
3 — DISCRETE DISTRIBUTIONS

It is always helpful when solving a problem to be able to relate it to a problem whose
solution is already known and understood. In probability theory, many problems turn out
to be special cases of standard examples. The most common standard examples are the
well-known distributions.

Discrete Distributions

In simple terms, a distribution is an indexed set of probabilities whose sum is 1.

For the moment, discussion will be restricted to cases where there is a single discrete
random variable X whose value r runs from zero upwards and serves as the index. It is
possible to think of r running from 0 to ∞ where in most cases the indexed probability is
zero.

A distribution may be expressed by a table or a function or graphically. Consider the
distribution associated with a fair die.

A tabular representation of the distribution is:

r →
X 0 1 2 3 4 5 6

P(X = r) 0
6

1
6

1
6

1
6

1
6

1
6

1
6

A functional representation of the distribution is:

P(X = r) =





1

6
, if r ∈ N ∧ 1 6 r 6 6

0, otherwise

A graphical representation of the distribution is:

1
6

0
6

0 1 2 3 4 5 6

r →

P(X = r)

Of the three representations, only the function makes it pedantically clear that unless
1 6 r 6 6 the probability is zero.
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The Uniform Distribution

When all the non-zero probabilities are the same and are indexed by a contiguous sequence
of values of r, the distribution is said to be a Uniform distribution.

The behaviour of a fair die is an example of a Uniform distribution. All six non-zero
probabilities are the same and the index r for these probabilities has the contiguous values
1, 2, 3, 4, 5 and 6.

One can imagine a fair die with a different number of faces. Consider a fair tetrahedral
die whose faces happen to be numbered 5, 6, 7 and 8. The four probabilities are all 1

4 .

There is actually a family of distributions and the description:

Uniform(m,n)

is used to refer to the general case; m and n are the start and stop values of r and are
called the parameters of the distribution.

A random variable whose value represents the outcome of throwing an ordinary fair die is
said to be ‘distributed Uniform(1,6)’. If the value represents the outcome of throwing the
curious tetrahedral die the random variable is distributed Uniform(5,8).

In the general case there are n −m + 1 values for the index and, given the equiprobable
nature of the Uniform distribution, the probabilities are all 1/(n−m+ 1). The functional
representation of the general case is:

P(X = r) =





1

n−m+ 1
, if r ∈ N ∧m 6 r 6 n

0, otherwise

It is good practice always to check that the probabilities in a distribution sum to 1. With
the general Uniform distribution the check is straightforward:

n∑

r=m

1

n−m+ 1
=
n−m+ 1

n−m+ 1
= 1

The Triangular Distribution

Many standard distributions will be discussed but one which has already been noted but
not until now given a name is the Triangular distribution. The functional representation
of an example of this distribution was given on page 1.7 as:

P(X = r) =

{ r

21
, if r ∈ N ∧ 1 6 r 6 6

0, otherwise

As with all discrete distributions it satisfies the informal requirement of being a set of
indexed probabilities whose sum is 1:

6∑

r=0

r

21
=

1 + 2 + 3 + 4 + 5 + 6

21
= 1
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The Binomial Distribution

If the probability of a boy is p and the probability of a girl is q (where p + q = 1) it has
already been shown that the four probabilities for two children sum to 1 as:

p2 + pq + qp+ q2 = 1

The four terms are the probabilities of BB, BG, GB and GG respectively. Since pq = qp
the four terms can conveniently be reduced to three:

p2 + 2pq + q2 = 1

Using Binomial coefficients, this can be written as:

(
2

0

)
p2q0 +

(
2

1

)
p1q1 +

(
2

2

)
p0q2 = 1

The middle term is the probability of one boy and one girl without regard to order.

With four children the equivalent sum is:

p4 + 4p3q + 6p2q2 + 4pq3 + q4 = 1

As with the previous example, the term which represents all boys is first and the term
which represents all girls is last. Reversing the order gives:

q4 + 4pq3 + 6p2q2 + 4p3q + p4 = 1

Using Binomial coefficients, this can be written as:

(
4

0

)
p0q4 +

(
4

1

)
p1q3 +

(
4

2

)
p2q2 +

(
4

3

)
p3q1 +

(
4

4

)
p4q0 = 1

The five terms are, respectively, the probabilities of having 0, 1, 2, 3 and 4 boys in a family
of four children without regard to order.

Using the random variable X to refer to the number of boys:

P(X = r) =





(
4

r

)
prq4−r, if r ∈ N ∧ 0 6 r 6 4

0, otherwise

This is an indexed set of probabilities whose sum is 1 and so is a distribution. It is an
example of the Binomial distribution as it applies to 4 children. The term

(
4
r

)
prq4−r begins

with
(

4
r

)
(the number of ways of there being r boys in 4 children) and this is multiplied by

pr (the probability of having r boys) and q4−r (the probability that the remaining 4 − r
children are girls).
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As a distribution it is not completely specified until a value is given for p (and hence q) as
well as saying how many children there are.

Taking p = 0.515 and q = 0.485, and for once not using fractions, the probabilities may
be tabulated thus:

r →
X 0 1 2 3 4

P(X = r) 0.055 0.235 0.374 0.265 0.071

It is easy to check that the five values sum to 1. Notice also that when there are four
children of the same sex, the probability that they are all boys is noticeably greater than
the probability that they are all girls.

A graphical representation of the distribution is:

0.40

0.00

0 1 2 3 4

r →

P(X = r)

As with the Uniform distribution, the Binomial distribution is a family of distributions,
indeed a family of families. The description

Binomial(n, p)

is used to refer to the general case; n and p are the parameters. In the example just
considered, the random variable X is said to be distributed Binomial(4, 0.515).

The (general) Binomial distribution applies to many circumstances where there is a finite
number of entities each of which may be one of two possibilities. A random variable
whose value represents the number of heads which appear when 4 fair coins are tossed is
distributed Binomial(4, 1

2 ). If you have 4 machines each of which has a 1% probability of
failing in a given time interval, the appropriate distribution is Binomial(4, 1

100 ).

In general, where a random variable X is distributed Binomial(n, p), the probability
P(X = r) is:

P(X = r) =





(
n

r

)
prqn−r, if r ∈ N ∧ 0 6 r 6 n

0, otherwise
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The sum of these n+ 1 probabilities is:

(
n

0

)
p0qn +

(
n

1

)
p1qn−1 +

(
n

2

)
p2qn−2 + · · ·+

(
n

r

)
prqn−r + · · ·+

(
n

n

)
pnq0

It is immediately clear from the Binomial theorem that the sum is 1 since the expression
can be rewritten:

n∑

r=0

(
n

r

)
prqn−r = (q + p)n = 1

Note that (q + p)n is shown (in preference to (p + q)n) since, reading from left to right,
the terms in its expansion are normally written with ascending powers of p (compare with
the expansion of (x + y)n on page 2.12). The key point is that the general case satisfies
the informal requirement of having a set of indexed probabilities whose sum is 1.

A Point to Ponder

In the context of children, the particular term
(
n
r

)
prqn−r is the probability of there being

r boys and n− r girls in a family of n children. The coefficient
(
n
r

)
is the number of ways

in which n children may divide as n boys and n− r girls and this coefficient multiplies the
probability of one such case.

With 4 children the probability of there being 1 boy (and 3 girls) is
(

4
1

)
p1q3 = 4pq3. This

is really the sum:
pqqq + qpqq + qqpq + qqqp = 4p1q3

The multiplication theorem holds for each term because the boy-girl events are independent
and the addition rule holds overall because the B+3G events are mutually exclusive. Since
each of the four separate B+3G events has the same probability, the addition amounts to
multiplying the probability of one of them by 4.

The previous paragraph is worth pondering. Are the boy-girl events really independent?
If a couple have three girls would you really put the same odds on the next child being a
boy as you would if they were expecting their first baby? Is the value of p in qqqp really
the same as the p in pqqq? Demographic experts generally agree that it is.

The Trinomial Distribution

The Binomial distribution applies when considering entities which have two states, boy-
girl, heads-tails, working-broken and so on.

There are circumstances when three states are appropriate. For example a bicycle has
three principal states: Parked, Ridden or Pushed and traffic lights can be Red, Green or
Changing. There was a brief period when ternary computers were thought worth exploring:
voltages would have been positive, zero or negative.

There are many three-state examples in genetics. It would be fanciful to imagine that
children came in three sexes but, if both parents have blood group AB, then each offspring
will necessarily have blood group, AA, AB or BB and there are known probabilities for
each.
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One can reasonably ask the probability of such parents with four children having two
children AA, one AB and one BB. Problems involving entities which have three states
lead naturally to a discussion of the Trinomial distribution.

Before proceeding, consider a summary of the case of a family of four children and the
two-state boy-girl analysis:

• There are two salient probabilities p and q; these are the probabilities of a child being
a boy or a girl respectively. Necessarily p+ q = 1.

• If order is taken into account, there are 24 = 16 ways of having four children being
GGGG, GGGB, . . ., BBBB.

• If order is taken not into account, there are 4 + 1 = 5 ways of having four children
which can be listed as 0 boys, 1 boy, . . ., 4 boys.

• The probability of there being r boys is:

(
4

r

)
prq4−r =

4!

r! (4− r)! p
rq4−r

Suppose the three blood groups are labelled a, b and c and are regarded as three sexes:

• There are three salient probabilities; call these pa, pb and pc and note that necessarily
pa + pb + pc = 1.

• If order is taken into account, there are 34 = 81 ways of having four children because
each may be one of three possibilities.

• If order is taken not into account, the number of ways of having four children turns
out to be 15 and these ways are most easily presented in a triangular array:

aaaa

aaab aaac

aabb aabc aacc

abbb abbc abcc accc

bbbb bbbc bbcc bccc cccc

• There is no direct parallel to ‘the probability of there being r boys’ because of the
complication introduced by having three possibilities. . .

Consider a rewrite of the expression for the probability of there being r boys in the Binomial
case:

4!

r! (4− r)! p
rq4−r =

4!

ra! rb!
pa
rapb

rb

The boy-girl probabilities p and q have been replaced by pa and pb and the boy-girl numbers
r and 4− r have been replaced by ra and rb. Clearly pa + pb = 1 and ra + rb = 4.
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This latter expression generalises to the Trinomial case:

4!

ra! rb! rc!
pa
rapb

rbpc
rc where pa + pb + pc = 1 and ra + rb + rc = 4

Here, within the total of four children, ra, rb and rc are the numbers with blood groups
AA, AB and BB respectively. The only possibilities for ra, rb and rc are 3 permutations of
(0,0,4), 6 permutations of (0,1,3), 3 permutations of (0,2,2) and 3 permutations of (1,1,2)
making a total of 15 possibilities.

These 15 possibilities can be plugged into the expression to give the 15 probabilities:

p4
a

4p3
apb 4p3

apc

6p2
ap

2
b 12p2

apbpc 6p2
ap

2
c

4pap
3
b 12pap

2
bpc 12papbp

2
c 4pap

3
c

p4
b 4p3

bpc 6p2
bp

2
c 4pbp

3
c p4

c

By way of illustration, take the middle term in the middle row. This is the probability
that two of the children have blood group AA, one is blood group AB and one is blood
group BB. Thus ra = 2, rb = 1 and rc = 1. So:

4!

ra! rb! rc!
pa
rapb

rbpc
rc =

4!

2! 1! 1!
pa
rapb

rbpc
rc = 12pa

rapb
rbpc

rc

Note that the sum of the coefficients is 81, accounting for the 81 possibilities if order is
important. [Equivalently, the sum of the coefficients in q4 + 4pq3 + 6p2q2 + 4p3q+ p4 is 16,
accounting for the 16 possibilities in the binomial case if order is important.]

The sum of the 81 probabilities turns out to be:

(pa + pb + pc)
4 = 1 given that pa + pb + pc = 1

It is not difficult to expand this fourth power by hand and verify that the 15 terms which
result correspond to those in the triangle.

It is an essential requirement of any distribution that the overall total probability is 1 and
the Trinomial distribution satisfies this. A difference from the Uniform, Triangular and
Binomial distributions is that the constituent probabilities of the Trinomial distribution
are not indexed in a linear way.

There is nothing special about 4 as the number of children and the general expression for
the Trinomial distribution is:

n!

ra! rb! rc!
pa
rapb

rbpc
rc where pa + pb + pc = 1 and ra + rb + rc = n

Given n children, this is the probability that ra are of blood group AA, rb are of blood
group AB and rc are of blood group BB.
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The Multinomial Distribution

If entities have k states then the Multinomial distribution may apply. The expression that
should be noted is:

n!

r1! r2! . . . rk!
p1
r1p2

r2 . . . pk
rk where p1 + p2 + · · ·+ pk = 1 and r1 + r2 + · · ·+ rk = n

Given n entities, this is the probability that r1 are in state 1, r2 are in state 2 and so on
up to rk being in state k.

Expectation or Mean

If you repeatedly throw a fair die you would intuitively expect the long-term average of
the values shown to be 3 1

2 . On this occasion, intuition provides the right answer but a
more formal approach is merited.

The terms expectation (usually denoted by the letter E) and mean (usually denoted by µ)
are used to describe the long-term average. The mean may be calculated by thinking of
weights and moments to determine a centre of gravity.

Including the contrived zero, the values which can result from throwing a die are 0, 1, 2,
3, 4, 5 and 6. Imagine marking these values off at unit intervals along a light beam and at
each of the seven positions placing a weight whose mass is proportional to the associated
probability:

0
6

1
6

1
6

1
6

1
6

1
6

1
6

0 1 2 3 4 5 6

r →

N

µ

The figure shows such an arrangement with little squares representing the weights. The
leftmost weight has mass zero and so is not shown. A pivot has been placed at distance
µ along the beam and it is at once clear that its position would not leave the beam in
balance.

To achieve balance, consider the net clockwise moment about the pivot. The required
value of µ has to be such that the net moment is zero. Accordingly, µ must satisfy:

(0− µ).
0

6
+ (1− µ).

1

6
+ (2− µ).

1

6
+ (3− µ).

1

6
+ (4− µ).

1

6
+ (5− µ).

1

6
+ (6− µ).

1

6
= 0

Consider the last term on the left, (6 − µ). 16 . The value 6 − µ is the distance of the
rightmost weight from the pivot and this is multiplied by the mass of the weight (equal to
the probability). The same consideration applies to the other terms but notice that if a
weight is to the left of the pivot, the distance (as 2− µ for example) is negative, correctly
implying that the moment is anti-clockwise.

Rearrange the equation:

µ

(
0

6
+

1

6
+

1

6
+

1

6
+

1

6
+

1

6
+

1

6

)
= 0.

0

6
+ 1.

1

6
+ 2.

1

6
+ 3.

1

6
+ 4.

1

6
+ 5.

1

6
+ 6.

1

6
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The item in brackets is the sum of the probabilities and this, as always, is 1. Accordingly:

µ = 0.
0

6
+ 1.

1

6
+ 2.

1

6
+ 3.

1

6
+ 4.

1

6
+ 5.

1

6
+ 6.

1

6
=

1 + 2 + 3 + 4 + 5 + 6

6
=

21

6
=

7

2

The value 7
2 or 3 1

2 comes as no surprise as the long-term average outcome of throwing an
ordinary fair die.

The expression for µ can be rewritten:

µ = 0.P(X = 0) + 1.P(X = 1) + 2.P(X = 2) + · · ·+ 6.P(X = 6) or µ =
6∑

r=0

r.P(X = r)

The analysis applies to any distribution which is an indexed set of probabilities whose
sum is 1. The general formula for the expectation or mean of a single random variable is
written as:

E(X) = µ =
∑

r

r.P(X = r) (3.1)

The item E(X) is pronounced ‘the expectation of X’. The sum over r is left open-ended
but this is taken to refer to the range which is appropriate.

Glossary

The following technical terms have been introduced:

distribution
Uniform distribution
parameter

Triangular distribution
Binomial distribution
Trinomial distribution

Multinomial distribution
expectation
mean

Exercises — III

Work in fractions whenever possible.

1. If the probability of hitting a target is 2
5 and five shots are fired, what is the probability

that the target will be hit at least twice? What is the conditional probability that the
target will be hit at least twice, assuming that at least one hit is scored?

2. A supermarket has 20 check-outs: 5 have A-type cash registers and 15 have B-type.
The A-type has a probability a of breaking down during the first hour of trading and
the B-type has a probability b. The supervisor arrives at the end of this time and
learns that one register has broken down. Determine the probability that the broken
register is (a) A-type and (b) B-type.

3. 12 dice are thrown. What is the probability that each face appears twice?

4. Given Pascal’s theorem
(

expressed as
(
n+1
r+1

)
=
(
n
r

)
+
(
n
r+1

))
prove that

n∑

r=0

(
n

r

)
= 2n

5. Prove the Binomial Theorem (page 2.12).

Hint: it may be helpful to assume that the expansion holds for (x+y)n and to consider
the effect of multiplication by one more (x+ y).
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6. Using (3.1), determine the expectation of the Triangular distribution:

P(X = r) =

{ r

21
, if r ∈ N ∧ 1 6 r 6 6

0, otherwise

7. [From Part IA of the Mathematical Tripos, 1973] A princess is equally likely to sleep
on anything from six to a dozen mattresses of the softest down, and beneath the lowest
of these on just half the nights of the year is placed a pea. Being a young lady of
refined sensibility her sleep is invariably disturbed by the presence of a pea beneath
a mere six mattresses; with seven however a pea may pass unnoticed in one case out
of ten, with eight it may escape detection in two cases out of ten, and so on, so that
with the full twelve mattresses she slumbers on notwithstanding the offending pea as
often as six times in ten. One morning, on being wakened by Bayes, her maid, she
announces delightedly that she has spent the most tranquil of nights.

What is the expected number of mattresses upon which she slept?

8. The answers to the following questions may be expressed as decimals:

(a) What is the probability of obtaining at least one six when six dice are thrown?

(b) What is the probability of obtaining at least two sixes when 12 dice are thrown?

(c) What is the probability of obtaining at least three sixes when 18 dice are thrown?

9. A report of a possible breakthrough in the treatment of Nerd’s Syndrome described
a preliminary trial of a new drug. The drug was administered to 10 sufferers all of
whom were immediately cured of the affliction. Tragically, later trials showed that
10% of patients treated with this drug die from an unfortunate side-effect.

Suppose that n patients take part in a trial and that p is the probability that a trial
participant suffers the fatal side-effect. Let S be the probability that at least one of
the n patients dies. [Thus S is the probability that the trial reveals the side-effect.]

Now consider the following (where, again, probabilities may be expressed as decimals):

(a) In the preliminary trial, p = 1
10 and n = 10. What is the probability that none

of the 10 patients dies (as was the case in the reported trial)?

(b) Again taking p = 1
10 , what is the minimum value of n needed to be 90% sure that

the trial reveals the side-effect? [Thus what is the minimum value of n needed to
ensure that S > 90

100?]

(c) The value 90% is sometimes called the confidence. With p = 1
10 , what is the

minimum value of n needed to ensure a confidence of 99%? [That is S > 99
100?]

(d) For arbitrary (but known) p and arbitrary (but known) confidence C, what is the
minimum value of n needed to ensure that S > C?

(e) In real life there is a well-known heart drug for which the probability of suffering
a serious side-effect is 10−5. The risk of using the drug is deemed acceptable
because there is a very much greater probability that an untreated patient will
die. How large a trial would be needed to be 99% confident that the trial reveals
the side-effect?
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