
Software Engineering and Design

CS Part II General / CS Diploma Page 1

Software Engineering & Design

CST IIG / CS Diploma
Alan Blackwell

OUTLINE OF COURSE
Introduction – the “Software Crisis”
Software Construction
Object-oriented Design
Interaction Design
Design Challenges
Project Management

Software Engineering and Design

CS Part II General / CS Diploma Page 2

Books
Code Complete: A practical handbook of software construction

Steve McConnell, Microsoft Press 1993
UML Distilled (2nd edition)

Martin Fowler, Addison-Wesley 2000
Interaction Design: Beyond human-computer interaction

Jenny Preece, Helen Sharp & Yvonne Rogers, Wiley 2002
Software Engineering (European edition)

Roger Pressman, McGraw-Hill 2001
Further:

Programming as if People Mattered, Nate Borenstein
The Mythical Man Month, Fred Brooks
Computer-Related Risks, Peter Neumann
The Sciences of the Artificial, Herb Simon
Educating the Reflective Practitioner, Donald Schon
London Ambulance Service & CAPSA reports, Finkelstein

Supervisions
The course is practical, not theoretical
Designed specifically to feed in to your
projects (and your future life …)
No point in having supervisions to discuss the
material until you have tried it in practice, so:

Part IIG students (group project)
Supervisions should help you apply project management,
object-oriented design methods etc. in your group

Diploma students (project and dissertation)
Supervisions should address interface design issues,
coding, testing and evaluation techniques.

Software Engineering and Design

CS Part II General / CS Diploma Page 3

Introduction

The Software Crisis

London Ambulance Service
The project: automate inefficient manual operation

999 calls written on forms
map reference looked up
conveyor belt to central point
controller removes duplicates, passes to NE/NW/S district
division controller identifies vehicle and puts note in its
‘activation box’
form passed to radio dispatcher

Takes about 3 minutes, and 200 staff (of 2,700 total).
some errors (esp. deduplication),
some queues (esp. radio),
call-backs are laborious to deal with

Software Engineering and Design

CS Part II General / CS Diploma Page 4

LAS: Project Background
Attempt to automate in 1980’s failed

the system failed a load test
Industrial relations poor

pressure to cut costs
Decided to go for fully automated system:

controller answering 999 call has on-screen map
send “email” directly to ambulance

Consultancy study to assess feasibility:
estimated cost £1.5m, duration 19 months …
provided a packaged solution could be found
excluding automatic vehicle location system

LAS: Award of Tender
Idea of a £1.5m system stuck, but

automatic vehicle location system added
proviso of packaged solution forgotten
new IS director hired
tender put out 7 February 1991
completion deadline January 1992

35 firms looked at tender
19 submitted proposals, most said:

timescale unrealistic
only partial automation possible by January 1992

Tender awarded to consortium:
Systems Options Ltd, Apricot and Datatrak
bid of £937,463 … £700K cheaper than next bidder

Software Engineering and Design

CS Part II General / CS Diploma Page 5

LAS: Design Phase
Design work ‘done’ July
main contract August
mobile data subcontract September
in December told only partial implementation possible
in January –

front end for call taking
gazetteer + docket printing

by June 91, a progress meeting had minuted:
6 month timescale for 18 month project
methodology unclear, no formal meeting program
LAS had no full time user on project

Systems Options Ltd relied on ‘cozy assurances’
from subcontractors

LAS: Implementation
Problems apparent with ‘phase 1’ system

client & server lockup

‘Phase 2’ introduced radio messaging, further
problems

blackspots, channel overload at shift change,
inability to cope with ‘established working practices’ such as
taking the ‘wrong’ ambulance

System never stable in 1992
Management pressure for full system to go live

including automatic allocation
CE said: ‘no evidence to suggest that the full system
software, when commissioned, will not prove reliable’

Software Engineering and Design

CS Part II General / CS Diploma Page 6

LAS: Live Operation
Independent review had noted need for:

volume testing
written implementation strategy
change control
training
… it was ignored.

26 October
control room reconfigured to use terminals not
paper
resource allocators separated from radio
operators and exception rectifiers
No backup system.
No network managers.

LAS: 26 & 27 October - Disaster
Vicious cycle of failures

system progressively lost track of vehicles
exception messages built up, scrolled off screen, were lost
incidents held as allocators searched for vehicles
callbacks from patients increased workload
data delays - voice congestion - crew frustration - pressing
wrong buttons and taking wrong vehicles
many vehicles sent, or none
slowdown and congestion proceeded to collapse

Switch back to semi-manual operation on 27 Oct
Irretrievable crash 02:00 4 Nov due to memory leak:

‘unlikely that it would have been detected through
conventional programmer or user testing’

Real reason for failure: poor management throughout

Software Engineering and Design

CS Part II General / CS Diploma Page 7

The Software Crisis
Emerged during 1960’s

large and powerful mainframes (e.g. IBM 360) made far
larger and more complex systems possible
why did software projects suffer failures & cost overruns so
much more than large civil, structural, aerospace
engineering projects?

Term ‘software engineering’ coined 1968
hope that engineering habits could get things under control
e.g. project planning, documentation, testing

These techniques certainly help – we’ll discuss
But first:

how does software differ from machinery?
what unique problems and opportunities does it bring?

Why is software different (and fun)?
The joy of making things useful to others
The fascination of building puzzles from
interlocking “moving” parts
The pleasure of a non-repeating task

continuous learning
The delight of a tractable medium

“pure thought stuff”

Software Engineering and Design

CS Part II General / CS Diploma Page 8

What makes software hard?
The need to achieve perfection
Need to satisfy user objectives, conform with
systems, standards, interfaces outside control
Larger systems qualitatively more complex (unlike
ships or bridges) because parts interact in many
more than 3 dimensions.
Tractability of software leads users to demand
‘flexibility’ and frequent changes
Structure of software can be hard to visualise/model
Much hard slog of debugging and testing
accumulates at project end, when:

excitement is gone
budget is overspent
deadline (or competition) looming

The ‘Software Crisis’
The reality of software development has lagged
behind the apparent promise of the hardware
Most large projects fail - either abandoned, or do not
deliver anticipated benefits

LSE Taurus £ 400 m
Denver Airport $ 200 m
CONFIRM $ 160 m

Some software failures cost lives or cause large
material losses

Therac 25
Ariane
Pentium
NY Bank - and Y2K in general

Some combine project failure with loss of life, e.g.
London Ambulance Service

Software Engineering and Design

CS Part II General / CS Diploma Page 9

Special emphases of this course
Requirements:

User centred interaction design, not older
requirements capture methods (Pressman
describes both)

Analysis and design:
Object-oriented design and UML, not older
structured analysis (Pressman describes both)

Construction:
Emphasise coding, not metrics

Project management & quality assurance:
Pressman best on these (and also best overview,
though weak on UML and interaction design)

Part I
Software Construction

2 lectures

Software Engineering and Design

CS Part II General / CS Diploma Page 10

Software Construction
Decomposition and Modularity
Coding style
Naming
Configuration
Testing
Efficiency

Decomposition and Modularity
top-down decomposition: stepwise refinement

dispatch ambulance

identify regiontake 999 call send ambulance

allocate vehicleestimate arrivalnote patient
condition

radio crew

record address
find vehicle

in region

assign
vehicle to call

Software Engineering and Design

CS Part II General / CS Diploma Page 11

Top-down versus Bottom-up
This course is structured in a bottom-up way.
Why?

Start with what you understand
Build complex structures from well-understood
parts
Deal with concrete cases in order to understand
abstractions

The same advantages can apply to software
as to teaching.

Real software construction combines top-down
and bottom up.

Bottom-up design issues
Some important programming skills apply to
every language:

Naming variables and functions
Organising control structures
Laying out lines of code
Using comments
Achieving type-safety
Designing modules

Software Engineering and Design

CS Part II General / CS Diploma Page 12

Modularity - routines
Is this routine required?
Define what it will do

What information will it hide?
Inputs
Outputs (including side effects)
How will it handle errors

Give it a good name
How will you test it?
Think about efficiency and algorithms
Write as comments, then fill in actual code

Modularity beyond the routine
Separate source files in C

Inputs, outputs, types and interface functions
defined by declarations in “header files”.
Private variables declared in the source file

Classes in Java
Inputs and outputs can be controlled by visibility
specifiers and access functions
Aim for all data to be private, and as few public
functions as possible

Classes in C++
Somewhat like C, somewhat like Java

Modules in ML

Software Engineering and Design

CS Part II General / CS Diploma Page 13

Using comments
Comments help the person reading your code
understand what you intended it to do.

The purpose of a class or routine
And also its limitations

Warning the reader of surprises
Defining data units and allowable ranges

The person reading the comments may be
you … in a year (or a few weeks) time.
In larger group projects

Authorship (and copyright?)
Change history, especially in shared code

Coding style: layout
Objectives:

Accurately express logical structure of the code
Consistently express the logical structure
Improve readability

Good visual layout shows program structure
Mostly based on white space and alignment
The compiler ignores white space
Alignment is the single most obvious feature to
human readers.

Code layout is most like the art of typography

Software Engineering and Design

CS Part II General / CS Diploma Page 14

Expressing global structure
Function_name (parameter1, parameter2)

// Function which doesn’t do anything, beyond showing the fact
// that different parts of the function can be distinguished.

type1: local_data_A, local_data_B
type2: local_data_C

// Initialisation section
local_data_A := parameter1 + parameter2;
local_data_B := parameter1 - parameter2;
local_data_C := 1;

// Processing
while (local_data_C < 40) {

if ((local_data_B ^ 2) > local_data_A) then {
local_data_B := local_data_B – 1;

} else {
local_data_B := local_data_B + 1;

} // end if
local_data_C := local_data_C + 1;

} // end while

} // end function

Expressing local control structure
while (local_data_C < 40) {

form_initial_estimate(local_data_C);
record_marker(local_data_B – 1);
refine_estimate(local_data_A);
local_data_C := local_data_C + 1;

} // end while

if ((local_data_B ^ 2) > local_data_A) then {
// drop estimate
local_data_B := local_data_B – 1;

} else {
// raise estimate
local_data_B := local_data_B + 1;

} // end if

Software Engineering and Design

CS Part II General / CS Diploma Page 15

Expressing structure within a line
Whitespacealwayshelpshumanreaders

newtotal=oldtotal+increment/missamount-1;
newtotal = oldtotal + increment / missamount - 1;

The compiler doesn’t care – take care!
x = 1 * y+2 * z;

Be conservative when nesting parentheses
while ((! error) && readInput())

Continuation lines – exploit alignment
if ((aLongVariableName & anotherLongOne) |

(someOtherCondition()))
{
…
}

Naming variables: Form
Priority: full and accurate (not just short)

Abbreviate for pronunciation (remove vowels)
e.g. CmptrScnce (leave first and last letters)

Parts of names reflect conventional functions
Role in program (e.g. “count”)
Type of operations (e.g. “window” or “pointer”)
Hungarian naming (not really recommended):

e.g. pscrMenu, ichMin

Even individual variable names can exploit
typographic structure for clarity

xPageStartPosition
x_page_start_position

Software Engineering and Design

CS Part II General / CS Diploma Page 16

Naming variables: Content
Data names describe domain, not computer

Describe what, not just how
CustomerName better than PrimaryIndex

Booleans should have obvious truth values
ErrorFound better than Status

Indicate which variables are related
CustName, CustAddress, CustPhone

Identify globals, types & constants (in C)
e.g. g_wholeApplet, T_mousePos

Even temporary variables have meaning
Index, not Foo

Naming variables: Role
Decide which is which, don’t mix them up!

Fixed value (maybe not declared constant)
Always the same (e.g. screensize)

Stepper
Predictable succession of values (e.g. month)

Follower
Gets its value from another variable (e.g. previous)

Most-recent holder
Latest in a series (e.g. finish)

Most-wanted holder
Best value so far (e.g. largest)

Gatherer
Accumulating effect of individual values (e.g. total)

One-way flag
Never goes back to its initial value (e.g. error)

Temporary

Software Engineering and Design

CS Part II General / CS Diploma Page 17

Achieving type-safety
Refine types to reflect meaning, not just to
satisfy the compiler.
Valid (to compiler), but incorrect, code:

float totalHeight, myHeight, yourHeight;
float totalWeight, myWeight, yourWeight;
totalHeight = myHeight + yourHeight + myWeight;

Type-safe version:
type t_height, t_weight: float;
t_height totalHeight, myHeight, yourHeight;
t_weight totalWeight, myWeight, yourWeight;
totalHeight = myHeight + yourHeight + myWeight;

Compile error!

Defensive programming
Assertions and correctness proofs would be
useful tools, but are seldom available.
Defensive programming includes additional
code to help ensure local correctness

Treat function interfaces as a contract
Each function / routine

Checks that input parameters meet assumptions
Checks output values are valid

System-wide considerations
How to report / record detected bugs
Perhaps include off-switch for efficiency

Software Engineering and Design

CS Part II General / CS Diploma Page 18

Efficiency
The worst mistakes come from using the
wrong algorithm

48 hours -> 2 minutes
Hardware now fast enough to run most code
fast enough (assuming sensible algorithms)

Optimisation is a waste of your time
Optimisation is required

For extreme applications
When pushing hardware envelope

Cost-effective techniques
Check out compiler optimisation flags
Profile and hand-optimise bottlenecks

Formal methods
Pioneers (e.g. Turing) talked of proving programs
using mathematics

program verification started with Floyd (67)
followed up by Hoare (71) and others

Now a wide range of techniques and tools for both
software and hardware, ranging from the general to
highly specialised.

Z, based on set theory, for specifications
LOTOS for checking communication protocols
HOL for hardware

Not infallible – but many bugs are found
force us to be explicit and check designs in great detail
but proofs have mistakes too

Considerable debate on value for money

Software Engineering and Design

CS Part II General / CS Diploma Page 19

Configuration Management
Version control
Change control
Variants
Releases

Version control
Record regular “snapshot” backups

often appropriate to do so daily
Provides ability to “roll back” from errors
Useful even for programmers working alone

Monday
Vers 0.1

Tuesday
Vers 0.2

Wed’day
Vers 0.3

Thursday
Vers 0.4

Friday
Cock-up!

Week-End:
Version 0.4
Week-End:
Version 0.2

Software Engineering and Design

CS Part II General / CS Diploma Page 20

Change control
Essential in programming teams
Avoid the “clobbering” problem

Older tools (RCS, SCCS) rely on locking
More recent (CVS) automate merging

Monday
V0.1

Alan:
Tuesday

V0.2a

Alan:
Wed’day

V0.3

Ross:
Thursday

V0.4??

Ross:
Tuesday

V0.2b

Alan’s work
is clobbered!!

Variants
Branching results in a tree of different
versions or “variants”
Maintaining multiple branches is costly

Merge branches as often as possible
Minimise number of components that vary in each
branch (ideally only one configuration file)
If necessary, conditional compile/link/execution
can merge several variants into one

1 2a

2b

2a1

2b1

2a2

2b2

3 4

split merge
two

updates
two

updates

single
update

Software Engineering and Design

CS Part II General / CS Diploma Page 21

Builds and Releases
Record actual configuration of components
that were in a product release, or even an
overnight build integrating work of a team.

Allows problems to be investigated with the same
source code that was delivered or tested

Allow start of development on next release
while also supporting current release

Universal requirement of commercial software
development (at least after release 1.0!)
Bug fixes made to 1.0.1 are also expected to be
there in 2.0, which requires regular merging

Note: My version of Internet Explorer is
5.00.2920.000

Testing
Testing is neglected in academic studies

but great industrial interest - maybe half the cost

It takes place at a number of levels - cost per bug
removed rises dramatically at later stages:

validation of the initial design
module test after coding
system test after integration
beta test 1 field trial
subsequent litigation
...

Common failing is to test late, because early testing
wasn't designed for.

This is expensive. We must design for testability

Software Engineering and Design

CS Part II General / CS Diploma Page 22

Testing strategies
Test case design: most errors in least time
White box testing

Test each independent path at least once
Prepare test cases that force paths

Control structure testing
Test conditions, data flow and loops

Black box testing
Based on functional requirements
Boundary value analysis

Stress testing: at what point will it fail?
(vs. performance testing – will it do the job)?

Regression testing
Checking that new version of software gives same
answers as old version

Probably single biggest advance in tools for software
engineering of packaged software

Use a large database of test cases, including all bugs
ever found. Specific advantages:

customers are much more upset by failure of a familiar
feature than of a new one
otherwise each bug fix will have a ~ 20% probability of
reintroducing a problem into set of already tested behaviours
reliability of software is relative to a set of inputs. Best test
the inputs that users actually generate!

Test automation tools reduce mundane repetition

Software Engineering and Design

CS Part II General / CS Diploma Page 23

When to stop testing
Reliability growth model helps assess

mean time to failure
number of bugs remaining
economics of further testing,

Software failure rate
drops exponentially at first
then decreases as K/T

Changing testers brings new bugs to light

to get a mttf of 109 hours, need 109 hours testing
bu

gs

time spent testing

e-A/t

k/T

bugs

tester
1

tester
2 tester

3 tester
4

Tools
We use tools when some parameter of a task
exceeds our native ability

heavy object: raise with lever
tough object: cut with axe

Software engineering tools deal with complexity.
There are two kinds of complexity:

Incidental complexity dominated programming in the early
days. eg. writing machine code is tedious and error prone.
Solution: high level language
Intrinsic complexity of applications is the main problem
nowadays. eg. complex system with large team.
“Solution”: waterfall/spiral model to structure development,
project management tools, etc.

We can aim to eliminate incidental complexity but
must manage intrinsic complexity

Software Engineering and Design

CS Part II General / CS Diploma Page 24

Part II
Object-oriented Design

2 lectures

Object-oriented design
Design as modelling;
The Unified Modelling Language;
Use case analysis;
Class modelling;
Object interaction;
State and activity descriptions.

Software Engineering and Design

CS Part II General / CS Diploma Page 25

Why structured design?
“Organic” hacking

doesn’t work when:
Many programmers on
project.
Too large to hold in
your head.
Need for accurate
estimates.
Several companies
involved.

So design techniques
must provide:

language for
communication
decomposition and
simplification
predictable relationship
to implementation
language
basis for contractual
agreements

Why object-oriented?
Partly fashion …

1980s: structured design for structured languages
1990s: OO design for OO languages

… but basic principles still good:
Good designers used OO (and structured)
techniques before methods became widespread.
OO (and structured) techniques are applicable to
projects using older languages.

Current best practice in techniques and tools.

Software Engineering and Design

CS Part II General / CS Diploma Page 26

Elements of OO design
The word “design” can mean a product or a process.

The Product: a collection of models
like architects’ models, sketches, plans, details
models simplify the real world
models allow emphasis of specific aspects

Diagrams (compare fashion sketches, engineering drawings)

a cultural tradition in software
easy to draw for personal/communicative sketching

can be made tidy with tools (templates, CASE tools)

The OO design process
A process is some set of phases defined by
project procedures

much more on project procedures later in the
course

Iteration between and within phases, e.g.:
requirement system analysis
module design architectural design
design coding test
… more on this later in course

Process depends on context and policy
OO techniques must be flexible

Software Engineering and Design

CS Part II General / CS Diploma Page 27

Standardisation
Early 90s: the methodology wars

structured methods didn’t support inheritance etc.
many (>50) hacked upgrades and new methods

The battlefield:
books, CASE tools, training

Consolidation:
Natural leaders emerged, mostly by merit
Rational Software hired the leaders for UML
Object Management Group blessed the result

Tools
Diagrams: most obvious benefit from CASE
tools

drawing packages or specialist diagram tools will do

Repositories: understand diagram content
maintain name/type database, diagram consistency

Code generation: at the least, saves typing
dumping class signatures in Java/C++ syntax is easy
anything more is hard (and perhaps pointless)

Alternative languages: UML still useful
inheritance, instantiation can be implemented in C etc.
OO design can be exploited in later development work

Software Engineering and Design

CS Part II General / CS Diploma Page 28

UML: Unified Modeling Language

UML diagrams - overview
Use Case diagrams - interactions with / interfaces
to the system.
Class diagrams - type structure of the system.
Collaboration diagrams - interaction between
instances
Sequence diagrams - temporal structure of
interaction
Activity diagrams - ordering of operations
Statechart diagrams - behaviour of individual
objects
Component and Deployment diagrams - system
organisation

Software Engineering and Design

CS Part II General / CS Diploma Page 29

Design role of UML diagrams

Structure Diagrams

Implementation Diagrams

Behaviour Diagrams

Class Diagrams

Statechart Diagrams

Activity Diagrams

Sequence Diagrams

Collaboration Diagrams

Use Case Diagrams

Component Diagrams

Deployment Diagrams

Interaction Diagrams

UML diagrams in process context

Structure Diagrams

Implementation Diagrams

Behaviour Diagrams

Class Diagrams

Statechart Diagrams

Activity Diagrams

Sequence Diagrams

Collaboration Diagrams

Use Case Diagrams

Component Diagrams

Deployment Diagrams

Interaction Diagrams

Requirements
specification

Analysis

Design

Implementation

Software Engineering and Design

CS Part II General / CS Diploma Page 30

UML Use Case diagram

UML Use Case diagram
Actors

play system role
may not be people

Use case
like a scenario

Relationships
include
extend
generalisation

Software Engineering and Design

CS Part II General / CS Diploma Page 31

UML Class
diagram

UML Class diagram
Attributes

type and visibility

Operations
signature and visibility

Relationships
association

with multiplicity
potentially aggregation

generalisation

Software Engineering and Design

CS Part II General / CS Diploma Page 32

UML Collaboration diagram

UML Collaboration
diagram

Objects
class instances
can be transient

Links
from associations

Messages
travel along links
numbered to show
sequence

Software Engineering and Design

CS Part II General / CS Diploma Page 33

UML Sequence diagram

UML Sequence diagram
Interaction again

same content as
collaboration
emphasises time
dimension

Object lifeline
objects across page
time down page

Shows focus of control

Software Engineering and Design

CS Part II General / CS Diploma Page 34

UML Activity
diagram

UML Activity diagram
Like flow charts

Activity as action states

Flow of control
transitions
branch points
concurrency (fork & join)

Illustrate flow of control
high level - e.g. workflow
low level - e.g. lines of
code

Software Engineering and Design

CS Part II General / CS Diploma Page 35

UML Statechart diagram

UML Statechart diagram
Object lifecycle

data as state machine

Harel statecharts
nested states
concurrent substates

Explicit initial/final
valuable in C++

Note inversion of
activity diagram

Software Engineering and Design

CS Part II General / CS Diploma Page 36

UML Component diagram

UML Deployment diagram

Software Engineering and Design

CS Part II General / CS Diploma Page 37

Quality criterion:
Cohesion

Each component does “one thing” only
Functional cohesion – one operation only
Sequential – processing data in sequence
Communication via shared data
Things that must be done at the same time

Bad cohesion
Sequence of operations with no necessary relation
Unrelated operations selected by control flags
No relation at all – purely coincidental

Quality criterion:
Encapsulation

Separating interface from implementation
Design precautions:

Define visibility - keep implementation private
Avoid unnecessary associations

Consequences:
Unexpected (forgotten) interaction and
dependencies

Implementation techniques:
Visibility declarations (C++/Java), module export

Software Engineering and Design

CS Part II General / CS Diploma Page 38

Quality criterion:
Loose coupling

Keeping parts of design independent
Design precautions:

reduce relationships between diagram nodes
Consequences:

achieve reusability, modifiability
Implementation techniques:

may require several iterations of design for clear
conceptual model

Quality criterion:
Client-Server Contracts

Consider every object as a “server”
Design precautions:

use Object Constraint Language (OCL) to express
constraints on associations, events, messages

Consequences:
reliability, improved partitioning, graceful
degradation

Implementation techniques:
support for pre- and post-conditions (e.g. Eiffel)

Software Engineering and Design

CS Part II General / CS Diploma Page 39

Quality criterion:
Natural data model

Creating a conceptually clear class structure
Design precautions:

experiment with alternative association,
aggregation, generalisation, before
committing to code

Consequences:
achieve good mapping to problem domain
(hard to retro-fit generalisations).

Implementation techniques:
relies on inheritance

Design Exemplars
Complete designs come from project
experience
More general solutions: Design Patterns

The programmer’s bag of tricks
e.g. Smalltalk Model-View-Controller
Collection of patterns: Gamma et. al.

(originally architect
Christopher Alexander’s
“pattern language”)

Software Engineering and Design

CS Part II General / CS Diploma Page 40

UML Extension & Formalisation
UML provides extension mechanisms

Business modeling extension
Real-time extension
Executable UML

UML includes a formal specification language
Object Constraint Language (OCL)

not covered in this course

Minimal UML design
Some programmers don’t like to design first.

(Not me)! But what if no management support, no tools?

Quick and dirty OO design:
Write use case “stories”, note commonality
Keep a piece of paper for each class

write attributes, operations, relationships
lay out on table, and “talk through” scenarios

Consider object lifecycle: state change,
persistence
When your desk gets too small, buy a proper tool

Software Engineering and Design

CS Part II General / CS Diploma Page 41

Further resources: Web
http://www.omg.org/uml/

http://www.rational.com/uml/

http://www.cetus-links.org/oo_uml.html

OO design: Summary
Large, complex projects need a structured
design process.
Design (the process) involves creating
models (the product).
UML is an established common language for
OO design.
Design projects can be structured around
UML models.
A common design language provides a basis
for assessing quality and standardised
solutions.

Software Engineering and Design

CS Part II General / CS Diploma Page 42

Part III
Interaction Design

3 lectures

Interaction Design
Interaction styles

The historic effects of interface hardware
Evaluation based on interface analysis

Models of user cognition
Understanding the needs of users
Evaluation based on cognitive analysis

Contextual requirements gathering
Understanding the situation of use
Evaluation of prototypes in context

Software Engineering and Design

CS Part II General / CS Diploma Page 43

Control panels
Early computers were
like scientific
instruments
For specialists only
Unit of interaction: the
configuration of the
machine

Mathematical languages
Write down an
equation on paper
Punch it into a tape
in some code
Feed the tape into
the machine
Unit of interaction:
whole programs

DIMENSION A(11)

READ A

2 DO 3,8,11 J=1,11

3 I=11-J

Y=SQRT(ABS(A(I+1)))+5*A(I+1)**3

IF (400>=Y) 8,4

4 PRINT I,999.

GOTO 2

8 PRINT I,Y

11 STOP

Software Engineering and Design

CS Part II General / CS Diploma Page 44

Data files
Punch data records
(or program lines)
onto cards
Feed stacks of cards
into machine
Unit of interaction:
collection of
prerecorded items

Can be rearranged

Command lines
Teletype: like faxing
individual requests to
the computer
Unit of interaction:
command & response,
creating a dialogue

UNIX started here
Disadvantage:
users must remember
possible commands

OBEY

YES
SIR

Software Engineering and Design

CS Part II General / CS Diploma Page 45

WYSIWYG
Originally “Glass
teletypes”

Look, no paper!

Units of interaction:
The full-screen
editor

User can see the
product being
worked on
“What You See Is
What You Get”

All possible
commands can be
listed in a menu

Graphical displays
Separate menu (text)
and product (graphic)
Unit of interaction:
depends on mode
Can commands and
product be combined?

Modeless interaction

Software Engineering and Design

CS Part II General / CS Diploma Page 46

Pointing devices
Allow seamless
movement between
menus and products
on the same screen.
Unit of interaction:
the cursor position

Bitmapped displays
Units of interaction:
icons and windows

Windows: multiple
contexts shown by
frames.
Icons: pictures
representing
abstract entities.

Software Engineering and Design

CS Part II General / CS Diploma Page 47

WIMP: window / icon / menu / pointer

Unit of interaction
is not textual

(note no keyboard
in this ad).

Object of interest is
the unit of
interaction

Direct manipulation
Described by Shneiderman:

objects of interest continuously visible
operations by physical actions, not commands
actions rapid, incremental, reversible
effect of actions immediately visible
basic commands for novices, more for experts

Software Engineering and Design

CS Part II General / CS Diploma Page 48

Heuristic evaluation
Usability evaluation technique based on
general interaction principles
Comparing system design to set of usability
heuristics.

systematic search for usability problems
team of evaluators, working independently
each evaluator assesses all of interface

Sample heuristics
Visibility of system status

keep users informed: appropriate feedback in
reasonable time

Match between system and the real world
familiar language, not system-oriented terms:
obey real-world conventions & natural order

User control and freedom
clearly marked “emergency exit”, undo & redo

Software Engineering and Design

CS Part II General / CS Diploma Page 49

Sample heuristics
Consistency and standards

platform conventions, not new names for same
things

Error prevention
prevent problem from occurring in the first place

Recognition rather than recall
visible actions & options, don’t rely on user
memory

Evaluation example

Software Engineering and Design

CS Part II General / CS Diploma Page 50

Partial evaluation example
Visibility of system status

Current track, time, all visible
Match between system and the real world

Like a tape recorder
Help user recognise & recover from errors

Not many errors possible
But can’t get back to where you were after an
accidental track change

Consistency and standards
Access to Windows menu is unexpected

Interaction styles summary
History of interaction styles has emphasised
changing units of interaction.
Heuristic evaluation is at present the most
popular usability evaluation method:

simple and cheap to conduct
easily justifiable on commonsense grounds

Disadvantages
doesn’t address deeper system design problems
These require not just a surface description, but a
model of the user.

Software Engineering and Design

CS Part II General / CS Diploma Page 51

User-centred design
Early focus on users and tasks

Cognitive models of user needs
Ethnographic observation of task context

Empirical measurement
Experimental studies

Hypothesis testing methods
Think-aloud protocols

Surveys and questionnaires
Structured access to introspective data

Iterative design
Prototyping
Contextual design

Models of user cognition
Engineering view of the user (black box):

input

output input

output

From research into
physical motion

From research into
visual perception

User Computer

Software Engineering and Design

CS Part II General / CS Diploma Page 52

Top-down decomposition of user

long
term

memory

working
memory

vision

motion
control

problem
solving

input

output

Vision

long
term

memory

working
memory

vision

motion
control

problem
solving

input

output

Software Engineering and Design

CS Part II General / CS Diploma Page 53

Gestalt laws of perception
Principles of 2D display perception from
1920s

Gestalt laws in user interface
Palm Beach County, Florida - U.S. Presidential Election 2000

Software Engineering and Design

CS Part II General / CS Diploma Page 54

Visual search
Finding letter in a list: TLIST ~ kN

mvunmgsuignshetovazcvteown

Finding different {colour,orientation}: TPOPOUT ~ k

Visual input decomposed
Marr’s black box theory of vision

retinal
image

3D
model

primal
sketch

2 1/2D
sketch

Pivot
- handle
- cylinder
- hinge
- screw

- …
- …
- …

Software Engineering and Design

CS Part II General / CS Diploma Page 55

Marr’s theory of vision
The black boxes in Marr’s model are almost
an inverse of the modelling and rendering
processes in 3D computer graphics

Is this suspicious?
Whatever the 3D situation, current displays
are actually rendered in 2 1/2 dimensions:

A whole lot of rubbish which is not at all
important apart from needing to show that a
window can have contents. It would be better if
it actually said something of value, or even
better if it happened to include some graphics,
controls (such as menu bars or other realistic
items) but that would have the disadvantage of
managing and copying multiple items (or
single large items in the case of windows
grabbed from the screen - they could be down-
sampled, but then they wouldn’t be legible
anyway). So on the whole it is best to stick with
this. Sorry.

A whole lot of rubbish which is not at all
important apart from needing to show that a
window can have contents. It would be better if
it actually said something of value, or even
better if it happened to include some graphics,
controls (such as menu bars or other realistic
items) but that would have the disadvantage of
managing and copying multiple items (or
single large items in the case of windows
grabbed from the screen - they could be down-
sampled, but then they wouldn’t be legible
anyway). So on the whole it is best to stick with
this. Sorry.

A whole lot of rubbish which is not at all
important apart from needing to show that a
window can have contents. It would be better if
it actually said something of value, or even
better if it happened to include some graphics,
controls (such as menu bars or other realistic
items) but that would have the disadvantage of
managing and copying multiple items (or
single large items in the case of windows
grabbed from the screen - they could be down-
sampled, but then they wouldn’t be legible
anyway). So on the whole it is best to stick with
this. Sorry.

Motion control

long
term

memory

working
memory

vision

motion
control

problem
solving

input

output

Software Engineering and Design

CS Part II General / CS Diploma Page 56

Motion control - Fitts’ Law
From experiments moving between two
targets

Time to point at a target depends on:
target width
amplitude of movement

T = K log2 (A / W + 1)
Useful prediction of time to move mouse
across the screen to click on a button

Memory

long
term

memory

working
memory

vision

motion
control

problem
solving

input

output

Software Engineering and Design

CS Part II General / CS Diploma Page 57

Working memory - Miller
How many things can we remember at one
time?
4786779
G522KUJ
In lists of letters, objects, digits: between 5 and 9

Seven plus or minus two (G.A. Miller, 1956)
Content is significant, e.g. remember 25
letters:
ksnehfifmwbtdoanebgocnesj
fruitapplegrapeguavalemon

Working (short-term) memory can retain
around 7+/-2 chunks of information.

Long term memory
Learning involves re-coding from short-term
to long-term memory.
Distributed “connectionist” models of
memory:

re-coding involves forming associations
(this model does
not account for
semantic
structure).

Software Engineering and Design

CS Part II General / CS Diploma Page 58

Memory coding demonstration
Get a pencil and paper

Word list memory
keyboard
notebook
speed
banana
absence
withhold
telephone
category
pencil

rucksack
concern
camel
classic
right
bicycle
transfer
operation
armchair

Software Engineering and Design

CS Part II General / CS Diploma Page 59

Write them down!

Word list memory
keyboard
camel
rucksack
bicycle
armchair
banana
notebook
telephone
pencil

concern
speed
absence
withhold
category
classic
right
transfer
operation

Software Engineering and Design

CS Part II General / CS Diploma Page 60

Working memory and mnemonics
Two kinds of working memory

Phonological loop (lists you can pronounce)
Visual-spatial sketchpad (mental images)

Both modes can contribute to associations in
long term memory.

Both at once produce stronger memory trace
Words that can be visualised are easier to
remember - dual coding (Paivio 1972)
Basis of mnemonic techniques

explain benefit of pictorial mnemonics in UIs

Problem solving

long
term

memory

working
memory

vision

motion
control

problem
solving

input

output

Software Engineering and Design

CS Part II General / CS Diploma Page 61

Problem solving - GPS
Generalised Problem Solver (Ernst & Newell 1969)

Reduce difference between current and goal state
Decompose new goal into sub-goals (recursively)

buy pizza

get money go to shop buy it

find job …

Implications of GPS
Computational model of problem-solving
Recursive difference reduction results in
a sub-goal hierarchy.
Leaves of the goal tree are physical
operations.
Main function of perceptual (visual) input is to
identify required difference reductions.
Working memory imposes limits on depth of
goal tree (like a stack overflow).

Software Engineering and Design

CS Part II General / CS Diploma Page 62

Cognitive model of user needs

long
term

memory

working
memory

vision

motion
control

problem
solving

input

output

The Model Human Processor
Combine various psychological observations
into a common quantitative framework.
Decompose basic actions involved in user
interaction tasks into:

perceptual events
motion events
cognitive events

Keystroke level model: Evaluate interface
options by estimating total time taken for all
operations

Software Engineering and Design

CS Part II General / CS Diploma Page 63

Keystroke Level Model Units
K: press a key (constant given task and skill)

0.12 seconds for good typist, 0.28 seconds for average, 0.75
seconds for difficult tasks.

H: home hands on mouse or keyboard
0.40 seconds.

P: point with a mouse (using Fitts' law)
0.8 to 1.5 seconds, 1.1 seconds on average.

D: draw with mouse
forget this - original assumptions now outdated.

R: system response time to an action.
M: time the user takes to mentally prepare action.

KLM Example
Problem: How long does it take to reformat a
word in bold type within Microsoft Word, using
either:
a) Keys only
b) Font dialog

Software Engineering and Design

CS Part II General / CS Diploma Page 64

Keys-only method

<shift> +

+

+ + +

<ctrl> + b

Keys-only method
Mental preparation: M
Home on keyboard: H
Mental preparation: M
Hold down shift: K
Press : K
Press : K
Press : K
Press : K

Press : K
Press : K
Press : K
Release shift: K
Mental preparation: M
Hold down control: K
Press b: K
Release control: K

Software Engineering and Design

CS Part II General / CS Diploma Page 65

Keys-only method
1 occurrence of H
3 occurrences of M
12 occurrences of K

0.40
1.35 * 3
0.28 * 12
7.81 seconds

Font dialog method
click,
drag

release,
move

click,
move

release

move,
click

move,
click

Software Engineering and Design

CS Part II General / CS Diploma Page 66

Fitts’ law estimate
Would normally calibrate experimentally
Crude estimate based on screen distance,
and KLM performance average:

T = K log2 (A / W + 1) = 1.1s (on average)
Average distance: half window size ~ 220 pixels
Average button width: menu item radius ~ 32
pixels
K = 1.1 / log2 (220 / 32 + 1)

= 0.3695

Motion time estimates
Estimate K = 0.36 (from part II HCI course)
From start of “The” to end of “cat” (T = 0.36 log2 (A / W +

1)):
distance 110 pixels, width 26 pixels, T = 0.88 s

From end of “cat” to Format item on menu bar:
distance 97 pixels, width 25 pixels, T = 0.85 s

Down to the Font item on the Format menu:
distance 23 pixels, width 26 pixels, T = 0.34 s

To the “bold” entry in the font dialog:
distance 268 pixels, width 16 pixels, T = 1.53 s

From “bold” to the OK button in the font dialog:
distance 305 pixels, width 20 pixels, T = 1.49 s

Software Engineering and Design

CS Part II General / CS Diploma Page 67

Font dialog method
Mental preparation: M
Reach for mouse: H
Point to “The”: P
Click: K
Drag past “cat”: P
Release: K
Mental preparation: M
Point to menu bar: P
Click: K

Drag to “Font”: P
Release: K
Mental preparation: M
Move to “bold”: P
Click: K
Release: K
Mental preparation: M
Move to “OK”: P
Click: K

Font dialog method
1 occurrence of H
4 occurrences of M
7 occurrences of K
6 mouse motions P

Total for dialog method:
Total for keyboard
method:

0.40
1.35 * 4
0.28 * 7
1.1 + 0.88 + 0.85 + 0.34 +

1.53 + 1.49
13.95 seconds (+ 1× R)
vs.
7.81 seconds

Software Engineering and Design

CS Part II General / CS Diploma Page 68

GOMS
Extension of Keystroke Level Model:

GOMS = Goals Operators Methods Selection
Includes model of problem solving based on
General Problem Solver

User has some goal that can be decomposed.
Operators are those at the keystroke level.
Experienced users have a repertoire of methods.
Time is required to select a method for some goal.

Model also accounts for memory and
learning.

GOMS/KLM Assessment
Can give actual quantitative performance
estimates for a user interface design.
Keystroke level model only describes expert
user carrying out familiar task.

Only weak representation of perceptual, cognitive
and motor subsystems
No consideration of the user’s knowledge.

GOMS doesn’t account for main variations in
performance

Errors
Strategy change

Software Engineering and Design

CS Part II General / CS Diploma Page 69

Beyond black box user models
Why do users do the things they do?
Mental models of devices and programs

adequate for the task …
but may break down in unusual situations

e.g. mental model of electricity as flowing
water: (Gentner & Gentner 1983)

“taps” turn the flow on, “hoses” direct it to go
where you need it.
it can leak out and make a mess.

This is good enough! Detailed technical
models don’t always help.

User’s
model?

Software Engineering and Design

CS Part II General / CS Diploma Page 70

Designer’s model

Wiring closet

Toilets
Kitchen

Stair
s

Plantroom

Mental simulation of a model
Adding new record to a database

Will the new record appear as the first or last?
If mental model of database is as a stack of
cards …
… the answer depends on whether the stack is
face-up or face-down.

Record 001

New record

Software Engineering and Design

CS Part II General / CS Diploma Page 71

What happened?
Data discarded?

Translation?
Override?

Two clipboards?
Layers?

Problem solving with a model
Copy in

Illustrator

Paste in
Photoshop

Copy in
Illustrator

Paste in
Word

Can’t
edit text

Can
edit text

Understanding user context
Model-based planning theories neglect the
problem of situated action
Sometimes complex behaviour simply results
from a complex environment – cognitive
modelling is not enough to understand it.

Software Engineering and Design

CS Part II General / CS Diploma Page 72

Ethnographic field studies
Emphasise the detail of user activity, not
theories and rationalisation.
Researchers work in the field

Observing context of user’s work
Participating in subjects’ activities.

Main characteristics:
Observe subjects in a range of contexts.
Observe over a substantial period of time.
Full record of both activities and artefacts.

Transcription from video/audio recordings

Structured ethnographic analysis
Division of labour and its coordination
Plans and procedures

When do they succeed and fail?

Where paperwork meets computer work
Local knowledge and everyday skills
Spatial and temporal organisation
Organisational memory

How do people learn to do their work?
Do formal methods match reality?

Software Engineering and Design

CS Part II General / CS Diploma Page 73

Interviews
Ethnographic observation is usually
supplemented by interview
Often conducted in the place of work during
contextual enquiry.

Encourages emphasis on user activity, rather than
research concerns

Can alternatively be theory-driven, with
questions structured to:

collect data into common framework
ensure all important aspects covered

Empirical studies of usability
Empirical measures tend to investigate
specific questions

Ideally questions identified from contextual study
Measure user characteristics

Estimate parameters of skilled performance
Identify common mental models

Investigate potential designs
Compare benefits of alternatives
Assess performance against design goals

Software Engineering and Design

CS Part II General / CS Diploma Page 74

Controlled experiments
Based on a number of observations:

How long did Fred take to order a CD from
Amazon?
How many errors did he make?

But every observation is different.
So we compare averages:

over a number of trials
over a range of people (experimental subjects)

Results usually have a normal distribution

Experimental treatments
A treatment is some modification that we
expect to have an effect on usability:

How long does Fred take to order a CD using this
great new interface, compared to the crummy old
one?
Expected answer: usually faster, but not always

number of
observation

trials

time taken to order CD
(faster)

new old

Software Engineering and Design

CS Part II General / CS Diploma Page 75

Think-aloud studies
Gain some understanding of mental models.
Subject talks continuously while performing a
defined experimental task.
transcribed as a verbal protocol for detailed
study of what user thinks is happening.
Can be used to assess usability of prototypes
during empirical evaluation, identifying
breakdowns in usage or understanding.

Surveys and questionnaires
Collect subjective evaluation from users

more like market research than like opinion polls
Closed questions …

yes/no or Likert scale (opinion from 1 to 5)
useful for statistical comparison

Open questions …
require coding frame to structure data
useful for exploratory investigation

Questionnaires: valuable for online studies

Software Engineering and Design

CS Part II General / CS Diploma Page 76

Product field testing
Brings advantages of task analysis to
assessment & testing phases of product
development.
Case study: Intuit Inc.’s Quicken product

originally based on interviews and observation
follow-me-home programme after product release:

random selection of shrink-wrap buyers;

observation while reading manuals, installing, using.

Quicken success was attributed to the
programme:

survived predatory competition, later valued at $15
billion.

Bad empirical techniques
Purely affective reports: 20 subjects
answered the question “Do you like this nice
new user interface more than that ugly old
one?”
No observation at all: “It was decided that
more colours should be used in order to
increase usability.”
Introspective reports made by a single
subject (often the programmer or project
manager): “I find it far more intuitive to do it
this way, and the users will too.”

Software Engineering and Design

CS Part II General / CS Diploma Page 77

Iterative design
Cycle of construction and evaluation
User interface designs are seldom right the
first time, so improve chances of meeting
user’s needs by repeating cycle of:

building a prototype
trying it out with users.

Accurate simulation of interface helps
develop and assess mental models
Either illustrative mock-ups of interface, or
interactive rapid prototypes as basis for
discussion.

Prototyping product concepts
Emphasise appearance of the interface,
create some behaviour with scripting
functions:

Visio – diagrams plus behaviour
Macromedia Director – movie sequence
JavaScript – web pages
Visual Basic (or VBA in PowerPoint, Excel …)

Cheap prototypes are good prototypes
More creative solutions are often discovered by
building more prototypes.
Glossy prototypes can be mistaken for the real
thing – either criticised more, or deployed!

Software Engineering and Design

CS Part II General / CS Diploma Page 78

Prototypes without programming
Low-fidelity prototypes (or mockups)

Paper-and-glue simulation of interface
User indicates action by pointing at buttons on the
paper “screen”
Experimenter changes display accordingly

“Wizard of Oz” simulation method
Computer user interface is apparently operational
Actual system responses are produced by an
experimenter in another room.
Can cheaply assess effects of “intelligent”
interfaces

Participatory design
Users become partners in the design team

Originated in Scandinavian printing industry
Recent research even includes children

PICTIVE method
Users generate scenarios of use in advance
Low fidelity prototyping tools (simple office
supplies) are provided for collaborative session
The session is videotaped for data analysis

CARD method
Cards with screen-dumps on them
Cards are arranged and rearranged on the table to
explore workflow options

Software Engineering and Design

CS Part II General / CS Diploma Page 79

New trends in user interfaces
Information appliances / Ubiquitous
computing
Adding computing and communication
functions to common devices:

toasters, desks, radios, refrigerators
Integrating devices into the environment:

by extending existing devices
PDAs, cellphones, smart cards

through new device categories
intelligent walls/paper, active badges, keyrings, jewellery

Emphasise functionality with minimal
“interface”

Part IV
Design Challenges

2 lectures

Software Engineering and Design

CS Part II General / CS Diploma Page 80

Design Challenges
Human errors and critical systems
Hazards
Risk
Reliability
Management failure (CAPSA case study).

‘Human Error’ probabilities
Extraordinary errors 10-5

difficult to conceive how they would occur
stress free environment, powerful success cues

Errors in common simple tasks 10-4

regularly performed, minimum stress involved
Press wrong button, read wrong display 10-3

complex tasks, little time, some cues necessary
Dependence on situation and memory 10-2

unfamiliar task with little feedback and some distraction:
Highly complex task 10-1

considerable stress, little time to perform
Unfamiliar and complex operations O(10^0)

involving creative thinking, time short, stress high
“Skill is more reliable than knowledge”

Software Engineering and Design

CS Part II General / CS Diploma Page 81

Modes of Automation

(a) Computer provides information and advice
to operator (perhaps using a mechanical or
electrical display, perhaps by reading sensors
directly)

Computer Operator

Displays

Controls

Sensors

Actuators

Process

Modes of Automation

(b) Computer reads and interprets sensor data
for operator

Computer

Operator

Displays

Controls

Sensors

Actuators

Process

Software Engineering and Design

CS Part II General / CS Diploma Page 82

Modes of Automation

(c) Computer interprets and displays data for
operator and issues commands; operator
makes varying levels of decisions

ComputerOperator

Displays

Controls

Sensors

Actuators

Process

Modes of Automation

(d) Computer assumes complete control of
process with operator providing advice or
high-level direction

ComputerOperator

Sensors

Actuators

Process

Software Engineering and Design

CS Part II General / CS Diploma Page 83

Critical software
Many systems have the property that a certain class
of failures is to be avoided if at all possible

safety critical systems
failure could cause death, injury or property damage

security critical systems
failure could result in leakage of classified data, confidential
business data, personal information

business critical systems
failure could affect essential operations

Critical computer systems have a lot in common with
critical mechanical or electrical systems

bridges, flight controls, brakes, locks, ...

Start out by studying how systems fail

Definitions
Error:

design flaw or deviation from intended state
Failure:

non-performance of the system within some
subset of the specified environmental conditions

Fault:
Computer science: error → fault → failure

but note electrical engineering terminology:
(error →) failure → fault

Reliability:
probability of failure within a set period of time
Sometimes expressed as ‘mean time to (or
between) failures’ - mttf (or mtbf)

Software Engineering and Design

CS Part II General / CS Diploma Page 84

More definitions
Accident

undesired, unplanned event that results in a
specified kind (and level) of loss

Hazard
set of conditions of a system, which together with
conditions in the environment, will lead to an
accident
thus, failure + hazard → accident

Risk: hazard level, combined with:
Danger: probability that hazard → accident

Latency: hazard exposure or duration

Safety: freedom from accidents

System Safety Process
Obtain support of top management, involve users,
and develop a system safety program plan:

identify hazards and assess risks
decide strategy for each hazard (avoidance, constraint,....)
trace hazards to hardware/software interface: which will
manage what?
trace constraints to code, and identify critical components
and variables to developers
develop safety-related test plans, descriptions, procedures,
code, data, test rigs ...
perform special analyses such as iteration of human-
computer interface prototype and test
develop documentation system to support certification,
training ,..

Safety needs to be designed in from the start. It
cannot be retrofitted

Software Engineering and Design

CS Part II General / CS Diploma Page 85

Real-time systems
Many safety critical systems are also real time

typically used in monitoring or control

These have particular problems
Extensive application knowledge often needed for design
Critical timing makes verification techniques inadequate
Exception handling particularly problematic.

eg Ariane 5 (4 June 1996):
Ariane 5 accelerated faster than Ariane 4
alignment code had an ‘operand error’ on float-to-integer
conversion
core dumped, core file interpreted as flight data
full nozzle deflection → 20 degrees angle of attack →
booster separation → self destruct

Hazard Analysis
Often several hazard categories e.g. Motor Industry
Software Reliability Association uses:

Uncontrollable: failure outcomes not controllable by
humans and likely to be extremely severe
Difficult to control: effects might possibly be controlled, but
still likely to lead to very severe outcomes
Debilitating: effects usually controllable, reduction in safety
margin, outcome at worst severe
Distracting: operational limitations, but a normal human
response limits outcome to minor
Nuisance: affects customer satisfaction, but not normally
safety

Different hazard categories require different failure
rates and different levels of investment in varying
software engineering techniques

Software Engineering and Design

CS Part II General / CS Diploma Page 86

THERAC-25
25 MEV ‘therapeutic accelerator’ for
radiotherapy cancer treatment

THERAC-25 operation
Two modes of operation:

25 MEV focused electron beam on a target that generates X-
rays for treating deep tumours
0.25 MEV spread electron beam for direct treatment of
surface tumours

Patient in shielded room, operator console outside
operator confirms dosage settings from console

Turntable between patient and beam contains:
scan magnet for steering low power beam
X-ray target to be placed at focus of high power beam
plunger to stop turntable in one or other position
microswitches on the rim to detect turntable position

Software Engineering and Design

CS Part II General / CS Diploma Page 87

THERAC hazard
Focused beam for X-ray therapy

100x the beam current of electron therapy
highly dangerous to living tissue

Previous models (Therac 6 and 20)
fuses and mechanical interlocks prevented high intensity
beam selection unless X-ray target in place

Therac 25 safety mechanisms replaced by software.
fault tree analysis arbitrarily assigned probability 10-11 to fault
‘computer selects wrong energy’.

But from 1985-87, at least six accidents
patients directly irradiated with the high energy beam
three died as consequence

Major factors: poor human computer interface, poorly
written, unstructured code.

The THERAC accidents
Marietta, Georgia, June 1985:

Woman's shoulder burnt. Sued & settled out of court. Not reported
to FDA, or explained

Ontario, July 1985:
Woman's hip burnt. Died of cancer. 1-bit switch error possible
cause, but couldn’t reproduce the fault.

Yakima, Washington, December 85:
Woman's hip burnt. Survived. ‘Could not be a malfunction’

Tyler, Texas, March 86:
Man burned in neck and died. AECL denied knowledge of any
hazard

Tyler, Texas, April 86:
2nd man burnt on face and died. Hospital physicist recreated fault: if
parameters edited too quickly, interlock overwritten

Yakima, Washington, January 87:
Man burned in chest and died. Due to different bug thought now to
have also caused the Ontario accident

Software Engineering and Design

CS Part II General / CS Diploma Page 88

THERAC lessons learned
AECL ignored safety aspects of software

assumed when doing risk analysis (and
investigating Ontario) that hardware must be at
fault

Confused reliability with safety
software worked & accidents rare …
… so assumed it was ok

Lack of defensive design
machine couldn't verify that it was working
correctly

Failure to tackle root causes
Ontario accident not properly explained at the time
(nor was first Yakima incident ever!)

More THERAC lessons
Complacency

medical accelerators previously had good safety record

Unrealistic risk assessments
“think of a number and double it”

Inadequate reporting, follow-up and government
oversight.
Inadequate software engineering

specification an afterthought
complicated design
dangerous coding practices
little testing
careless human interface
careless documentation design

Software Engineering and Design

CS Part II General / CS Diploma Page 89

Failure modes & effects analysis
FMEA is heart of NASA safety methodology

software not included in NASA FMEA
but other organisations use FMEA for software

Look at each component's functional modes and list
the potential failures in each mode.

Describe worst-case effect on the system
1 = loss of life
2 = loss of mission
3 = other

Secondary mechanisms deal with interactions

Alternative: Fault Tree Analysis
work back systematically from each identified hazard
identify where redundancy is, which events are critical

Redundancy
Some systems, like Stratus & Tandem, have highly
redundant hardware for 'non-stop processing‘

But then software is where things break
‘Hot spare’ inertial navigation on Ariane 5 failed first!
Idea: multi-version programming

But: significantly correlated errors, and failure to understand
requirements comes to dominate (Knight, Leveson 86/90)

Also, many problems with redundancy management.
For example, 737 crashes Panama/Kegworth

CPU

CPU CPU

CPU`?
?

Software Engineering and Design

CS Part II General / CS Diploma Page 90

Example - Kegworth Crash
British Midland 737-400 flight 8 January 1989

left Heathrow for Belfast with 8 crew + 118 passengers
climbing at 28,300’, fan blade fractured in #1 (left) engine.
Vibration, shuddering, smoke, fire
Crew mistakenly shut down #2 engine, cut throttle to #1 to
descend to East Midlands Airport.
Vibration reduced, until throttle reopened on final approach
Crashed by M1 at Kegworth. 39 died in crash and 8 later in
hospital; 74 of 79 survivors seriously injured.

Initial assessment
engine vibration sensors cross-wired by accident

Mature assessment
crew failed to read information from new digital instruments

Recommendations:
human factors evaluations of flight systems, clear ‘attention
getting facility’, video cameras on aircraft exterior

Myths of software safety
Computers are cheaper than analogue or
electromechanical devices

shuttle software costs $100,000,000 p.a. to
maintain

Software is easy to change
but hard (and expensive) to change safely

Computers are more reliable
shuttle had 16 potentially fatal bugs since 1980 –
half of them had actually flown

Increasing software reliability increases
safety

perfectly functioning software still causes
accidents

Software Engineering and Design

CS Part II General / CS Diploma Page 91

More myths
Testing or formal verification can remove all
errors

exhaustive testing is usually impossible
proofs can have errors too

Software reuse increases safety
using the same software in a new environment is
likely to uncover more errors

Automation can reduce risk
potential not always realised, humans still need to
intervene

CAPSA project
Now Cambridge University Financial System
Previous systems:

In-house COBOL system 1966-1993
Didn’t support commitment accounting

Reimplemented using Oracle + COTS 1993
No change to procedures, data, operations

First attempt to support new accounts:
Client-server “local” MS Access system
To be “synchronised” with central accounts
Loss of confidence after critical review

May 1998: consultant recommends restart
with “industry standard” accounting system

Software Engineering and Design

CS Part II General / CS Diploma Page 92

CAPSA project
Detailed requirements gathering exercise

Input to supplier choice between Oracle vs. SAP
Bids & decision both based on optimism

‘vapourware’ features in future versions
unrecognised inadequacy of research module
no user trials conducted, despite promise

Danger signals
High ‘rate of burn’ of consultancy fees
Faulty accounting procedures discovered
New management, features & schedule slashed
Bugs ignored, testing deferred, system went live

“Big Bang” summer 2000: CU seizes up

CAPSA mistakes
No phased or incremental delivery
No managed resource control
No analysis of risks
No library of documentation
No requirements traceability
No policing of supplier quality
No testing programme
No configuration control

Software Engineering and Design

CS Part II General / CS Diploma Page 93

CAPSA lessons
Classical system failure (Finkelstein)

More costly than anticipated
£10M or more, with hidden costs

Substantial disruption to organisation
Placed staff under undue pressure
Placed organisation under risk of failing to meet
financial and legal obligations

Danger signs in process profile
Long hours, high staff turnover etc

Systems fail systemically
not just software, but interaction with
organisational processes

Problems of large systems
Study of 17 large & demanding systems

(Curtis, Krasner, Iscoe, 1988)
97 interviews investigated organisational factors in
project failure

Main findings - large projects fail because
(1) thin spread of application domain knowledge
(2) fluctuating and conflicting requirements
(3) breakdown of communication and coordination

These were often linked, with typical
progression to disaster (1) → (2) → (3)

Software Engineering and Design

CS Part II General / CS Diploma Page 94

More large system problems
Thin spread of application domain knowledge

who understands all aspects of running a telephone
service/bank branch network/hospital?
many aspects are jealously guarded secrets
sometimes there is structured knowledge (eg pilots)
otherwise, with luck, you may find a genuine 'guru‘
So expect specification mistakes

Even without mistakes, specification may change:
new competitors, new standards, new equipment, fashion
change in client: takeover, recession, refocus, …
new customers, e.g. overseas, with different requirements

Success and failure both bring their own changes!

More large system problems
How to cope with communications overhead?

Traditionally via hierarchy
information flows via managers, they get overloaded

Usual result - proliferation of committees
politicking, responsibility avoidance, blame shifting

Fights between 'line' and 'staff' departments
Management attempts to gain control may result in constriction
of some interfaces, e.g. to customer

Managers often loath to believe bad news
much less pass it on

Informal networks vital, but disrupted by 'reorganisation‘

We trained hard, but it seemed that every time we were beginning to
form up into teams, we would be reorganised. I was to learn later in life
that we tend to meet any new situation by reorganising, and a
wonderful method it can be for creating the illusion of progress while
producing confusion, inefficiency and demoralisation.

Caius Petronius (AD 66):

Software Engineering and Design

CS Part II General / CS Diploma Page 95

Part V
Project Management

2 lectures

Project Management
Lifecycle costs and Brooks’ Law
The classic “waterfall model”
Evolutionary and incremental models

Spiral model
Rapid Application Development
Rational Unified Process

Novel structures
Chief programmer
Egoless programming
eXtreme Programming

Changing (maturing) organisations

Software Engineering and Design

CS Part II General / CS Diploma Page 96

The software life cycle
Cost of owning a system not just
development but whole cost over life cycle:

Development, Testing, Operations, Replacement
In ‘bespoke’ software days

90% of IT department programming effort was
maintenance of old systems

Most research on software costs and
methods focuses on this business model.
Different business models apply

to safety critical and related software
to package software
but many lessons apply to them all

Common difficulties
Code doesn't ‘wear out’ the way that gears in
machinery do, but:

platform and application requirements change over time,
code becomes more complex,
it becomes less well documented,
it becomes harder to maintain,
it becomes more buggy.

Code failure rates resemble those of machinery
(but for different reasons!)

bugs

time

Software Engineering and Design

CS Part II General / CS Diploma Page 97

More common difficulties
When software developed (or redeveloped)

unrealistic price/performance expectations
as hardware gets cheaper, software seems dear

Two main causes of project failure
incomplete/changing/misunderstood requirements
insufficient time

These and other factors lead to the ‘tar pit’
any individual problem can be solved
but number and complexity get out of control

Life cycle costs
Development costs (Boehm, 75)

Reqmts/Spec Implement Test
Cm’d & Control 48% 20% 34%
Space 34% 20% 46%
O/S 33% 17% 50%
Scientific 44% 26% 30%
Business 44% 28% 28%

Maintenance costs: typically ten times as much again

Software Engineering and Design

CS Part II General / CS Diploma Page 98

Reducing life cycle costs
By the late 60’s the industry was realising:

Well built software cost less to maintain
Effort spent getting the specification right
more than pays for itself by:

reducing the time spent implementing and testing
reducing the cost of subsequent maintenance.

What does code cost?
Even if you know how much was spent on a project,

how do you measure what has been produced?
Does software cost per mile / per gallon / per pound?

Common measure is KLOC (thousand lines of code)
First IBM measures (60's):

1.5 KLOC / man year (operating system)
5 KLOC / man year (compiler)
10 KLOC / man year (app)

AT&T measures:
0.6 KLOC / man year (compiler)
2.2 KLOC / man year (switch)

Software Engineering and Design

CS Part II General / CS Diploma Page 99

Metrics & estimation
More sophisticated measures:

Halstead (entropy of operators, operands)
McCabe (graph complexity of control structures)
For estimation: “Function Point Analysis”

Lessons learned from applying empirical
measures:

main productivity gains come from using
appropriate high level language

each KLOC does more

wide variation between individuals
more than 10 times

Brooks’ Law
Brooks’ The Mythical Man-Month attacked idea that
“men” and months interchangeable, because:

more people → more communications complexity
adding people → productivity drop as they are trained

e.g consider project estimated at 3 men x 4 months
but 1 month design phase actually takes 2 months!
so 2 months left to do work estimated at 9 man-months
add 6 men, but training takes 1 month
so all 9 man-months work must be done in the last month.

3 months work for 3 can't be done in 1 month by 9
(complexity, interdependencies, testing, ...)
Hence Brooks' Law:

“Adding manpower to a late software project
makes it later”

Software Engineering and Design

CS Part II General / CS Diploma Page 100

Boehm’s empirical study
Brooks’ Law (described 1975) led to empirical studies
Boehm Software Engineering Economics, 1981:

cost-optimum schedule time to first shipment, T
= 2.5 x cube root of total number of man months

with more time, cost rises slowly
‘people with more time take more time’

with less time, the cost rises sharply
Hardly any projects succeed in < 0.75T, regardless of
number of people employed!

Other studies show if more people are to be added,
should be added early rather than late
Some projects have more and more resources
thrown at them yet are never finished at all, others
are years late.

The Waterfall Model

Implementation
& unit testing

Operations &
maintenance

Integration &
system testing

Requirements

Specification

written in
user's

language
written in
system

language
checks units

against
specification

Checks
requirements

are met

(Royce, 1970; now US DoD standard)

Software Engineering and Design

CS Part II General / CS Diploma Page 101

The Waterfall Model

Implementation
& unit testing

Operations &
maintenance

Integration &
system testing

Requirements

Specification

Requirements are
developed by at least
two groups of people
who speak different
languages and who
come from different

disciplines.

Specification, Design
and Implementation
are done by a group
of single-discipline
professionals who

usually can
communicate with one

another.

Installation is usually
done by people who

don't really
understand the issues
or the problem or the

solution.

After a start-up period,
Operation is almost
always left to people
who don't understand

the issues, ethics,
problem or solution

(and often little else).

Maintenance is
usually performed by
inexperienced people
who have forgotten
much of what they

once knew about the
problem or the

solution.(this information repeated on next slide)

Requirements are
developed by at least
two groups of people
who speak different
languages and who
come from different

disciplines.

Specification, Design
and Implementation
are done by a group
of single-discipline
professionals who

usually can
communicate with one

another.

Installation is usually
done by people who

don't really
understand the issues
or the problem or the

solution.

After a start-up period,
Operation is almost
always left to people
who don't understand

the issues, ethics,
problem or solution

(and often little else).

Maintenance is
usually performed by
inexperienced people
who have forgotten
much of what they

once knew about the
problem or the

solution.

New York security
consultant Robert

Courtney examined
1000s of security

breaches - 68% due
to careless or
incompetent
operations.

Software Engineering and Design

CS Part II General / CS Diploma Page 102

Feedback in the waterfall model
Validation operations provide feedback

from Specification to Requirements
from Implementation/unit testing to Specification

Verification operations provide feedback
from Integration/ system testing to Implementation/unit
testing
from operations/maintenance back to Integration/system
testing

What's the difference?
Validation: `are we building the right system?'
Verification: `are we building it right?'

What about validation from operations back to
requirements?

this would change the model (and erode much of its value)

Advantages of waterfall model
Project manager's task easier with clear milestones
Can charge for requirement changes

each stage can even be a separate contract

System goals, architecture & interfaces clarified
together

conducive to good design practices

Compatible with many tools and design methods
Where applicable, waterfall is an ideal approach

critical factor: whether requirements can be defined in detail,
in advance of any development or prototyping work.
sometimes they can (e.g. a compiler);
often they can't (e.g. user-centred design)

Software Engineering and Design

CS Part II General / CS Diploma Page 103

Iterative development
Some systems need iteration to clarify requirements
Others make operations fail-safe as possible
Naive approach:

This algorithm needn't terminate (satisfactorily)
Can we combine management benefits of waterfall,
with flexibility of iterative development?

Develop
outline spec

Build
system

Use
system

System OK? Deliver
systemYESNO

Spiral model (Boehm, 88)

Requirements plan
Life-cycle plan

Risk analysis

Prototype 1

Development
plan

Risk analysis

Prototype
2

Software
requirements

Requirements
validation

Operational
prototype

Plan next phases

Determine objectives,
alternatives,
constraints

Evaluate alternatives
and resolve risks

Develop and verify
next level product

Detailed
design

Code

Test

Integrate
Implement

Increasing cost

Software Engineering and Design

CS Part II General / CS Diploma Page 104

Features of spiral model
Driven by risk management
Fixed number of iterations, each of form:

identify alternatives, then
assess and choose, then
build and evaluate

Allows for (some amount of) iterative
prototyping in early stages

Rapid Application Development
Mainly focused on user-centred design
Includes “Joint Application Development”

Intensively collaborative requirements gathering
exercise, with all stakeholders involved

Implementation is iterative (<6 month cycles)
Lifecycle phases

Project initiation
JAD workshop
Iterative design and build
Evaluate final system
Implementation review

Software Engineering and Design

CS Part II General / CS Diploma Page 105

Rational Unified Process
Proposed by UML authors
Phases (any of which may iterate)

Inception – capture business rationale and scope
Elaboration – domain model, architectural design,
risk analysis, implementation planning
Construction – incremental implementation of use
cases, iterative code change, refactoring
Transition – final touches, including optimisation

Any may vary in degree of ceremony
(documentation, contracts, sign-off etc.)

Universal project management
Manager deals with human consequences of
intrinsic complexity by:

Planning: estimation, identifying risk
Monitoring: progress & tolerance for “slip”
Controlling: effort distribution & scheduling
Motivating: may be based on technical respect
from staff, but managerial competence essential

Management tools:
PERT (program evaluation and review technique)
CPM (critical path method)
Software implementing these (e.g. MS Project)

Software Engineering and Design

CS Part II General / CS Diploma Page 106

Activity Charts
Show a project's tasks and milestones (with
allowable variation)

Problem: relatively hard to visualise
interdependencies and knock-on effects of any
milestone being late.

T1
T2
T3

T4

T6
T5

T7
T8
T9

T10

M1

M2

M3

4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8

Critical Path Analysis
Drawing activity chart as graph with dependencies
makes critical path easier to find and monitor

PERT charts include bad / expected / good durations
warn of trouble in time to take actions
mechanical approach not enough

overestimates of duration come down steadily
underestimates usually covered up until near deadline!

management heuristic
the project manager is never on the critical path

Software Engineering and Design

CS Part II General / CS Diploma Page 107

Documentation
Projects have various management documents:

contracts - budgets - activity charts & graphs - staff
schedules

Plus various engineering documents:
requirements - hazard analysis - specification - test plan -
code

How do we keep all these in step?
Computer science tells us it's hard to keep independent files
in synch

Possible solutions
high tech: CASE tool
bureaucratic: plans and controls dept
convention: self documenting code

Alternative philosophies
Some programmers are very much more productive
than others - by a factor of ten or more
‘Chief programmer teams’, developed at IBM (1970-
72) seek to capitalise on this

team with one chief programmer + apprentice/assistant,
plus toolsmith, librarian,admin assistant, etc
get the maximum productivity from the available talent

Can be very effective during the implementation
stage of a project

However, each team can only do so much
Complementary to (rather than opposed to) waterfall/spiral
and other project management methodologies

Software Engineering and Design

CS Part II General / CS Diploma Page 108

More alternative philosophies
‘Egoless programming’

code owned by team, not by individual (Weinberg, 1971).
in direct opposition to the ‘chief programmer’ idea.

‘Xtreme Programming’ (XP)
small groups work together for fast development cycle
iteration, early exposure to users. (Beck 199x)

‘Literate programming’
code as a work of art, designed not just for machine but for
human readers / maintainers (Knuth et al)

Objections:
can lead to wrong design decisions becoming entrenched,
defended, propagated more passionately
‘creeping elegance’ may be symptom of project out of control

There is no silver bullet!

ISO 9000 quality standards
Not software specific
Requires a quality manual: documented
quality system
Design control: requirements documentation
and functional traceability
Inspection (review): plans and status
Test status: what tests will be done, which
have been conducted, which successful
Handling: library, backup and configuration

Software Engineering and Design

CS Part II General / CS Diploma Page 109

Capability Maturity Model
Emphasises shift from 'product' to 'process'
A good team isn't permanent

need repeatable, manageable performance
not outcome dependent on individual genius or
heroics

Capability Maturity Model (CMM)
‘market leading’ approach to this problem
developed at CMU with DoD funding
identifies five levels of increasing maturity in a
software team or organisation
provides a guide to moving up from one level to
the next

Levels of CMM

Initial
(1)

Repeatable
(2)

Defined
(3)

Managed
(4)

Optimising
(5)

Disciplined
process

Standard,
consistent
process

Predictable
process

Continuously
improving
process

Empirical model based
on observations and
refined over a number
of years

How to move up the ladder:
focus at each stage on
what is most lacking

Software Engineering and Design

CS Part II General / CS Diploma Page 110

Levels of CMM

Initial (1)

Projects are chaotic
Success depends on luck and
heroism

Repeatab
le(2)

Defined
(3)

Managed
(4)

Optimisin
g (5)

Levels of CMM

Initial (1)

Repeatable(2)

Software configuration management
Software quality assurance
Software subcontract management
Software project tracking and oversight
Software project planning
Requirements management

Defined
(3)

Managed
(4)

Optimisin
g (5)

Software Engineering and Design

CS Part II General / CS Diploma Page 111

Levels of CMM

Defined (3)

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training programme
Organisation process definition
Organisation process focus

Initial (1)

Repeatabl
e(2)

Managed
(4)

Optimisin
g (5)

Levels of CMM

Managed (4)

Software quality management

Quantitative process management

Optimisi
ng (5)

Initial (1)

Repeatabl
e(2)

Defined
(3)

Software Engineering and Design

CS Part II General / CS Diploma Page 112

Levels of CMM
Optimising (5)

Process change management

Technology change management

Defect prevention

Initial (1)

Repeatab
le(2)

Defined
(3)

Managed
(4)

CONCLUSIONS
Software engineering and design are hard

Completely generic tools meet very specific tasks
Must engage with human needs in social context
Fundamentally about managing complexity

Craft skills of software construction
Decomposition and modular construction
Modelling tools that enable analysis and design

User centred design: knowledge & attitude
Broad understanding of human and social sciences
Protect user needs in corporate/technical environment

Systematic management
Awareness of lifecycle model and suitable tools
Measuring and reflecting on process improvement

