Quantum Computing

Lecture 4

Anuj Dawar

Models of Quantum Computation

Algorithms

A quantum algorithm specifies, for each n, a sequence

$$
\mathcal{O}_{n}=O_{1} \ldots O_{k}
$$

of n-qubit operations.
The map $n \rightarrow \mathcal{O}_{n}$ must be computable.
i.e. the individual circuits must be generated from a common pattern.

All measurements can be deferred to the end (possibly, at the expense of increasing the number of qubits).

Quantum Circuits

A quantum circuit is a sequence of unitary operations and measurements on an n-qubit state.

Note: each U_{i} is described by a $2^{n} \times 2^{n}$ matrix.

Model of Computation

As a model of computation, this is parasitic on classical models.
what is computable is not independently determined

Purely quantum models can be defined. We will see more on this in Lecture 8.

What computations can be performed in the model as defined?
What functions can be computed?
What decision problems are decidable?

Can all such computations be performed with some fixed set of unitary operations?

Simulating Boolean Gates

Could we find a quantum circuit to simulate a classical And gate?

This would require And

$$
\begin{aligned}
|00\rangle & \mapsto|0 x\rangle, \\
|10\rangle & |01\rangle \mapsto|0 y\rangle \\
|0 z\rangle, & |11\rangle \mapsto|1 w\rangle
\end{aligned}
$$

There is no unitary operation of this form.
Unitary operations are reversible. No information can be lost in the process.

Computing a Function

If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a Boolean function, the map

$$
|x\rangle \mapsto|f(x)\rangle
$$

may not be unitary.

We will, instead seek to implement

$$
|x\rangle \otimes|0\rangle \mapsto|x\rangle \otimes|f(x)\rangle
$$

Exercise: Describe a unitary operation that implements the
Boolean And in this sense.

One-Qubit Gates

We have already seen the Pauli Gates:

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], Z=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Another useful one-qubit gate is the Hadamard gate:

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Gates on a Multi-Qubit State

When we draw a circuit with a one-qubit gate, this must be read as a unitary operation on the entire state.

$$
U \otimes I
$$

This does not change measurement outcomes on the second qubit.

Controlled Not

The Controlled Not is a 2-qubit gate:

The controlled not flips the second qubit if the first qubit is $|1\rangle$ and leaves it unchanged if it's $|0\rangle$

$$
C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Toffoli Gate

$\left\|a_{1}\right\rangle$	
$\left\|a_{2}\right\rangle$	$\left.-a_{1}\right\rangle$
$\left\|a_{2}\right\rangle$	The Toffoli Gate is a 3-qubit gate.
It has a classical counterpart	
which can be used to simulate	

A permutation matrix is a unitary matrix where all entries are 0 or 1 .

Any $2^{n} \times 2^{n}$ permutation matrix can be implemented using only Toffoli gates.

More generally, we can define, for any single qubit operation U, the Controlled U gate:

$$
\begin{aligned}
|0 x\rangle & \mapsto|0 x\rangle \\
|1 x\rangle & \mapsto|1, U x\rangle
\end{aligned}
$$

Particularly useful is the controlled- Z gate:

Particulary useful is the controlled-Z gate:

Controlled U

Classical Reversible Computation

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is reversible if it's described by a $2^{n} \times 2^{n}$ permutation matrix.

For any function $g:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, there is a reversible function $g^{\prime}:\{0,1\}^{m+n} \rightarrow\{0,1\}^{m+n}$ with

$$
g^{\prime}(x, 0)=(x, g(x)) .
$$

Toffoli gates are universal for reversible computation.

The Toffoli gate cannot be implemented using 2-bit classical gates.

Quantum Toffoli Gate

The Toffoli gate can be implemented using 2-qubit quantum gates.

where, $P=\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right], Q=\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$.

Universal Set of Gates

Fact: Any unitary operation on n qubits can be implemented by a sequence of 2-qubit operations.

Fact: Any unitary operation can be implemented by a combination of C-NOTs and single qubit operations.

Fact: Any unitary operation can be approximated to any required degree of accuracy using only C-NOTs, H, P and Q.

These can serve as our finite set of gates for quantum computation.

Deutsch-Josza Problem

Given a function $f:\{0,1\} \rightarrow\{0,1\}$, determine whether f is constant or balanced.

Classically, this requires two calls to the function f.

But, if we are given the quantum black box:

One use of the box suffices

Deutsch-Josza Algorithm

$$
\begin{array}{cc}
|0\rangle & -H \\
\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) & U_{f} \\
& H
\end{array}
$$

U_{f} with input $|x\rangle$ and $|0\rangle-|1\rangle$ is just a phase shift.
It changes phase by $(-1)^{f(x)}$.
When $|x\rangle=H|0\rangle$, this gives $(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle$.

Final result is $\left[(-1)^{f(0)}+(-1)^{f(1)}\right]|0\rangle+\left[(-1)^{f(0)}-(-1)^{f(1)}\right]|1\rangle$
which is $|0\rangle$ if f is constant and $|1\rangle$ is balanced.

