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Learning Guide
The notes are designed to accompany six lectures on regular languages and finite automata
for Part IA of the Cambridge University Computer Science Tripos. The aim of this short
course will be to introduce the mathematical formalisms of finite state machines, regular
expressions and grammars, and to explain their applications to computer languages. As such,
it covers some basic theoretical material which Every Computer Scientist Should Know.
Direct applications of the course material occur in the various CST courses on compilers.
Further and related developments will be found in the CST Part IB courses Computation
Theory and Semantics of Programming Languages and the CST Part II course Topics in
Concurrency.

This course contains the kind of material that is best learned through practice. The books
mentioned below contain a large number of problems of varying degrees of difficulty, and
some contain solutions to selected problems. A few exercises are given at the end of each
section of these notes and relevant past Tripos questions are indicated there. At the end
of the course students should be able to explain how to convert between the three ways of
representing regular sets of strings introduced in the course; and be able to carry out such
conversions by hand for simple cases. They should also be able to prove whether or not a
given set of strings is regular.

Recommended books Textbooks which cover the material in this course also tend to
cover the material you will meet in the CST Part IB courses on Computation Theory and
Complexity Theory, and the theory underlying parsing in various courses on compilers.
There is a large number of such books. Three recommended ones are listed below.

� D. C. Kozen, Automata and Computability (Springer-Verlag, New York, 1997).� T. A. Sudkamp, Languages and Machines (Addison-Wesley Publishing Company,
Inc., 1988).� J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Second Edition (Addison-Wesley, 2001).

Note The material in these notes has been drawn from several different sources, including
the books mentioned above and previous versions of this course by the author and by others.
Any errors are of course all the author’s own work. A list of corrections will be available
from the course web page (follow links from www.cl.cam.ac.uk/Teaching/). A lecture(r)
appraisal form is included at the end of the notes. Please take time to fill it in and return it.
Alternatively, fill out an electronic version of the form via the URL www.cl.cam.ac.uk/cgi-
bin/lr/login.

Andrew Pitts
Andrew.Pitts@cl.cam.ac.uk
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1 Regular Expressions

Doubtless you have used pattern matching in the command-line shells of various operating
systems (Slide 1) and in the search facilities of text editors. Another important example of
the same kind is the ‘lexical analysis’ phase in a compiler during which the text of a program
is divided up into the allowed tokens of the programming language. The algorithms which
implement such pattern-matching operations make use of the notion of a finite automaton
(which is Greeklish for finite state machine). This course reveals (some of!) the beautiful
theory of finite automata (yes, that is the plural of ‘automaton’) and their use for recognising
when a particular string matches a particular pattern.

Pattern matching

What happens if, at a Unix/Linux shell prompt, you type�����
and press return?

Suppose the current directory contains files called �
	���
 ������� 	�� ,��	���
 ��������� � , �
	���
 ��������� � , ��	���
 ���������! , and (strangely)���"� � . What happens if you type���#�����"� �
and press return?

Slide 1

1.1 Alphabets, strings, and languages

The purpose of Section 1 is to introduce a particular language for patterns, called regular
expressions, and to formulate some important problems to do with pattern-matching which
will be solved in the subsequent sections. But first, here is some notation and terminology to
do with character strings that we will be using throughout the course.
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Alphabets

An alphabet is specified by giving a finite set, $ , whose elements
are called symbols. For us, any set qualifies as a possible
alphabet, so long as it is finite.

Examples:%'&)(+*-,�.0/1.32�.54�.768.39�.5:�.5;�.7<�.>=�?
—
/@,

-element set of decimal digits.%BAC(+*-D�.5E-.5FG.0H0H0H7.>IJ.7K�.5L�?
—
2M:

-element set of lower-case
characters of the English language.%ONP(+*GQSRGQUTS%'&V?

—
2 &XW

-element set of all subsets of the alphabet
of decimal digits.

Non-example:Y (+*-,�.0/1.32�.54�.0H0H0HZ?
— set of all non-negative whole numbers is not

an alphabet, because it is infinite.

Slide 2

Strings over an alphabet

A string of length [ ( \^] ) over an alphabet $ is just an ordered[ -tuple of elements of $ , written without punctuation.

Example: if
%_(+*-D�.5EG.5F@?

, then
D

,
D�E

,
D�D�F

, and
E`EaD�F

are strings over%
of lengths one, two, three and four respectively.

$cbed-fhgi set of all strings over $ of any finite length.

N.B. there is a unique string of length zero over $ , called the null
string (or empty string) and denoted j (no matter which $ we
are talking about).

Slide 3
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Concatenation of strings

The concatenation of two strings kml`npoSqsr is the string kJn
obtained by joining the strings end-to-end.

Examples: If tvuxw�y , z{u}|~w and ��ux�`w�� , then z"tvu�|Mw�w�y ,t�tvuxw�y`w�y and �Pz{ux�`w���|Mw .

This generalises to the concatenation of three or more strings.
E.g. k�n���k�n������-�"���-�������@�"� .

Slide 4

Slides 2 and 3 define the notions of an alphabet � , and the set ��� of finite strings over an
alphabet. The length of a string t will be denoted by ���a���~���
��t�� . Slide 4 defines the operation
of concatenation of strings. We make no notational distinction between a symbol w���� and
the corresponding string of length one over � : so � can be regarded as a subset of �c� . Note
that � � is never empty—it always contains the null string,   , the unique string of length zero.
Note also that for any tJ¡7z�¡7�}���P�

t� cu�t¢ux -t and ��t�z��h��u�t�z"��u�t£��z"�¤�
and ���a���~���
��t�z��¥u¦���`���~������t���§x���a���~���
��z�� .
Example 1.1.1. Examples of � � for different � :

(i) If �_u+¨-w�© , then �P� contains  �¡5w�¡5w�w�¡5w�w�w�¡5w�w�w�w�¡0ª`ªVª
(ii) If �_u+¨-w�¡5y@© , then �P� contains

 "¡5w�¡5yG¡5w�w�¡5w�y-¡5y`w�¡5y3yG¡5w"w�w�¡5w"w�yG¡>w�y`w�¡7w�y`yG¡>y`w"w�¡7yaw�y@¡5yayaw�¡7yay`y@¡0ªVªVª
(iii) If �«u­¬ (the empty set — the unique set with no elements), then �¤�®u¯¨0 �© , the set just

containing the null string.
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1.2 Pattern matching

Slide 5 defines the patterns, or regular expressions, over an alphabet ° that we will use.
Each such regular expression, ± , represents a whole set (possibly an infinite set) of strings
in °P² that match ± . The precise definition of this matching relation is given on Slide 6. It
might seem odd to include a regular expression ³ that is matched by no strings at all—but it
is technically convenient to do so. Note that the regular expression ´ is in fact equivalent to³ ² , in the sense that a string µ matches ³ ² iff it matches ´ (iff µv¶�´ ).

Regular expressions over an alphabet ·
¸ each symbol ¹»º_· is a regular expression¸½¼ is a regular expression¸¿¾ is a regular expression¸ if À and Á are regular expressions, then so is ÂXÀ
Ã�Á�Ä¸ if À and Á are regular expressions, then so is À�Á¸ if À is a regular expression, then so is ÂXÀ�ÄaÅ

Every regular expression is built up inductively, by finitely many
applications of the above rules.

(N.B. we assume ´ , ³ , Æ , Ç , È , and ² are not symbols in ° .)

Slide 5

Remark 1.2.1 (Binding precedence in regular expressions). In the definition on Slide 5
we assume implicitly that the alphabet ° does not contain the six symbols

´ ³ Æ Ç È ²
Then, concretely speaking, the regular expressions over ° form a certain set of strings over
the alphabet obtained by adding these six symbols to ° . However it makes things more
readable if we adopt a slightly more abstract syntax, dropping as many brackets as possible
and using the convention that

É ² binds more tightly than É»É , binds more tightly than É È É .

So, for example, ±�ÈËÊVÌ5² means Æ�±�ÈËÊ"Æ�ÌZÇ5²aÇ , not Æ�±�ÈËÊ-ÇVÆ�ÌZÇ5² , or Æ>Æ�±�ÈÍÊ0ÌZÇ>Ç5² , etc.
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Matching strings to regular expressions

ÎÐÏ matches ÑÓÒSÔ iff ÏÖÕ ÑÎÐÏ matches × iff ÏÖÕ ×Î no string matches ØÎÐÏ matches Ù�Ú�Û iff Ï matches either Ù or ÛÎÐÏ matches Ù�Û iff it can be expressed as the concatenation of
two strings, ÏÖÕÝÜ�Þ , with Ü matching Ù and Þ matching ÛÎÐÏ matches Ù�ß iff either Ï½Õ × , or Ï matches Ù , or Ï can be
expressed as the concatenation of two or more strings, each
of which matches Ù

Slide 6

The definition of ‘ à matches á�â ’ on Slide 6 is equivalent to saying

for some ãåä æ , à can be expressed as a concatenation of ã strings, àèçà�é>à�ê¥ë0ë0ëhà�ì , where each à�í matches á .
The case ãîçxæ just means that à®ç�ï (so ï always matches á�â ); and the case ãîçñð just means
that à matches á (so any string matching á also matches á�â ). For example, if òeçôó-õ�ö5÷Gö5ø@ù
and á�çxõ�÷ , then the strings matching á â are

ï"ö5õ�÷Gö5õ�÷aõ�÷-ö5õ�÷`õ�÷`õ�÷Gö etc ë
Note that we didn’t include a regular expression for the ‘ ú ’ occurring in the UNIX

examples on Slide 1. However, once we know which alphabet we are referring to, òûçó-õ�é`ö5õ�êGö0ë0ë0ë3ö5õ�ì�ù say, we can get the effect of ú using the regular expression

ü õ�é~ýÍõ�ê"ý5ë0ë0ë@ýÍõ�ì8þ â
which is indeed matched by any string in ò â (because õ�é~ýÍõ�ê"ý5ë0ë0ë@ýÍõ�ì is matched by any symbol
in ò ).
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Examples of matching, with ÿ�� �������
	
� �
��� is matched by each symbol in ÿ� �����
������� is matched by any string in ÿ � that starts with a ‘

�
’� �����
���������
������� � is matched by any string of even length in ÿ �� ���
����� � ���
����� � is matched by any string in ÿ �� ������������������������� is matched by just the strings

�
,
�

,
�
,
���

, and���
��� ����� is just matched by

�

Slide 7

Notation 1.2.2. The notation  "!$# is quite often used for what we write as  &%'# .
The notation  �( , for )+*-, , is an abbreviation for the regular expression obtained by

concatenating ) copies of  . Thus: .  �/ 021435-6
 �(87:9 021435  <;= �(?>�@

Thus A matches  �B iff A matches  ( for some )C*D, .
We use  E7 as an abbreviation for  � B . Thus A matches  87 iff it can be expressed as the

concatenation of one or more strings, each one matching  .
1.3 Some questions about languages

Slide 8 defines the notion of a formal language over an alphabet. We take a very extensional
view of language: a formal language is completely determined by the ‘words in the
dictionary’, rather than by any grammatical rules. Slide 9 gives some important questions
about languages, regular expressions, and the matching relation between strings and regular
expressions.
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Languages

A (formal) language F over an alphabet G is just a set of strings
in GIH .
Thus any subset FKJLGMH determines a language over G .

The language determined by a regular expression N over G is

FPO�N�QSRUTWVX Y�Z\[ G H^] Z matches N&_&`
Two regular expressions N and a (over the same alphabet) are
equivalent iff FPO�N�Q and FPOba8Q are equal sets (i.e. have exactly the
same members).

Slide 8

Some questions

(a) Is there an algorithm which, given a string Z and a regular
expression N (over the same alphabet), computes whether or
not Z matches N ?

(b) In formulating the definition of regular expressions, have we
missed out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions N
and a (over the same alphabet), computes whether or not
they are equivalent? (Cf. Slide 8.)

(d) Is every language of the form FcO�N<Q ?

Slide 9
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The answer to question (a) on Slide 9 is ‘yes’. Algorithms for deciding such pattern-
matching questions make use of finite automata. We will see this during the next few sections.

If you have used the UNIX utility d
egfih , or a text editor with good facilities for regular
expression based search, like fkjml<n
o , you will know that the answer to question (b) on Slide 9
is also ‘yes’—the regular expressions defined on Slide 5 leave out some forms of pattern
that one sees in such applications. However, the answer to the question is also ‘no’, in the
sense that (for a fixed alphabet) these extra forms of regular expression are definable, up
to equivalence, from the basic forms given on Slide 5. For example, if the symbols of the
alphabet are ordered in some standard way, it is common to provide a form of pattern for
naming ranges of symbols—for example pqlsrut�v might denote a pattern matching any lower-
case letter. It is not hard to see how to define a regular expression (albeit a rather long one)
which achieves the same effect. However, some other commonly occurring kinds of pattern
are much harder to describe using the rather minimalist syntax of Slide 5. The principal
example is complementation, wyx=zi{ :| matches w}x=zE{ iff | does not match z .
It will be a corollary of the work we do on finite automata (and a good measure of its power)
that every pattern making use of the complementation operation w}xWr~{ can be replaced by
an equivalent regular expression just making use of the operations on Slide 5. But why do
we stick to the minimalist syntax of regular expressions on that slide? The answer is that it
reduces the amount of work we will have to do to show that, in principle, matching strings
against patterns can be decided via the use of finite automata.

The answer to question (c) on Slide 9 is ‘yes’ and once again this will be a corollary of
the work we do on finite automata. (See Section 5.3.)

Finally, the answer to question (d) is easily seen to be ‘no’, provided the alphabet �
contains at least one symbol. For in that case ��� is countably infinite; and hence the number of
languages over � , i.e. the number of subsets of ��� is uncountable. (Recall Cantor’s diagonal
argument.) But since � is a finite set, there are only countably many regular expressions
over � . (Why?) So the answer to (d) is ‘no’ for cardinality reasons. However, even amongst
the countably many languages that are ‘finitely describable’ (an intuitive notion that we will
not formulate precisely) many are not of the form ��x=zi{ for any regular expression z . For
example, in Section 5.2 we will use the ‘Pumping Lemma’ to see that�U���������U���D�g�
is not of this form.

1.4 Exercises
Exercise 1.4.1. Write down an ML data type declaration for a type constructor ��l�egf8d8�
�8h
whose values correspond to the regular expressions over an alphabet ��l .
Exercise 1.4.2. Find regular expressions over

�U�<���i�
that determine the following languages:

(a)
� | � | contains an even number of

�
’s
�
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(b) �k���k� contains an odd number of � ’s �
Exercise 1.4.3. For which alphabets � is the set �s� of all finite strings over � itself an
alphabet?

Exercise 1.4.4. If an alphabet � contains only one symbol, what does � � look like? (Answer:
see Example 1.1.1(i).) So if �D�����8� is the set consisting of just the null string, what is � � ?
(The answer is not ���8� .) Moral: the punctuation-free notation we use for the concatenation of
two strings can sometimes be confused with the punctuation-free notation we use to denote
strings of individual symbols.

Tripos questions 1999.2.1(s) 1997.2.1(q) 1996.2.1(i) 1993.5.12
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2 Finite State Machines
We will be making use of mathematical models of physical systems called finite automata,
or finite state machines to recognise whether or not a string is in a particular language.
This section introduces this idea and gives the precise definition of what constitutes a finite
automaton. We look at several variations on the definition (to do with the concept of
determinism) and see that they are equivalent for the purpose of recognising whether or not
a string is in a given language.

2.1 Finite automata

Example of a finite automaton

 �¡ ¢
£

 
¤
£

¢  i¥
£

¢  �¦
¢
£

States:  �¡ ,  
¤ ,  i¥ ,  �¦ .
Input symbols: § , ¨ .
Transitions: as indicated above.
Start state:  �¡ .
Accepting state(s):   ¦ .

Slide 10

The key features of this abstract notion of ‘machine’ are listed below and are illustrated
by the example on Slide 10.

© There are only finitely many different states that a finite automaton can be in. In the
example there are four states, labelled ªU« , ªi¬ , ªk­ , and ª�® .© We do not care at all about the internal structure of machine states. All we care about
is which transitions the machine can make between the states. A symbol from some
fixed alphabet ¯ is associated with each transition: we think of the elements of ¯
as input symbols. Thus all the possible transitions of the finite automaton can be
specified by giving a finite graph whose vertices are the states and whose edges have
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both a direction and a label (drawn from ° ). In the example °²±K³U´�µ·¶U¸ and the only
possible transitions from state ¹8º are

¹iº�»¼½ ¹�¾ and ¹iº�¿¼ ½ ¹kÀ�Á
In other words, in state ¹Eº the machine can either input the symbol ¶ and enter state¹Â¾ , or it can input the symbol ´ and enter state ¹�À . (Note that transitions from a state
back to the same state are allowed: e.g. ¹UÃ ¿¼ ½ ¹�Ã in the example.)

Ä There is a distinguished start state.1 In the example it is ¹k¾ . In the graphical
representation of a finite automaton, the start state is usually indicated by means of
a unlabelled arrow.

Ä The states are partitioned into two kinds: accepting states2 and non-accepting states.
In the graphical representation of a finite automaton, the accepting states are indicated
by double circles round the name of each such state, and the non-accepting states are
indicated using single circles. In the example there is only one accepting state, ¹�Ã ; the
other three states are non-accepting. (The two extreme possibilities that all states are
accepting, or that no states are accepting, are allowed; it is also allowed for the start
state to be accepting.)

The reason for the partitioning of the states of a finite automaton into ‘accepting’ and
‘non-accepting’ has to do with the use to which one puts finite automata—namely to recognise
whether or not a string ÅÇÆÈ°�É is in a particular language ( ± subset of °�É ). Given Å we
begin in the start state of the automaton and traverse its graph of transitions, using up the
symbols in Å in the correct order reading the string from left to right. If we can use up all the
symbols in Å in this way and reach an accepting state, then Å is in the language ‘accepted’
(or ‘recognised’) by this particular automaton; otherwise Å is not in that language. This is
summed up on Slide 11.

1The term initial state is a common synonym for ‘start state’.
2The term final state is a common synonym for ‘accepting state’.
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ÊPË�ÌÎÍ
, language accepted by a finite automaton

Ì
consists of all strings Ï over its alphabet of input symbols
satisfying Ð�Ñ�ÒÓ ÔÖÕ Ð with Ð�Ñ the start state and Ð some accepting
state. Here Ð Ñ ÒÓ Ô Õ Ð
means, if Ï�×ÙØÛÚ2ØmÜÞÝ�Ý�ÝÂØ&ß say, that for some statesÐ Ú�à Ð Ü
à Ý�Ý�Ý à Ð ß ×LÐ (not necessarily all distinct) there are
transitions of the form

Ð ÑâáiãÓ�Ô Ð ÚSákäÓ�Ô Ð Ü�ákåÓ·Ô æ�æ�æ ákçÓ8Ô Ð ß ×ÙÐmÝ
N.B.

case èêéâë : ìîíïð^ñ ì�ò iff ìséâì�ò
case èêéôó : ì²õï ð^ñ ì�ò iff ì²õï ð ì�ò .

Slide 11

Example 2.1.1. Let ö be the finite automaton pictured on Slide 10. Using the notation
introduced on Slide 11 we have:

ìÂ÷�õ�õ2õ2øï�ï�ï ð ñ ì�ù (so úgúgú
û~üÖýÿþ=ö�� )
ìÂ÷ õ�ø õ2õï�ï�ï ð ñ ì iff ìIé�ì�� (so úgû2ú
ú��üÖýÿþ=ö�� )
ì�� ø õ�õ2õï�ï�ï ð ñ ì iff ìIé�ì�ù (no conclusion about ý�þ ö�� ).

In fact in this case

ýÿþ=ö�� é���	�
�	 contains three consecutive ú ’s 
��
(For ì�� ( � é ë���ó���� ) corresponds to the state in the process of reading a string in which the
last � symbols read were all ú ’s.) So ýÿþ=ö�� coincides with the language ý�þ���� determined by
the regular expression

�séKþ ú�
 û�� ñ ú
úgú þ=ú�
 û�� ñ
(cf. Slide 8).



14 2 FINITE STATE MACHINES

A non-deterministic finite automaton (NFA), � ,
is specified by

� a finite set �! #"$ &%�'�( (of states)

� a finite set ) ( (the alphabet of input symbols)

� for each *,+-�! #"$ &%�' ( and each .�+/) ( , a subset0 (21 *43�.65879�! #"$ &%�' ( (the set of states that can be
reached from * with a single transition labelled . )

� an element :�( +;�! &"$ &%�'�( (the start state)

� a subset <>=�=�%#?@ ( 79�A &"$ &%�'�( (of accepting states)

Slide 12

2.2 Determinism, non-determinism, and B -transitions

Slide 12 gives the formal definition of the notion of finite automaton. Note that the functionCED
gives a precise way of specifying the allowed transitions of F , via: GIHJ K GML iff GNLAOCEDQP G$RTS$U .

The reason for the qualification ‘non-deterministic’ on Slide 12 is because in general,
for each state GVO2W4XZYMX\[�] D and each input symbol S�O_^ D , we allow the possibilities that
there are no, one, or many states that can be reached in a single transition labelled S from G ,
corresponding to the cases that

C`D�P GaRTS�U has no, one, or many elements. For example, if F
is the NFA pictured on Slide 13, then

CEDQP G�b�RTc�Uedgf i.e. in F , no state can be reached from G�b with a transition labelled c ;
CEDQP G�b�RTS$Ued�h�G�iNj i.e. in F , precisely one state can be reached from Gkb with a transition

labelled S ;

CEDQP G�l�RTS$Ued�h�G�l�RmG�b�j i.e. in F , precisely two states can be reached from G�l with a
transition labelled S .



2.2 Determinism, non-determinism, and n -transitions 15

Example of a non-deterministic finite automaton

Input alphabet: okpAq�r�s .
States, transitions, start state, and accepting states as shown:

tMu
v

w
v tax v t�y v tMz

v

w

The language accepted by this automaton is the same as for the
automaton on Slide 10, namely

ok{}|2okpAq�r�sa~E�a{ contains three consecutive p ’s s��

Slide 13

When each subset �E�����$�T�$� has exactly one element we say that � is deterministic.
This is a particularly important case and is singled out for definition on Slide 14.

The finite automaton pictured on Slide 10 is deterministic. But note that if we took the
same graph of transitions but insisted that the alphabet of input symbols was �����T�N�T��� say,
then we have specified an NFA not a DFA, since for example �����������T�����I� . The moral of
this is: when specifying an NFA, as well as giving the graph of state transitions, it is important
to say what is the alphabet of input symbols (because some input symbols may not appear in
the graph at all).

When constructing machines for matching strings with regular expressions (as we will
do in Section 3) it is useful to consider finite state machines exhibiting an ‘internal’ form
of non-determinism in which the machine is allowed to change state without consuming any
input symbol. One calls such transitions n -transitions and writes them as

�2��� �N���

This leads to the definition on Slide 15. Note that in an NFA � , � , we always assume that n
is not an element of the alphabet ��� of input symbols.
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A deterministic finite automaton (DFA)
is an NFA � with the property that for each �,�- !¡#¢$¡&£�¤k¥ and¦ �/§¨¥ , the finite set ©�¥2ª«�­¬ ¦6® contains exactly one
element—call it ¯�¥/ª«�­¬ ¦°® .
Thus in this case transitions in � are essentially specified by a
next-state function, ¯ ¥ , mapping each (state, input symbol)-pair
ª«�­¬ ¦°® to the unique state ¯ ¥ ª«�­¬ ¦6® which can be reached from �
by a transition labelled ¦ :

�²±³´ ��µ iff �kµ�¶·¯ ¥ ª\�4¬ ¦6®

Slide 14

An NFA with ¸ -transitions (NFA ¹ )
is specified by an NFA � together with a binary relation, called
the ¸ -transition relation, on the set  A¡&¢$¡&£�¤ ¥ . We write

� ¹³´ ��µ
to indicate that the pair of states ª«�­¬º� µ ® is in this relation.

Example (with input alphabet = » ¦ ¬�¼�½ ):
�a¾ ± ��¿ ± �MÀ

¹
�MÁ

¹

¹

±

Â
��Ã
±

Â�NÄ Â ��Å Â �MÆ ¹

Slide 15
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ÇÉÈ\ÊÌË
, language accepted by an NFA Í Ê

consists of all strings Î over the alphabet ÏÑÐ of input symbols
satisfying ÒMÓ�ÔÕ Ò with ÒMÓ the initial state and Ò some accepting

state. Here Ö>×Õ Ö is defined by:

Ò ÍÕ Ò�Ø iff Ò�ÙÚÒkØ or there is a sequence Ò ÍÛÜ ÖNÖMÖ�Ò�Ø of one or
more Ý -transitions in

Ê
from Ò to Ò Ø

Ò9ÞÕ Ò Ø (for ßQà2Ï Ð ) iff Ò ÍÕ Ö>ÞÛÜ Ö ÍÕ Ò Ø
ÒáÞ�âÕ Ò Ø (for ß!ã�äåà2Ï Ð ) iff Ò ÍÕ ÖÉÞÛÜ Ö ÍÕ ÖæâÛÜ Ö ÍÕ Ò Ø
and similarly for longer strings

Slide 16

When using an NFA çéè to accept a string êìë�í�î of input symbols, we are interested in
sequences of transitions in which the symbols in ê occur in the correct order, but with zero
or more ï -transitions before or after each one. We write

ð-ñò ðMó
to indicate that such a sequence exists from state ð to state ð ó in the NFA ç . Then, by definition
ê is accepted by the NFA ç è iff ð�ô ñò ð holds for ð�ô the start state and ð some accepting state:
see Slide 16. For example, for the NFA ç on Slide 15, it is not too hard to see that the language
accepted consists of all strings which either contain two consecutive õ ’s or contain two
consecutive ö ’s, i.e. the language determined by the regular expression ÷�õ6øùö�ú î ÷�õaõ�ø ö�ö�ú�÷�õ�ø ö�ú î .
2.3 A subset construction
Note that every DFA is an NFA (whose transition relation is deterministic) and that every
NFA is an NFA ç (whose ï -transition relation is empty). It might seem that non-determinism
and ï -transitions allow a greater range of languages to be characterised as recognisable by a
finite automaton, but this is not so. We can use a construction, called the subset construction,
to convert an NFA ç è into a DFA ûüè accepting the same language (at the expense of
increasing the number of states, possibly exponentially). Slide 17 gives an example of this
construction. The name ‘subset construction’ refers to the fact that there is one state of ûÑè
for each subset of the set ý�þ«ÿMþ������ of states of è . Given two subsets

����� ó
	 ý�þ«ÿMþ����
� , there
is a transition

���� � � ó in ûÑè just in case
� ó consists of all the è -states ð ó reachable from
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states � in � via the ���� � relation defined on Slide 16, i.e. such that we can get from � to��� in � via finitely many � -transitions followed by an � -transition followed by finitely many� -transitions.

Example of the subset construction

� �

�! 
"

�$#
%

%
"

�'&
(

)$*,+ � - .
/ / /

0 �$#21 0 ��#!3��  3�� & 1 0 � & 1
0 �  1 0 �  1 /
0 � & 1 / 0 � & 1

0 �$#!34�  1 0 ��#!3��  3�� & 1 0 � & 1
0 � # 34�$&51 0 � # 3��! 63��'&61 0 �'&61
0 �  34� & 1 0 �  1 0 � & 1

0 � # 34�5 634�$&51 0 � # 3��! 63��'&61 0 �'&61

Slide 17

By definition, the start state of 78� is the subset of 9;:�<$:�=�>�? whose elements are the
states reachable by � -transitions from the start state of � ; and a subset �A@B9;:�<$:�=�>$? is an
accepting state of 7C� iff some accepting state of � is an element of � . Thus in the example
on Slide 17 the start state is DE�EF'GH�'IJGH�
K�L and

�!MONQPSRT�VU because in � : �
F �W X �
FZYWX �EK\[WX �EK
�!MONQPSRT78�]U because in 7C� : DE�
F'GH�'I
GH�EKEL �W X DE�
F'GH�$IJGH�EK�L [WX DE�EK�L2^

Indeed, in this case PSR_�]Ua`bPSRc�ed�MEdJUa`bPSRT78�]U . The fact that � and 7C� accept the same
language in this case is no accident, as the Theorem on Slide 18 shows. That slide also gives
the definition of the subset construction in general.
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Theorem. For each NFA fhg there is a DFA ijg with the
same alphabet of input symbols and accepting exactly the same
strings as g , i.e. with kml�ijgonOpqkml�grn

Definition of ijg (refer to Slide 12):

sutwvyxzv|{�}'~,���E�|�p ���V����� twv|x�v|{�}'���
s�� ~,� �����p � �
s � ��� ��� in ijg iff ���wpq� ~,� l|������n , where

� ~,� l|������n �E�|�p �5� � �������u��l�� �¡ � � in gon �
s�¢ ~£�¤�E�|�p �5�¥� ¢ � f¡ � �
s�¦¨§J§J{y©�v ~,� �E�|�p

���ª� twv|x�v|{�} ~,� ���«�¬�­�®l��Q� ¦¨§J§J{y©�v � n �

Slide 18

To prove the theorem on Slide 18, given any NFA ¯±° we have to show that ²S³_°]´¶µ²S³_·C°]´ . We split the proof into two halves.

Proof that ²O³T°]´�¸­²S³_·C°]´ . Consider the case of ¹ first: if ¹»º�²S³_°]´ , then ¼'½ ¯¾ ¿ for
some ¿ º�ÀSÁÂÁÂÃÅÄ«Æ ½ , hence ¼�ÇÈ½¤º�ÀSÁÂÁÂÃÅÄ�Æ Çw½ and thus ¹�º�²S³T·8°]´ . Now given any non-
null string ÉÊµÌËÎÍHËzÏ�Ð
Ð
ÐyË!Ñ , if É is accepted by ° then there is a sequence of transitions in° of the form

(1) ¼�½�Ò
Ó¾ ¿ Í±Ò4Ô¾ Õ
Õ
Õ Ò4Ö¾�¿ Ñ×ºØÀOÁ�ÁÂÃÅÄ«Æ ½ Ð
Since it is deterministic, feeding Ë«ÍHËzÏÙÐ
Ð
Ð|Ë!Ñ to ·8° results in the sequence of transitions

(2) ¼EÇÈ½ Ò
ÓÚ�Û Ü Í Ò4ÔÚ�Û Õ
Õ
Õ ÒJÖÚÝÚÞÛ Ü Ñ
where Ü ÍßµªàJÇw½®³á¼EÇÈ½»âÂËÎÍy´ , Ü ÏOµªàJÇÈ½Ê³ Ü Í
âÂË�ÏJ´ , etc. By definition of à
Çw½ (Slide 18), from
(1) we deduce

¿ Íãº»àJÇw½Ø³á¼EÇw½¥âÂËÎÍy´£µ Ü Í
so ¿ Ï¶º»àJÇw½Ø³ Ü Í
âÂËzÏJ´aµ Ü Ï

Ð
Ð
Ð
so ¿ Ñ�º»àJÇw½Ø³ Ü ÑzäwÍEâÂË!Ñ�´,µ Ü Ñ
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and hence å
æ�çÊèSéÂéÂêÅë�ì�íwî (because ïJæ�çÊèSéÂéÂê�ë«ì�î ). Therefore (2) shows that ð is accepted
by ñ8ò .

Proof that óOôTñCòVõ�ö­óOôTò]õ . Consider the case of ÷ first: if ÷Aç óOôTñCòVõ , then ø íÈî ç
èSéÂéÂêÅë�ì íwî and so there is some ï�ç�ø íÈî with ïZçùèSéÂéÂêÅë«ì î , i.e. ø î úû ï\çüèSéÂé�êÅë«ì î
and thus ÷�çbóOôTò]õ . Now given any non-null string ðuýÿþ��Âþ���������þ!æ , if ð is accepted byñCò then there is a sequence of transitions in ñCò of the form (2) with å æ�çbèSéÂéÂêÅë�ì íwî ,
i.e. with å
æ containing some ï
æBç èSéÂé�êÅë«ì�î . Now since ï
æBç å�æùý � íwî ôáå�æ��	��
Âþ!æ�õ ,
by definition of

� íÈî there is some ï
æ����­ç å�æ��	� with ïJæ��	��
��û ïJæ in ò . Then since
ïJæ��	�®çBå�æ��	��ý � íwî ôcå
æ�����
Âþ5æ����Hõ , there is some ïJæ����\çBå�æ���� with ïJæ���� 
������û ïJæ���� .
Working backwards in this way we can build up a sequence of transitions like (1) until, at the
last step, from the fact that ï��±ç�å��ãý � íwî ôcø íwî 
Âþ��Âõ we deduce that ø î 
��û ï�� . So we get
a sequence of transitions (1) with ïEæ×çÊèSéÂéÂê�ë«ì î , and hence ð is accepted by ò .

2.4 Summary
The important concepts in Section 2 are those of a deterministic finite automaton (DFA) and
the language of strings that it accepts. Note that if we know that a language ó is of the formó ýAóSôTòVõ for some DFA ò , then we have a method for deciding whether or not any given
string ð (over the alphabet of ó ) is in ó or not: begin in the start state of ò and carry out
the sequence of transitions given by reading ð from left to right (at each step the next state is
uniquely determined because ò is deterministic); if the final state reached is accepting, thenð is in ó , otherwise it is not.

We also introduced other kinds of finite automata (with non-determinism and ÷ -
transitions) and proved that they determine exactly the same class of languages as DFAs.

2.5 Exercises
Exercise 2.5.1. For each of the two languages mentioned in Exercise 1.4.2 find a DFA that
accepts exactly that set of strings.

Exercise 2.5.2. The example of the subset construction given on Slide 17 constructs a DFA
with eight states whose language of accepted strings happens to be óSôcþ������4õ . Give a DFA
with the same language of accepted strings, but fewer states. Give an NFA with even fewer
states that does the same job.

Exercise 2.5.3. Given a DFA ò , construct a new DFA ò! with the same alphabet of input
symbol " î and with the property that for all ðùç#"$�î , ð is accepted by ò% iff ð is not
accepted by ò .

Exercise 2.5.4. Given two DFAs ò&��
Hò'� with the same alphabet " of input symbols,
construct a third such DFA ò with the property that ðqç(" � is accepted by ò iff it is
accepted by both ò&� and ò)� . [Hint: take the states of ò to be ordered pairs ôTï���
Hï��
õ of
states with ï�� ç+*;ì-,$ì�ê�. î � and ï��Sç/*Îì0,$ì�ê1. î$2 .]
Tripos questions 2001.2.1(d) 2000.2.1(b) 1998.2.1(s) 1995.2.19 1992.4.9(a)
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3 Regular Languages, I
Slide 19 defines the notion of a regular language, which is a set of strings of the form 35476!8
for some DFA 6 (cf. Slides 11 and 14). The slide also gives the statement of Kleene’s
Theorem, which connects regular languages with the notion of matching strings to regular
expressions introduced in Section 1: the collection of regular languages coincides with the
collection of languages determined by matching strings with regular expressions. The aim of
this section is to prove part (a) of Kleene’s Theorem. We will tackle part (b) in Section 4.

Definition
A language is regular iff it is the set of strings accepted by some
deterministic finite automaton.

Kleene’s Theorem
(a) For any regular expression 9 , :<;=9?> is a regular language
(cf. Slide 8).

(b) Conversely, every regular language is the form :@;=9?> for
some regular expression 9 .

Slide 19

3.1 Finite automata from regular expressions
Given a regular expression A , over an alphabet B say, we wish to construct a DFA 6 with
alphabet of input symbols B and with the property that for each CEDFBHG , C matches A iff C is
accepted by 6 —so that 3$47A�8JI&35476!8 .

Note that by the Theorem on Slide 18 it is enough to construct an NFA K@L with the
property 3547LM8NI&3$47A�8 . For then we can apply the subset construction to L to obtain a DFA6 IPOQL with 35476!8RIS3547OTLM8RIS3547LM8RIS3$4UAV8 . Working with finite automata that
are non-deterministic and have W -transitions simplifies the construction of a suitable finite
automaton from A .

Let us fix on a particular alphabet B and from now on only consider finite automata
whose set of input symbols is B . The construction of an NFA K for each regular expression A
over B proceeds by recursion on the syntactic structure of the regular expression, as follows.
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(i) For each atomic form of regular expression, X ( X'Y&Z ), [ , and \ , we give an NFA ]
accepting just the strings matching that regular expression.

(ii) Given any NFA ] s ^`_ and ^'a , we construct a new NFA ] , b�cedgf�c�h7^`_�ij^'a�k with the
property

l h�b�cedgf�c�h7^`_�ij^)amknkNoqp�r+s�rEY l h7^`_tk or rEY l h7^)amk1u�v
Thus

l h7wV_�s wxa�kJo l h�b�cedgf�c�h7^`_�ij^'amknk when
l h7wV_tkNo l hU^y_tk and

l hUw�amkJo l h7^'a�k .

(iii) Given any NFA ] s ^`_ and ^'a , we construct a new NFA ] , z{f�c�|j}�~�h7^`_�ij^)a�k with the
property

l h�z�f�c�|j}�~1h7^`_�ij^)a�knkNo#p�r�_nr�a@sxr�_�Y l h7^`_tk and r�a$Y l h7^'a�k1u�v
Thus

l h7wV_nwxa�kNo l h�z�f�c�|j}�~mhU^y_�ij^'a�knk when
l hUw�_tkJo l hU^y_tk and

l h7wxa�k�o l h7^'a�k .

(iv) Given any NFA ] ^ , we construct a new NFA ] , ��~0}���h7^!k with the property

l h=��~0}���h7^#knk�oqp�r�_jr�a�v�v�v�r��Fs������ and each r��NY l h7^!ktu�v
Thus

l h7w��mkJo l h���~-}���hU^!knk when
l hUwVkNo l h7^#k .

Thus starting with step (i) and applying the constructions in steps (ii)–(iv) over and over
again, we eventually build NFA ] s with the required property for every regular expression w .

Put more formally, one can prove the statement

for all �+�y� , and for all regular expressions of size ��� , there exists an NFA ]^ such that
l h7wVkNo l h7^!k

by mathematical induction on � , using step (i) for the base case and steps (ii)–(iv) for the
induction steps. Here we can take the size of a regular expression to be the number of
occurrences of union ( ��s�� ), concatenation ( �/� ), or star ( �Q� ) in it.

Step (i) Slide 20 gives NFAs whose languages of accepted strings are respectively
l h7X?k�opxX�u (any X�YFZ ),

l h�[�kNo%p�[�u , and
l h�\�kNo�\ .
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NFAs for atomic regular expressions

��� � ���
just accepts the one-symbol string �

���
just accepts the null string, �

���
accepts no strings

Slide 20

Step (ii) Given NFA � s �`  and �)¡ , the construction of ¢�£e¤g¥�£�¦7�y �§j�)¡�¨ is pictured on
Slide 21. First, renaming states if necessary, we assume that ©�ª-«�ª=¬1­�®Q¯ and ©�ª-«�ª=¬1­�®$° are
disjoint. Then the states of ¢�£e¤g¥�£�¦7�y �§j�)¡m¨ are all the states in either �y  or �)¡ , together
with a new state, called ±�² say. The start state of ¢	£�¤g¥�£�¦U�& �§j�'¡�¨ is this ±�² and its accepting
states are all the states that are accepting in either ��  or �)¡ . Finally, the transitions of¢�£e¤g¥�£�¦7�` �§j�'¡�¨ are given by all those in either �&  or �)¡ , together with two new ³ -
transitions out of ±�² to the start states of �y  and �'¡ .

Thus if ´¶µ¸·5¦7�y t¨ , i.e. if we have ¹�®Q¯»º¼ ±�  for some ±� ½µ¿¾$ÀtÀt¬0Á�ª ®Q¯ , then we
get ±�² �ÂÃ ¹x®Q¯ º¼ ±�  showing that ´ µÄ·5¦�¢�£e¤g¥�£�¦7�y �§j�'¡�¨ . Similarly for �)¡ . So·5¦�¢�£e¤g¥�£�¦7�` �§j�'¡m¨n¨ contains the union of ·5¦7�& t¨ and ·$¦7�'¡�¨ . Conversely if ´ is accepted by
¢�£e¤0¥�£�¦7�y m§j�)¡�¨ , there is a transition sequence ±�² º¼ ± with ±ÅµM¾$ÀtÀt¬-Á�ª ®Q¯ or ±ÅµM¾5À1Àt¬0Á�ª ®$° .
Clearly, in either case this transition sequence has to begin with one or other of the ³ -
transitions from ±�² , and thereafter we get a transition sequence entirely in one or other of�`  or �)¡ finishing in an acceptable state for that one. So if ´MµM·5¦�¢�£e¤g¥�£	¦7�� �§j�'¡m¨n¨ , then
either ´ÆµE·5¦7�y j¨ or ´EµÆ·5¦7�)¡m¨ . So we do indeed have

·5¦�¢�£e¤g¥�£�¦7�` �§j�'¡�¨n¨NÇqÈ�´�Éx´ÆµE·$¦U�y n¨ or ´EµÊ·$¦7�'¡�¨1Ë�Ì
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Í�ÎÐÏ-Ñ�ÎÓÒ=Ô%ÕVÖmÔØ×VÙ

Ú�Û�Ü Ô Õ
Ý�Þ

ß

ß Ú ÛÅà Ô ×

Set of accepting states is union of áÅâmâ�ãnä�å Û�Ü and áÅâ�â�ãnä�å ÛÅà .

Slide 21

Step (iii) Given NFA æ s çyè and ç)é , the construction of ê�ë�ì�íjî�ïmð7ç&èmñjç)é�ò is pictured on
Slide 22. First, renaming states if necessary, we assume that ó�ï-î�ï=ô1õ�öQ÷ and ó�ï-î�ï=ô1õ�ö$ø are
disjoint. Then the states of ê�ë�ì�íjî�ïmðUç&è�ñjç'é�ò are all the states in either çyè or ç'é . The start
state of ê�ë�ì�íjî�ï�ðUçyè�ñjç'émò is the start state of çyè . The accepting states of ê�ë�ì�íjî�ï�ð7çyè�ñjç)é�ò
are the accepting states of ç�é . Finally, the transitions of ê�ë�ì�íjî�ï�ð7çyè�ñjç)é�ò are given by all
those in either ç&è or ç)é , together with new ù -transitions from each accepting state of çúè to
the start state of ç)é (only one such new transition is shown in the picture).

Thus if û	èQüMý$ð7ç`ètò and û�é@ü�ý5ð7ç'é�ò , there are transition sequences þ�öQ÷@ÿ ÷� � è in ç`è
with � è ü��5í1ítô���ï öQ÷ , and þ�ö$ø ÿ ø� � é in ç'é with � éHü��5í1ítô���ï ö$ø . These combine to yield

þxöQ÷$ÿ ÷��� è æ�� þ�ö$øHÿ ø��� é
in ê�ë�ì�ítî�ï�ð7çyèmñjç)é�ò witnessing the fact that û	èjû�é is accepted by ê{ë�ì�íjî�ïmð7çyè�ñjç'é�ò . Con-
versely, it is not hard to see that every 	)ü�ý5ð�ê�ë�ì�íjî�ï�ð7ç�èmñjç)é�ònò is of this form. For any
transition sequence witnessing the fact that 	 is accepted starts out in the states of çØè but
finishes in the disjoint set of states of ç�é . At some point in the sequence one of the newù -transitions occurs to get from ç&è to ç'é and thus we can split 	 as 	�
 û�èjû�é with û	è
accepted by çyè and û�é accepted by ç)é . So we do indeed have

ý$ð�ê�ë�ì�íjî�ï�ð7ç`è�ñjç'é�ònò�
�
�û	èjû�é���û	è�üÆý$ð7ç`ètò and û�é üÆý$ðUç)é�ò����
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�����������! #"%$'&("*),+

-'.0/ " $ 1 -2.43 " )

Set of accepting states is 5 �(��687�� . 3 .

Slide 22

Step (iv) Given an NFA 9;: , the construction of <>=@?2ACBD:FE is pictured on Slide 23. The
states of <>=�?'A�BD:GE are all those of : together with a new state, called H!I say. The start state
of <>=@?2ACBJ:GE is HKI and this is also the only accepting state of <>=�?'A�BD:FE . Finally, the transitions
of <>=@?2ACBD:FE are all those of : together with new L -transitions from H!I to the start state of :
and from each accepting state of : to HMI (only one of this latter kind of transition is shown
in the picture).

Clearly, <>=@?2ACBJ:GE accepts L (since its start state is accepting) and any concatenation of
one or more strings accepted by : . Conversely, if N is accepted by <>=@?2ACBD:FE , the occurrences
of HKI in a transition sequence witnessing this fact allow us to split N into the concatenation of
zero or more strings, each of which is accepted by : . So we do indeed have

O BP<>=@?2A�BD:GE8E�Q�RTSVUWSYX�ZKZKZPS\[^]T_�`ba and each S\ced O BD:FEgf�Z
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hji8k�lnmPoqp

r2s t u2v o

t
The only accepting state of

hji8k�lnmPoqp
is r s .

Slide 23

This completes the proof of part (a) of Kleene’s Theorem (Slide 19). Figure 1 shows how
the step-by-step construction applies in the case of the regular expression wyx{z}|(~��gx to produce
an NFA ��� satisfying ��wJ�G~�����w�wyxVz |�~��gxC~ . Of course an automaton with fewer states and� -transitions doing the same job can be crafted by hand. The point of the construction is that
it provides an automatic way of producing automata for any given regular expression.

3.2 Decidability of matching
The proof of part (a) of Kleene’s Theorem provides us with a positive answer to question (a)
on Slide 9. In other words, it provides a method that, given any string � and regular expression� , decides whether or not � matches � . The method is:

� construct a DFA � satisfying ��wD�F~e����w � ~ ;
� beginning in � ’s start state, carry out the sequence of transitions in � corresponding

to the string � , reaching some state � of � (because � is deterministic, there is a
unique such transition sequence);

� check whether � is accepting or not: if it is, then �^����wD�G~��*��w � ~ , so � matches � ;
otherwise �������wD�F~e����w � ~ , so � does not match � .

Note. The subset construction used to convert the NFA � resulting from steps (i)–(iv) of
Section 3.1 to a DFA produces an exponential blow-up of the number of states. ( ��� has
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Figure 1: Steps in constructing an NFA
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for �y�{�}�(�����
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�2 
states if ¡ has ¢ .) This makes the method described above very inefficient. (Much more

efficient algorithms exist.)

3.3 Exercises
Exercise 3.3.1. Why can’t the automaton £>¤@¥2¦C§D¡F¨ required in step (iv) of Section 3.1 be
constructed simply by taking ¡ , making its start state the only accepting state and adding
new © -transitions back from each old accepting state to its start state?

Exercise 3.3.2. Work through the steps in Section 3.1 to construct an NFA ª�¡ satisfying« §J¡G¨e¬ « §8§­©>® ¯�¨�°�±�±�¯K°(¨ . Do the same for some other regular expressions.

Exercise 3.3.3. Show that any finite set of strings is a regular language.

Tripos question 1992.4.9(b) [needs Slide 26 from Section 4]
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4 Regular Languages, II
The aim of this section is to prove part (b) of Kleene’s Theorem (Slide 19).

4.1 Regular expressions from finite automata
Given any DFA ² , we have to find a regular expression ³ (over the alphabet of input symbols
of ² ) satisfying ´�µJ³,¶�·�´�µD²F¶ . In fact we do something more general than this, as described
in the Lemma on Slide 24.1 Note that if we can find such regular expressions ³�¸¹�º ¹�» for any
choice of ¼ , ½ , and ½'¾ , then the problem is solved. For taking ¼ to be the whole of ¿>À�Á'À@ÂgÃ2Ä
and ½ to be the start state, Å say, then by definition of ³Æ¸Çgº ¹�» , a string È matches this regular
expression iff there is a transition sequence ÅÊÉË ÌÎÍ ½ ¾ in ² . As ½ ¾ ranges over the finitely
many accepting states, ½,ÏKÐKÑKÑKÑgÐW½KÒ say, then we match exactly all the strings accepted by ² .
In other words the regular expression ³ ¸Ç�º}¹WÓ!Ô�ÕKÕKÕTÔ ³ ¸Çgº ¹�Ö has the property we want for part (b)
of Kleene’s Theorem. (In case ×Î·FØ , i.e. there are no accepting states in ² , then ´�µD²F¶ is
empty and so we can use the regular expression Ù .)

Lemma Given an NFA Ú , for each subset ÛÝÜßÞáà�â�à�ãMäÆå
and each pair of states ænç(æ�è�éêÞjà�â�à8ãMä å , there is a regular

expression ë�ìíKî}ígï satisfying

ðòñ ë ìíKî}í ï�óõô÷öÆø é ñ8ù å óWúüû æ�ýþ ÿ ú æÆè in Ú with all inter-

mediate states of the sequence

in Û�� .

Hence
ðòñ Ú ó ô ðòñ ë ó , where ë ô ë�� û�������û ë	� and
 ô number of accepting states,

ë�� ô ë ì�gî}í�
 with Û ô Þjà�âCà�ãMä å ,� ô start state,
æ � ô�� th accepting state.

(In case ×4· Ø , take ³ to be the regular expression Ù .)

Slide 24

Proof of the Lemma on Slide 24. The regular expression ³Æ¸¹�º}¹�» can be constructed by induc-
tion on the number of elements in the subset ¼ .

1The lemma works just as well whether � is deterministic or non-deterministic; it also works for
NFA � s, provided we replace �� ��� by �� (cf. Slide 16).
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Base case, � is empty. In this case, for each pair of states ������� , we are looking for a regular
expression to describe the set of strings "!$# �&%' (*) � � with no intermediate states +�,
So each element of this set is either a single input symbol - (if � .' ( � � holds in / ) or
possibly 0 , in case �*12� � . If there are no input symbols that take us from � to � � in / , we
can simply take 3	457685:9<;>=@?1 ACB

if �ED1F� �0 if �G1F��� .
On the other hand, if there are some such input symbols, -IH���,�,�,J�:-LK say, we can take3	457685 9 ;M=@?1 A -NH #:O�O�O"# -�K if �ED1F� �-NH #:O�O�O"# -�K # 0 if �G1F� � .
Induction step. Suppose we have defined the required regular expressions for all subsets
of states with P elements. If � is a subset with PRQTS elements, choose some element ��UWVX�
and consider the P -element set �ZY  �"U�+*1  ��V[� # �\D1��7U�+ . Then for any pair of states�L��� � V$]_^a`�^cbJd"e , by inductive hypothesis we have already constructed the regular expressions3 H ;>=@?1 3	fhgMi 5aj�k57685:9 � 3ml ;>=@?1 3 fngMi 5aj:k57685cj � 3"o ;>=@?1 3 fngMi 5cj�k5aj>685aj � and 3�p ;>=@?1 3�fngMi 5cj�k5aj>685:9 ,
Consider the regular expression 3 ;M=@?1 3 H # 3ml�qr3"o"s ) 3�p ,
Clearly every string matching 3 is in the set "!t# � %' (*) � � with all intermediate states in this sequence in �u+�,
Conversely, if

!
is in this set, consider the number of times the sequence of transitions� %' ( ) � � passes through state �"U . If this number is zero then

! VZv qr3 H s (by definition of3 H ). Otherwise this number is w*xZS and the sequence splits into wyQ&S pieces: the first piece
is in v qr3ml7s (as the sequence goes from � to the first occurrence of ��U ), the next w ' S pieces
are in v qz3mo7s (as the sequence goes from one occurrence of �mU to the next), and the last piece
is in v qr3�pms (as the sequence goes from the last occurrence of ��U to � � ). So in this case

!
is inv qz3ml	qr3"o"s ) 3�pms . So in either case

!
is in v qr3	s . So to complete the induction step we can define3 f57685 9 to be this regular expression 3 1 3 H # 3ml	qr3"o"s ) 3�p .

4.2 An example
Perhaps an example will help to understand the rather clever argument in Section 4.1. The
example will also demonstrate that we do not have to pursue the inductive construction of the
regular expression to the bitter end (the base case �{1 B

): often it is possible to find some of
the regular expressions 3 f57685:9 one needs by ad hoc arguments.
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Note also that at the inductive steps in the construction of a regular expression for |
we are free to choose which state }m~ to remove from the current state set � . A good rule of
thumb is: choose a state that disconnects the automaton as much as possible.

Example �
�� ��

���
Direct inspection yields:���������� � �

�
�� � � � �

�
�N��� ���m� � ����� ��� ��r� � �

�
��

��� ������
�

Slide 25

As an example, consider the NFA shown on Slide 25. Since the start state is � and this
is also the only accepting state, the language of accepted strings is that determined by the
regular expression ��� ~7�����8�J ~7�8~ . Choosing to remove state ¡ from the state set, we have

(3) ¢¤£z�¥� ~7�������J ~7� ~ ¦¨§ ¢¤£z�¥� ~7���J ~7�8~ © �¥� ~7���J ~7��� £r��� ~7���J ���ª�«¦:¬ �¥� ~7���J ���8~ ¦M­
Direct inspection shows that ¢y£r��� ~7�8�J ~7�8~ ¦X§ ¢¤£�® ¬ ¦ and ¢y£r�¥� ~7���J ~7��� ¦¯§ ¢y£�® ¬M° ¦ . To calculate¢¤£z�¥� ~7���J ����� ¦ , and ¢y£r�¥� ~7���J ��� ~ ¦ , we choose to remove state ± :¢¤£z�¥� ~7���J ����� ¦¨§ ¢¤£z�¥� ~M ����� © ��� ~M ����� £z�¥� ~M �>��� ¦:¬ �¥� ~M �>��� ¦¢¤£z�¥� ~7���J ���8~ ¦¨§ ¢¤£z�¥� ~M ���8~ © ��� ~M ����� £z�¥� ~M �>��� ¦:¬ �¥� ~M �>�8~ ¦M­
These regular expressions can all be determined by inspection, as shown on Slide 25. Thus¢y£r�¥� ~7���J ����� ¦¨§ ¢y£z² © ®�£³² ¦�¬ £�® ¬ ° ¦�¦
and it’s not hard to see that this is equal to ¢¤£z² © ®L® ¬M° ¦ ; and¢y£r�¥� ~7���J ���8~ ¦¨§ ¢y£�´ © ®�£z² ¦:¬ £�®L® ¬>¦�¦
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which is equal to µy¶�·L·�·_¸M¹ . Substituting all these values into (3), we getµ¤¶zº¥»�¼7½�¾�½�¿JÀ¼7½8¼ ¹¨ÁFµy¶�· ¸�Â · ¸MÃ ¶³Ä Â ·L· ¸MÃ ¹ ¸ ·�·L· ¸ ¹JÅ
So · ¸ Â · ¸ Ã ¶zÄ Â ·L· ¸ Ã ¹ ¸ ·L·�· ¸ is a regular expression whose matching strings comprise the
language accepted by the NFA on Slide 25. (Clearly, one could simplify this to a smaller, but
equivalent regular expression (in the sense of Slide 8), but we do not bother to do so.)

4.3 Complement and intersection of regular languages

We saw in Section 3.2 that part (a) of Kleene’s Theorem allows us to answer question (a)
on Slide 9. Now that we have proved the other half of the theorem, we can say more about
question (b) on that slide.

Complementation Recall that on page 8 we mentioned that for each regular expression º
over an alphabet Æ , we can find a regular expression ÇÈ¶rºÉ¹ that determines the complement
of the language determined by º :µy¶@ÇÈ¶rºÉ¹�¹ÊÁÌË"Í�ÎXÆ ¸ÏÂ Í[ÐÎÑµ¤¶rº	¹JÒ�Å
As we now show, this is a consequence of Kleene’s Theorem.

ÓÕÔLÖ�×cØÚÙÛ&Ü Ö�ÝLÖ�Þmß�àâáJãåäçæXèâé"ê�ëì Ü Ö�ÝLÖ�Þmß æÛîí àâáJãåäçæXèâé"ê�ëì í æÛ transitions of
ÓÕÔLÖm×åØïÙ

= transitions of
ØÛ start state of

ÓÕÔLÖ"×åØïÙ
= start state of

ØÛîðòñ7ñ Þ�ónÖ àôáMãcäõæXè ì÷ö¥øEù Ü Ö�ÝLÖ�Þmß æ ú ø[ûù ðòñ>ñ Þ�ónÖ æ[ü .

Provided
Ø

is a deterministic finite automaton, then ý is
accepted by

ÓÕÔLÖ"×åØïÙ
iff it is not accepted by

Ø
:þ�×�ÓÕÔLÖ�×cØÚÙJÙ ì÷ö ý ù íWÿ ú ý ûù þÏ×cØÚÙ ü

.

Slide 26
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Lemma 4.3.1. If � is a regular language over alphabet � , then its complement �������	��
�
������ is also regular.

Proof. Since � is regular, by definition there is a DFA � such that �
��������� . Let �����������
be the DFA constructed from � as indicated on Slide 26. Then ����� � � 
��!����"� is the set
of strings accepted by �����#�$��� and hence is regular.

Given a regular expression % , by part (a) of Kleene’s Theorem there is a DFA � such
that �&�$%'�(�)���$�*� . Then by part (b) of the theorem applied to the DFA ����������� , we can
find a regular expression +,�$%-� so that ���.+/�$%-�0�1�����2�3�4�5�$�*�0� . Since

���2�3�4�5�$�*�0�6�7������� � 
��
����������8�9�7���:��� � 
;�<����&�$%'�=�?>
this +/�$%-� is the regular expression we need for the complement of % .
Note. The construction given on Slide 26 can be applied to a finite automaton � whether or
not it is deterministic. However, for �&�2�����#�����0� to equal ���<���(��
@�A����������8� we need� to be deterministic. See Exercise 4.4.2.

Intersection As another example of the power of Kleene’s Theorem, given regular expres-
sions %'B and %;C we can show the existence of a regular expression �$%DB=E(%;CF� with the property:

� matches ��%?BGE(%;C�� iff � matches %?B and � matches %�C .
This can be deduced from the following lemma.

Lemma 4.3.2. If �&B and �HC are a regular languages over an alphabet � , then their
intersection

�9BJIK�HCML#N.O�P���:��� � 
;���:�9B and �:���HC��
is also regular.

Proof. Since �&B and �QC are regular languages, there are DFA �RB and �!C such that�TS1�U�����
SV� ( WX�ZY'>8[ ). Let \9]_^`�$�aB�>G�!C#� be the DFA constructed from ��B and ��C as on
Slide 27. It is not hard to see that \9]_^b�$��B�>G�!C�� has the property that any �:��� � is accepted
by \9]_^b�$�cB#>G��C�� iff it is accepted by both ��B and ��C . Thus �9B_I,�HC������2\9]_^d�$�cB#>G��C5�0�
is a regular language.
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e�f1g1hjilk-m�ion'p
q states of

erfsg6hti*k-m�ion'p
are all ordered pairs

h2u@k-m5u-n?p
withu k�vawJx0y@x{z;|-}�~

and
u n/vcwJx{y�x{z;|-}r�

q alphabet of
erfsgshji*k-m�ion?p

is the common alphabet of
i�k

and
i n

q htu�k'm#u4n'p���� h2u��k m#u��n p
in
erfsg6hti*k4m�ion'p

iff
uDk���� u��k in

ilk
and
u-n���� u?�n in

iAn
q start state of

e�fsg6hti k m#i n p
is
h{� }�~ mF� }r� p

q htu�k'm#u4n'p accepting in
erfsgshji*k-m�ion?p

iff
uDk

accepting in
i*k

and
u-n

accepting in
iAn

.

Slide 27

Thus given regular expressions ��� and �;� , by part (a) of Kleene’s Theorem we can find
DFA �c� and �!� with ���$�F�V���Z�&�$�
�V� ( �����'�8� ). Then by part (b) of the theorem we can
find a regular expression �?�G�(�;� so that �&�$�?�0�	�;�F�����&�2�9�b�b�$�a���G�!���0� . Thus � matches�'�=�(�;� iff �9�_�`�$�a���G�!��� accepts � , iff both ��� and �!� accept � , iff � matches both �?� and�;� , as required.

4.4 Exercises

Exercise 4.4.1. Use the construction in Section 4.1 to find a regular expression for the DFA� whose state set is �;���F�'�8�D  , whose start state is � , whose only accepting state is � , whose
alphabet of input symbols is �;¡¢�=£;  , and whose next-state function is given by the following
table. ¤�¥§¦ ¡ £� � �� � �� � �
Exercise 4.4.2. The construction � ¨© ª�«�¬��$�*� given on Slide 26 applies to both DFA and
NFA; but for ���2ª3«4¬5�$�*�0� to be the complement of ���$�*� we need � to be deterministic.
Give an example of an alphabet ­ and a NFA � with set of input symbols ­ , such that���:®�­9¯3°��
±®��&�$���=  is not the same set as �&�2ª�«�¬#�����0� .
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Exercise 4.4.3. Let ²´³ µV¶¸· ¹�º8»5¶@¹4µV¶¸· ¹�º=» . Find a complement for ² over the alphabet¼ ³Z½;¶¿¾=¹;À , i.e. a regular expressions Á�µ$²'º over the alphabet
¼

satisfying Â&µ.Á�µ�²'º0ºH³Z½�ÃÅÄ¼ » ·;Ã
ÆÄ:Â�µ�²'º8À . Do the same for the alphabet ½;¶¢¾=¹�¾=Ç�À .
Tripos questions 1995.2.20 1994.3.3 1988.2.3 2000.2.7
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5 The Pumping Lemma

In the context of programming languages, a typical example of a regular language (Slide 19)
is the set of all strings of characters which are well-formed tokens (basic keywords, identifiers,
etc) in a particular programming language, Java say. By contrast, the set of all strings which
represent well-formed Java programs is a typical example of a language that is not regular.
Slide 28 gives some simpler examples of non-regular languages. For example, there is no
way to use a search based on matching a regular expression to find all the palindromes in a
piece of text (although of course there are other kinds of algorithm for doing this).

Examples of non-regular languages

È The set of strings over É¢Ê=Ë�Ì�Ë#ÍJË�Î?Ë4Ï�Ï4Ï?Ë#ÐbÑ in which the
parentheses ‘ Ê ’ and ‘ Ì ’ occur well-nested.È The set of strings over É�ÍJË�Î?Ë4Ï�Ï4Ï-Ë5ÐdÑ which are palindromes,
i.e. which read the same backwards as forwards.È É�Í¢Ò¢ÎFÒ�ÓDÔÖÕ�×_Ñ

Slide 28

The intuitive reason why the languages listed on Slide 28 are not regular is that a machine
for recognising whether or not any given string is in the language would need infinitely many
different states (whereas a characteristic feature of the machines we have been using is that
they have only finitely many states). For example, to recognise that a string is of the form Ø¿Ù�Ú5Ù
one would need to remember how many Ø s had been seen before the first Ú is encountered,
requiring countably many states of the form ‘just seen Û Ø s’. This section make this intuitive
argument rigorous and describes a useful way of showing that languages such as these are
not regular.

The fact that a finite automaton does only have finitely many states means that as we look
at longer and longer strings that it accepts, we see a certain kind of repetition—the pumping
lemma property given on Slide 29.
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The Pumping Lemma

For every regular language Ü , there is a number Ý,Þ´ß satisfying
the pumping lemma property :

all à´á!Ü with âäã;å¢æèçêé6ë2à,ì(Þ7Ý can be expressed as a
concatenation of three strings, à)íïîXðFñ¿îJò , where î6ð , ñ and î¸ò
satisfy:ó âôã;å¿æèçêé6ëtñbì(Þ´ß

(i.e. õ�ö÷cø )ó âôã;å¿æèçêé6ëtî1ðFñbì(ù7Ýó for all úÖÞ�û , î6ð�ñ¿ü¿î¸ò,á!Ü
(i.e. ý¸þGýbÿ���� , ýJþGõ�ý_ÿ���� [but we knew that anyway],ýJþGõ�õ�ýbÿ���� , ý¸þGõDõ�õDý_ÿ���� , etc).

Slide 29

5.1 Proving the Pumping Lemma

Since � is regular, it is equal to the set �����	� of strings accepted by some DFA � . Then we
can take the number 
 mentioned on Slide 29 to be the number of states in � . For suppose� ÷
� þ � ÿ������ ��� with ����
 . If � �������	� , then there is a transition sequence as shown at
the top of Slide 30. Then � can be split into three pieces as shown on that slide. Note that
by choice of � and � , ��� �"!$#�%&�$õ'� ÷ �)(����+* and ��� �"!$#�%&�$ý þ0õ"� ÷ �-,.
 . So it just remains
to check that ýJþGõ � ý_ÿ/��� for all �0�21 . As shown on the lower half of Slide 30, the stringõ takes the machine � from state 3�4 back to the same state (since 3�4 ÷ 365 ). So for any � ,ý¸þGõ � ý_ÿ takes us from the initial state 7$8 ÷ 3�9 to 3:4 , then � times round the loop from 3;4 to
itself, and then from 3�4 to 3 � ��<�=>=>�@?A# 8 . Therefore for any ���21 , ý þGõ � ýbÿ is accepted by� , i.e. ýJþGõ � ýbÿ���� .

Note. In the above construction it is perfectly possible that � ÷ 1 , in which case ý6þ is the
null-string, ø .
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If BDCFE)G number of states of H , then in

I$J G+K$L�MONPRQ K�STM;UP>Q KOVXWYW$W M:ZP@Q K;[\ ]Y^ _[a` S states

W$WYW M;bPcQ K$dfeDg)h h:ikj�l J
K$L�m$nYn$nom K [ can’t all be distinct states. So KopqG+K�r for somesut	vxw�yft E . So the above transition sequence looks like

I J G+K$L�z NP:Q�{ KYp
|

{G K;r z UP:Q�{ K$d}eDg)h h:ikj�l J
where

~ S��;�a�G ��S�nYn$n���p �������G ��p ` S�n$nYn���r ~ V������G �'r ` S�n$n$n���d�n

Slide 30

Remark 5.1.1. One consequence of the pumping lemma property of � and � is that if there
is any string � in � of length �.� , then � contains arbitrarily long strings. (We just ‘pump
up’ � by increasing � .)

If you did Exercise 3.3.3, you will know that if � is a finite set of strings then it is regular.
In this case, what is the number � with the property on Slide 29? The answer is that we can
take any � strictly greater than the length of any string in the finite set � . Then the Pumping
Lemma property is trivially satisfied because there are no ����� with ��� �"�$���&�������+� for
which we have to check the condition!

5.2 Using the Pumping Lemma

The Pumping Lemma (Slide 5.1) says that every regular language has a certain property—
namely that there exists a number � with the pumping lemma property. So to show that
a language � is not regular, it suffices to show that no ��� � possesses the pumping
lemma property for the language � . Because the pumping lemma property involves quite a
complicated alternation of quantifiers, it will help to spell out explicitly what is its negation.
This is done on Slide 31. Slide 32 gives some examples.
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How to use the Pumping Lemma to prove
that a language � is not regular

For each  ¢¡¤£ , find some ¥§¦�� of length ¡F  so that

( ¨ )

©ªª« ªª¬
no matter how ¥ is split into three, ¥®­+¯q°:±²¯�³ ,

with ´¶µ�·�¸�¹»º½¼¾¯ ° ±À¿�ÁF  and ´¶µ�·�¸�¹»º½¼¾±À¿�¡¤£ ,

there is some ÂD¡	Ã for which ¯ ° ±�Ä�¯ ³ is not in � .

Slide 31

Examples

(i) �Å°�Æ;ÇaÈ­ ÉËÊ²Ä²Ì�ÄÎÍ"ÂD¡	ÃAÏ is not regular.

[For each Ð�ÑÓÒ , ÔËÕkÖ6ÕØ×�ÙxÚ is of length Ñ�Ð and has property ( Û )

on Slide 31.]

(ii) � ³ Æ;ÇaÈ­ ÉË¥¤¦ÜÉËÊÞÝ:ÌOÏ�ßàÍ�¥ a palindrome Ï is not regular.

[For each Ð�ÑÓÒ , ÔËÕkÖ ÔËÕØ×�ÙáÚ is of length Ñ�Ð and has property

( Û ).]

(iii) �xâ Æ;ÇaÈ­ ÉËÊ�ã-Í�ä prime Ï is not regular.

[For each Ð�ÑÓÒ , we can find a prime å with å�æÜç�Ð and thenÔ$è�×éÙëê has length Ñ�Ð and has property ( Û ).]

Slide 32
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Proof of the examples on Slide 32. We use the method on Slide 31.

(i) For any ìÎíïî , consider the string ðòñïó�ôRõ>ô . It is in öx÷ and has length íøì . We show
that property ( ù ) holds for this ð . For suppose ð ñ ó"ôRõ>ô is split as ð ñ úÞ÷kûËúÀü withý�þ ÿ ������� ú�÷kû	��
¤ì and

ý�þ ÿ ������� û	� íòî . Then ú ÷Rû must consist entirely of ó s, so ú ÷ ñòó�

and û/ñ�ó�� say, and hence úÀüáñ�ócô���
����6õ6ô . Then the case ��ñ�� of úÞ÷Rû��"úÀü is not in öx÷ since

úÞ÷kû��:úAüáñ�ú�÷kúÀüáñ�ó 
 � ó ô���
���� õ ô �½ñ�ó ô���� õ ô
and ócô���� õ6ô�� öx÷ because ì"!$#&%ñÜì (since #�ñ ý�þ ÿ ���'��� û	� í2î ).

(ii) The argument is very similar to that for example (i), but starting with the palindromeð ñ�óËôkõ ócô . Once again, the �2ñ(� of úÞ÷Rû��"úÀü yields a string úÞ÷RúAü�ñòócô���� õ óËô which is
not a palindrome (because ì"!)#*%ñÜì ).

(iii) Given ìàí î , since there are infinitely many primes + , we can certainly find one satisfying
+-,/.�ì . I claim that ð�ñ®ó�0 has property ( ù ). For suppose ð+ñ+ó�0 is split as ð�ñ+ú�÷kû�úAü
with

ý�þ ÿ ���'��� ú�÷kû	�1
�ì and
ý�þ ÿ ���'��� û���í î . Letting 243�576ñ ý�þ ÿ ���'��� ú�÷8� and #93�576ñ ý�þ ÿ ���'��� û	� , so

that
ý�þ ÿ ���'��� úÀü:�½ñ)+&!;21!)# , we have

úÞ÷Rû 0 ��� úÀüáñ�ó 
 ó �=< 0 ����> ó 0 ��
���� ñ�ó � 0 ���@?BA 0 ��� ñ�ó <C��A ÷ >D< 0 ����>BE
Now � #9F+îG� � +H!I#G� is not prime, because #�F+îJ, î (since # ñ ý�þ ÿ ���'��� û	� í î ) and
+K!L#K,M.�ìN!�ìàñ¤ì�í î (since +J,M.�ì by choice, and #O
P2QFR# ñ ý�þ ÿ ���'��� ú ÷kû	�*
�ì ).
Therefore úÞ÷kû��'úAü&� öTS when �uñ)+*!)# .

Remark 5.2.1. Unfortunately, the method on Slide 31 can’t cope with every non-regular
language. This is because the pumping lemma property is a necessary, but not a sufficient
condition for a language to be regular. In other words there do exist languages ö for which a
number ì/í�î can be found satisfying the pumping lemma property on Slide 29, but which
nonetheless, are not regular. Slide 33 gives an example of such an ö .
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Example of a non-regular language
that satisfies the ‘pumping lemma property’

UWVYX�Z[ \�]G^`_ba�cYa;d�e fMg and h f/ikjl
\�_�^`c:a$d�eLm h fnikj

satisfies the pumping lemma property on Slide 29 with o [pg .
[For any qsrut of length vRw , can take xzyT{J| , }4{ first letter of q ,

xk~�{ rest of q .]

But
U

is not regular. [See Exercise 5.4.2.]

Slide 33

5.3 Decidability of language equivalence
The proof of the Pumping Lemma provides us with a positive answer to question (c) on
Slide 9. In other words, it provides a method that, given any two regular expressions ��y and
�G~ (over the same alphabet � ) decides whether or not the languages they determine are equal,
t1����y8��{Wt��'�G~�� .

First note that this problem can be reduced to deciding whether or not the set of
strings accepted by any given DFA is empty. For t1�'��y8�&{�t1�'�G~�� iff t��'��y8���pt1�'�G~�� and
t��'�G~�����t1�'��y�� . Using the results about complementation and intersection in Section 4.3, we
can reduce the question of whether or not t1����y8�N�st��'�G~:� to the question of whether or not
t1����y��*�����G~:�B��{�� , since

t1�'��y��"��t��'�G~�� iff t1����y8�����YxKr����9�Gx-�rut��'�G~��=��{����
By Kleene’s theorem, given ��y and �G~ we can first construct regular expressions ��y8���7�N�G~��
and �G~����7����y8� , then construct DFAs �Jy and ��~ such that t1�'�Jy8��{ t��'��y����7�1�G~:�B� and
t1����~��Q{�t1�'�G~����7�N��y=�B� . Then ��y and �G~ are equivalent iff the languages accepted by ��y
and by ��~ are both empty.

The fact that, given any DFA � , one can decide whether or not t1�'� �¡{�� follows from
the Lemma on Slide 34. For then, to check whether or not t1���n� is empty, we just have to
check whether or not any of the finitely many strings of length less than the number of states
of � is accepted by � .
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Lemma If a DFA ¢ accepts any string at all, it accepts one
whose length is less than the number of states in ¢ .

Proof. Suppose ¢ has £ states (so £�¤M¥ ). If ¦¨§@¢ª© is not
empty, then we can find an element of it of shortest length,«­¬�«k®�¯°¯�¯:«b± say (where ²³¤n´ ). Thus there is a transition
sequence

µ�¶ ·¹¸�ºJ»�¼½8¾ ¸ ¬ »Y¿½8¾ ¸ ®�À�À�À`»YÁ½�¾ ¸ ±ÃÂ³Ä`Å�Å�ÆBÇÉÈ ¶ .

If ²³¤s£ , then not all the ²OÊP¥ states in this sequence can be
distinct and we can shorten it as on Slide 30. But then we would
obtain a strictly shorter string in ¦9§�¢Ë© contradicting the choice of«­¬�«k®�¯°¯�¯:«b± . So we must have ²³Ìs£ .

Slide 34

5.4 Exercises
Exercise 5.4.1. Show that the first language mentioned on Slide 28 is not regular.

Exercise 5.4.2. Show that there is no DFA Í for which Î1Ï�ÍnÐ is the language on Slide 33.
[Hint: argue by contradiction. If there were such an Í , consider the DFA ÍÒÑ with the same
states as Í , with alphabet of input symbols just consisting of Ó and Ô , with transitions all
those of Í which are labelled by Ó or Ô , with start state ÕGÖ×Ï7ØGÖOÙ8Ú�Ð (where Ø°Ö is the start
state of Í ), and with the same accepting states as Í . Show that the language accepted by
ÍÛÑ has to be ÜGÓ�ÝÞÔßÝ�àYáHâ³ã	ä and deduce that no such Í can exist.]

Exercise 5.4.3. Check the claim made on Slide 33 that the language mentioned there satisfies
the pumping lemma property of Slide 29 with åçæÛè .
Tripos questions 2002.2.9 2001.2.7 1999.2.7 1998.2.7 1996.2.1(j) 1996.2.8
1995.2.27 1993.6.12 1991.4.6 1989.6.12
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6 Grammars
We have seen that regular languages can be specified in terms of finite automata that accept
or reject strings, and equivalently, in terms of patterns, or regular expressions, which strings
are to match. This section briefly introduces an alternative, ‘generative’ way of specifying
languages.

6.1 Context-free grammars

Some production rules for ‘English’ sentences

é�ê�ë�ì�ê�ë	í�ê&î é°ï�ðbñGê�í�ì4ò�ê�ó�ð*ô�ð�ñGê�í�ì
é°ï	ð�ñGê�í�ì*î õ�ó	ìbö°í�÷�ê*ë	ô°ïÞë�ø�ù�ó�õ�é�ê
ô�ð�ñGê�í�ì*î õ�ó	ìbö°í�÷�ê*ë	ô°ïÞë�ø�ù�ó�õ�é�ê
õ�ó�ì�ö°í�÷�ê&î ú
õ�ó�ì�ö°í�÷�ê&îüû�ýÿþ

ë�ô°ï�ë�ø�ù�ó�õ	é�ê î ë	ô�ï�ë
ë�ô°ï�ë�ø�ù�ó�õ	é�ê î õ � ñGê	í�ìböGò�ê&ë	ô°ïÞë
õ � ñGê	í�ìböGò�ê&î������
õ � ñGê	í�ìböGò�ê&î �
	kú����

ë	ô�ï�ë�î 
�ú�û
ë	ô�ï�ë�î �����
ò�ê�ó�ð*î þ�ú�û��

Slide 35

Slide 35 gives an example of a context-free grammar for generating strings over the seven
element alphabet ���
������ ú���������� 
�ú�û!�"�������=þ�ú�û��#� �
	�ú$�����Bû�ýÿþ&%('
The elements of the alphabet are called terminals for reasons that will emerge below. The
grammar uses finitely many extra symbols, called non-terminals, namely the eight symbols

õ � ñGê�í�ìböGò�ê)��õ�ó�ìbö�í�÷�ê���ë�ô°ï�ë���ë	ô�ï�ë�ø�ù�ó	õ	é�ê!�=ô�ðbñ°ê	í�ì��=é�ê	ë�ì�ê�ë�í�ê*�=é°ï	ð�ñGê�í�ì��Bò�ê�ó�ð�'
One of these is designated as the start symbol. In this case it is

é�ê�ë�ì�ê	ë�í�ê
(because we are

interested in generating sentences). Finally, the context-free grammar contains a finite set
of production rules, each of which consists of a pair, written + î ,

, where + is one of the
non-terminals and

,
is a string of terminals and non-terminals. In this case there are twelve

productions, as shown on the slide.
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The idea is that we begin with the start symbol -�.#/�0�.$/$1(. and use the productions to
continually replace non-terminal symbols by strings. At successive stages in this process we
have a string which may contain both terminals and non-terminals. We choose one of the
non-terminals in the string and a production which has that non-terminal as its left-hand side.
Replacing the non-terminal by the right-hand side of the production we obtain the next string
in the sequence, or derivation as it is called. The derivation stops when we obtain a string
containing only terminals. The set of strings over 2 that may be obtained in this way from
the start symbol is by definition the language generated the context-free grammar.

A derivation

-3.$/$0(.$/#13. 4 -�5&6�7�.#1(0 8�.$9�6;:36�7<.&1(04>=(9#0�?�13@�. /#:�5&/(A$B�9#=#-�.;8�.$9�6;:36�7�.#1(04�C(DFEG/#:�5&/�A�B�9#=#-3.H8$.�9�6 :�6�7�.#1�04�C(DFEG/#:�5&/�A�B�9#=#-3. E$I�C�JG:�6�7�.#1�04�C(DFEG=(K�7<.&1(0�?<8�. /#:�5�/HE�I3C�JL:36�7�.#1(04�C(DFENM�O�PQ/#:�5&/ E$I�C�JN:�6�7�.#1�04�C(DFENM�O�PSR�I3CHE�I3C�JL:36�7<.&1(04�C(DFENM�O�PSR�I3CHE�I3C�JT=�9$0�?�13@$. /#:�5&/�A�B�9#=#-3.4�C(DFENM�O�PSR�I3CHE�I3C�JLIL/&:�5&/�A�B$9$=#-3.4�C(DFENM�O�PSR�I3CHE�I3C�JLIL=�K�7<.&1(0�?U8�. /#:�5&/4�C(DFENM�O�PSR�I3CHE�I3C�JLIHJ V�I�W$WG/#:�5&/4�C(DFENM�O�PSR�I3CHE�I3C�JLIHJ V�I�W$WGX�Y�P

Slide 36

For example, the string

C(DFENM�O�PZR�I�CZE�I�C�JLIHJ
V�I�W$WGX�Y�P
is in this language, as witnessed by the derivation on Slide 36, in which we have indicated
left-hand sides of production rules by underlining. On the other hand, the string

(4) C�D�ELX�Y�PHI
is not in the language, because there is no derivation from -�.#/�0�.$/$1(. to the string. (Why?)

Remark 6.1.1. The phrase ‘context-free’ refers to the fact that in a derivation we are allowed
to replace an occurrence of a non-terminal by the right-hand side of a production without
regard to the strings that occur on either side of the occurrence (its ‘context’). A more general
form of grammar (a ‘type [ grammar’ in the Chomsky hierarchy—see page 257 of Kozen’s
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book, for example) has productions of the form \^] _ where \ and _ are arbitrary strings of
terminals and non-terminals. For example a production of the form

`La(b�c<d#e�f�g<h�d^i3`�j ] k�l�m
would allow occurrences of ‘ a(b�c�d#e�f�gUh$d ’ that occur between ‘ ` ’ and ‘ i�`3j ’ to be replaced
by ‘ k�l�m ’, deleting the surrounding symbols at the same time. This kind of production is not
permitted in a context-free grammar.

Example of Backus-Naur Form (BNF)

Terminals: n oqp r s t u
Non-terminals: v�w x$y z n y
Start symbol: z n y
Productions: v$w {|{~} n�� v�w o

x$y {|{~} pq��r���s
z n y {|{~} v�w � z n y�x$y�z n y ��t z n y u

Slide 37

6.2 Backus-Naur Form

It is quite likely that the same non-terminal will appear on the left-hand side of several
productions in a context-free grammar. Because of this, it is common to use a more compact
notation for specifying productions, called Backus-Naur Form (BNF), in which all the
productions for a given non-terminal are specified together, with the different right-hand
sides being separated by the symbol ‘ � ’. BNF also tends to use the symbol ‘ �~��� ’ rather than
‘ ] ’ in the notation for productions. An example of a context-free grammar in BNF is given
on Slide 37. Written out in full, the context-free grammar on this slide has eight productions,
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namely:

����� ������ �����
��� � �
��� � �
��� � �

� � � � ���
� � � � � � �S���;� � �� � � � � � � ���

The language generated by this grammar is supposed to represent certain arithmetic expres-
sions. For example

(5)
�T����� ��� �

is in the language, but

(6)
�T����� � ���

is not. (See Exercise 6.4.2.)

A context-free grammar for the language�����������$�¡ £¢�¤
Terminals: � �
Non-terminal: ¥
Start symbol: ¥
Productions: ¥§¦|¦~¨ª© ��� ¥ �

Slide 38
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6.3 Regular grammars

A language « over an alphabet ¬ is context-free iff « is the set of strings generated by
some context-free grammar (with set of terminals ¬ ). The context-free grammar on Slide 38
generates the language ­<®#¯�°±¯³²µ´·¶¹¸#º . We saw in Section 5.2 that this is not a regular
language. So the class of context-free languages is not the same as the class of regular
languages. Nevertheless, as Slide 39 points out, every regular language is context-free. For
the grammar defined on that slide clearly has the property that derivations from the start
symbol to a string in ¬¼» must be of the form of a finite number of productions of the first
kind followed by a single production of the second kind, i.e.

½<¾À¿ ®�ÁÃÂ�Á ¿ ®�ÁÄ®#Å±ÂUÅ ¿ Æ�Æ�Æ(¿ ®�ÁÄ®#ÅÈÇ�Ç�ÇÃ® ¯ Â ¯ ¿ ®�ÁÄ®#ÅÉÇ�Ç�ÇÃ® ¯
where in Ê the following transition sequence holds

½<¾ ËUÌÍ ¿ Â�Á Ë
ÎÍ ¿ Æ�Æ�ÆÏË
ÐÍ~Í ¿ Â ¯^Ñ�ÒÏÓÄÓÄÔÖÕ�× ¾ Ç
Thus a string is in the language generated by the grammar iff it is accepted by Ê .

Every regular language is context-free

Given a DFA Ø , the set ÙGÚÛØÝÜ of strings accepted by Ø can be
generated by the following context-free grammar:

set of terminals = ÞNß
set of non-terminals = àµá�â#á�ã<ä ß
start symbol = start state of Ø
productions of two kinds:åçæ è�å�é whenever å·êëæ å(é in Øåçæ ì whenever åîíðïQñ ñ ãÃòÈá ß

Slide 39
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Definition A context-free grammar is regular iff all its
productions are of the form

ó�ô õ÷ö
or óøô õ
where õ is a string of terminals and ó and ö are non-terminals.

Theorem

(a) Every language generated by a regular grammar is a
regular language (i.e. is the set of strings accepted by some
DFA).

(b) Every regular language can be generated by a regular
grammar.

Slide 40

It is possible to single out context-free grammars of a special form, called regular (or
right linear), which do generate regular languages. The definition is on Slide 40. Indeed, as
the theorem on that slide states, this type of grammar generates all possible regular languages.

Proof of the Theorem on Slide 40. First note that part (b) of the theorem has already been
proved, because the context-free grammar generating ù¼úüû£ý on Slide 39 is a regular grammar
(of a special kind).

To prove part (a), given a regular grammar we have to construct a DFA û whose set
of accepted strings coincides with the strings generated by the grammar. By the Subset
Construction (Theorem on Slide 18), it is enough to construct an NFA þ with this property.
This makes the task much easier. We take the states of û to be the non-terminals, augmented
by some extra states described below. Of course the alphabet of input symbols of û should
be the set of terminal symbols of the grammar. The start state is the start symbol. Finally, the
transitions and the accepting states of û are defined as follows.

(i) For each production of the form ÿ�� ��ÿ � with
�����
	���
 ú���ý���� , say ����������������� �"! with# �$� , we add #&% � fresh states ÿ'��("ÿ��)("ÿ�*�(������+("ÿ,!
-.� to the automaton and transitions

ÿ�/10% � ÿ2�3/54% � ÿ,*6/�7% � 8�8�8Ûÿ,!
-.�3/59%:% �>ÿ � �
(ii) For each production of the form ÿ;� ��ÿ � with

������	2��
 ú���ý<�>= , i.e. with �?�A@ , we add an
@ -transition ÿ þ%� ÿ � �
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(iii) For each production of the form BDCFE with G�H5I
J2K�LNM�EPORQTS , say E&UWVPX�V
Y�Z�Z�Z V\[ with ]�QTS ,
we add ] fresh states B'X�^�B1Y_^�B�`�^�Z�Z�Z�^�B5[ to the automaton and transitions

B�a�bc CFB�X3a�dc CFB1Yea+fc CFB�`hg�g�gia,jc�c CFB,[NZ
Moreover we make the state B1[ accepting.

(iv) For each production of the form BkC E with G�H5I
J2K�LPM�ElOmUon , i.e. with EpU$q , we do not add
in any new states or transitions, but we do make B an accepting state.

If we have a transition sequence in r of the form s�t uv B with BAw xiy+yzH|{lK t , we
can divide it up into pieces according to where non-terminals occur and then convert each
piece into a use of one of the production rules, thereby forming a derivation of E in the
grammar. Reversing this process, every derivation of a string of terminals can be converted
into a transition sequence in the automaton from the start state to an accepting state. Thus
this NFA } does indeed accept exactly the set of strings generated by the given regular
grammar.

6.4 Exercises
Exercise 6.4.1. Why is the string (4) not in the language generated by the context-free
grammar in Section 6.1?

Exercise 6.4.2. Give a derivation showing that (5) is in the language generated by the
context-free grammar on Slide 37. Prove that (6) is not in that language. [Hint: show that
if E is a string of terminals and non-terminals occurring in a derivation of this grammar and
that ‘ ~ ’ occurs in E , then it does so in a substring of the form ��~ , or �\~�~ , or �\~�~�~ , etc., where � is
either � or �)� .]

Exercise 6.4.3. Give a context-free grammar generating all the palindromes over the alphabet� V�^z�1� (cf. Slide 28).

Exercise 6.4.4. Give a context-free grammar generating all the regular expressions over the
alphabet

� V�^z�_� .

Exercise 6.4.5. Using the construction given in the proof of part (a) of the Theorem on
Slide 40, convert the regular grammar with start symbol B)� and productions

B,�iC�q
B,�iC V
��B,�
B,�iC ��B�X
B2X�C V
�

into an NFA } whose language is that generated by the grammar.

Exercise 6.4.6. Is the language generated by the context-free grammar on Slide 35 a regular
language? What about the one on Slide 37?

Tripos questions 2002.2.1(d) 1997.2.7 1996.2.1(k) 1994.4.3 1991.3.8
1990.6.10
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