
Operating Systems II

Steven Hand

Lent Term 2004

8 lectures for CST IB

Operating Systems II — P/S/MWF/11

Course Aims

This course aims to:

• impart a detailed understanding of the algorithms
and techniques used within operating systems,

• consolidate the knowledge learned in earlier
courses, and

• help students appreciate the trade-offs involved in
designing and implementing an operating system.

Why another operating sytems course?

• OSes are some of the largest software systems
around ⇒ illustrate many s/w engineering issues.

• OSes motivate most of the problems in concurrency

• more people end up ‘writing OSes’ than you think

– modifications to existing systems (e.g. linux)

– embedded software for custom hardware

– research operating systems lots of fun

• various subsystems not covered to date. . .

Operating Systems II — Aims i

Course Outline

• Introduction and Review:
OS functions & structures. Virtual processors
(processes and threads).

• CPU Scheduling.
Scheduling for multiprocessors. RT scheduling
(RM, EDF). SRT/multimedia scheduling.

• Memory Management.
Virtual addresses and translation schemes.
Demand paging. Page replacement. Frame
allocation. VM case studies. Other VM techniques.

• Storage Systems.
Disks & disk scheduling. Caching, buffering. Filing
systems. Case studies (FAT, FFS, NTFS, LFS).

• Protection.
Subjects and objects. Authentication schemes.
Capability systems.

• Conclusion.
Course summary. Exam info.

Operating Systems II — Outline ii

Recommended Reading

• Bacon J [and Harris T]
Concurrent Systems or Operating Systems
Addison Wesley 1997, Addison Wesley 2003

• Tannenbaum A S
Modern Operating Systems (2nd Ed)
Prentice Hall 2001

• Silberschatz A, Peterson J and Galvin P
Operating Systems Concepts (5th Ed)
Addison Wesley 1998

• Leffler S J
The Design and Implementation of the 4.3BSD
UNIX Operating System.
Addison Wesley 1989

• Solomon D [and Russinovich M]
Inside Windows NT (2nd Ed) or Inside Windows
2000 (3rd Ed)
Microsoft Press 1998, Microsoft Press 2000

• OS links (via course web page)
http://www.cl.cam.ac.uk/Teaching/2002/OpSys2/

Operating Systems II — Books iii

Operating System Functions

Operating System

Hardware

A
pp

 2

A
pp

 N

A
pp

 1

An operating system is a collection of software which:

• securely multiplexes resources, i.e.

– protects applications from each other, yet

– shares physical resources between them.

• provides an abstract virtual machine, e.g.

– time-shares CPU to provide virtual processors,

– allocates and protects memory to provide
per-process virtual address spaces,

– presents h/w independent virtual devices.

– divides up storage space by using filing systems.

And ideally it does all this efficiently and robustly.

Operating Systems II — Introduction & Review 1

Hardware Support for Operating Systems

Recall that OS should securely multiplex resources.
⇒ we need to ensure that an application cannot:

• compromise the operating system.

• compromise other applications.

• deny others service (e.g. abuse resources)

To achieve this efficiently and flexibly, we need
hardware support for (at least) dual-mode operation.

Then we can:

• add memory protection hardware
⇒ applications confined to subset of memory;

• make I/O instructions privileged
⇒ applications cannot directly access devices;

• use a timer to force execution interruption
⇒ OS cannot be starved of CPU.

Most modern hardware provides protection using
these techniques (c/f Computer Design course).

Operating Systems II — Introduction & Review 2

Operating System Structures

H/W

S/W

App.

Priv

Unpriv

App. App. App.

Kernel

Scheduler

Device Driver Device Driver

System Calls

File System Protocol Code

H/W

S/W

App.

Priv

Unpriv

Server Device
Driver

ServerServer

App. App. App.

Kernel Scheduler

Device
Driver

Traditionally have had two main variants:

1. Kernel-based (lhs above)

• set of OS services accessible via software
interrupt mechanism called system calls.

2. Microkernel-based (rhs above)

• push various OS services into server processes

• access servers via some interprocess
communication (IPC) scheme.

• increased modularity (decreased performance?)

Operating Systems II — Introduction & Review 3

Vertically Structured Operating Systems

H/W

S/WSched.

App. App. Device
Driver

System
Process

Priv

Unpriv

O.S. O.S. O.S. O.S.

Driver StubsSyscalls

Shared
Library
Code

• Consider interface people really see, e.g.

– set of programming libraries / objects.

– a command line interpreter / window system.

• Separate concepts of protection and abstraction ⇒
get extensibility, accountability & performance.

• Examples: Nemesis, Exokernel, Cache Kernel.

We’ll see more on this next year. . .

Operating Systems II — Introduction & Review 4

Virtual Processors

Why virtual processors (VPs) ?

• to provide the illusion that a computer is doing
more than one thing at a time;

• to increase system throughput (i.e. run a thread
when another is blocked on I/O);

• to encapsulate an execution context;

• to provide a simple programming paradigm.

VPs implemented via processes and threads:

• A process (or task) is a unit of resource ownership
— a process is allocated a virtual address space,
and control of some resources.

• A thread (or lightweight process) is a unit of
dispatching — a thread has an execution state and
a set of scheduling parameters.

• OS stores information about processes and threads
in process control blocks (PCBs) and thread
control blocks (TCBs) respectively.

• In general, have 1 process ↔ n threads, n ≥ 1
⇒ PCB holds references to one or more TCBs.

Operating Systems II — Introduction & Review 5

Thread Architectures

• User-level threads

– Kernel unaware of threads’ existence.
– Thread management done by application using

an unpriviliged thread library.
– Pros: lightweight creation/termination; fast ctxt

switch (no kernel trap); application-specific
scheduling; OS independence.

– Cons: non-preemption; blocking system calls;
cannot utilise multiple processors.

– e.g. FreeBSD pthreads

• Kernel-level threads

– All thread management done by kernel.
– No thread library (but augmented API).
– Scheduling can be two-level, or direct.
– Pros: can utilise multiple processors; blocking

system calls just block thread; preemption easy.
– Cons: higher overhead for thread mgt and

context switching; less flexible.
– e.g. Windows NT/2K, Linux (?).

Hybrid schemes also exist. . . (see later)

Operating Systems II — Introduction & Review 6

Thread Scheduling Algorithms

Exit

Running

New

Ready

Blocked

dispatch

timeout
or yield

releaseadmit

event-waitevent

A scheduling algorithm is used to decide which ready
thread(s) should run (and for how long).

Typically use dynamic priority scheduling :

• each thread has an associated [integer] priority.

• to schedule: select highest priority ready thread(s)

• to resolve ties: use round-robin within priority

– different quantum per priority?

– CPU bias: per-thread quantum adaption?

• to avoid starvation: dynamically vary priorities

• e.g. BSD Unix: 128 pris, 100ms fixed quantum,
load- and usage-dependent priority damping.

• e.g. Windows NT/2K: 15 dynamic pris, adaptive
∼20ms quantum; priority boosts, then decays.

Operating Systems II — Introduction & Review 7

Multiprocessors
Two main kinds of [shared-memory] multiprocessor:

1. Uniform Memory Access (UMA), aka SMP.

CPU CPU CPU CPU

Main Memory

Cache Cache Cache Cache

• all (main) memory takes the same time to access
• scales only to 4, 8 processors.

2. Non-Uniform Memory Access (NUMA).

Mem

CPU CPU CPU CPU

Cache

Mem

Cache

Mem

Cache

Mem

Cache

• rarer and more expensive
• can have 16, 64, 256 CPUs . . .

Whole area becoming more important. . .

Operating Systems II — Multiprocessors 8

Multiprocessor Operating Systems

Multiprocessor OSes may be roughly classed as either
symmetric or asymmetric.

• Symmetric Operating Systems:

– identical system image on each processor
⇒ convenient abstraction.

– all resources directly shared
⇒ high synchronisation cost.

– typical scheme on SMP (e.g. Linux, NT).

• Asymmetric Operating Systems:

– partition functionality among processors.

– better scalability (and fault tolerance?)

– partitioning can be static or dynamic.

– common on NUMA (e.g. Hive, Hurricane).

– NB: asymmetric 6⇒ trivial “master-slave”

• Also get hybrid schemes, e.g. Disco:

– (re-)introduce virtual machine monitor

– can fake out SMP (but is this wise?)

– can run multiple OSes simultaneously. . .

Operating Systems II — Multiprocessors 9

Multiprocessor Scheduling (1)

• Objectives:

– Ensure all CPUs are kept busy.

– Allow application-level parallelism.

• Problems:

– Preemption within critical sections:

∗ thread A preempted while holding spinlock.
⇒ other threads can waste many CPU cycles.
∗ similar situation with producer/consumer

threads (i.e. wasted schedule).

– Cache pollution:

∗ if thread from different application runs on a
given CPU, lots of compulsory misses.
∗ generally, scheduling a thread on a new

processor is expensive.
∗ (can get degradation of factor or 10 or more)

– Frequent context switching:

∗ if number of threads greatly exceeds the
number of processors, get poor performance.

Operating Systems II — Multiprocessors 10

Multiprocessor Scheduling (2)

Consider basic ways in which one could adapt
uniprocessor scheduling techniques:

• Central Queue:

4 simple extension of uniprocessor case.

4 load-balancing performed automatically.

8 n-way mutual exclusion on queue.

8 inefficient use of caches.

8 no support for application-level parallelism.

• Dedicated Assignment:

4 contention reduced to thread creation/exit.

4 better cache locality.

8 lose strict priority semantics.

8 can lead to load imbalance.

Are there better ways?

Operating Systems II — Multiprocessors 11

Multiprocessor Scheduling (3)

• Processor Affinity:

– modification of central queue.

– threads have affinity for a certain processor ⇒
can reduce cache problems.

– but: load balance problem again.

– make dynamic? (cache affinity?)

• ‘Take’ Scheduling:

– pseudo-dedicated assignment: idle CPU “takes”
task from most loaded.

– can be implemented cheaply.

– nice trade-off: load high ⇒ no migration.

• Co-scheduling / Gang Scheduling:

– Simultaneously schedule “related” threads.

⇒ can reduce wasted context switches.

– Q: how to choose members of gang?

– Q: what about cache performance?

Operating Systems II — Multiprocessors 12

Example: Mach

• Basic model: dynamic priority with central queue.

• Processors grouped into disjoint processor sets:

– Each processor set has 32 shared ready queues
(one for each priority level).

– Each processor has own local ready queue:
absolute priority over global threads.

• Increase quantum when number of threads is small

– ‘small’ means #threads < (2× #CPUs)

– idea is to have a sensible effective quantum

– e.g. 10 processors, 11 threads

∗ if use default 100ms quantum, each thread
spends an expected 10ms on runqueue
∗ instead stretch quantum to 1s ⇒ effective

quantum is now 100ms.

• Applications provide hints to improve scheduling:

1. discouragement hints: mild, strong and absolute

2. handoff hints (aka “yield to”) — can improve
producer-consumer synchronization

• Simple gang scheduling used for allocation.

Operating Systems II — Multiprocessors 13

MP Thread Architectures

Kernel
Threads

User
Threads

Process 2Process 1 Process 3

CPU2

Process 4

LWPs

CPU1

Want benefits of both user and kernel threads without
any of the drawbacks ⇒ use hybrid scheme.

E.g. Solaris 2 uses three-level scheduling :

• 1 kernel thread ↔ 1 LWP ↔ n user threads

• user-level thread scheduler ⇒ lightweight & flexible

• LWPs allow potential multiprocessor benefit:

– more LWPs ⇒ more scope for true parallelism
– LWPs can be bound to individual processors ⇒

could in theory have user-level MP scheduler
– kernel scheduler is relatively cache agnostic

(although have processor sets (6= Mach’s)),

Overall: either first-class threads (Psyche) or
scheduler activations probably better for MP.

Operating Systems II — Multiprocessors 14

Real-Time Systems

• Need to both produce correct results and meet
predefined deadlines.

• “Correctness” of output related to time delay it
requires to be produced, e.g.

– nuclear reactor safety system

– JIT manufacturing

– video on demand

• Typically distinguish hard real-time (HRT) and soft
real-time (SRT):

HRT — output value = 100% before the
deadline, 0 (or less) after the deadline.

SRT — output value = 100% before the
deadline, (100 - f(t))% if t seconds late.

• Building such systems is all about predictability.

• It is not about speed.

Operating Systems II — Real-Time Systems 15

Real-Time Scheduling

time
si

pi

idia
Task i

• Basic model:

– consider set of tasks Ti, each of which arrives at
time ai and requires si units of CPU time before
a (real-time) deadline of di.

– often extended to cope with periodic tasks:
require si units every pi units.

• Best-effort techniques give no predictability

– in general priority specifies what to schedule but
not when or how much.

– i.e. CPU allocation for thread ti, priority pi
depends on all other threads at tj s.t. pj ≥ pi.

– with dynamic priority adjustment becomes even
more difficult.

⇒ need something different.

Operating Systems II — Real-Time Systems 16

Static Offline Scheduling

Advantages:

• Low run-time overhead.

• Deterministic behaviour.

• System-wide optimization.

• Resolve dependencies early.

• Can prove system properties.

Disadvantages:

• Inflexibility.

• Low utilisation.

• Potentially large schedule.

• Computationally intensive.

In general, offline scheduling only used when
determinism is the overriding factor, e.g. MARS.

Operating Systems II — Real-Time Systems 17

Static Priority Algorithms

Most common is Rate Monotonic (RM)

• Assign static priorities to tasks off-line (or at
‘connection setup’), high-frequency tasks receiving
high priorities.

• Tasks then processed with no further
rearrangement of priorities required (⇒ reduces
scheduling overhead).

• Optimal, static, priority-driven alg. for preemptive,
periodic jobs: i.e. no other static algorithm can
schedule a task set that RM cannot schedule.

• Admission control: the schedule calculated by RM
is always feasible if the total utilisation of the
processor is less than ln2

• For many task sets RM produces a feasible
schedule for higher utilisation (up to ∼ 88%); if
periods harmonic, can get 100%.

• Predictable operation during transient overload.

Operating Systems II — Real-Time Systems 18

Dynamic Priority Algorithms

Most popular is Earliest Deadline First (EDF):

• Scheduling pretty simple:

– keep queue of tasks ordered by deadline
– dispatch the one at the head of the queue.

• EDF is an optimal, dynamic algorithm:

– it may reschedule periodic tasks in each period
– if a task set can be scheduled by any priority

assignment, it can be scheduled by EDF

• Admission control: EDF produces a feasible
schedule whenever processor utilisation is ≤ 100%.

• Problem: scheduling overhead can be large.

• Problem: if system overloaded, all bets are off.

Notes:

1. Also get least slack-time first (LSTF):

• similar, but not identical
• e.g. A: 2ms every 7ms; B: 4ms every 8ms

2. RM, EDF, LSTF all preemptive (c/f P3Q7, 2000).

Operating Systems II — Real-Time Systems 19

Priority Inversion

• All priority-based schemes can potentially suffer
from priority inversion:

• e.g. consider low, medium and high priority
processes called Pl, Pm and Ph respectively.

1. first Pl admitted, and locks a semaphore S.
2. then other two processes enter.
3. Ph runs since highest priority, tries to lock S and

blocks.
4. then Pm gets to run, thus preventing Pl from

releasing S, and hence Ph from running.

• Usual solution is priority inheritence:

– associate with every semaphore S the priority P
of the highest priority process waiting for it.

– then temporarily boost priority of holder of
semaphore up to P .

– can use handoff scheduling to implement.

• NT “solution”: priority boost for CPU starvation

– checks if ∃ ready thread not run ≥ 300 ticks.
– if so, doubles quantum & boosts priority to 15

Operating Systems II — Real-Time Systems 20

Multimedia Scheduling

• Increasing interest in multimedia applications (e.g.
video conferencing, mp3 player, 3D games).

• Challenges OS since require presentation (or
processing) of data in a timely manner.

• OS needs to provide sufficient control so that apps
behave well under contention.

• Main technique: exploit SRT scheduling.

• Effective since:

– the value of multimedia data depends on the
timeliness with which it is presented/processed.

⇒ real-time scheduling allows apps to receive
sufficient and timely resource allocation to
handle their needs even when the system is
under heavy load.

– multimedia data streams are often somewhat
tolerant of information loss.

⇒ informing applications and providing soft
guarantees on resources are sufficient.

• Still ongoing research area. . .

Operating Systems II — Real-Time Systems 21

Example: Lottery Scheduling (MIT)

0 2 4 6 8 10 12 14 16 18 20

10 2 5 1 2

total = 20
random [1..20] = 15

winner

• Basic idea:

– distribute set of tickets between processes.

– to schedule: select a ticket [pseudo-]randomly,
and allocate resource (e.g. CPU) to the winner.

– approximates proportional share

• Why would we do this?

– simple uniform abstraction for resource
management (e.g. use tickets for I/O also)

– “solve” priority inversion with ticket transfer.

• How well does it work?

– σ2 = np(1− p) ⇒ accuracy improves with
√
n

– i.e. “asymptotically fair”

• Stride scheduling much better. . .

Operating Systems II — Real-Time Systems 22

Example: Atropos (CUCL)

Run

Wait

Block

Deschedule

Allocate

Unblock

Wakeup

EDF OPT IDLE

Interrupt or
System Call

• Basic idea:

– use EDF with implicit deadlines to effect
proportional share over explicit timescales

– if no EDF tasks runnable, schedule best-effort

• Scheduling parameters are (s, p, x) :

– requests s milliseconds per p milliseconds
– x means “eligible for slack time”

• Uses explicit admission control

• Actual scheduling is easy (∼200 lines C)

Operating Systems II — Real-Time Systems 23

Virtual Memory Management

• Limited physical memory (DRAM), need space for:

– operating system image

– processes (text, data, heap, stack, . . .)

– I/O buffers

• Memory management subsystem deals with:

– Support for address binding (i.e. loading,
dynamic linking).

– Allocation of limited physical resources.

– Protection & sharing of ‘components’.

– Providing convenient abstractions.

• Quite complex to implement:

– processor-, motherboard-specific.

– trade-offs keep shifting.

• Coming up in this section:

– virtual addresses and address translation,

– demand paged virtual memory management,

– 2 case studies (Unix and VMS), and

– a few other VM-related issues.

Operating Systems II — Virtual Memory Management 24

Logical vs Physical Addresses (1)
Old systems directly accessed [physical] memory,
which caused some problems, e.g.

• Contiguous allocation:

– need large lump of memory for process

– with time, get [external] fragmentation

⇒ require expensive compaction

• Address binding (i.e. dealing with absolute
addressing):

– “int x; x = 5;” → “movl $0x5, ????”

– compile time ⇒ must know load address.

– load time ⇒ work every time.

– what about swapping?

• Portability:

– how much memory should we assume a
“standard” machine will have?

– what happens if it has less? or more?

Can avoid lots of problems by separating concept of
logical (or virtual) and physical addresses.

Operating Systems II — Virtual Addressing 25

Logical vs Physical Addresses (2)

CPU

M
em

or
y

MMU
logical
address

physical
address

fault (to OS)
translation

Run time mapping from logical to physical addresses
performed by special hardware (the MMU).

If we make this mapping a per process thing then:

• Each process has own address space.

• Allocation problem split:

– virtual address allocation easy.

– allocate physical memory ‘behind the scenes’.

• Address binding solved:

– bind to logical addresses at compile-time.

– bind to real addresses at load time/run time.

Two variants: segmentation and paging.

Operating Systems II — Virtual Addressing 26

Segmentation

CPU

address fault

no

yes
physical
address M

em
or

y

+

logical
address

Segment Registers

limit

base

limit

base

limit

base

limit

base

• MMU has a set (≥ 1) of segment registers (e.g.
orig x86 had four: cs, ds, es and ss).

• CPU issues tuple (s, o):

1. MMU selects segment s.
2. Checks o ≤ limit.
3. If ok, forwards base+o to memory controller.

• Typically augment translation information with
protection bits (e.g. read, write, execute, etc.)

• Overall, nice logical view (protection & sharing)

• Problem: still have [external] fragmentation.

Operating Systems II — Virtual Addressing 27

Paging

CPU

M
em

or
y

logical address physical address

p

f

Page Table

p o f o

1

1. Physical memory: f frames each 2s bytes.

2. Virtual memory: p pages each 2s bytes.

3. Page table maps {0, . . . , p− 1} → {0, . . . , f − 1}
4. Allocation problem has gone away!

Typically have p >> f ⇒ add valid bit to say if a
given page is represented in physical memory.

• Problem: now have internal fragmentation.

• Problem: protection/sharing now per page.

Operating Systems II — Virtual Addressing 28

Segmentation versus Paging

logical view allocation

Segmentation 4 8
Paging 8 4

⇒ try combined scheme.

• E.g. paged segments (Multics, OS/2)

– divide each segment si into k = dli/2ne pages,
where li is the limit (length) of the segment.

– have page table per segment.

8 high hardware cost / complexity.

8 not very portable.

• E.g. software segments (most modern OSs)

– consider pages [m, . . . ,m+ l] to be a segment.

– OS must ensure protection / sharing kept
consistent over region.

8 loss in granularity.

4 relatively simple / portable.

Operating Systems II — Virtual Addressing 29

Translation Lookaside Buffers
Typically #pages large ⇒ page table lives in memory.
Add TLB, a fully associative cache for mapping info:

• Check each memory reference in TLB first.

• If miss ⇒ need to load info from page table:

– may be done in h/w or s/w (by OS).

– if full, replace entry (usually h/w)

• Include protection info ⇒ can perform access
check in parallel with translation.

• Context switch requires [expensive] flush:

– can add process tags to improve performance.

– “global” bit useful for wide sharing.

• Use superpages for large regions.

• So TLB contains n entries something like:

Frame Number XWRKV SG PTag Page Number

Tag Data2kbits 2kbits

Most parts also present in page table entries (PTEs).

Operating Systems II — Virtual Addressing 30

Multi-Level Page Tables

P1 Offset
Virtual Address

L2 Address

L1 Page Table
0

n

N

P2 L1 Address

Base Register

L2 Page Table
0

n

N

Leaf PTE

• Modern systems have 232 or 264 byte VAS ⇒ have
between 222 and 242 pages (and hence PTEs).

• Solution: use N -ary tree (N large, 256–4096)

• Keep PTBR per process and context switch.

• Advantages: easy to implement; cache friendly.

• Disadvantages:

– Potentially poor space overhead.

– Inflexibility: superpages, residency.

– Require d ≥ 2 memory references.

Operating Systems II — Virtual Addressing 31

Linear Page Tables
Virtual Address

Install
Mapping

Install
Mapping

PTE

Linear Page Table

Potential Nested TLB Miss

(4Mb in VAS)

PTE

Page Number Offset
031 1112

Index Offset
031 11122122

IGN

1

2

3
System

Page Table

4

5

TLB

• Modification of MPTs:

– typically implemented in software
– pages of LPT translated on demand
– i.e. stages Á, Â and Ã not always needed.

• Advantages:

– can require just 1 memory reference.
– (initial) miss handler simple.

• But doesn’t fix sparsity / superpages.

• Guarded page tables (≈ tries) claim to fix these.

Operating Systems II — Virtual Addressing 32

Inverted Page Tables
Virtual Address

031 1112

PN

Inverted Page Table

Hash

PN

h(PN)=k
Bits

0

f-1

k

Page Number Offset

• Recall f << p → keep entry per frame.

• Then table size bounded by physical memory!

• IPT: frame number is h(pn)

4 only one memory reference to translate.

4 no problems with sparsity.

4 can easily augment with process tag.

8 no option on which frame to allocate

8 dealing with collisions.

8 cache unfriendly.

Operating Systems II — Virtual Addressing 33

Hashed Page Tables
Virtual Address

031 1112

PTE

Hashed Page Table

Hash

PN

h(PN)=k

0

f-1

k

Page Number Offset

PN

• HPT: simply extend IPT into proper hash table.

• i.e. make frame number explicit.

4 can map to any frame.

4 can choose table size.

8 table now bigger.

8 sharing still hard.

8 still cache unfriendly, no superpages.

• Can solve these last with clustered page tables.

Operating Systems II — Virtual Addressing 34

Virtual Memory

• Virtual addressing allows us to introduce the idea
of virtual memory :

– already have valid or invalid page translations;
introduce new “non-resident” designation

– such pages live on a non-volatile backing store

– processes access non-resident memory just as if
it were ‘the real thing’.

• Virtual memory (VM) has a number of benefits:

– portability : programs work regardless of how
much actual memory present

– convenience: programmer can use e.g. large
sparse data structures with impunity

– efficiency : no need to waste (real) memory on
code or data which isn’t used.

• VM typically implemented via demand paging :

– programs (executables) reside on disk
– to execute a process we load pages in on

demand ; i.e. as and when they are referenced.

• Also get demand segmentation, but rare.

Operating Systems II — Demand Paged Virtual Memory 35

Demand Paging Details
When loading a new process for execution:

• create its address space (e.g. page tables, etc)

• mark PTEs as either “invalid or “non-resident”

• add PCB to scheduler.

Then whenever we receive a page fault :

1. check PTE to determine if “invalid” or not

2. if an invalid reference ⇒ kill process;

3. otherwise ‘page in’ the desired page:

• find a free frame in memory
• initiate disk I/O to read in the desired page
• when I/O is finished modify the PTE for this

page to show that it is now valid
• restart the process at the faulting instruction

Scheme described above is pure demand paging:

• never brings in a page until required ⇒ get lots of
page faults and I/O when process begins.

• hence many real systems explicitly load some core
parts of the process first

Operating Systems II — Demand Paged Virtual Memory 36

Page Replacement

• When paging in from disk, we need a free frame of
physical memory to hold the data we’re reading in.

• In reality, size of physical memory is limited ⇒
– need to discard unused pages if total demand for

pages exceeds physical memory size
– (alternatively could swap out a whole process to

free some frames)

• Modified algorithm: on a page fault we

1. locate the desired replacement page on disk
2. to select a free frame for the incoming page:
(a) if there is a free frame use it
(b) otherwise select a victim page to free,
(c) write the victim page back to disk, and
(d) mark it as invalid in its process page tables

3. read desired page into freed frame
4. restart the faulting process

• Can reduce overhead by adding a ‘dirty’ bit to
PTEs (can potentially omit step 2c above)

• Question: how do we choose our victim page?

Operating Systems II — Demand Paged Virtual Memory 37

Page Replacement Algorithms

• First-In First-Out (FIFO)

– keep a queue of pages, discard from head

– performance difficult to predict: no idea whether
page replaced will be used again or not

– discard is independent of page use frequency

– in general: pretty bad, although very simple.

• Optimal Algorithm (OPT)

– replace the page which will not be used again for
longest period of time

– can only be done with an oracle, or in hindsight

– serves as a good comparison for other algorithms

• Least Recently Used (LRU)

– LRU replaces the page which has not been used
for the longest amount of time

– (i.e. LRU is OPT with -ve time)

– assumes past is a good predictor of the future

– Q: how do we determine the LRU ordering?

Operating Systems II — Page Replacement Algorithms 38

Implementing LRU

• Could try using counters

– give each page table entry a time-of-use field
and give CPU a logical clock (counter)

– whenever a page is referenced, its PTE is
updated to clock value

– replace page with smallest time value

– problem: requires a search to find min value

– problem: adds a write to memory (PTE) on
every memory reference

– problem: clock overflow

• Or a page stack :

– maintain a stack of pages (doubly linked list)
with most-recently used (MRU) page on top

– discard from bottom of stack

– requires changing 6 pointers per [new] reference

– very slow without extensive hardware support

• Neither scheme seems practical on a standard
processor ⇒ need another way.

Operating Systems II — Page Replacement Algorithms 39

Approximating LRU (1)

• Many systems have a reference bit in the PTE
which is set by h/w whenever the page is touched

• This allows not recently used (NRU) replacement:

– periodically (e.g. 20ms) clear all reference bits
– when choosing a victim to replace, prefer pages

with clear reference bits
– if also have a modified bit (or dirty bit) in the

PTE, can extend MRU to use that too:

Ref? Dirty? Comment
no no best type of page to replace
no yes next best (requires writeback)
yes no probably code in use
yes yes bad choice for replacement

• Or can extend by maintaining more history, e.g.

– for each page, the operating system maintains
an 8-bit value, initialized to zero

– periodically (e.g. 20ms) shift reference bit onto
high order bit of the byte, and clear reference bit

– select lowest value page (or one of) to replace

Operating Systems II — Page Replacement Algorithms 40

Approximating LRU (2)

• Popular NRU scheme: second-chance FIFO

– store pages in queue as per FIFO
– before discarding head, check its reference bit

– if reference bit is 0, discard, otherwise:
∗ reset reference bit, and
∗ add page to tail of queue
∗ i.e. give it “a second chance”

• Often implemented with a circular queue and a
current pointer; in this case usually called clock.

• If no h/w provided reference bit can emulate:

– to clear “reference bit”, mark page no access
– if referenced ⇒ trap, update PTE, and resume
– to check if referenced, check permissions
– can use similar scheme to emulate modified bit

Operating Systems II — Page Replacement Algorithms 41

Other Replacement Schemes

• Counting Algorithms: keep a count of the number
of references to each page

– LFU: replace page with smallest count

– MFU: replace highest count because low count
⇒ most recently brought in.

• Page Buffering Algorithms:

– keep a min. number of victims in a free pool

– new page read in before writing out victim.

• (Pseudo) MRU:

– consider access of e.g. large array.

– page to replace is one application has just
finished with, i.e. most recently used.

– e.g. track page faults and look for sequences.

– discard the kth in victim sequence.

• Application-specific:

– stop trying to second guess what’s going on.

– provide hook for app. to suggest replacement.

– must be careful with denial of service. . .

Operating Systems II — Page Replacement Algorithms 42

Performance Comparison

FIFO

CLOCK

LRU

OPT

P
ag

e
Fa

ul
ts

 p
er

 1
00

0
R

ef
er

en
ce

s

5

10

15

20

25

30

35

40

45

0
5 6 7 8 9 10

Number of Page Frames Available
11 12 13 14 15

Graph plots page-fault rate against number of
physical frames for a pseudo-local reference string.

• want to minimise area under curve

• FIFO can exhibit Belady’s anomaly (although it
doesn’t in this case)

• getting frame allocation right has major impact. . .

Operating Systems II — Page Replacement Algorithms 43

Frame Allocation

• A certain fraction of physical memory is reserved
per-process and for core OS code and data.

• Need an allocation policy to determine how to
distribute the remaining frames.

• Objectives:

– Fairness (or proportional fairness)?

∗ e.g. divide m frames between n processes as
m/n, with remainder in the free pool
∗ e.g. divide frames in proportion to size of

process (i.e. number of pages used)

– Minimize system-wide page-fault rate?
(e.g. allocate all memory to few processes)

– Maximize level of multiprogramming?
(e.g. allocate min memory to many processes)

• Most page replacement schemes are global : all
pages considered for replacement.

⇒ allocation policy implicitly enforced during page-in:

– allocation succeeds iff policy agrees

– ‘free frames’ often in use ⇒ steal them!

Operating Systems II — Frame Allocation 44

The Risk of Thrashing
C

P
U

 u
til

is
at

io
n

Degree of Multiprogramming

thrashing

• As more processes enter the system, the
frames-per-process value can get very small.

• At some point we hit a wall:

– a process needs more frames, so steals them

– but the other processes need those pages, so
they fault to bring them back in

– number of runnable processes plunges

• To avoid thrashing we must give processes as many
frames as they “need”

• If we can’t, we need to reduce the MPL
(a better page-replacement algorithm will not help)

Operating Systems II — Frame Allocation 45

Locality of Reference

0x10000

0x20000

0x30000

0x40000

0x50000

0x60000

0x70000

0x80000

0x90000

0xa0000

0xb0000

0xc0000

0 10000 20000 30000 40000 50000 60000 70000 80000

M
iss address

Miss number

Extended Malloc

Initial Malloc

I/O Buffers

User data/bss
User code
User Stack
VM workspace

Kernel data/bss

Kernel code

Parse Optimise OutputKernel Init

move
image

clear
bss

Timer IRQs connector daemon

Locality of reference: in a short time interval, the
locations referenced by a process tend to be grouped
into a few regions in its address space.

• procedure being executed

• . . . sub-procedures

• . . . data access

• . . . stack variables

Note: have locality in both space and time.

Operating Systems II — Frame Allocation 46

Avoiding Thrashing
We can use the locality of reference principle to help
determine how many frames a process needs:

• define the Working Set (Denning, 1967)

– set of pages that a process needs in store at
“the same time” to make any progress

– varies between processes and during execution

– assume process moves through phases

– in each phase, get (spatial) locality of reference

– from time to time get phase shift

• Then OS can try to prevent thrashing by
maintaining sufficient pages for current phase:

– sample page reference bits every e.g. 10ms

– if a page is “in use”, say it’s in the working set

– sum working set sizes to get total demand D

– if D > m we are in danger of thrashing ⇒
suspend a process

• Alternatively use page fault frequency (PFF):

– monitor per-process page fault rate

– if too high, allocate more frames to process

Operating Systems II — Frame Allocation 47

Other Performance Issues
Various other factors influence VM performance, e.g.

• Program structure: consider for example

for(j=0; j<1024; j++)

for(i=0; i<1024; i++)

array[i][j] = 0;

– a killer on a system with 1024 word pages; either
have all pages resident, or get 220 page faults.

– if reverse order of iteration (i,j) then works fine

• Language choice:

– ML, lisp: use lots of pointers, tend to randomise
memory access ⇒ kills spatial locality

– Fortran, C, Java: relatively few pointer refs

• Pre-paging:

– avoid problem with pure demand paging
– can use WS technique to work out what to load

• Real-time systems:

– no paging in hard RT (must lock all pages)

– for SRT, trade-offs may be available

Operating Systems II — Demand Paged Virtual Memory 48

Case Study 1: Unix

• Swapping allowed from very early on.

• Kernel Per-process info. split into two kinds:

– proc and text structures always resident.
– page tables, user structure and kernel stack

could be swapped out.

• Swapping performed by special process: the
swapper (usually process 0).

– periodically awaken and inspect processes on
disk.

– choose one waiting longest time and prepare to
swap in.

– victim chosen by looking at scheduler queues:
try to find process blocked on I/O.

– other metrics: priority, overall time resident,
time since last swap in (for stability).

• From 3BSD / SVR2 onwards, implemented
demand paging.

• Today swapping only used when dire shortage of
physical memory.

Operating Systems II — Virtual Memory Case Studies 49

Unix: Address Space

Kernel

Static Data + BSS

Text (Program Code)0 Gb

1 Gb

2 Gb

3 Gb

4 Gb

Dynamic Data (Heap)

System

P1

P0

Kernel Stack
User Structure

User Stack

Reserved

4.3 BSD Unix address space borrows from VAX:

• 0Gb–1Gb: segment P0 (text/data, grow upward)

• 1Gb–2Gb: segment P1 (stack, grows downward)

• 2Gb–3Gb: system segment (for kernel).

Address translation done in hardware LPT:

• System page table always resident.

• P0, P1 page tables in system segment.

• Segments have page-aligned length.

Operating Systems II — Virtual Memory Case Studies 50

Unix: Page Table Entries
VLD FOD FS

031 30 2627 25 202124 23

Frame Number0AXS1 xM xxxResident

0000..........0000AXS0 xx 0On backing store

AXS0 x0Transit/Sampling

xxxx..........xxxxAXS0 0x 1Demand Zero

Block NumberAXS0 1x 1Fill from File

Frame NumberxxxM

• PTEs for valid pages determined by h/w.

• If valid bit not set ⇒ use up to OS.

• BSD uses FOD bit, FS bit and the block number.

• First pair are “fill on demand”:

– DZ used for BSS, and growing stack.

– FFF used for executables (text & data).

– Simple pre-paging implemented via klusters.

• Sampling used to simulate reference bit.

• Backing store pages located via swap map(s).

Operating Systems II — Virtual Memory Case Studies 51

Unix: Paging Dynamics

• Physical memory managed by core map:

– array of structures, one per cluster.
– records if free or in use and [potentially] the

associated page number and disk block.
– free list threads through core map.

• Page replacement carried out by the page dæmon.

– every 250ms, OS checks if “enough’ (viz.
lotsfree) physical memory free.

– if not ⇒ wake up page dæmon.

• Basic algorithm: global [two-handed] clock:

– hands point to different entries in core map
– first check if can replace front cluster; if not,

clear its “reference bit” (viz. mark invalid).
– then check if back cluster referenced (viz.

marked valid); if so given second chance.
– else flush to disk (if necessary), and put cluster

onto end of free list.
– move hands forward and repeat. . .

• System V Unix uses an almost identical scheme. . .

Operating Systems II — Virtual Memory Case Studies 52

Case Study 2: VMS

• VMS released in 1978 to run on the VAX-11/780.

• Aimed to support a wide range of hardware, and a
job mix of real-time, timeshared and batch tasks.

• This led to a design with:

– A local page replacement scheme,

– A quota scheme for physical memory, and

– An aggressive page clustering policy.

• First two based around idea of resident set :

– simply the set of pages which a given process
currently has in memory.

– each process also has a resident-set limit.

• Then during execution:

– pages faulted in by pager on demand.

– once hit limit, choose victim from resident set.

⇒ minimises impact on others.

• Also have swapper for extreme cases.

Operating Systems II — Virtual Memory Case Studies 53

VMS: Paging Dynamics

Disk

Resident
Set (P1)

Resident
Set (P2)

Free Page List
Modified
Page List

Evicted
Page (Dirty)

Page In

Page Out
(Clustered)

Page Reclaim

Free Frame
Allocated

Evicted
Page (Clean)

• Basic algorithm: simple [local] FIFO.

• Suckful ⇒ augment with software “victim cache”:

– Victim pages placed on tail of FPL/MPL.

– On fault, search lists before do I/O.

• Lists also allow aggressive page clustering :

– if |MPL| ≥ hi, write (|MPL|− lo) pages.

– Get ∼100 pages per write on average.

Operating Systems II — Virtual Memory Case Studies 54

VMS: Other Issues

• Modified page replacement:

– introduce callback for privileged processes.

– prefer to retain pages with TLB entries.

• Automatic resident set limit adjustment:

– system counts #page faults per process.

– at quantum end, check if rate > PFRATH.

– if so and if “enough” memory ⇒ increase RSL.

– swapper trimming used to reduce RSLs again.

– NB: real-time processes are exempt.

• Other system services:

– $SETSWM: disable process swapping.

– $LCKPAG: lock pages into memory.

– $LKWSET: lock pages into resident set.

• VMS still alive:

– recent versions updated to support 64-bit
address space

– son-of-VMS aka Win2K/XP also going strong.

Operating Systems II — Virtual Memory Case Studies 55

Other VM Techniques

Once have MMU, can (ab)use for other reasons

• Assume OS provides:

– system calls to change memory protections.

– some way to “catch” memory exceptions.

• This enables a large number of applications.

• e.g. concurrent garbage collection:

– mark unscanned areas of heap as no-access.

– if mutator thread accesses these, trap.

– on trap, collector scans page(s), copying and
forwarding as necessary.

– finally, resume mutator thread.

• e.g. incremental checkpointing:

– at time t atomically mark address space
read-only.

– on each trap, copy page, mark r/w and resume.

4 no significant interruption.

4 more space efficient

Operating Systems II — Virtual Memory Case Studies 56

Single Address Space Operating Systems

• Emerging large (64-bit) address spaces mean that
having a SVAS is plausible once more.

• Separate concerns of “what we can see” and “what
we are allowed to access”.

• Advantages: easy sharing (unified addressing).

• Problems:

– address binding issues return.

– cache/TLB setup for MVAS model.

• Distributed shared virtual memory:

– turn a NOW into a SMP.

– how seamless do you think this is?

• Persistent object stores:

– support for pickling & compression?

– garbage collection?

• Sensible use requires restraint. . .

Operating Systems II — Virtual Memory Case Studies 57

Disk I/O

• Performance of disk I/O is crucial to
swapping/paging and file system operation

• Key parameters:

1. wait for controller and disk.
2. seek to appropriate disk cylinder
3. wait for desired block to come under the head
4. transfer data to/from disk

• Performance depends on how the disk is organised

spindle

actuator

read-write
head

arm

rotation

platter

sector

track

cylinder

Operating Systems II — Disk Management 58

Disk Scheduling

• In a typical multiprogramming environment have
multiple users queueing for access to disk

• Also have VM system requests to load/swap/page
processes/pages

• We want to provide best performance to all users
— specifically reducing seek time component

• Several policies for scheduling a set of disk
requests onto the device, e.g.

1. FIFO: perform requests in their arrival order

2. SSTF: if the disk controller knows where the
head is (hope so!) then it can schedule the
request with the shortest seek from the current
position

3. SCAN (“elevator algorithm”): relieves problem
that an unlucky request could receive bad
performance due to queue position

4. C-SCAN: scan in one direction only

5. N-step-SCAN and FSCAN: ensure that the disk
head always moves

Operating Systems II — Disk Management 59

55,58,39,18,90,160,150,38,184Reference String =

200

50

100

150

0
Time

R
ef

er
en

ce

FIFO

50

100

150

200

0
Time

R
ef

er
en

ce SSTF

50

100

150

0
Time

R
ef

er
en

ce

SCAN

50

100

150

200

0
Time

R
ef

er
en

ce C-SCAN

200

Operating Systems II — Disk Management 60

Other Disk Scheduling Issues

• Priority: usually beyond disk controller’s control.

– system decides to prioritise, for example by
ensuring that swaps get done before I/O.

– alternatively interactive processes might get
greater priority over batch processes.

– or perhaps short requests given preference over
larger ones (avoid “convoy effect”)

• SRT disk scheduling (e.g. Cello, USD):

– per client/process scheduling parameters.

– two stage: admission, then queue.

– problem: overall performance?

• 2-D Scheduling (e.g. SPTF).

– try to reduce rotational latency.

– typically require h/w support.

• Bad blocks remapping:

– typically transparent ⇒ can potentially undo
scheduling benefits.

– some SCSI disks let OS into bad-block story

Operating Systems II — Disk Management 61

Logical Volumes

Partition A1

Hard Disk A Hard Disk B

Partition A2

Partition A3

Partition B1

Partition B2

Modern OSs tend to abstract away from physical disk;
instead use logical volume concept.

• Partitions first step.

• Augment with “soft partitions”:

– allow v. large number of partitions on one disk.

– can customize, e.g. “real-time” volume.

– aggregation: can make use of v. small partitions.

• Overall gives far more flexibility:

– e.g. dynamic resizing of partitions

– e.g. striping for performance.

• E.g. IRIX xlm, OSF/1 lvm, NT FtDisk.

• Other big opportunity is reliability . . .

Operating Systems II — Disk Management 62

RAID

RAID = Redundant Array of Inexpensive Disks:

• Uses various combinations of striping and
mirroring to increase performance.

• Can implement (some levels) in h/w or s/w

• Many levels exist:

– RAID0: striping over n disks (so actually !R)

– RAID1: simple mirroring, i.e. write n copies of
data to n disks (where n is 2 ;-).

– RAID2: hamming ECC (for disks with no
built-in error detection)

– RAID3: stripe data on multiple disks and keep
parity on a dedicated disk. Done at byte level ⇒
need spindle-synchronised disks.

– RAID4: same as RAID3, but block level.

– RAID5: same as RAID4, but no dedicated parity
disk (round robin instead).

• AutoRAID trades off RAIDs 1 and 5.

• Even funkier stuff emerging. . .

Operating Systems II — Disk Management 63

Disk Caching

• Cache holds copy of some of disk sectors.

• Can reduce access time by applications if the
required data follows the locality principle

• Design issues:

– transfer data by DMA or by shared memory?

– replacement strategy: LRU, LFU, etc.

– reading ahead: e.g. track based.

– write through or write back?

– partitioning? (USD. . .)

• Typically O/S also provides a cache in s/w:

– may be done per volume, or overall.

– also get unified caches — treat VM and FS
caching as part of the same thing.

• Software caching issues:

– should we treat all filesystems the same?

– do applications know better?

Operating Systems II — Disk Management 64

4.3 BSD Unix Buffer Cache

• Name? Well buffers data to/from disk, and caches
recently used information.

• Modern Unix deals with logical blocks, i.e. FS
block within a given partition / logical volume.

• “Typically” prevents 85% of implied disk transfers.

• Implemented as a hash table:

– Hash on (devno, blockno) to see if present.

– Linked list used for collisions.

• Also have LRU list (for replacement).

• Internal interface:

– bread(): get data & lock buffer.

– brelse(): unlock buffer (clean).

– bdwrite(): mark buffer dirty (lazy write).

– bawrite(): asynchronous write.

– bwrite(): synchronous write.

• Uses sync every 30 secs for consistency.

• Limited prefetching (read-ahead).

Operating Systems II — Disk Management 65

NT/2K Cache Manager

• Cache Manager caches “virtual blocks”:

– viz. keeps track of cache “lines” as offsets within
a file rather than a volume.

– disk layout & volume concept abstracted away.
⇒ no translation required for cache hit.
⇒ can get more intelligent prefetching

• Completely unified cache:

– cache “lines” all in virtual address space.
– decouples physical & virtual cache systems: e.g.
∗ virtually cache in 256K blocks,
∗ physically cluster up to 64K.

– NT virtual memory manager responsible for
actually doing the I/O.

– allows lots of FS cache when VM system lightly
loaded, little when system is thrashing.

• NT/2K also provides some user control:

– if specify temporary attrib when creating file ⇒
will never be flushed to disk unless necessary.

– if specify write through attrib when opening a
file ⇒ all writes will synchronously complete.

Operating Systems II — Disk Management 66

File systems

What is a filing system?

Normally consider it to comprise two parts:

1. Directory Service: this provides

• naming mechanism

• access control

• existence control

• concurrency control

2. Storage Service: this provides

• integrity, data needs to survive:

– hardware errors
– OS errors
– user errors

• archiving

• mechanism to implement directory service

What is a file?

• an ordered sequence of bytes (UNIX)

• an ordered sequence of records (ISO FTAM)

Operating Systems II — Filing Systems 67

File Mapping Algorithms

Need to be able to work out which disk blocks belong
to which files ⇒ need a file-mapping algorithm, e.g.

1. chaining in the material

2. chaining in a map

3. table of pointers to blocks

4. extents

Aspects to consider:

• integrity checking after crash

• automatic recovery after crash

• efficiency for different access patterns

– of data structure itself

– of I/O operations to access it

• ability to extend files

• efficiency at high utilization of disk capacity

Operating Systems II — Filing Systems 68

Chaining in the Media

Directory
Entries

File
Blocks

Each disk block has pointer to next block in file.
Can also chain free blocks.

• OK for sequential access – poor for random access

• cost to find disk address of block n in a file:

– best case: n disk reads

– worst case: n disk reads

• Some problems:

– not all of file block is file info

– integrity check tedious. . .

Operating Systems II — Filing Systems 69

Chaining in a map

Directory Map in
memory

Disc blocks

...........

...........

...........

Maintain the chains of pointers in a map (in
memory), mirroring disk structure.

• disk blocks only contain file information

• integrity check easy: only need to check map

• handling of map is critical for

– performance: must cache bulk of it.

– reliability: must replicate on disk.

• cost to find disk address of block n in a file:

– best case: n memory reads

– worst case: n disk reads

Operating Systems II — Filing Systems 70

Table of pointers
Directory Disc blocksTable of

Pointers

• access cost to find block n in a file

– best case: 1 memory read

– worst case: 1 disk read

• i.e. good for random access

• integrity check easy: only need to check tables

• free blocks managed independently (e.g. bitmap)

• table may get large ⇒ must chain tables, or build
a tree of tables (e.g. UNIX inode)

• access cost for chain of tables? for hierarchy?

Operating Systems II — Filing Systems 71

Extent lists

Directory Disc blocksList of
Extents

2
3

2

Using contiguous blocks can increase performance. . .

• list of disk addresses and lengths (extents)

• access cost: [perhaps] a disk read and then a
searching problem, O(log(number of extents))

• can use bitmap to manage free space (e.g. QNX)

• system may have some maximum #extents

– new error can’t extend file

– could copy file (i.e. compact into one extent)

– or could chain tables or use a hierarchy as for
table of pointers.

Operating Systems II — Filing Systems 72

File Meta-Data (1)

What information is held about a file?

• times: creation, access and change?

• access control: who and how

• location of file data (see above)

• backup or archive information

• concurrency control

What is the name of a file?

• simple system: only name for file is human
comprehensible text name

• perhaps want multiple text names for file

– soft (symbolic) link: text name → text name

– hard link: text name → file id

– if we have hard links, must have reference
counts on files

Together with the data structure describing the disk
blocks, this information is known as the file
meta-data.

Operating Systems II — Filing Systems 73

File Meta-Data (2)
Directory
Entries

foo

bar

RW

R

File
Node

File
Data

.....

.....

.....

Where is file information kept?

• no hard links: keep it in the directory structure.

• if have hard links, keep file info separate from
directory entries

– file info in a block: OK if blocks small (e.g.
TOPS10)

– or in a table (UNIX i-node / v-node table)

• on OPEN, (after access check) copy info into
memory for fast access

• on CLOSE, write updated file data and meta-data
to disk

How do we handle caching meta-data?

Operating Systems II — Filing Systems 74

Directory Name Space

• simplest — flat name space (e.g. Univac Exec 8)

• two level (e.g. CTSS, TOPS10)

• general hierarchy

– a tree,
– a directed (acyclic) graph (DAG)

• structure of name space often reflects data
structures used to implement it

– e.g. hierarchical name space ↔ hierarchical data
structures

– but, could have hierarchical name space and
huge hash table!

General hierarchy:

• reflects structure of organisation, users’ files etc.

• name is full path name, but can get rather long:
e.g. /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c

– offer relative naming
– login directory
– current working directory

Operating Systems II — Filing Systems 75

Directory Implementation

• Directories often don’t get very large (especially if
access control is at the directory level rather than
on individual files)

4 often quick look up

8 directories may be small compared to underlying
allocation unit

• But: assuming small dirs means lookup is näıve ⇒
trouble if get big dirs:

– optimise for iteration.

– keep entries sorted (e.g. use a B-Tree).

• Query based access:

– split filespace into system and user.

– system wants fast lookup but doesn’t much care
about friendly names (or may actively dislike)

– user wishes ‘easy’ retrieval ⇒ build content
index and make searching the default lookup.

– Q: how do we keep index up-to-date?

– Q: what about access control?

Operating Systems II — Filing Systems 76

File System Backups

• Backup: keep (recent) copy of whole file system to
allow recovery from:

– CPU software crash

– bad blocks on disk

– disk head crash

– fire, war, famine, pestilence

• What is a recent copy?

– in real time systems recent means mirrored disks

– daily usually sufficient for ‘normal’ machines

• Can use incremental technique, e.g.

– full dump performed daily or weekly

∗ copy whole file system to another disk or tape
∗ ideally can do it while file system live. . .

– incremental dump performed hourly or daily

∗ only copy files and directories which have
changed since the last time.
∗ e.g. use the file ‘last modifed’ time

– to recover: first restore full dump, then
sucessively add in incrementals

Operating Systems II — File System Integrity 77

Ruler Function

1 2 3 4 5 6 7 8 ...

0
1

2

3

4
T

ap
e

to
 u

se

Operation Day Number

• Want to minimise #tapes needed, time to backup

• Want to maximise the time a file is held on backup

– number days starting at 1

– on day n use tape t such that 2t is highest
power of 2 which divides n

– whenever we use tape t, dump all files modified
since we last used that tape, or any tape with a
higher number

• If file is created on day c and deleted on day d a
dump version will be saved substantially after d

• the length of time it is saved depends on d− c and
the exact values of c, d

Operating Systems II — File System Integrity 78

Crash Recovery

• Most failures affect only files being modified

• At start up after a crash run a disk scavenger:

– try to recover data structures from memory
(bring back core memory!)

– get current state of data structures from disk
– identify inconsistencies (may require operator

intervention)
– isolate suspect files and reload from backup
– correct data structures and update disk

• Usually much faster and better (i.e. more recent)
than recovery from backup.

• Can make scavenger’s job simpler:

– replicate vital data structures
– spread replicas around the disk

• Even better: use journal file to assist recovery.

– record all meta-data operations in an
append-only [infinite] file.

– ensure log records written before performing
actual modification.

Operating Systems II — File System Integrity 79

Immutable files

• Avoid concurrency problems: use write-once files.

– multiple version numbers: foo!11, foo!12
– invent new version number on close

• Problems:

– disk space is not infinite
∗ only keep last k versions (archive rest?)
∗ have a explicit keep call
∗ share disk blocks between different versions —

complicated file system structures
– what does name without version mean?
– and the killer. . . directories aren’t immutable!

• But:

– only need concurrency control on version number
– could be used (for files) on unusual media types
∗ write once optical disks
∗ remote servers (e.g. Cedar FS)

– provides an audit trail
∗ required by the spooks
∗ often implemented on top of normal file

system; e.g. UNIX RCS

Operating Systems II — Other FS Issues 80

Multi-level stores

Archiving (c.f. backup): keep frequently used files on
fast media, migrate others to slower (cheaper) media.

Can be done by:

• user — encouraged by accounting penalties

• system — migrate files by periodically looking at
time of last use

• can provide transparent naming but not
performance, e.g. HSM (Windows 2000)

Can integrate multi-level store with ideas from
immutable files, e.g. Plan-9:

• file servers with fast disks

• write once optical juke box

• every night, mark all files immutable

• start migration of files which changed the previous
day to optical disk

• access to archive explicit
e.g. /archive/08Jan2003/users/smh/. . .

Operating Systems II — Other FS Issues 81

Case Study 1: FAT16/32

A

B

8

7
4

EOF

Free

Free

Free

3

n-2

Free

EOF

Disk Info
0
1
2

6
7
8
9

n-1

File Name (8 Bytes)

AD RVSH
Extension (3 Bytes)

Reserved
(10 Bytes)

Time (2 Bytes)

Date (2 Bytes)

First Cluster (2 Bytes)

File Size (4 Bytes)

Attribute Bits

A: Archive

D: Directory

V: Volume Label

S: System

H: Hidden

R: Read-Only

• A file is a linked list of clusters: a cluster is a set
of 2n contiguous disk blocks, n ≥ 0.

• Each entry in the FAT contains either:

– the index of another entry within the FAT, or
– a special value EOF meaning “end of file”, or
– a special value Free meaning “free”.

• Directory entries contain index into the FAT

• FAT16 could only handle partitions up to (216 × c)
bytes ⇒ max 2Gb partition with 32K clusters.

• (and big cluster size is bad)

Operating Systems II — FS Case Studies 82

Extending FAT16 to FAT32

• Obvious extetension: instead of using 2 bytes per
entry, FAT32 uses 4 bytes per entry

⇒ can support e.g. 8Gb partition with 4K clusters

• Further enhancements with FAT32 include:

– can locate the root directory anywhere on the
partition (in FAT16, the root directory had to
immediately follow the FAT(s)).

– can use the backup copy of the FAT instead of
the default (more fault tolerant)

– improved support for demand paged executables
(consider the 4K default cluster size . . .).

• VFAT on top of FAT32 does long name support:
unicode strings of up to 256 characters.

– want to keep same directory entry structure for
compatibility with e.g. DOS

⇒ use multiple directory entries to contain
successive parts of name.

– abuse V attribute to avoid listing these

Operating Systems II — FS Case Studies 83

Case Study 2: BSD FFS

The original Unix file system: simple, elegant, slow.
S

up
er

-B
lo

ck

B
oo

t-
B

lo
ck

Inode
Table

Data
Blocks

S
up

er
-B

lo
ck

Inode
Table

Data
Blocks

Partition 1 Partition 2

Hard Disk

0 1 2 i i+1 j j+1 j+2 l l+1 m

The fast file-system (FFS) was develped in the hope
of overcoming the following shortcomings:

1. Poor data/metadata layout:

• widely separating data and metadata ⇒
almost guaranteed long seeks

• head crash near start of partition disastrous.

• consecutive file blocks not close together.

2. Data blocks too small:

• 512 byte allocation size good to reduce internal
fragementation (median file size ∼ 2K)

• but poor performance for somewhat larger files.

Operating Systems II — FS Case Studies 84

FFS: Improving Performance

The FFS set out to address these issues:

• Block size problem:

– use larger block size (e.g. 4096 or 8192 bytes)

– but: last block in a file may be split into
fragments of e.g. 512 bytes.

• Random allocation problem:

– ditch free list in favour of bitmap ⇒ since easier
to find contiguous free blocks (e.g.
011100000011101)

– divide disk into cylinder groups containing:

∗ a superblock (replica),
∗ a set of inodes,
∗ a bitmap of free blocks, and
∗ usage summary information.

– (cylinder group ' little Unix file system)

• Cylinder groups used to:

– keep inodes near their data blocks

– keep inodes of a directory together

– increase fault tolerance

Operating Systems II — FS Case Studies 85

FFS: Locality and Allocation

• Locality key to achieving high performance

• To achieve locality:

1. don’t let disk fill up ⇒ can find space nearby

2. spread unrelated things far apart.

• e.g. the BSD allocator tries to keep files in a
directory in the same cylinder group, but spread
directories out among the various cylinder groups

• similarly allocates runs of blocks within a cylinder
group, but switches to a different one after 48K

• So does all this make any difference?

– yes! about 10x–20x original FS performance

– get up to 40% of disk bandwidth on large files

– and much beter small file performance.

• Problems?

– block-based scheme limits throughput ⇒ need
decent clustering, or skip-sector allocation

– crash recovery not particularly fast

– rather tied to disk geometry. . .

Operating Systems II — FS Case Studies 86

Case Study 3: NTFS

File Record
Master File
Table (MFT)

0

1

2

3

4

5

6

7

16

17

$Mft
$MftMirr
$LogFile
$Volume
$AttrDef
\
$Bitmap
$BadClus

user file/directory
user file/directory

15

Standard Information

Filename

Data...

• Fundamental structure of NTFS is a volume:

– based on a logical disk partition

– may occupy a portion of a disk, and entire disk,
or span across several disks.

• An array of file records is stored in a special file
called the Master File Table (MFT).

• The MFT is indexed by a file reference (a 64-bit
unique identifier for a file)

• A file itself is a structured object consisting of set
of attribute/value pairs of variable length. . .

Operating Systems II — FS Case Studies 87

NTFS: Recovery

• To aid recovery, all file system data structure
updates are performed inside transactions:

– before a data structure is altered, the
transaction writes a log record that contains
redo and undo information.

– after the data structure has been changed, a
commit record is written to the log to signify
that the transaction succeeded.

– after a crash, the file system can be restored to
a consistent state by processing the log records.

• Does not guarantee that all the user file data can
be recovered after a crash — just that metadata
files will reflect some prior consistent state.

• The log is stored in the third metadata file at the
beginning of the volume ($Logfile) :

• Logging functionality not part of NTFS itself:

– NT has a generic log file service

⇒ could in principle be used by e.g. database

• Overall makes for far quicker recovery after crash

Operating Systems II — FS Case Studies 88

NTFS: Other Features

• Security:

– each file object has a security descriptor
attribute stored in its MFT record.

– this atrribute contains the access token of the
owner of the file plus an access control list

• Fault Tolerance:

– FtDisk driver allows multiple partitions be
combined into a logical volume (RAID 0, 1, 5)

– FtDisk can also handle sector sparing where
the underlying SCSI disk supports it

– NTFS supports software cluster remapping.

• Compression:

– NTFS can divide a file’s data into compression
units (blocks of 16 contiguous clusters)

– NTFS also has support for sparse files

∗ clusters with all zeros not allocated or stored
∗ instead, gaps are left in the sequences of

VCNs kept in the file record
∗ when reading a file, gaps cause NTFS to

zero-fill that portion of the caller’s buffer.

Operating Systems II — FS Case Studies 89

Case Study 4: LFS (Sprite)

LFS is a log-structured file system — a radically
different file system design:

• Premise 1: CPUs getting faster faster than disks.

• Premise 2: memory cheap ⇒ large disk caches

• Premise 3: large cache ⇒ most disk reads “free”.

⇒ performance bottleneck is writing & seeking.

Basic idea: solve write/seek problems by using a log :

• log is [logically] an append-only piece of storage
comprising a set of records.

• all data & meta-data updates written to log.

• periodically flush entire log to disk in a single
contiguous transfer:

– high bandwidth transfer.

– can make blocks of a file contiguous on disk.

• have two logs ⇒ one in use, one being written.

What are the problems here?

Operating Systems II — FS Case Studies 90

LFS: Implementation Issues

1. How do we find data in the log?

• can keep basic UNIX structure (directories,
inodes, indirect blocks, etc)
• then just need to find inodes ⇒ use inode map

• find inode maps by looking at a checkpoint
• checkpoints live in fixed region on disk.

2. What do we do when the disk is full?

• need asynchronous scavenger to run over old
logs and free up some space.
• two basic alternatives:

1. compact live information to free up space.
2. thread log through free space.
• neither great ⇒ use segmented log :

– divide disk into large fixed-size segments.
– compact within a segment, thread between

segments.
– when writing use only clean segments
– occasionally clean segments
– choosing segments to clean is hard. . .

Subject of ongoing debate in the OS community. . .

Operating Systems II — FS Case Studies 91

Protection
Require protection against unauthorised:

• release of information

– reading or leaking data

– violating privacy legislation

– using proprietary software

– covert channels

• modification of information

– changing access rights

– can do sabotage without reading information

• denial of service

– causing a crash

– causing high load (e.g. processes or packets)

– changing access rights

Also wish to protect against the effects of errors:

• isolate for debugging

• isolate for damage control

Protection mechanisms impose controls on access by
subjects (e.g. users) on objects (e.g. files).

Operating Systems II — Protection 92

Protection and Sharing

If we have a single user machine with no network
connection in a locked room then protection is easy.

But we want to:

• share facilities (for economic reasons)

• share and exchange data (application requirement)

Some mechanisms we have already come across:

• user and supervisor levels

– usually one of each

– could have several (e.g. MULTICS rings)

• memory management hardware

– protection keys

– relocation hardware

– bounds checking

– separate address spaces

• files

– access control list

– groups etc

Operating Systems II — Protection 93

Design of Protection System

• Some other protection mechanisms:

– lock the computer room (prevent people from
tampering with the hardware)

– restrict access to system software

– de-skill systems operating staff

– keep designers away from final system!

– use passwords (in general challenge/response)

– use encryption

– legislate

• ref: Saltzer + Schroeder Proc. IEEE Sept 75

– design should be public

– default should be no access

– check for current authority

– give each process minimum possible authority

– mechanisms should be simple, uniform and built
in to lowest layers

– should be psychologically acceptable

– cost of circumvention should be high

– minimize shared access

Operating Systems II — Protection 94

Authentication of User to System (1)

Passwords currently widely used:

• want a long sequence of random characters issued
by system, but user would write it down

• if allow user selection, they will use dictionary
words, car registration, their name, etc.

• best bet probably is to encourage the use of an
algorithm to remember password

• other top tips:

– don’t reflect on terminal, or overprint

– add delay after failed attempt

– use encryption if line suspect

• what about security of password file?

– only accessible to login program (CAP, TITAN)

– hold scrambled, e.g. UNIX

∗ only need to write protect file
∗ need irreversible function (without password)
∗ maybe ‘one-way’ function
∗ however, off line attack possible
⇒ really should use shadow passwords

Operating Systems II — Protection 95

Authentication of User to System (2)

E.g. passwords in UNIX:

• simple for user to remember

arachnid

• sensible user applies an algorithm

!r!chn#d

• password is DES-encrypted 25 times using a 2-byte
per-user ‘salt’ to produce a 11 byte string

• salt followed by these 11 bytes are then stored

IML.DVMcz6Sh2

Really require unforgeable evidence of identity that
system can check:

• enhanced password: challenge-response.

• id card inserted into slot

• fingerprint, voiceprint, face recognition

• smart cards

Operating Systems II — Protection 96

Authentication of System to User

User wants to avoid:

• talking to wrong computer

• right computer, but not the login program

Partial solution in old days for directly wired terminals:

• make login character same as terminal attention, or

• always do a terminal attention before trying login

But, today micros used as terminals ⇒
• local software may have been changed

• so carry your own copy of the terminal program

• but hardware / firmware in public machine may
have been modified

Anyway, still have the problem of comms lines:

• wiretapping is easy

• workstation can often see all packets on network

⇒ must use encryption of some kind, and must trust
encryption device (e.g. a smart card)

Operating Systems II — Protection 97

Mutual suspicion

• We need to encourage lots and lots of suspicion:

– system of user

– users of each other

– user of system

• Called programs should be suspicious of caller (e.g.
OS calls always need to check parameters)

• Caller should be suspicious of called program

• e.g. Trojan horse:

– a ‘useful’ looking program — a game perhaps

– when called by user (in many systems) inherits
all of the user’s privileges

– it can then copy files, modify files, change
password, send mail, etc. . .

– e.g. Multics editor trojan horse, copied files as
well as edited.

• e.g. Virus:

– often starts off as Trojan horse

– self-replicating (e.g. ILOVEYOU)

Operating Systems II — Protection 98

Access matrix

Access matrix is a matrix of subjects against objects.

Subject (or principal) might be:

• users e.g. by uid

• executing process in a protection domain

• sets of users or processes

Objects are things like:

• files

• devices

• domains / processes

• message ports (in microkernels)

Matrix is large and sparse ⇒ don’t want to store it all.

Two common representations:

1. by object: store list of subjects and rights with
each object ⇒ access control list

2. by subject: store list of objects and rights with
each subject ⇒ capabilities

Operating Systems II — Protection 99

Access Control Lists
Often used in storage systems:

• system naming scheme provides for ACL to be
inserted in naming path, e.g. files

• if ACLs stored on disk, check is made in software
⇒ must only use on low duty cycle

• for higher duty cycle must cache results of check

• e.g. Multics: open file = memory segment.
On first reference to segment:

1. interrupt (segment fault)

2. check ACL

3. set up segment descriptor in segment table

• most systems check ACL

– when file opened for read or write

– when code file is to be executed

• access control by program, e.g. Unix

– exam prog, RWX by examiner, X by student

– data file, A by exam program, RW by examiner

• allows arbitrary policies. . .

Operating Systems II — Protection 100

Capabilities
Capabilities associated with active subjects, so:

• store in address space of subject

• must make sure subject can’t forge capabilities

• easily accessible to hardware

• can be used with high duty cycle
e.g. as part of addressing hardware

– Plessey PP250

– CAP I, II, III

– IBM system/38

– Intel iAPX432

• have special machine instructions to modify
(restrict) capabilities

• support passing of capabilities on procedure
(program) call

Can also use software capabilities:

• checked by encryption

• nice for distributed systems

Operating Systems II — Protection 101

Password Capabilities

• Capabilities nice for distributed systems but:

– messy for application, and

– revocation is tricky.

• Could use timeouts (e.g. Amoeba).

• Alternatively: combine passwords and capabilities.

• Store ACL with object, but key it on capability
(not implicit concept of “principal” from OS).

• Advantages:

– revocation possible

– multiple “roles” available.

• Disadvantages:

– still messy (use ‘implicit’ cache?).

Operating Systems II — Protection 102

Covert channels

Information leakage by side-effects: lots of fun!

At the hardware level:

• wire tapping

• monitor signals in machine

• modification to hardware

• electromagnetic radiation of devices

By software:

• leak a bit stream as:

file exists page fault compute a while 1
no file no page fault sleep for a while 0

• system may provide statistics
e.g. TENEX password cracker using system
provided count of page faults

In general, guarding against covert channels is
prohibitively expensive.

(only usually a consideration for military types)

Operating Systems II — Protection 103

Summary & Outlook

• An operating system must:

1. securely multiplex resources.

2. provide / allow abstractions.

• Major aspect of OS design is choosing trade-offs.

– e.g. protection vs. performance vs. portability

– e.g. prettiness vs. power.

• Future systems bring new challenges:

– scalability (multi-processing/computing)

– reliability (computing infrastructure)

– ubiquity (heterogeneity/security)

• Lots of work remains. . .

Exams 2004:

• 2Qs, one each in Papers 3 & 4

• (not mandatory: P3 and P4 both x-of-y)

• Qs generally book-work plus ‘decider’

Operating Systems II — Conclusion 104

1999: Paper 3 Question 8

FIFO, LRU, and Clock are three page replacement

algorithms.

a) Briefly describe the operation of each algorithm.

[6 marks]

b) The Clock strategy assumes some hardware support.

What could you do to allow the use of Clock if this

hardware support were not present? [2 marks]

c) Assuming good temporal locality of reference, which of

the above three algorithms would you choose to use

within an operating system? Why would you not use the

other schemes? [2 marks]

What is a buffer cache? Explain why one is used, and how

it works. [6 marks]

Which buffer cache replacement strategy would you choose

to use within an operating system? Justify your answer.

[2 marks]

Give two reasons why the buffering requirements for network

data are different from those for file systems. [2 marks]

Operating Systems II — Past Examination Questions 105

1999: Paper 4 Question 7

The following are three ways which a file system may use to

determine which disk blocks make up a given file.

a) chaining in a map

b) tables of pointers

c) extent lists

Briefly describe how each scheme works. [3 marks each]

Describe the benefits and drawbacks of using scheme (c).

[6 marks]

You are part of a team designing a distributed filing system

which replicates files for performance and fault-tolerance

reasons. It is required that rights to a given file can be

revoked within T milliseconds (T ≥ 0). Describe how you

would achieve this, commenting on how the value of T would

influence your decision. [5 marks]

Operating Systems II — Past Examination Questions 106

2000: Paper 3 Question 7

Why are the scheduling algorithms used in general purpose

operating systems such as Unix and Windows NT not suitable

for real-time systems? [4 marks]

Rate monotonic (RM) and earliest deadling first (EDF) are

two popular scheduling algorithms for real-time systems.

Describe these algorithms, illustrating your answer by

showing how each of them would schedule the following

task set.

Task Requires Exactly Every

A 2ms 10ms

B 1ms 4ms

C 1ms 5ms

You may assume that context switches are instantaneous.

[8 marks]

Exhibit a task set which is schedulable under EDF but not

under RM. You should demonstrate that this is the case, and

explain why.

H int: consider the relationship between task periods.

[8 marks]

Operating Systems II — Past Examination Questions 107

2000: Paper 4 Question 7

Why is it important for an operating system to schedule disk

requests? [4 marks]

Briefly describe each of the SSTF, SCAN and C-SCAN disk

scheduling algorithms. Which problem with SSTF does

SCAN seek to overcome? Which problem with SCAN does

C-SCAN seek to overcome? [5 marks]

Consider a Winchester-style hard disk with 100 cylinders, 4

double-sided platters and 25 sectors per track. The following

is the (time-ordered) sequence of requests for disk sectors:

{ 3518, 1846, 8924, 6672, 1590, 4126, 107, 9750,

158, 6621, 446, 11 }.

The disk arm is currently at cylinder 10, moving towards

100. For each of SSTF, SCAN and C-SCAN, give the order

in which the above requests would be serviced. [3 marks]

Which factors do the above disk arm scheduling algorithms

ignore? How could these be taken into account? [4 marks]

Discuss ways in which an operating system can construct

logical volumes which are (a) more reliable and (b) higher

performance than the underlying hardware. [4 marks]

Operating Systems II — Past Examination Questions 108

2001: Paper 3 Question 7

What are the key issues with scheduling for shared-memory

multiprocessors? [3 marks]

Processor affinity, take scheduling and gang scheduling

are three techniques used within multiprocessor operating

systems.

a) Briefly describe the operation of each. [6 marks]

b) Which problem does the processor affinity technique seek

to overcome? [2 marks]

c) What problem does the processor affinity technique suffer

from, and how could this problem in turn be overcome?

[2 marks]

d) In which circumstances is a gang scheduling approach

most appropriate? [2 marks]

What additional issues does the virtual memory management

system have to address when dealing with shared-memory

multiprocessor systems? [5 marks]

Operating Systems II — Past Examination Questions 109

2001: Paper 4 Question 7

In the context of virtual memory management:

a) What is demand paging ? How is it implemented ?

[4 marks]

b) What is meant by temporal locality of reference ?

[2 marks]

c) How does the assumption of temporal locality of

reference influence page replacement decisions? Illustrate

your answer by briefly describing an appropriate page

replacement algorithm or algorithms. [3 marks]

d) What is meant by spatial locality of reference ?

[2 marks]

e) In what ways does the assumption of spatial locality

of reference influence the design of the virtual memory

system ? [3 marks]

A student suggests that the virtual memory system should

really deal with “objects” or “procedures” rather than with

pages. Make arguments both for and against this suggestion.

[4 and 2 marks respectively]

.

Operating Systems II — Past Examination Questions 110

2003: Paper 3 Question 5

Modern server-class machines often use a Redundant Array

of Inexpensive Disks (RAID) to provide non-volatile storage.

a) What is the basic motivation behind this? [2 marks]

b) Describe RAID level 0. What are the benefits and

drawbacks of this scheme? [3 marks]

c) Describe RAID level 1. What are the benefits and

drawbacks of this scheme? [3 marks]

d) Compare and contrast RAID levels 3, 4 & 5. What

problem(s) with the former pair does the last hope to

avoid? [6 marks]

A server machine has k identical high-performance IDE disks

attached to independent IDE controllers. You are asked to

write operating system software to treat these disk as a RAID

level 5 array containing a single file-system. Your software

will include routines to read filesytem data, write filesystem

data, and to schedule these read and write requests. What

difficulties arise here and how may they be addressed?

[6 marks]

Operating Systems II — Past Examination Questions 111

2003: Paper 4 Question 5

Describe the basic operation of a log-structured file system.

What are the potential benefits? What are the problems?

[8 marks]

Several modern file systems make use of journalling.

Describe how a journal is used by the file system, and

the situations in which it is beneficial. [6 marks]

You are assigned the task of designing a tape backup strategy

for an important file server. The goal is to maximize the

time any file is held on backup while minimizing the number

of tapes required. Sketch your strategy, commenting on the

support you require from the file system, and justifying your

design decisions. [6 marks]

Operating Systems II — Past Examination Questions 112

