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Motivation

* It appears that the universe in which
we live is governed by quantum
mechanics

* Quantum information theory gives us a
new avenue to study & test quantum
mechanics

* Why do we want to build a quantum
computer?

Why build a classical computer?

]

* They are able to perform calculations many
orders of magnitude faster than can be done
with pencil and paper.

Why build a quantum computer?

+ They should be able to perform calculations
many orders of maghitude faster than can be

done on a classical computer.
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Quantum Algorithms

Grover-type
Algorithms
+Searching
*Marked state
*Minimum
*Median

] . Quantum
Algorithmg Counting
+Factoring \
-Discrete log

-Abelian stabilizer

Speed-up:

Speed-up:
Exponential? .
quadratic

Quantum
Simulations

Overview

* Shor's factoring algorithm
- Phase estimation algorithm
* Quantum Fourier transform
* Hadamard gate
+ Controlled-U gate
- Equivalence of factoring and order
finding
- Solving order finding using PE
* Summary




Discrete Fourier Transform

+ Given a sequence of N complex numbers,

Xos Xy--- Xy 1
+ The DFT produces another sequence,
Yor Yir--- Yna

+ where
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Discrete Fourier Transform
_ 1 ik 274IN
Y = N Z Xj@ w=e
+ It is not hard to show that the transform
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returns the original sequence.

Exercise: Verify the formula for X;

Discrete Fourier Transform
+ If we let xand y be N-by-1 vectors, then

y = Dx and  x=D7y

+ where
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+ By inspection,

Discrete Fourier Transform
* Suppose

Exercise: Verify the formula for y;

Quantum Fourier Transform

* The quantum Fourier transform is a
DFT of the amplitudes of a quantum
state.

* Suppose we have some state,
) = %|0) + X,[1) +...+ X |[N —1)

* The quantum Fourier transform
produces the state
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Quantum Fourier Transform
* The QFT

- is unitary v’

- can be implemented very efficiently
* An example:

1(1 1 10 1 0
H = = = )
2 |:1 _1i| S |:0 i :| T |:0 eI71/4




Quantum Fourier Transform
|y7) = X,|000) + x,|001) + X,| 010) + X, 011)
+X,|100) + X,|101) + X;|110) + x,|111)
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+Y,/100) + y5|101) + y4[110) + y,|111)
y = DX

Quantum Fourier Transform

+ Ingeneral to perform the QFT on n qubits

requires O(n?) one and two qubit gates
- Reference: Cleve et al. (quant-ph/9708016)

+ Transforming 2" amplitudes with only n? operations
+ The fastest we can do classically is n2"
+ However, QFT does not allow us to improve

classical Fourier transforms

+ There is no efficient way to extract the

amplitudes of the state

| %) = ¥o|000) + y;{001) + y,[010) + y,|011)
+ y4\100> + y5\101> + y6\110> + y7\111>

Quantum Fourier Transform

+ Performing a QFT directly followed by a
measurement is very easy

+ In fact, if you wish to measure directly
after applying the QFT, you only need n
single qubit rotations!
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Overview

+ Shor's factoring algorithm
- Phase estimation algorithm
* Quantum Fourier transform v
* Hadamard gate
- Controlled-U gate
- Equivalence of factoring and order
finding
- Solving order finding using PE
* Summary

Hadamard gate

Hadamard gate
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Controlled-U gate

* Two-qubit controlled-U
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* Multi-qubit controlled-U

|

]
-
1]

Controlled-U gate
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Phase estimation algorithm

* Given a unitary operator and an
eigenstate of the operator

* The goal of the PE algorithm is to find
the corresponding eigenvalue

Phase

U [4) =€“]9)

Phase estimation algorithm

* The PE algorithm uses two registers

of qubits

- The target register, to which U can be
applied

- The index register, which will be used to
store the eigenvalue of U

Phase estimation algorithm
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Quantum circuit diagram

Phase estimation algorithm

+ We initially start with the system in the state

0)l¢)

+ Performing the Hadamard gates on the index

register creates the state

1 241
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+ Performing the series of controlled-U gates gives
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Phase estimation algorithm

+ We can move the U inside the summation

o 200)

* And replace U with ei¢
21

o 21l

Phase estimation algorithm

* Rearranging,
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Applying the quantum Foumer‘ transform gives
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Phase estimation algorithm

* Generally, k will not be an
integer

* With high probability we will
obtain the nearest integer to k
* Thus, we have an m-bit
approximation to ¢.

RSA encryption

* Named after Rivest, Shamir and Adleman,
who came up with the scheme

m,xm, =N
7—

Primes
+ Based on the ease with which N can
be calculated from m; and m,

* And the difficulty of calculating m,
and m, from N

RSA encryption

*+ N is made publicly available, and is used to
encrypt data

* m; and m, are the secret keys which enable
you to decrypt the data

+ To crack the code, a code-breaker needs to
factor N

* Best current cracking method on a classical
computer

- Number field sieve

- Requires exp(O(nY/3 log?/3 n))

- nis the length of N

A little number theory

Smallest
m, xm, =N a"=1modN
Modular Arithmetic Co-prime
a=bmodN ged(a,N) =1

Greatest Common Divisor
Simply means

a=b+kN

k is any integer

and b< N

No factors in common!




A little number theory
mxm,=N <> a =1lmodN

Consider the equation
y?> =1modN
y>—1=0modN
(y+1)(y-1)=0modN
(y+D(y-1)=kN

A little number theory

mxm,=N <> a =1lmodN
(y+l)(y_1): kmlmz
ged(y+1L,N)=N —_—
ged(y-LN) =1
+ gcd can be calculated
ng(y +1, N) = m1 very efficiently

- Euclid's algorithm

gcd(y—1L,N)=m, . so0ec

A little number theory
mxm,=N <> a =1lmodN

* If we can find r y>=1modN
— * And the r is even

“Then o —ged@”? +1,N)
m, =gcd(a”*—1,N)

— + Provided we don't get trivial
solutions

A little number theory
mxm,=N <> a =1lmodN

+ What about the ifs and buts ?1?
Theorem:

Let N = mym,, where m, and m, are prime numbers not
equal to 2. Suppose a is chosen at random from the set
{a:1<a<N,gcd(aN) = 1}. Let r be the order of y
mod N. Then the probability

Prob(r is even and non-trivial) z%

Proof: long, boring and complicated

A little number theory
mxm,=N <> a =1lmodN

* Finding r is equivalent to factoring N

* Why can't we use a classical computer
to find r?
- It takes O(2") operations

Exercise: Using the reduction of
factoring to order-finding, and the
fact that 10 is co-prime to 21,
factor 21

Choosing a U

r_
+ Consider the operator, a' =1modN

U|x) — |axmodN)
+ As aand N are co-prime, this operator is
unitary

+ Can be efficiently implemented on a
quantum computer

+ What about Uz, U4, U8, .., U2

U2|x>—>‘a2xmod N>
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Exercise: Show ‘l> = ;‘ l//k>

Choosing an initial state Choosing an initial state
r_
- Consider the state, a’ =1modN 0)
v)-3e 7 [a :
— J —
yi)=>e " [a’modN) . QFT ;
o)
+|w,) is an eigenstate of U, with eigenvalue
1 :
eZ”I(r) U 21_‘V/1>
+ Therefore, if we could prepare \1//1>, we + Therefore, if we could prepare \l//1>, we
can use the PE algorithm to efficiently can use the PE algorithm to efficiently
find r, and hence factor N. find r, and hence factor N.
Choosing an initial state Choosing an initial state
r_
- Consider the states, a' =1modN 0)
r-1 2zij k
lwi)=>e " [a’modN) T
=0 ke{l,...r}
*|w,) is an eigenstate of U, with eigenvalue
2ri (%)

Choosing an initial state

a'=1modN

+ Therefore, using the PE algorithm, we can
efficiently calculate k

r
* Where k and r are unknown
- If k and r are co-prime, then canceling to an
irreducible fraction will yield r.
+ If k and r are not co-prime, we try again.

Summary
- We want to find m; xm, = N
- Equivalent to solving a" =1mod N
+ Use two qubit registers, initially in

the state ‘ 0>‘ 1>

* Calculate circuits for U, U2, .. U2"2n
* Apply the phase estimation algorithm

* Repeat if required




