
THIRD-GENERATION DAT ABASE SYSTEM MANIFESTO

The Committee for Advanced DBMS Function1

Abstract

We call the older hierarchical and network systemsfirst generation database systems and refer to the

current collection of relational systems as thesecond generation.In this paper we consider the character-

istics that must be satisfied by the next generation of data managers, which we callthird generation

database systems.

Our requirements are collected into three basis tenets along with 13 more detailed propositions.

1. INTRODUCTION

The network and hierarchical database systems that were prevalent in the 1970’s are aptly classified

asfirst generation database systems because they were the first systems to offer substantial DBMS func-

tion in a unified system with a data definition and data manipulation language for collections of records.2

CODASYL systems [CODA71] and IMS [DATE86] typify such first generation systems.

In the 1980’s first generation systems were largely supplanted by the current collection of relational

1The committee is composed of Michael Stonebraker of the University of California, Berkeley, Lawrence A. Rowe of the Uni-
versity of California, Berkeley, Bruce Lindsay of IBM Research, James Gray of Tandem Computers, Michael Carey of the University
of Wisconsin, Michael Brodie of GTE Laboratories, Philip Bernstein of Digital Equipment Corporation, and David Beech of Oracle
Corporation.

To achieve broad exposure this paper is being published in the United States in SIGMOD RECORD and in Europe in the Proceedings
of the IFIP TC2 Conference on Object Oriented Databases.

2To discuss relational and other systems without confusion, we will use neutral terms in this paper. Therefore, we define adata
elementas an atomic data value that is stored in the database. Every data element has adata type (or type for short), and data ele-
ments can be assembled into arecord which is a set of one or more named data elements. Lastly, acollection is a named set of
records, each with the same number and type of data elements.



DBMSs which we termsecond generationdatabase systems. These are widely believed to be a substantial

step forward for many applications over first generation systems because of their use of a non-procedural

data manipulation language and their provision of a substantial degree of data independence. Second gen-

eration systems are typified by DB2, INGRES, NON-STOP SQL, ORACLE and Rdb/VMS.3

However, second generation systems were focused onbusiness data processingapplications, and

many researchers have pointed out that they are inadequate for a broader class of applications. Computer

aided design (CAD), computer aided software engineering (CASE) and hypertext applications are often sin-

gled out as examples that could effectively utilize a different kind of DBMS with specialized capabilities.

Consider, for example, a publishing application in which a client wishes to arrange the layout of a newspa-

per and then print it. This application requires storing text segments, graphics, icons, and the myriad of

other kinds of data elements found in most hypertext environments. Supporting such data elements is usu-

ally difficult in second generation systems.

However, critics of the relational model fail to realize a crucial fact. Second generation systems do

not supportmost business data processing applications all that well. For example, consider an insurance

application that processes claims. This application requires traditional data elements such as the name and

coverage of each person insured. However, it is desirable to store images of photographs of the event to

which a claim is related as well as a facsimile of the original hand-written claim form. Such data elements

are also difficult to store in second generation DBMSs. Moreover, all information related to a specific

claim is aggregated into afolder which contains traditional data, images and perhaps procedural data as

well. A folder is often very complex and makes the data elements and aggregates of CAD and CASE sys-

tems seem fairly routine by comparison.

Thus, almost everybody requires a better DBMS, and there have been several efforts to construct pro-

totypes with advanced function. Moreover, most current DBMS vendors are working on major functional

enhancements of their second generation DBMSs. There is a surprising degree of consensus on the desired

3DB2, INGRES, NON-STOP SQL, ORACLE and Rdb/VMS are trademarks respectively of IBM, INGRES Corporation, Tan-
dem, ORACLE Corporation, and Digital Equipment Corporation.

2



capabilities of these next-generation systems, which we termthird generation database systems. In this

paper, we present the three basic tenets that should guide the development of third generation systems. In

addition, we indicate 13 propositions which discuss more detailed requirements for such systems. Our

paper should be contrasted with those of [ATKI89, KIM90, ZDON90] which suggest different sets of

tenets.

2. THE TENETS OF THIRD-GENERATION DBMSs

The first tenet deals with the definition of third generation DBMSs.

TENET 1: Besides traditional data management services, third generation DBMSs will

provide support for richer object structures and rules.

Data management characterizes the things that current relational systems do well, such as processing 100

transactions per second from 1000 on-line terminals and efficiently executing six way joins. Richer object

structures characterize the capabilities required to store and manipulate non-traditional data elements such

as text and spatial data. In addition, an application designer should be given the capability of specifying a

set ofrules about data elements, records and collections.4 Referential integrity in a relational context is one

simple example of such a rule; however, there are many more complex ones.

We now consider two simple examples that illustrate this tenet. Return to the newspaper application

described earlier. It contains many non-traditional data elements such as text, icons, maps, and advertise-

ment copy; hence richer object structures are clearly required. Furthermore, consider the classified adver-

tisements for the paper. Besides the text for the advertisement, there are a collection of business data pro-

cessing data elements, such as the rate, the number of days the advertisement will run, the classification, the

billing address, etc. Any automatic newspaper layout program requires access to this data to decide

whether to place any particular advertisement in the current newspaper. Moreover, selling classified

4See the previous footnote for definitions of these terms.

3



advertisements in a large newspaper is a standard transaction processing application which requires tradi-

tional data management services. In addition, there are many rules that control the layout of a newspaper.

For example, one cannot put an advertisement for Macy’s on the same page as an advertisement for Nord-

strom. The move tow ard semi-automatic or automatic layout requires capturing and then enforcing such

rules. As a result there is need for rule management in our example application as well.

Consider next our insurance example. As noted earlier, there is the requirement for storing non-

traditional data elements such as photographs and claims. Moreover, making changes to the insurance cov-

erage for customers is a standard transaction processing application. In addition, an insurance application

requires a large collection of rules such as

Cancel the coverage of any customer who has had a claim of type Y over value X.
Escalate any claim that is more than N days old.

We hav e briefly considered two applications and demonstrated that a DBMS must have data, object

and rules services to successfully solve each problem. Although it is certainly possible that niche markets

will be available to systems with lesser capabilities, the successful DBMSs of the 90’s will have services in

all three areas.

We now turn to our second fundamental tenet.

TENET 2: Third generation DBMSs must subsume second generation DBMSs.

Put differently, second generation systems made a major contribution in two areas:

non-procedural access
data independence

and these advances must not be compromised by third generation systems.

Some argue that there are applications whichnever wish to run queries because of the simplicity of

their DBMS accesses. CAD is often suggested as an example with this characteristic [CHAN89]. There-

fore, some suggest that future systems will not require a query language and consequently do not need to

subsume second generation systems. Several of the authors of this paper have talked tonumerous CAD

4



application designers with an interest in databases, and all have specified a query language as a necessity.

For example, consider a mechanical CAD system which stores the parts which compose a product such as

an automobile. Along with the spatial geometry of each part, a CAD system must store a collection of

attribute data, such as the cost of the part, the color of the part, the mean time to failure, the supplier of the

part, etc. CAD applications require a query language to specify ad-hoc queries on the attribute data such

as:

How much does the cost of my automobile increase if supplier X raises his prices by Y percent?

Consequently, we are led to a query language as an absolute requirement.

The second advance of second generation systems was the notion of data independence. In the area

of physical data independence, second generation systems automatically maintain the consistency ofall

access paths to data, and a query optimizer automatically chooses the best way to execute any giv en user

command. In addition, second generation systems provideviews whereby a user can be insulated from

changes to the underlying set of collections stored in the database. These characteristics have dramatically

lowered the amount of program maintenance that must be done by applications and should not be aban-

doned.

Tenet 3 discusses the final philosophical premise which must guide third generation DBMSs.

TENET 3: Third generation DBMSs must be open to other subsystems.

Stated in different terms, any DBMS which expects broad applicability must have a fourth generation lan-

guage (4GL), various decision support tools, friendly access from many programming languages, friendly

access to popular subsystems such as LOTUS 1-2-3, interfaces to business graphics packages, the ability to

run the application on a different machine from the database, and a distributed DBMS. All tools and the

DBMS must run effectively on a wide variety of hardware platforms and operating systems.

This fact has two implications. First, any successful third generation system must support most of

the tools described above. Second, a third generation DBMS must beopen, i.e. it must allow access from

additional tools running in a variety of environments. Moreover, each third generation system must be

5



willing to participate with other third generation DBMSs in future distributed database systems.

These three tenets lead to a variety of more detailed propositions on which we now focus.

3. THE THIRTEEN PROPOSITIONS

There are three groups of detailed propositions which we feel must be followed by the successful

third generation database systems of the 1990s. The first group discusses propositions which result from

Tenet 1 and refine the requirements of object and rule management. The second group contains a collection

of propositions which follow from the requirement that third generation DBMSs subsume second genera-

tion ones. Finally, we treat propositions which result from the requirement that a third generation system

be open.

3.1. Propositions Concerning Object and Rule Management

DBMSs cannot possibly anticipate all the kinds of data elements that an application might want.

Most people think, for example, that time is measured in seconds and days. However, all months have 30

days in bond trading applications, the day ends at 15:30 for most banks, and "yesterday" skips over week-

ends and holidays for stock market applications. Hence, it is imperative that a third generation DBMS

manage a diversity of objects and we have 4 propositions that deal with object management and consider

type constructors, inheritance, functions and unique identifiers.

PROPOSITION 1.1: A third generation DBMS must have a rich type system.

All of the following are desirable:

1) an abstract data type system to construct new base types
2) an array type constructor
3) a sequence type constructor
4) a record type constructor
5) a set type constructor
6) functions as a type
7) a union type constructor
8) recursive composition of the above constructors

6



The first mechanism allows one to construct new base types in addition to the standard integers, floats and

character strings available in most systems. These include bit strings, points, lines, complex numbers, etc.

The second mechanism allows one to have arrays of data elements, such as found in many scientific appli-

cations. Arrays normally have the property that a new element cannot be inserted into the middle of the

array and cause all the subsequent members to have their position incremented. In some applications such

as the lines of text in a document, one requires this insertion property, and the third type constructor sup-

ports such sequences. The fourth mechanism allows one to group data elements into records. Using this

type constructor one could form, for example, a record of data items for a person who is one of the "old

guard" of a particular university. The fifth mechanism is required to form unordered collections of data ele-

ments or records. For example, the set type constructor is required to form the set of all the old guard. We

discuss the sixth mechanism, functions (methods) in Proposition 1.3; hence, it is desirable to have a DBMS

which naturally stores such constructs. The next mechanism allows one to construct a data element which

can take a  value from one of several types. Examples of the utility of this construct are presented in

[COPE84]. The last mechanism allows type constructors to be recursively composed to supportcomplex

objects which have internal structure such as documents, spatial geometries, etc. Moreover, there is no

requirement that the last type constructor applied be the one which forms sets, as is true for second genera-

tion systems.

Besides implementing these type constructors, a DBMS must also extend the underlying query lan-

guage with appropriate constructs. Consider, for example, the SALESPERSON collection, in which each

salesperson has a name and a quota which is an array of 12 integers. In this case, one would like to be able

to request the names of salespersons with April quotas over $5000 as follows:

select name
from SALESPERSON
where quota[4] > 5000

Consequently, the query language must be extended with syntax for addressing into arrays. Prototype syn-

tax for a variety of type constructors is contained in [CARE88].

7



The utility of these type constructors is well understood by DBMS clients who have data to store

with a richer structure. Moreover, such type constructors will also make it easier to implement the persis-

tent programming languages discussed in Proposition 3.2. Furthermore, as time unfolds it is certainly pos-

sible that additional type constructors may become desirable. For example, transaction processing systems

managequeuesof messages [BERN90]. Hence, it may be desirable to have a type constructor which

forms queues.

Second generation systems have few of these type constructors, and the advocates of Object-oriented

Data Bases (OODB) claim that entirely new DBMSs must come into existence to support these features. In

this regard, we wish to take strong exception. There are prototypes that demonstrate how to add many of

the above type constructors to relational systems. For example, [STON83] shows how to add sequences of

records to a relational system, [ZANI83] and [DADA86] indicate how to construct certain complex objects,

and [OSBO86, STON86] show how to include an ADT system. We claim thatall these type constructors

can be added to relational systems as natural enhancements and that the technology is relatively well

understood.5 Moreover, commercial relational systems with some of these features have already started to

appear.

Our second object management proposition concerns inheritance.

PROPOSITION 1.2: Inheritance is a good idea.

Much has been said about this construct, and we feel we can be very brief. Allowing types to be organized

into an inheritance hierarchy is a good idea. Moreover, we feel that multiple inheritance is essential, so the

inheritance hierarchy must be a directed graph. If only single inheritance is supported, then we feel that

there are too many situations that cannot be adequately modeled. For example, consider a collection of

instances of PERSON. There are two specializations of the PERSON type, namely STUDENT and

EMPLOYEE. Lastly, there is a STUDENT EMPLOYEE, which should inherit from both STUDENT and

5One might argue that a relational system with all these extensions can no longer be considered "relational", but that is not the
point. The point is that such extensions are possible and quite natural.

8



EMPLOYEE. In each collection, data items appropriate to the collection would be specified when the col-

lection was defined and others would be inherited from the parent collections. A diagram of this situation,

which demands multiple inheritance, is indicated in Figure 1. While [ATKI89] advocates inheritance, it

lists multiple inheritance as an optional feature.

Moreover, it is also desirable to have collections which specify no additional fields. For example,

TEENAGER might be a collection having the same data elements as PERSON, but having a restriction on

ages. Again, there have been prototype demonstrations on how to add these features to relational systems,

and we expect commercial relational systems to move inthis direction.

Our third proposition concerns the inclusion of functions in a third generation DBMS.

PROPOSITION 1.3: Functions, including database procedures and methods, and encapsu-

lation are a good idea.

Second generation systems support functions and encapsulation in restricted ways. For example, the opera-

tions available for tables in SQL are implemented by the functionscreate, alter, and drop. Hence, the

___________
| PERSON |
|__________|
/ |
/ |
/ |

________/_____ _|___________
| EMPLOYEE | | STUDENT |
|_____________| |____________|

| /
| /
| /

___|_____________/_____
| STUDENT EMPLOYEE |
|______________________|

A Typical Multiple Inheritance Hierarchy
Figure 1

9



table abstraction is only available by executing one of the above functions.

Obviously, the benefits of encapsulation should be made available to application designers so they

can associate functions with user collections. For example, the functions HIRE(EMPLOYEE),

FIRE(EMPLOYEE) and RAISE-SAL(EMPLOYEE) should be associated with the familiar EMPLOYEE

collection. If users are not allowed direct access to the EMPLOYEE collection but are given these func-

tions instead, then all knowledge of the internal structure of the EMPLOYEE collection is encapsulated

within these functions.

Encapsulation has administrative advantages by encouraging modularity and by registering functions

along with the data they encapsulate. If the EMPLOYEE collection changes in such a way that its previous

contents cannot be defined as a view, then all the code which must be changed is localized in one place, and

will therefore be easier to change.

Encapsulation often has performance advantages in a protected or distributed system. For example,

the function HIRE(EMPLOYEE) may make a number of accesses to the database while executing. If it is

specified as a function to be executed internally by the data manager, then only one round trip message

between the application and the DBMS is executed. On the other hand, if the function runs in the user pro-

gram then one round trip message will be executed for each access. Moving functions inside the DBMS

has been shown to improve performance on the popular Debit-Credit benchmark [ANON85].

Lastly, such functions can be inherited and possibly overridden down the inheritance hierarchy.

Therefore, the function HIRE(EMPLOYEE) can automatically be applied to the STUDENT EMPLOYEE

collection. With overriding, the implementation of the function HIRE can be rewritten for the for the STU-

DENT EMPLOYEE collection. In summary, encapsulated functions have performance and structuring

benefits and are highly desirable. However, there are three comments which we must make concerning

functions.

First, we feel that users should write functions in a higher level language (HLL) and obtain DBMS

access through a high-level non-procedural access language. This language may be available through an

embedding via a preprocessor or through direct extension of the HLL itself. Put differently, functions

10



should run queries and not perform their own navigation using calls to some lower level DBMS interface.

Proposition 2.1 will discuss the undesirability of constructing user programs with low-level data access

interfaces, and the same discussion applies equally to the construction of functions.

There are occasional requirements for a function to directly access internal interfaces of a DBMS.

This will require violating our admonition above about only accessing the database through the query lan-

guage, and an example of such a function is presented in [STON90]. Consequently, direct access to system

internals should probably be an allowable but highly discouraged (!) way to write functions.

Our second comment concerns the notion ofopaquetypes. Some OODB enthusiasts claim that the

only way that a user should be able to access a collection is to execute some function available for the col-

lection. For example, the only way to access the EMPLOYEE collection would be to execute a function

such as HIRE(EMPLOYEE). Such a restriction ignores the needs of the query language whose execution

engine requires access to each data element directly. Consider, for example:

select *
from EMPLOYEE
where salary > 10000

To solve this query, the execution engine must have direct access to the salary data elements and any auxil-

iary access paths (indexes) available for them. Therefore, we believe that a mechanism is required to makes

typestransparent, so that data elements inside them can be accessed through the query language. It is pos-

sible that this can be accomplished through an automatically defined "accessor" function for each data ele-

ment or through some other means. An authorization system is obviously required to control access to the

database through the query language.

Our last comment concerns the commercial marketplace. All major vendors of second generation

DBMSs already support functions coded in a HLL (usually the 4GL supported by the vendor) that can

make DBMS calls in SQL. Moreover, such functions can be used to encapsulate accesses to the data they

manage. Hence, functions stored in the database with DBMS calls in the query language are already com-

monplace commercially. The work remaining for the commercial relational vendors to support this propo-

sition is to allow inheritance of functions. Again there have been several prototypes which show that this is

11



a relatively straightforward extension to a relational DBMS. Yet again, we see a clear path by which cur-

rent relational systems can move tow ards satisfying this proposition.

Our last object management proposition deals with the automatic assignment of unique identifiers.

PROPOSITION 1.4: Unique Identifiers (UIDs) for records should be assigned by the

DBMS only if a user-defined primary key is not available.

Second generation systems support the notion of aprimary key, which is a user-assigned unique identifier.

If a primary key exists for a collection that is knownnever to change, for example social security number,

student registration number, or employee number, then no additional system-assigned UID is required. An

immutable primary key has an extra advantage over a system-assigned unique identifier because it has a

natural, human readable meaning. Consequently, in data interchange or debugging this may be an advan-

tage.

If no primary key is available for a collection, then it is imperative that a system-assigned UID be

provided. Because SQL supports update through a cursor, second generation systems must be able to

update the last record retrieved, and this is only possible if it can be uniquely identified. If no primary key

serves this purpose, the system must include an extra UID. Therefore, several second generation systems

already obey this proposition.

Moreover, as will be noted in Proposition 2.3, some collections, e.g. views, do not necessarily have

system assigned UIDs, so building a system that requires them is likely to be proven undesirable. We close

our discussion on Tenet 1 with a final proposition that deals with the notion of rules.

PROPOSITION 1.5: Rules (triggers, constraints) will become a major feature in future sys-

tems. They should not be associated with a specific function or collection.

OODB researchers have generally ignored the importance of rules, in spite of the pioneering use of active

data values and daemons in some programming languages utilizing object concepts. When questioned

about rules, most OODB enthusiasts either are silent or suggest that rules be implemented by including

12



code to support them in one or more functions that operate on a collection. For example, if one has a rule

that every employee must earn a smaller salary than his manager, then code appropriate to this constraint

would be inserted into both the HIRE(EMPLOYEE) and the RAISE-SAL(EMPLOYEE) functions.

There are two fundamental problems with associating rules with functions. First, whenever a new

function is added, such as PENSION-CHANGE(EMPLOYEE), then one must ensure that the function in

turn calls RAISE-SAL(EMPLOYEE), or one must include code for the rule in the new function. There is

no way to guarantee that a programmer does either; consequently, there is no way to guarantee rule enforce-

ment. Moreover, code for the rule must be placed in at least two functions, HIRE(EMPLOYEE) and

RAISE-SAL(EMPLOYEE). This requires duplication of effort and will make changing the rule at some

future time more difficult.

Next, consider the following rule:

Whenever Joe gets a salary adjustment, propagate the change to Sam.

Under the OODB scheme, one must add appropriate code to both the HIRE and the RAISE-SAL functions.

Now suppose a second rule is added:

Whenever Sam gets a salary adjustment, propagate the change to Fred.

This rule will require inserting additional code into the same functions. Moreover, since the two rules inter-

act with each other, the writer of the code for the second rule must understand all the rules that appear in

the function he is modifying so he can correctly deal with the interactions. The same problem arises when

a rule is subsequently deleted.

Lastly, it would be valuable if users could ask queries about the rules currently being enforced. If

they are buried in functions, there is no easy way to do this.

In our opinion there is only one reasonable solution; rules must be enforced by the DBMS but not

bound to any function or collection. This has two consequences. First, the OODB paradigm of "everything

is expressed as a method" simply does not apply to rules. Second, one cannot directly access any internal

interfaces in the DBMS below the rule activation code, which would allow a user to bypass the run time

13



system that wakes up rules at the correct time.

In closing, there are already products from second generation commercial vendors which are faithful

to the above proposition. Hence, the commercial relational marketplace is ahead of OODB thinking con-

cerning this particular proposition.

3.2. Propositions Concerning Increasing DBMS Function

We claimed earlier that third generation systems could not take a step backwards, i.e. they must sub-

sume all the capabilities of second generation systems. The capabilities of concern are query languages,

the specification of sets of data elements and data independence. We hav e four propositions in this section

that deal with these matters.

PROPOSITION 2.1: Essentially all programatic access to a database should be through a

non-procedural, high-level access language.

Much of the OODB literature has underestimated the critical importance of high-level data access lan-

guages with expressive power equivalent to a relational query language. For example, [ATKI89] proposes

that the DBMS offer an ad hoc query facility in any convenient form. We make a much stronger statement:

the expressive power of a query language must be present in every programmatic interface and it should be

used for essentially all access to DBMS data. Long term, this service can be provided by adding query lan-

guage constructs to the multiple persistent programming languages that we discuss further in Proposition

3.2. Short term, this service can be provided by embedding a query language in conventional programming

languages.

Second generation systems have demonstrated that dramatically lower program maintenance costs

result from using this approach relative to first generation systems. In our opinion, third generation

database systemsmust not compromise this advance. By contrast, many OODB researchers state that the

applications for which they are designing their systems wish tonavigate to desired data using a low-level

procedural interface. Specifically, they want an interface to a DBMS in which they can access a specific

14



record. One or more data elements in this record would be of type "reference to a record in some other col-

lection" typically represented by some sort of pointer to this other record, e.g an object identifier. Then, the

application would dereference one of these pointers to establish a new current record. This process would

be repeated until the application had navigated to the desired records.

This navigational point of view is well articulated in the Turing Award presentation by Charles Bach-

man [BACH73]. We feel that the subsequent 17 years of history has demonstrated that this kind of inter-

face is undesirable and should not be used. Here we summarize only two of the more important problems

with navigation. First, when the programmer navigates to desired data in this fashion, he is replacing the

function of the query optimizer by hand-coded lower level calls. It has been clearly demonstrated by his-

tory that a well-written, well-tuned, optimizer can almost always do better than a programmer can do by

hand. Hence, the programmer will produce a program which has inferior performance. Moreover, the pro-

grammer must be considerably smarter to code against a more complex lower level interface.

However, the real killer concernsschema evolution.If the number of indexes changes or the data is

reorganized to be differently clustered, there is no way for the navigation interface to automatically take

advantage of such changes. Hence, if the physical access paths to data change, then a programmer must

modify his program. On the other hand, a query optimizer simply produces a new plan which is optimized

for the new environment. Moreover, if there is a change in the collections that are physically stored, then

the support forviews prevalent in second generation systems can be used to insulate the application from

the change. To avoid these problems of schema evolution and required optimization of database access in

each program, a user should specify the set of data elements in which he is interested as a query in a non-

procedural language.

However, consider a user who isbrowsing the database, i.e. navigating from one record to another.

Such a user wishes to see all the records on any path through the database that he explores. Moreover,

which path he examines next may depend on the composition of the current record. Such a user is clearly

accessing a single record at a time algorithmically. Our position on such users is straight-forward, namely

they should run a sequence of queries that return a single record, such as:

15



select *
from collection
where collection.key = value

Although there is little room for optimization of such queries, one is still insulated from required program

maintenance in the event that the schema changes. One does not obtain this service if a lower level inter-

face is used, such as:

dereference (pointer)

Moreover, we claim that our approach yields comparable performance to that available from a lower

level interface. This perhaps counter-intuitive assertion deserves some explanation. The vast majority of

current OODB enthusiasts suggest that a pointer besoft, i.e. that its value not change even if the data ele-

ment that it points to is moved. This characteristic,location independence,is desirable because it allows

data elements to be moved without compromising the structure of the database. Such data element

movement is often inevitable during database reorganization or during crash recovery. Therefore, OODB

enthusiasts recommend that location independent unique identifiers be used for pointers. As a result, deref-

erencing a pointer requires an access to a hashed or indexed structure of unique identifiers.

In the SQL representation, the pair:

(relation-name, key)

is exactly a location independent unique identifier which entails the same kind of hashed or indexed lookup.

Any overhead associated with the SQL syntax will presumably be removed at compile time.

Therefore we claim that there is little, if any, performance benefit to using the lower level interface

when a single data element is returned. On the other hand, if multiple data elements are returned then

replacing a high level query with multiple lower level calls may degrade performance, because of the cost

of those multiple calls from the application to the DBMS.

The last claim that is often asserted by OODB enthusiasts is that programmers, e.g. CAD program-

mers,want to perform their own navigation, and therefore, a system should encourage navigation with a

low-level interface. We recognize that certain programmers probably prefer navigation. There were

16



programmers who resisted the move from assembly language to higher level programming languages and

others who resisted moving to relational systems because they would have a less complex task to do and

therefore a less interesting job. Moreover, they thought they could do a better job than compilers and opti-

mizers. We feel that the arguments against navigation are compelling and that some programmers simply

require education.

Therefore, we are led to conclude that essentially all DBMS access should be specified by queries in

a non-procedural high-level access notation. In Proposition 3.2 we will discuss issues of integrating such

queries with current HLLs. Of course, there are occasional situations with compelling reasons to access

lower levels of the DBMS as noted in Proposition 1.3; however, this practice should be strongly discour-

aged.

We now turn to a second topic for which we believe that a step backwards must also be avoided.

Third generation systems will support a variety of type constructors for collections as noted in Proposition

1.1, and our next proposition deals with the specification of such collections, especially collections which

are sets.

PROPOSITION 2.2: There should be at least two ways to specify collections, one using enu-

meration of members and one using the query language to specify membership.

The OODB literature suggests specifying sets by enumerating the members of a set, typically by means of a

linked list or array of identifiers for members [DEWI90]. We believe that this specification is generally an

inferior choice. To explore our reasoning, consider the following example.

ALUMNI (name, age, address)
GROUPS (g-name, composition)

Here we have a collection of alumni for a particular university along with a collection of groups of alumni.

Each group has a name, e.g. old guard, young turks, elders, etc. and the composition field indicates the

alumni who are members of each of these groups. It is clearly possible to specify composition as an array

of pointers to qualifying alumni. However, this specification will be quite inefficient because the sets in this

example are likely to be quite large and have substantial overlap. More seriously, when a new person is

17



added to the ALUMNI collection, it is the responsibility of the application programmer to add the new per-

son to all the appropriate groups. In other words, the various sets of alumni are specifiedextensionallyby

enumerating their members, and membership in any set ismanually determined by the application pro-

grammer.

On the other hand, it is also possible to represent GROUPS as follows:

GROUPS(g-name, min-age, max-age, composition)

Here, composition is specifiedintensionally by the following SQL expression:

select *
from ALUMNI
where age > GROUPS.min-age and age < GROUPS.max-age

In this specification, there is one query for each group, parameterized by the age requirement for the group.

Not only is this a more compact specification for the various sets, but also it has the advantage that set

membership isautomatic. Hence, whenever a new alumnus is added to the database, he is automatically

placed in the appropriate sets. Such sets are guaranteed to be semantically consistent.

Besides assured consistency, there is one further advantage of automatic sets, namely they hav e a

possible performance advantage over manual sets. Suppose the user asks a query such as:

select g-name
from GROUPS
where composition.name = "Bill"

This query requests the groups in which Bill is a member and uses the "nested dot" notation popularized by

GEM [ZANI83] to address into the members of a set. If an array of pointers specification is used for com-

position, the query optimizer may sequentially scan all records in GROUPS and then dereference each

pointer looking for Bill. Alternately, it might look up the identifier for Bill, and then scan all composition

fields looking for the identifier. On the other hand, if the intensional representation is used, then the above

query can be transformed by the query optimizer into:

select g-name
from GROUPS, ALUMNI
where ALUMNI.name = "Bill"
and ALUMNI.age > GROUPS.min-age and ALUMNI.age < GROUPS.max-age

18



If there is an index on GROUPS.min-age or GROUPS.max-age and on ALUMNI.name, this query may

substantially outperform either of the previous query plans.

In summary, there are at least two ways to specify collections such as sets, arrays, sequences, etc.

They can be specified eitherextensionallythrough collections of pointers, or intensionally through expres-

sions. Intensional specification maintainsautomatic set membership [CODA71], which is desirable in

most applications. Extensional specifications are desirable only when there is no structural connection

between the set members or when automatic membership is not desired.

Also with an intensional specification, semantic transformations can be performed by the optimizer,

which is then free to use whatever access path is best for a given query, rather than being limited in any way

by pointer structures. Hence, physical representation decisions can be delegated to the DBA where they

belong. He can decide what access paths to maintain, such as linked lists or pointer arrays [CARE90].

Our point of view is that both representations are required, and that intensional representation should

be favored. On the other hand, OODB enthusiasts typically recommend only extensional techniques. It

should be pointed out that there wasconsiderableattention dedicated in the mid 1970’s to the advantages

of automatic sets relative to manual sets [CODD74]. In order to avoid a step backwards, third generation

systems must favor automatic sets.

Our third proposition in this section concernsviewsand their crucial role in database applications.

PROPOSITION 2.3: Updatable views are essential.

We see very few static databases; rather, most are dynamic and ever changing. In such a scenario, when-

ev er the set of collections changes, then program maintenance may be required. Clearly, the encapsulation

of database access into functions and the encapsulation of functions with a single collection is a helpful

step. This will allow the functions which must be changed to be easily identified. However, this solution,

by itself, is inadequate. If a change is made to the schema it may take weeks or even months to rewrite the

affected functions. During this intervening time the database cannot simply be "down". Moreover, if

changes occur rapidly, the resources consumed may be unjustifiable.

19



A clearly better approach is to supportvirtual collections (views). Second generation systems were

an advance over first generation systems in part because they provided some support in this area. Unfortu-

nately, it is often not possible to update relational views. Consequently, if a user performs a schema modifi-

cation and then defines his previous collections as views, application programs which previously ran may or

may not continue to do so. Third generation systems will have to do a better job on updatable views.

The traditional way to support view updates is to perform command transformations along the lines

of [STON75]. To disambiguate view updates, additional semantic information must be provided by the

definer of the view. One approach is to require that each collection be opaque which might become a view

at a later time. In this case there is a group of functions through which all accesses to the collection are

funneled [ROWE79], and the view definer must perform program maintenance on each of these functions.

This will entail substantial program maintenance as well as disallow updates through the query language.

Alternately, it has been shown [STON90B] that a suitable rules system can be used to provide the necessary

semantics. This approach has the advantage that only one (or a small number) of rules need be specified to

provide view update semantics. This will be simpler than changing the code in a collection of functions.

Notice that the members of a virtual collection do not necessarily have a unique identifier because

they do not physically exist. Hence, it will be difficult to require that each record in a collection have a

unique identifier, as dictated in many current OODB prototypes.

Our last point is that data independence cannot be given up, which requires that all physical details

must be hidden from application programmers.

PROPOSITION 2.4: Performance indicators have almost nothing to do with data models

and must not appear in them.

In general, the main determiners of performance using either the SQL or lower level specification

are:

the amount of performance tuning done on the DBMS
the usage of compilation techniques by the DBMS
the location of the buffer pool (in the client or DBMS address space)

20



the kind of indexing available
the performance of the client-DBMS interface
and the clustering that is performed.

Such issues have nothing to do with the data model or with the usage of a higher level language like SQL

versus a lower level navigational interface. For example, the tactic of clustering related objects together has

been highlighted as an important OODB feature. However, this tactic has been used by data base systems

for many years, and is a central notion in most IMS access methods. Hence, it is a physical representation

issue that has nothing to do with the data model of a DBMS. Similarly, whether or not a system builds

indexes on unique identifiers and buffers database records on a client machine or even in user space of an

application program are not data model issues.

We hav e also talked to numerous programmers who are doing non traditional problems such as CAD,

and are convinced that they require a DBMS that will support their application which is optimized for their

environment. Providing subsecond response time to an engineer adding a line to an engineering drawing

may require one or more of the following:

an access method for spatial data such as R-trees, hb-trees or grid files
a buffer pool on the engineer’s workstation as opposed to a central server
a buffer pool in his application program
data buffered in screen format rather than DBMS format

These are all performance issues for a workstation/server environment and have nothing to do with the data

model or with the presence or absence of a navigational interface.

For a giv en workload and database, one should attempt to provide the best performance possible.

Whether these tactics are a good idea depends on the specific application. Moreover, they are readily avail-

able toany database system.

3.3. Propositions that Result from the Necessity of an Open System

So far we have been discussing the characteristics of third generation DBMSs. We now turn to the

Application Programming Interface (API) through which a user program will communicate with the

DBMS. Our first proposition states the obvious.

21



PROPOSITION 3.1: Third generation DBMSs must be accessible from multiple HLLs.

Some system designers claim that a DBMS should be tightly connected to a particular programming lan-

guage. For example, they suggest that a function should yield the same result if it is executed in user space

on transient data or inside the DBMS on persistent data. The only way this can happen is for the execution

model of the DBMS to be identical to that of the specific programming language. We believe that this

approach is wrong.

First, there is no agreement on a single HLL. Applications will be coded in a variety of HLLs, and

we see no programming languageEsperantoon the horizon. Consequently, applications will be written in

a variety of programming languages, and amulti-lingual DBMS results.

However, anopenDBMS must be multi-lingual for another reason. It must allow access from a vari-

ety of externally written application subsystems, e.g. Lotus 1-2-3. Such subsystems will be coded in a vari-

ety of programming languages, again requiring multi-lingual DBMS support.

As a result, a third generation DBMS will be accessed by programs written in a variety of languages.

This leads to the inevitable conclusion that the type system of the HLL will not necessarily match the type

system of the DBMS. Therefore, we are led to our next proposition.

PROPOSITION 3.2: Persistent X for a variety of Xs is a good idea. They will all be sup-

ported on top of a single DBMS by compiler extensions and a (more or less) complex run

time system.

Second generation systems were interfaced to programming languages using a preprocessor partly because

early DBMS developers did not have the cooperation of compiler developers. Moreover, there are certain

advantages to keeping some independence between the DBMS language and the programming language,

for example the programming language and DBMS can be independently enhanced and tested. However,

the resulting interfaces were not very friendly and were characterized as early as 1977 as "like glueing an

apple on a pancake". Also, vendors have tended to concentrate on elegant interfaces between their 4GLs

and database services. Obviously it is possible to provide the same level of elegance for general purpose

22



programming languages.

First, it is crucial to have a closer match between the type systems, which will be facilitated by

Proposition 1.1. This is the main problem with current SQL embeddings, not the aesthetics of the SQL

syntax. Second, it would then be nice to allow any variable in a user’s program to be optionallypersistent.

In this case, the value of any persistent variable is remembered even after the program terminates. There

has been considerable recent interest in such interfaces [LISK82, BUNE86].

In order to perform well, persistent X must maintain acacheof data elements and records in the pro-

gram’s address space, and then carefully manage the contents of this cache using some replacement algo-

rithm. Consider a user who declares a persistent data element and then increments it 100 times. With a

user space cache, these updates will require small numbers of microseconds. Otherwise, 100 calls across a

protected boundary to the DMS will be required, and each one will require milliseconds. Hence, a user

space cache will result in a performance improvement of 100 - 1000 for programs with high locality of ref-

erence to persistent data. The run time system for persistent X must therefore inspect the cache to see if

any persistent element is present and fetch it into the cache if not. Moreover, the run time system must also

simulate any types present in X that are not present in the DBMS.

As we noted earlier, functions should be coded by including calls to the DBMS expressed in the

query language. Hence, persistent X also requires some way to express queries. Such queries can be

expressed in a notation appropriate to the HLL in question, as illustrated for C++ by ODE [AGRA89]. The

run-time system for the HLL must accept and process such queries and deliver the results back to the pro-

gram.

Such a run time system will be more (or less) difficult to build depending on the HLL in question,

how much simulation of types is required, and how far the query language available in the HLL deviates

from the one available in the DBMS. A suitable run-time system can interface many HLLs to a DBMS.

One of us has successfully built persistent CLOS on top of POSTGRES using this approach [ROWE90].

In summary, there will be a variety of persistent X’s designed. Each requires compiler modifications

unique to the language and a run time system particular to the HLL. All of these run time systems will

23



connect to a common DBMS. The obvious question is "How should queries be expressed?" to this com-

mon DBMS. This leads to the next proposition.

PROPOSITION 3.3: For better or worse, SQL is intergalactic dataspeak.

SQL is the universal way of expressing queries today. The early commercial OODB’s did not recognize

this fact, and had to retrofit an SQL query system into their product. Unfortunately, some products did not

manage to survive until they completed the job. Although SQL has a variety of well known minor prob-

lems [DATE84], it is necessary for commercial viability. Any OODB which desires to make an impact in

the marketplace is likely to find that customers vote with their dollars for SQL. Moreover, SQL is a reason-

able candidate for the new functions suggested in this paper, and prototype syntax for several of the capa-

bilities has been explored in [BEEC88, ANSI89]. Of course, additional query languages may be appropri-

ate for specific applications or HLLs.

Our last proposition concerns the architecture which should be followed when the application pro-

gram is on one machine interfaced to a DBMS on a second server machine. Since DBMS commands will

be coded in some extended version of SQL, it is certainly possible to transmit SQL queries and receive the

resulting records and/or completion messages. Moreover, a consortium of tool and DBMS vendors, the

SQL Access Group, is actively working to define and prototype an SQL remote data access facility. Such a

facility will allow convenient interoperability between SQL tools and SQL DBMSs. Alternately, it is possi-

ble to communicate between client and server at some lower level interface.

Our last proposition discusses this matter.

PROPOSITION 3.4: Queries and their resulting answers should be the lowest level of com-

munication between a client and a server.

In an environment where a user has a dedicated workstation and is interacting with data at a remote server,

there is a question concerning the protocol between the workstation and the server. OODB enthusiasts are

debating whether requests should be for single records, single pages or some other mechanism. Our view is

24



very simple: expressions in the query language should be the lowest level unit of communication. Of

course, if a collection of queries can be packaged into a function, then the user can use a remote procedure

call to cause function execution on the server. This feature is desirable because it will result in less than

one message per query.

If a lower level specification is used, such as page or record transfers, then the protocol is fundamen-

tally more difficult to specify because of the increased amount of state, and machine dependencies may

creep in. Moreover, any interface at a lower level than that of SQL will be much less efficient as noted in

[HAGM86, TAND88]. Therefore, remote procedure calls and SQL queries provide an appropriate level of

interface technology.

4. SUMMARY

There are many points upon which we agree with OODB enthusiasts and with [ATKI89]. They

include the benefits of a rich type system, functions, inheritance and encapsulation. However, there are

many areas where we are in strong disagreement. First, we see [ATKI89] as too narrowly focused on object

management issues. By contrast, we address the much larger issue of providing solutions that support data,

rule and object management with a complete toolkit, including integration of the DBMS and its query lan-

guage into a mult-lingual environment. As such, we see the non-SQL, single language systems proposed

by many OODB enthusiasts as appealing to a fairly narrow market.

Second, we feel that DBMS access should onlu occur through a query language, and nearly 20 years

of history convinces us that this is correct. Physical navigation by a user program and within functions

should be avoided. Third, the use of automatic collections whenever possible should be encouraged, as

they offer many advantages over explicitly maintained collections. Fourth, persistence may well be added

to a variety of programming languages. Because there is no programming language Esperanto, this should

be accomplished by changing the compiler and writing a language-specific run-time system to interface to a

single DBMS. Therefore, persistent programming languages have little to do with the data model. Fifth,

unique identifiers should be either user-defined or system-defined, in contrast to one of the tenets in

25



[ATKI89].

However, perhaps the most important disagreement we have with much of the OODB community is

that we see a natural evolution from current relational DBMSs to ones with the capabilities discussed in this

paper. Systems from aggressive relational vendors are faithful to Tenets 1, 2 and 3 and have good support

for propositions 1.3, 1.4, 1.5, 2.1, 2.3, 2.4, 3.1, 3.3 and 3.4. To become true third generation systems they

must add inheritance, additional type constructors, and implement persistent programming languages.

There have been prototype systems which point the way to inclusion of these capabilities.

On the other hand, current systems that claim to be object-oriented generally are not faithful to any of

our tenets and support propositions 1.1 (partly), 1.2, 1.3 and 3.2. To become true third generation systems,

they must add a query language and query optimizer, a rules system, SQL client/server support, support for

views, and persistent programming languages. In addition, they must undo any hard coded requirement for

UIDs and discourage navigation. Moreover, they must build 4th generation languages, support distributed

databases, and tune their systems to perform efficient data management.

Of course, there are significant research and development challenges to be overcome in satisfying

these propositions. The design of a persistent programming language for a variety of existing HLLs pre-

sents a unique challenge. The inclusion in such languages of pleasing query language constructs is a fur-

ther challenge. Moreover, both logical and physical database design are considered challenging for current

relational systems, and they will get much more difficult for systems with richer type systems and rules.

Database design methodologies and tools will be required to assist users in this area. Optimization of the

execution of rules poses a significant challenge. In addition, tools to allow users to visualize and debug

rule-oriented applications are crucial to the success of this technology. We encourage the research commu-

nity to take on these issues.

REFERENCES

[AGRA89] Agrawal, R. and Gehani, G., "ODE: The Language and the Data Model," Proc.

1989 ACM-SIGMOD Conference on Mangement of Data, Portland, Ore. June

26



1989.

[ANON85] Anon et. al., "A Measure of Transaction Processing Power," Datamation, 1985.

[ANSI89] ANSI-ISO Committee, "Working Draft, Database Languages SQL2 and SQL3,"

July 1989.

[ATKI89] Atkinson, M. et. al., "The Object-Oriented Database System Manifesto," ALTAIR

Technical Report No. 30-89, GIP ALTAIR, LeChesnay, France, Sept. 1989, also

in Deductive and Object-oriented Databases, Elsevere Science Publishers, Amster-

dam, Netherlands, 1990.

[BACH73] Bachman, C., "The Programmer as Navigator," CACM, November 1973.

[BEEC88] Beech, D., "A Foundation for Evolution from Relational to Object Databases,"

Proc. Conference on Extending Database Technology, Venice, Italy, April 1988.

[BERN90] Bernstein, P. et. al., "Implementing Recoverable Requests Using Queues", Proc.

ACM SIGMOD Conference on Management of Data, Atlantic City, N.J., May

1990.

[BUNE86] Buneman, P. and Atkinson, M., "Inheritance and Persistence in Programming Lan-

guages," Proc. 1986 ACM-SIGMOD Conference on Management of Data, Wash-

ington, D.C., May 1986.

[CARE88] Carey, M., et. al., "A Data Model and Query Language for EXODUS," Proc. 1988

ACM-SIGMOD Conference on Management of Data, Chicago, Ill., June 1988.

[CARE90] Carey, M., et al, "An Incremental Join Attachment for Starburst," (in preparation).

[CHAN89] Chang, E. and Katz, R., "Exploiting Inheritance and Structure Semantics for

Effective Clustering and Buffering in an Object-oriented DBMS," Proc. 1989

ACM-SIGMOD Conference on Management of Data, Portland, Ore., June 1989.

[CODA71] CODASYL Data Base Task Group Report, April 1971.

27



[CODD74] Codd, E. and Date, C., "Interactive Support for Non-Programmers: The Relational

and Network Approaches," Proc. 1974 ACM-SIGMOD Debate, Ann Arbor,

Mich., May 1974.

[COPE84] Copeland, G. and Maier, D., "Making Smalltalk a Database System," Proc. 1984

ACM-SIGMOD Conference on Management of Data, Boston, Mass., June 1984.

[DADA86] Dadam, P. et al., "A DBMS Prototype to Support Extended NF2 Relations: An

Integrated View of Flat Tables and Hierarchies," Proc. 1986 ACM-SIGMOD Con-

ference on Management of Data, Washington, DC, 1986.

[DATE84] Date, C., "A Critique of the SQL Database Language," ACM SIGMOD Record

14(3), November 1984.

[DATE86] Date, C., "An Introduction to Database Systems," Addison-Wesley, Reading,

Mass., 1986.

[DEWI90] Dewitt, D. et. al., "A Study of Three Alternative Workstation-Server Architectures

for Object Oriented Database Systems," ALTAIR Technical Report 42-90, Le

Chesnay, France, January 1990.

[HAGM86] Hagmann, R. and Ferrari, D., "Performance Analysis of Several Back-End

Database Architectures," ACM-TODS, March 1986.

[KIM90] Kim, W., "Research Directions in Object-oriented Databases," MCC Technical

report ACT-OODS-013-90, MCC, Austin, Tx., January 1990.

[LISK82] Liskov, B. and Scheifler, R., "Guardians and Actions: Linguistic Support for

Robust Distributed Programs," Proc. 9th Symposium on the Principles of Pro-

gramming Languages, January 1982.

[OSBO86] Osborne, S. and Heaven, T., ‘‘The Design of a Relational System with Abstract

Data Types as Domains,’’ ACM TODS, Sept. 1986.

28



[ROWE79] Rowe, L. and Shoens, K., "Data Abstraction, Views and Updates in RIGEL," Proc.

1979 ACM-SIGMOD Conference on Management of Data, Boston, Mass., May

1979.

[ROWE90] Rowe, Lawrence, "The Design of PICASSO," (in preparation).

[STON75] Stonebraker, M., "Implementation of Integrity Constraints and Views by Query

Modification," Proc. 1975 ACM-SIGMOD Conference on Management of Data,

San Jose, May 1975.

[STON83] Stonebraker, M., "Document Processing in a Relational Database System," ACM

TOOIS, April 1983.

[STON86] Stonebraker, M., "Inclusion of New Types in Relational Data Base Systems," Proc.

Second International Conference on Data Base Engineering, Los Angeles, Ca.,

Feb. 1986.

[STON90] Stonebraker, M., et. al., "The Implementation of POSTGRES," IEEE Transactions

on Knowledge and Data Engineering, March 1990.

[STON90B] Stonebraker, M. et. al., "On Rules, Procedures, Caching and Views in Data Base

Systems," Proc. 1990 ACM-SIGMOD Conference on Management of Data,

Atlantic City, N.J., May 1990.

[TAND88] Tandem Performance Group, "A Benchmark of NonStop SQL on the Debit Credit

Transaction," Proc. 1988 ACM-SIGMOD Conference on Management of Data,

Chicago, Ill., June 1988.

[ZANI83] Zaniolo, C., "The Database Language GEM," Proc. 1983 ACM-SIGMOD Confer-

ence on Management of Data, San Jose, Ca., May 1983.

[ZDON90] Zdonik, S. and Maier, D., "Fundamentals of Object-oriented Databases," in Read-

ings in Object-oriented Database Systems, Morgan-Kaufman, San mateo, Ca.,

1990.

29



30


