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QM slides by Michael A. Nielsen, University of Queensland

Quantum Mechanics 
Basic Principles

What is quantum mechanics?

It is a framework for the development of physical theories.

It is not a complete physical theory in its own right.

Quantum 
electrodynamics (QED)

Operating system

Applications software

Quantum mechanics

Specific rules

Newton’s laws of motion

Newtonian gravitation

QM consists of four mathematical postulates which lay the
ground rules for our description of the world.

How successful is quantum mechanics?
It is unbelievably successful.

No deviations from quantum mechanics are known
Most physicists believe that any “theory of everything”

will be a quantum mechanical theory

Not just for the small stuff!

QM crucial to explain why stars shine, how the Universe
formed, and the stability of matter.

A conceptual issue, the so-called 
“measurement problem”, remains 
to be clarified. 

Attempts to describe gravitation 
in the framework of quantum 
mechanics have (so far) failed.

The structure of quantum mechanics

linear algebra
Dirac notation
4 postulates of

quantum mechanics
1. How to describe quantum states of a closed system.

2. How to describe quantum dynamics.

3. How to describe measurements of a quantum system.

4. How to describe quantum state of a composite system.

“state vectors” and “state space”

“unitary evolution”

“projective measurements”

“tensor products”

, , Aψ φ

Example: qubits
(two-level quantum systems)
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1
α β+0 1

α β+ =2 2| | | | 1

“Normalization”

    0  and 1  are the
computational  basis  states

photons
electron spin
nuclear spin
etcetera

“All we do is draw little arrows on a piece of paper - that's all.”
- Richard Feynman

Postulate 1: Rough Form

Quantum mechanics does not prescribe the state spaces
of specific systems, such as electrons.  That’s the job of
a physical theory like quantum electrodynamics.

Associated to any quantum system is a complex vector 
space known as state space.

Example: we’ll work mainly with qubits, which have state
space C2.

0 1
α

α β
β
⎡ ⎤

+ ≡ ⎢ ⎥
⎣ ⎦

The state of a closed quantum system is a unit vector in
state space. 
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A few conventions

This is the ket notation.

We write vectors in state space as: ψ

We  always assume that our physical systems have 
finite-dimensional state spaces.
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Quantum not gate:

0 1 ;    1 0 .X X= =

XInput qubit Output qubit

0    1

0

1

          
0 1
1 0

X ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

α β+ →0 1 ?

α β α β+ → +0 1 1 0

Matrix representation:

General dynamics of a closed quantum system
(including logic gates) can be represented as a
unitary matrix.

Dynamics: quantum logic gates

a b
A c d

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Hermitian conjugation; taking the adjoint

Unitary matrices

( )† * T
A A=

* *

* *

a c
b d
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

A is said to be unitary if † †AA A A I= =

We usually write unitary matrices as U.

†

Example: 
0 1 0 1 1 0

XX
1 0 1 0 0 1

I⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Nomenclature tips

matrix
=

(linear) operator
=

(linear) transformation
=

(linear) map
=

quantum gate (modulo unitarity)

Postulate 2

The  of a  is describedevolution closed quantum system
unitary transforma

 by a 
tion.

' Uψ ψ=

Why unitaries?

Unitary maps are the only linear maps that preserve
normalization.

' Uψ ψ= implies ' 1Uψ ψ ψ= = =

Exercise: prove that unitary evolution 
preserves normalization.
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0 1
0 1 ;    X 1 0 ;    X

1 0
X ⎡ ⎤

= = = ⎢ ⎥
⎣ ⎦

X

Y

Z

Pauli gates
1 gate (AKA  or )xX σ σ

2Y gate (AKA  or )yσ σ

0Notation: Iσ ≡

0
0 1 ;    Y 1 0 ;    Y

0
i

Y i i i
−⎡ ⎤

= = − = ⎢ ⎥
⎣ ⎦

1 0
0 0 ;    Z 1 1 ;    Z

0 1
Z ⎡ ⎤

= = − = ⎢ ⎥−⎣ ⎦

3Z gate (AKA  or )zσ σ

Exercise: prove that XY=iZ

Exercise: prove that X2=Y2=Z2=I

Measuring a qubit: a rough and ready prescription
0 1ψ α β= +

Quantum mechanics DOES NOT allow us to determine  and .α β

We can, however, read out limited information about  and .α β

“Measuring in the computational basis”
22(0) ;     (1)P Pα β= =

Measurement  the system, leaving it in 
a state 0  or 1  determi

unavoidably dis
ned by the outc

turbs
ome.

Measuring a qubit

0

1

1 10 1
2 2

−

1(0) (1)
2

P P= =

More general measurements

1Let ,...,  be an orthonormal basis for .d
de e C

1
2

A  gives re"measuremen st of  in the basis ,..., "
(

ult  
with probability  .)   

d

j

je e
P j e
ψ

ψ= •

* *Reminder:     
α χ

α χ β δ
β δ
⎡ ⎤ ⎡ ⎤

• ≡ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Measurement  the system, leaving it in a state
 deter

unavoidabl
mined by t

y d
he 

istur
outc

bs
ome.je

Qubit example
0 1ψ α β= +

0 1 0 1Introduce orthonormal basis         
2 2
+ −

+ = − =

( )
211Pr + =

12
α
β

⎡ ⎤ ⎡ ⎤
•⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

2

2
α β+

=
2

=
2

α β+

2

Pr( )
2

α β−
− =
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Inner products and duals

The inner product is used to define the  of a vectodual r .ψ

( )
If  lives in  then the  of  is a function 

 defined b
du

y
a

:  
l

  d

dC
C C
ψ ψ

ψ ψ φ ψ φ→ ≡ •

“Young man, in mathematics you don’t understand
things, you just get used to them.” - John von Neumann

Example: ( ) 1
0 0 1 =

0
α

α β α
β

⎡ ⎤ ⎡ ⎤
+ = •⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

Simplified notation: ψ φ

( ) ( )
( ) ( )

**

† † †

Properties: ,  since , ,

                  ,  since , ,

a b b a a b b a

A b b A A b c b A c b A c

= =

↔ = =

Duals as row vectors

( ) *

Suppose =  and = . Then

          ,
j jj j

j jj

a a j b b j

a b a b a b= =

∑ ∑
∑

1
* *

1 2 2

b
a a b

⎡ ⎤
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

K

M

* *
1 2

identificatThis suggests the very useful  of  with
the row vector .

ion a
a a⎡ ⎤⎣ ⎦K

Postulate 3: rough form

1
2

If we measure  in an orthonormal basis ,..., , then 
we obtain the result  with probability  ) .(  j

d

P j
e

j e
e

ψ

ψ

=

The measurement  the system, leaving it in a state 
determined by the

dis
 outcome.

turbs je

The measurement problem

Quantum system

Measuring apparatus
Rest of the Universe

Postulate 3Postulates 1 and 2

Research problem: solve the measurement problem.

Irrelevance of “global phase”

1
2

Suppose we measure  in the orthonormal basis ,..., .

Pr(Then  ) .
d

j

e e
j e ψ

ψ

=

2
1

2
Suppose we measure  in the orthonormal basis ,..., .

Then Pr ) .( 

i
d

i
j jj e

e e
e

e
eθ

θ

ψ

ψ

ψ= =

global phase factor unobservabThe  is thus , and we may
identify the states  and .

le
i

ie
e

θ

θψ ψ

Revised postulate 1

Associated to any quantum system is a complex  inner 
product space known as state space. 

The state of a closed quantum system is a unit vector
in state space. 

Note: These inner product spaces are often called
Hilbert spaces. 
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Multiple-qubit systems

00 01 10 1100 01 10 11α α α α+ + +

α= 2( , ) | |xyP x yMeasurement in the computational basis:

General state of n qubits: { }
α

∈∑ 0,1 n xx x

( )Classically, requires 2  bits to describe the state.nO

“Hilbert space is a big place” - Carlton Caves

“Perhaps […] we need a mathematical theory of quantum
automata. […] the quantum state space has far greater
capacity than the classical one: […] in the quantum case
we get the exponential growth […] the quantum behavior
of the system might be much more complex than its
classical simulation.” – Yu Manin (1980)

Postulate 4
The state space of a composite physical system is the
tensor product of the state spaces of the component systems.

Example: 2 2 4Two-qubit state space is C C C⊗ =

Computational basis states: 0 0 ; 0 1 ;  1 0 ;  1 1⊗ ⊗ ⊗ ⊗

Alternative notations: 0 0 ; 0,0 ; 00 .

Properties

( ) ( ) ( )z v w z v w v z w⊗ = ⊗ = ⊗

1 2 1 2( )v v w v w v w+ ⊗ = ⊗ + ⊗

1 2 1 2( )v w w v w v w⊗ + = ⊗ + ⊗

Some conventions implicit in Postulate 4

If Alice prepares her system in state , and Bob prepares
his in state , then the joint state is .

a
b a b⊗

Alice Bob

Conversely, if the joint state is  then we say that
Alice's system is , and Bob's system iin the state in
the stat

s 
e .

a b
a

b

⊗

( ) means "Alice thatapplies  
is applied to the joint syste

the gate  to her system"
m.

U IU ⊗

( )A B v w A v B w⊗ ⊗ = ⊗

( ) ( )= i ia b e a e bθ θ−⊗ ⊗

 Suppose a two-qubit system is in the
state 0.8 00 0.6 11 .  A NOT gate is applied to the
second qubit, and a measurement performed in the
computational basis.  What are the 

Worked exe

probabilit

rcise

o

:

ies f

+

r the
possible measurement outcomes?

Suppose a NOT gate is applied to the second qubit of the state

0.4 00 0.3 01 0.2 10 0.1 11 . + + +

( )( )
The resulting state is 

0.4 00 0.3 01 0.2 10 0.1 11I X⊗ + + +

0.4 01 0.3 00 0.2 11 0.1 10 .= + + +

Examples

Quantum entanglement
Alice Bob

00 11
2

ψ
+

=

a bψ ≠

Schroedinger (1935): “I would not call
[entanglement] one but rather the characteristic 
trait of quantum mechanics, the one that 
enforces its entire departure from classical lines 
of thought.”

( )( )0 1 0 1ψ α β γ δ= + +
00 10 01 11αγ βγ αδ βδ= + + +

0 or 0.β γ→ = =

Summary
Postulate 1: A closed quantum system is described by a 
unit vector in a complex inner product space known as  
state space.

Postulate 2: The evolution of a closed quantum system is 
described by a unitary transformation.

' Uψ ψ=

1
2

If we measure  in an orthonormal basis
,..., , then we obtain the result  with probability

    ( ) .

Postulate 3  :
d

j

e e j
P j e

ψ

ψ=

The measurement disturbs the system, leaving it in a state 
 determined by the outcome.je

Postulate 4: The state space of a composite physical system
is the tensor product of the state spaces of the component
systems.


