problems 1, 6 and 7,
recall that the function f(n) can, in this course, always be expressed as the quadratic
a+ bn+ cn2 with only one of the constants a, b and c non-zero. You have seen as examples
f(n) = kn and f(n) = kn2 and you should be prepared to try f(n) = k on occasions.

1. Solve the linear first order inhomogeneous difference equations given as (7.1) from
first principles.

2. Noting the expression for un given in (7.3), check that the first six values really are
1, 1, 2, 3, 5, 8.

3. Determine the values of the constants A1 and A2 in (7.4) given u0 = 1 and ul = 0.

4. Determine the values of the constants A1 and A2 in (7.5) given u0 = 1 and ul = 0.

5. Determine the values of the constants A1 and A2 in (7.6) given v0 = vl = 0.

6. Solve the following inhomogeneous equation:

un+1 − un(1− α− β) = α given that u0 = 0

Note that α and β are constants in the range 0 to 1.

7. Solve the following inhomogeneous equation in which p is some probability:

2un + (1− 2p)un−1 = 1 given that u0 = 0
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