Introduction to Functional Programming
 Lent 2004
 Suggested Exercises 2

1. Binary Trees. Write a function reverse which creates the mirror image of a binary tree. That is, if T is a binary tree, than reverse (T) is a binary tree in which, at every node, left and right branches are interchanged.

A binary tree is said to be balanced if for each node $\operatorname{Br}\left(x, t_{1}, t_{2}\right)$ the sizes of t_{1} and t_{2} differ by at most one. Write a function balanced of type 'a tree -> bool which determines whether a tree is balanced. One obvious solution involves checking the size of every subtree, but this is inefficient because it repeats a lot of computation. Can you do this more efficiently?
2. Arrays Write a function that takes an array in binary tree form and returns a list of the elements of the array, in order. Can you do this efficiently, i.e. without extracting each element by looking up the subscript?
3. Merge Sort Write a generic version of mergesort, which takes a comparison function as argument.
4. Minimum Write a functional to compute the minimum value $\min _{i=0}^{m-1} f(i)$ of a function f. Use the functional to express the two dimensional minimum $\min _{i=0}^{m-1} \min _{j=0}^{n-1} g(i, j)$ of a function g of two arguments.

