Shor's Algorithm

Peter Shor AT\&TLabs

Motivation

- It appears that the universe in which we live is governed by quantum mechanics
- Quantum information theory gives us a new avenue to study \& test quantum mechanics
- Why do we want to build a quantum computer?

Why build a classical computer?

- They are able to perform calculations many orders of magnitude faster than can be done with pencil and paper.

Overview

- Shor's factoring algorithm
- Phase estimation algorithm
- Quantum Fourier transform
- Hadamard gate
- Controlled-U gate
- Equivalence of factoring and order finding
- Solving order finding using PE
- Summary

Discrete Fourier Transform

- Given a sequence of N complex numbers,

$$
X_{0}, X_{1}, \ldots X_{N-1}
$$

- The DFT produces another sequence,

$$
y_{0}, y_{1}, \ldots y_{N-1}
$$

- where

$$
y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} e^{2 \pi j / k / N}
$$

Discrete Fourier Transform

- If we let x and y be N-by- 1 vectors, then

$$
y=D x \quad \text { and } \quad x=D^{-1} y
$$

- where

- By inspection,

$$
D^{-1}=D^{\dagger}
$$

Discrete Fourier Transform

$$
y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} \omega^{j k} \quad \omega \equiv e^{2 \pi / / N}
$$

- It is not hard to show that the transform

$$
x_{j} \equiv \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} y_{k} \omega^{-j k}
$$

returns the original sequence.

```
Exercise: Verify the formula for }\mp@subsup{x}{j}{
```

```
Exercise: Verify the formula for }\mp@subsup{x}{j}{
```


Discrete Fourier Transform

- Suppose

$$
x_{j}=\frac{1}{\sqrt{N}} e^{\frac{2 \pi i j k}{N}} \quad k \in\{0, N-1\}
$$

Exercise: Verify the formula for y_{j}

- Then

Quantum Fourier Transform

- The quantum Fourier transform is a DFT of the amplitudes of a quantum
- The quantum Fourier transform produces the state

$$
\begin{gathered}
|\chi\rangle=y_{0}|0\rangle+y_{1}|1\rangle+\ldots+y_{N-1}|N-1\rangle \\
y=D x
\end{gathered}
$$

Suppose

state

- Suppose we have some state,

$$
|\psi\rangle=x_{0}|0\rangle+x_{1}|1\rangle+\ldots+x_{N-1}|N-1\rangle
$$

Quantum Fourier Transform

- The QFT
- is unitary ${ }^{\checkmark}$
- can be implemented very efficiently
- An example:

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad S=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \quad T=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right]
$$

Quantum Fourier Transform

$$
\begin{aligned}
|\psi\rangle= & x_{0}|000\rangle+x_{1}|001\rangle+x_{2}|010\rangle+x_{3}|011\rangle \\
& +x_{4}|100\rangle+x_{5}|101\rangle+x_{6}|110\rangle+x_{7}|111\rangle \\
|\psi\rangle & \rightarrow \stackrel{H}{H} \xrightarrow{s} \rightarrow|\chi\rangle
\end{aligned}
$$

$$
\begin{gathered}
|\chi\rangle=y_{0}|000\rangle+y_{1}|001\rangle+y_{2}|010\rangle+y_{3}|011\rangle \\
+y_{4}|100\rangle+y_{5}|101\rangle+y_{6}|110\rangle+y_{7}|111\rangle \\
y=D x
\end{gathered}
$$

Quantum Fourier Transform

- In general,to perform the QFT on n qubits requires $O\left(n^{2}\right)$ one and two qubit gates
- Reference: Cleve et al. (quant-ph/9708016)
- Transforming 2^{n} amplitudes with only n^{2} operations
- The fastest we can do classically is $n 2^{n}$
- However, QFT does not allow us to improve classical Fourier transforms
- There is no efficient way to extract the amplitudes of the state

$$
\begin{aligned}
|x\rangle= & y_{0}|000\rangle+y_{1}|001\rangle+y_{2}|010\rangle+y_{3}|011\rangle \\
& +y_{4}|100\rangle+y_{5}|101\rangle+y_{6}|110\rangle+y_{7}|111\rangle
\end{aligned}
$$

Quantum Fourier Transform

- Performing a QFT directly followed by a measurement is very easy
- In fact, if you wish to measure directly after applying the QFT, you only need n single qubit rotations!

Overview

- Shor's factoring algorithm
- Phase estimation algorithm
- Quantum Fourier transform \checkmark
- Hadamard gate
- Controlled-U gate
- Equivalence of factoring and order finding
- Solving order finding using PE
- Summary

Hadamard gate

$$
\begin{aligned}
& |0\rangle-H \\
& H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

Hadamard gate

$|0\rangle-H-\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$
$|0\rangle-H-\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$
$|0\rangle-H-\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$
$|0\rangle-H-\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$
$|0\rangle \longrightarrow \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle$

Controlled-U gate

- Two-qubit controlled-U

- Multi-qubit controlled-U

Phase estimation algorithm

- Given a unitary operator and an eigenstate of the operator
- The goal of the PE algorithm is to find the corresponding eigenvalue

$$
\widetilde{\Omega}|\boldsymbol{\phi}\rangle=e^{i \phi}|\boldsymbol{\phi}\rangle
$$

Phase estimation algorithm

- The PE algorithm uses two registers of qubits
- The target register, to which U can be applied
- The index register, which will be used to store the eigenvalue of U

Phase estimation algorithm

Quantum circuit diagram

Phase estimation algorithm

- We initially start with the system in the state

$$
|0\rangle|\phi\rangle
$$

- Performing the Hadamard gates on the index register creates the state

$$
\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle|\phi\rangle
$$

- Performing the series of controlled-U gates gives

$$
\hat{U}^{\hat{x}} \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle|\phi\rangle
$$

Phase estimation algorithm

- We can move the U inside the summation

$$
\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle \hat{U}^{x}|\phi\rangle
$$

- And replace U with $e^{i \phi}$

$$
\frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1}|x\rangle e^{i x \varphi}|\phi\rangle
$$

Phase estimation algorithm

- Generally, k will not be an integer
- With high probability we will
obtain the nearest integer to k

With high probability we will
obtain the nearest integer to k

- Thus, we have an m-bit approximation to ϕ.

Phase estimation algorithm

- Rearranging,

$$
|\phi\rangle \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1} e^{i x \varphi}|x\rangle \quad \text { if } \quad \phi=\frac{2 \pi k}{2^{m}}
$$

then

$$
|\phi\rangle \frac{1}{\sqrt{2^{m}}} \sum_{x=0}^{2^{m}-1} e^{\frac{2 \pi i x k}{2^{m}}}|x\rangle
$$

Applying the quantum Fourier transform gives

$$
|\phi\rangle k\rangle
$$

RSA encryption

- Named after Rivest, Shamir and Adleman, who came up with the scheme

- Based on the ease with which N can be calculated from m_{1} and m_{2}
- And the difficulty of calculating m_{1} and m_{2} from N

RSA encryption

- N is made publicly available, and is used to encrypt data
- m_{1} and m_{2} are the secret keys which enable you to decrypt the data
- To crack the code, a code-breaker needs to factor N
- Best current cracking method on a classical computer
- Number field sieve
- Requires $\exp \left(O\left(n^{1 / 3} \log ^{2 / 3} n\right)\right)$
- n is the length of N

A little number theory smallest	
$m_{1} \times m_{2}=N$	$a^{r} \equiv 1 \bmod N$
Modular Arithmetic	Co-prime
$a \equiv b \bmod N$	$\operatorname{gcd}(a, N)=1$
Simply means	Greatest Common Divisor No factors in common!
$a=b+k N$	
k is any integer	
and $b<N$	

A little number theory

$$
m_{1} \times m_{2}=N \quad \Leftrightarrow \quad a^{r} \equiv 1 \bmod N
$$

Consider the equation

$$
\begin{aligned}
y^{2} & \equiv 1 \bmod N \\
y^{2}-1 & \equiv 0 \bmod N \\
(y+1)(y-1) & \equiv 0 \bmod N \\
(y+1)(y-1) & =k N
\end{aligned}
$$

A little number theory

$m_{1} \times m_{2}=N \quad \Leftrightarrow \quad a^{r} \equiv 1 \bmod N$

- If we can find r
\rightarrow • And the r is even
- Then

$$
\begin{aligned}
& m_{1}=\operatorname{gcd}\left(a^{r / 2}+1, N\right) \\
& m_{2}=\operatorname{gcd}\left(a^{r / 2}-1, N\right)
\end{aligned}
$$

\rightarrow • Provided we don't get trivial solutions

Theorem:

Let $N=m_{1} m_{2}$, where m_{1} and m_{2} are prime numbers not equal to 2 . Suppose a is chosen at random from the set $\{a: 1<a<N, \operatorname{gcd}(a, N)=1\}$. Let r be the order of y $\bmod N$. Then the probability

$$
\operatorname{Prob}(r \text { is even and non-trivial }) \geq \frac{1}{2}
$$

Proof: long, boring and complicated

A little number theory

$$
m_{1} \times m_{2}=N \quad \Leftrightarrow \quad a^{r} \equiv 1 \bmod N
$$

- What about the ifs and buts ?!?

A little number theory

$m_{1} \times m_{2}=N \quad \Leftrightarrow \quad a^{r} \equiv 1 \bmod N$

- Finding r is equivalent to factoring N
- Why can't we use a classical computer to find r ?
- It takes $O\left(2^{n}\right)$ operations

Exercise: Using the reduction of factoring to order-finding, and the fact that 10 is co-prime to 21, factor 21 \qquad

A little number theory

$$
\begin{aligned}
& m_{1} \times m_{2}=N \quad \Leftrightarrow \quad a^{r} \equiv 1 \bmod N \\
& (y+1)(y-1)=k m_{1} m_{2} \\
& \operatorname{gcd}(y+1, N)=N \\
& \operatorname{gcd}(y-1, N)=1 \\
& \text { Trivial solutions } \\
& \operatorname{gcd}(y+1, N)=m_{1} \\
& \text { gcd can be calculated } \\
& \text { very efficiently } \\
& \text { - Euclid's algorithm } \\
& \operatorname{gcd}(y-1, N)=m_{2} \cdot \text { зо0 вс }
\end{aligned}
$$

$$
\begin{gathered}
\text { Choosing a } U \\
\text { • Consider the operator, } a^{r} \equiv 1 \bmod N \\
U|x\rangle \rightarrow|a x \bmod N\rangle
\end{gathered}
$$

- As a and N are co-prime, this operator is unitary
- Can be efficiently implemented on a quantum computer
- What about $U^{2}, U^{4}, U^{8}, \ldots, U^{2^{\wedge} j}$

$$
U^{2}|x\rangle \rightarrow\left|a^{2} x \bmod N\right\rangle
$$

Choosing an initial state

- Consider the state, $\quad a^{r} \equiv 1 \bmod N$

$$
\left|\psi_{1}\right\rangle=\sum_{j=0}^{r-1} e^{\frac{-2 \pi i j}{r}}\left|a^{j} \bmod N\right\rangle
$$

- $\left|\psi_{1}\right\rangle$ is an eigenstate of U, with eigenvalue

$$
e^{2 \pi i\left(\frac{1}{r}\right)}
$$

- Therefore, if we could prepare $\left|\psi_{1}\right\rangle$, we can use the PE algorithm to efficiently find r, and hence factor N.

Choosing an initial state

$|0\rangle-H$
$|0\rangle-H$
$|0\rangle-H$

$\left|\psi_{1}\right\rangle$

- Therefore, if we could prepare $\left|\psi_{1}\right\rangle$, we can use the PE algorithm to efficiently find r, and hence factor N.

Choosing an initial state

- Consider the states,

$$
a^{r} \equiv 1 \bmod N
$$

$$
\begin{array}{r}
\left|\psi_{1}\right\rangle=\sum_{j=0}^{r-1} e^{\frac{-2 \pi i j}{r}}\left|a^{j} \bmod N\right\rangle \\
k \in\{1, \ldots r\}
\end{array}
$$

- $\left|\psi_{k}\right\rangle$ is an eigenstate of U, with eigenvalue

$$
\frac{e^{2 \pi i\left(\frac{k}{r}\right)}}{\text { Exercise: Show }|1\rangle=\sum_{k=1}^{r}\left|\psi_{k}\right\rangle}
$$

Choosing an initial state

$|0\rangle-H$
$|0\rangle$
$|0\rangle$

|1 \rangle

$$
|1\rangle=\sum_{k=1}^{r}\left|\psi_{k}\right\rangle
$$

Choosing an initial state

$$
a^{r} \equiv 1 \bmod N
$$

- Therefore, using the PE algorithm, we can efficiently calculate

$\frac{k}{r}$

- Where k and r are unknown
- If k and r are co-prime, then canceling to an irreducible fraction will yield r.
- If k and r are not co-prime, we try again.

Summary

- We want to find $m_{1} \times m_{2}=N$
- Equivalent to solving $a^{r} \equiv 1 \bmod N$
- Use two qubit registers, initially in the state

$$
|0\rangle|1\rangle
$$

- Calculate circuits for $U, U^{2}, . . U^{2 \wedge 2 n}$
- Apply the phase estimation algorithm
- Repeat if required

