2005 Paper 7 Question 8 / Paper 8 Question 10

(Computer Science Tripos Part II)
Information Theory and Coding (MGK)
(a) Give a bit-string representation of the number 13 in
(i) unary code for non-negative integers;
(ii) Golomb code for non-negative integers with parameter $b=3$;
(iii) Elias gamma code for positive integers.
(b) Briefly explain
(i) how a signal amplitude of 10 V is expressed in $\mathrm{dB} \mu \mathrm{V}$;
(ii) the YCrCb coordinate system.

2005 Paper 7 Question 8 / Paper 8 Question 10

(Computer Science Tripos Part II)

Information Theory and Coding - Solution notes

(a)
(i) $11111111111110=1^{13} 0$

The unary code word for 13 is simply 13 ones, followed by a final zero.
(ii) $1111010=1^{4} 010$

We first divide $n=13$ by $b=3$ and obtain the representation $n=$ $q \times b+r=4 \times 3+1$ with remainder $r=1$. We then encode $q=4$ as the unary code word "11110". To this we need to attach an encoding of $r=1$. Since r could have a value in the range $\{0, \ldots, b-1\}=\{0,1,2\}$, we first use all $\left\lfloor\log _{2} b\right\rfloor=1$-bit words that have a leading zero (here only " 0 " for $r=0$), before encoding the remaining possible values of r using $\left\lceil\log _{2} b\right\rceil=2$-bit values that have a leading one (here " 10 " for $r=1$ and " 11 " for $r=2$).
(iii) $1110101=1^{3} 0101$

We first determine the length indicator $m=\left\lfloor\log _{2} 13\right\rfloor=3$ (because $2^{3} \leq 13<2^{4}$) and encode it using the unary code word " 1110 ", followed by the binary representation of $13\left(1101_{2}\right)$ with the leading one removed: "101".
[This question relates to variable-length codes.]
(b)
(i) $10 \mathrm{~V}=10^{7} \mu \mathrm{~V}=(20 \times 7) \mathrm{dB} \mu \mathrm{V}=140 \mathrm{~dB} \mu \mathrm{~V}$
(ii) Human colour vision splits the red/green/blue input signal into separate luminosity and colour channels. Compression algorithms can achieve a simple approximation of this by taking a linear combination of about 30% red, 60% green, and 10% blue as the luminance signal $Y=$ $0.3 R+0.6 G+0.1 B$ (the exact coefficients differ between standards and do not matter here). The remaining colour information can be preserved, without adding redundancy, in the form of the difference signals $R-Y$ and $B-Y$. These are usually encoded scaled as $C b=(B-Y) / 2+0.5$ and $C r=(R-Y) / 1.6+0.5$, such that the colour cube remains, after this "rotation", entirely within the encoded unit cube, assuming that the original RGB values were all in the interval $[0,1]$.
[This question relates to (i) the section on perceptual scales, $(i i)$ the section on colour coordinates.]

