Shor's Algorithm

Peter Shor AT&T Labs

Motivation

- It appears that the universe in which we live is governed by quantum mechanics
- Quantum information theory gives us a new avenue to study & test quantum mechanics
- Why do we want to build a quantum computer?

Phase estimation algorithm • Rearranging, $|\phi\rangle \frac{1}{\sqrt{2^m}} \sum_{x=0}^{2^m-1} e^{ix\phi} |x\rangle$ if $\phi = \frac{2\pi k}{2^m}$ then $|\phi\rangle \frac{1}{\sqrt{2^m}} \sum_{x=0}^{2^m-1} e^{\frac{2\pi ixk}{2^m}} |x\rangle$ Applying the quantum Fourier transform gives $|\phi\rangle |k\rangle$

Phase estimation algorithm

- Generally, k will not be an integer
- With high probability we will obtain the nearest integer to k
- Thus, we have an m-bit approximation to φ.

RSA encryption
• Named after Rivest, Shamir and Adleman,
who came up with the scheme

$$m_1 \times m_2 = N$$

Primes
• Based on the ease with which N can
be calculated from m_1 and m_2
And the difficulty of calculating m

- And the difficulty of calculating m_1 and m_2 from N

RSA encryption

- N is made publicly available, and is used to encrypt data
- m_1 and m_2 are the secret keys which enable you to decrypt the data
- To crack the code, a code-breaker needs to factor N
- Best current cracking method on a classical computer
 - Number field sieve
 - Requires exp(O(n^{1/3} log^{2/3} n))
 - n is the length of N

- We want to find $m_1 \times m_2 = N$
- Equivalent to solving $a^r \equiv 1 \mod N$
- Use two qubit registers, initially in the state |0
 angle|1
 angle
- Calculate circuits for U, U^2 , ... $U^{2^{2n}}$
- Apply the phase estimation algorithm
- Repeat if required