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Overview

ä Review of analysis

Õ Limits, continuity and differentiability;

Õ Power series & transcendental functions;

Õ Taylor series;

Õ Complex variables.

ä Fourier series

Õ Introduction & general properties;

Õ Examples.

ä Basis functions & decompositions

Õ Expansion basis functions;

Õ Orthogonality, inner products &

completeness.

ä Representation of signals

Õ Fourier transforms;

Õ Wavelets.
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Course objectives

ä Understand representation in terms of basis

functions;

ä Be fluent in the use and properties of

complex variables;

ä Grasp key properties and uses of Fourier

analysis and its relation to wavelet analysis.

Related courses

ä Computer Graphics & Image Processing;

ä Information Theory & Coding;

ä Computer Vision;

ä Artificial Intelligence I;

ä Quantum Computing;

ä Digital Signal Processing.
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Review

of

analysis
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Limit of a function

If we can make the function f(x) arbitrarily close

to ` by making x close to a then ` is the limit

of f(x) as x→ a, written

limx→a f(x) = `
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Rigorous definition: ∀ε > 0 ∃δ > 0 such that

|f(x)− `| < ε when |x− a| < δ .
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Continuity

A function, f(x), is said to be continuous

at x = a if the following three conditions hold

ä limx→a f(x) exists;

ä f(x) is defined at x = a, and

ä limx→a f(x) = f(a) .

Otherwise, the function is said to be

discontinuous at x = a. A function is continuous

if it has no points of discontinuity.

At a point of discontinuity, the discontinuity may

be finite or infinite.

Consider the example of

f(x) = x− [x] .
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Differentiability

A function, f(x), is differentiable at x if

as δx→ 0

df

dx
≡ f ′(x) ≡ f(x+ δx)− f(x)

δx
→ finite limit .

df
dx (or f ′(x)) is known as the derivative. A

function is differentiable if it’s derivative exists

everywhere.

The existence of the derivative at a point, x,

corresponds to there being a tangent to the

function, f(x), whose gradient is f ′(x).
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ä product & quotient rules for differentiation;

ä differentiability =⇒ continuity.
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Convergence of infinite series

If the partial sums of a series

Sn = a1 + a2 + a3 + . . .+ an =

n∑

r=1

ar .

converge to a finite limit, S, then the infinite

series is said to be convergent. Otherwise, it is

divergent (either infinite limit or oscillates).

Example: geometric series
n∑

r=0

apr = Sn = a(1+p+p2+· · ·+pn) = a
1− pn+1

1− p
If |p| < 1 then convergent

and S = limn→∞ sn = a
1−p . Otherwise,

divergent.

D’Alembert’s ratio test says that

lim
r→∞

|ar+1/ar| = k < 1 =⇒ convergent

lim
r→∞

|ar+1/ar| = k > 1 =⇒ divergent .
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Power series

Power series are infinite series of the form

∞∑

r=0

arx
r = a0 + a1x+ a2x

2 + . . . .

D’Almbert’s ratio test tells us that such power

series are convergent if

lim
r→∞

∣∣∣∣
ar+1x

r+1

arxr

∣∣∣∣ = |x| lim
r→∞

∣∣∣∣
ar+1

ar

∣∣∣∣ = k < 1 .

That is, if x lies in the interval of convergence

−R < x < R

where the radius of convergence, R, is given by

R = lim
r→∞

∣∣∣∣
ar
ar+1

∣∣∣∣ .

The power series could either converge or diverge

if |x| = R.
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Transcendental functions

The following functions, members of a class of

functions known as transcendental functions, are

defined within their intervals of convergence by

these power series representations

sinx := x− x3

3!
+
x5

5!
− x7

7!
+ · · · all x

cosx := 1− x2

2!
+
x4

4!
− x6

6!
+ · · · all x

loge(1 + x) := x− x2

2
+
x3

3
− x4

4
+ · · · −1 < x ≤ 1

ex := 1 + x+
x2

2!
+
x3

3!
+ · · · all x

sinhx :=
ex − e−x

2
= x+

x3

3!
+
x5

5!
+ · · · all x

coshx :=
ex + e−x

2
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · · all x

There are convenient properties for the sum,

difference, products & composition of power series.
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Taylor series

Subject to some important conditions on f(x)

f(a+x) = f(a)+
x

1!
f ′(a)+

x2

2!
f ′′(a)+· · · =

∞∑

r=0

xr

r!
f (r)(a)

f(x) = A0 +A1(x−a)+A2(x−a)2 +A3(x−a)3 + · · ·

f ′(x) = A1 + 2A2(x− a) + 3A3(x− a)2 + · · ·
f ′′(x) = 2A2 + 3 · 2A3(x− a) + 4 · 3A4(x− a)2 + · · ·
f ′′′(x) = 3!A3 + 4!A4(x− a) + · · ·

f (n)(x) = n!An + (n+ 1)!An+1(x− a) + · · · .

Putting x = a now gives

f(a) = A0 f ′(a) = A1

f ′′(a) = 2!A2 f ′′′(a) = 3!A3

f (n)(a) = n!An .

Continuous Mathematics, 2003/2004 Slide 11



Complex variables

Overview

ä Imaginary number, i;

ä Argand diagram;

ä Modulus, argument & complex conjugate;

ä Algebra of imaginary numbers;

ä Euler’s equation:

eiθ = cos θ + i sin θ
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Imaginary number, i

We introduce the imaginary number, i =
√
−1 so

as to solve a wider class of equations. For

example,

z2 + 1 = 0 =⇒ z = ±i
z2 − 2z + 2 = 0 =⇒ z = 1± i .

Note that

i2 = −1 , i3 = i2i = −i , i4 = (i2)2 = 1 ,

and

i−1 =
1

i
=

i

i2
= −i , i−2 = −1 , i−3 =

1

i3
=

1

−i = i .

Complex numbers, z, are written

z = x+ iy or z = (x, y)
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Argand diagrams

The idea is to represent any complex

number z = x+ iy by the point P : (x, y) in the

plane, where x is the real part of z and y is the

imaginary part.

Then using polar coordinates (and for z 6= 0)

x = r cos θ

y = r sin θ

z = x+ iy = r(cos θ + i sin θ) .
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PSfrag replacements

θ

r

P : z = x+ iy

Continuous Mathematics, 2003/2004 Slide 14



Modulus, argument & conjugate

Given

z = x+ iy = r(cos θ + i sin θ)

define the modulus and argument of z as

|z| = r =
√
x2 + y2 arg(z) = θ .

Note that arg(0) is undefined. Also, θ + 2kπ (k

any integer) are also arguments of z. The

Principal value, written Arg(z), is chosen so that

−π < θ ≤ π .

The complex conjugate of z is z∗ = x− iy.
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Algebra of complex numbers

If z1 = x1 + iy1 and z2 = x2 + iy2 then the sum

and difference of z1 and z2 are defined as

z1 + z2 = (x1 + x2) + i(y1 + y2)

z1 − z2 = (x1 − x2) + i(y1 − y2) .

The product of z1 and z2 is defined as

z1z2 = (x1 + iy1)(x2 + iy2)

= (x1x2 − y1y2) + i(x1y2 + x2y1) .

The quotient of two complex numbers is defined

analagously

z2

z1
=
x2 + iy2

x1 + iy1

=
(x2 + iy2)(x1 − iy1)

(x1 + iy1)(x1 − iy1)

=
x1x2 + y1y2

x2
1 + y2

1

+ i
x1y2 − y1x2

x2
1 + y2

1

provided x2
1 + y2

1 = |z1|2 6= 0.
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Euler’s equation

Using the power series representations

for ez, sin z and cos z

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ · · ·

sin z = z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

cos z = 1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

So, putting z = iθ, gives

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

= 1 + iθ − θ2

2!
− iθ

3

3!
+
θ4

4!
+ i

θ5

5!
− · · ·

=

(
1− θ2

2!
+
θ4

4!
− · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
− · · ·

)

= cos θ + i sin θ

eiθ = cos θ + i sin θ
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Fourier

Series
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Fourier series

Taylor series allow us to represent certain

functions as power series. Such functions must be

continuous and infinitely differentiable within the

interval of convergence.

We now consider how functions that may be

neither differentiable nor continuous at certain

points can be represented by a trigonometric

series of the form

a0

2
+
∞∑

r=1

(ar cos rx+ br sin rx)

where a0, ar and br are constants for r = 1, 2, . . ..

Since this trigonometric series is unchanged by

replacing x by x+ 2kπ, where k is an integer, we

can only use it to represent a certain restricted

class of functions.
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Periodic functions

We say that a function, f(x), is periodic with

period p if

f(x+ p) = f(x)

for all x. So, it suffices if we know the value

of f(x) for all values in the interval 0 < x ≤ p of

length p.

Examples

ä f(x) = cos(x) has period p = 2π

ä f(x) = cos(2x) has period p = π

ä f(x) = cos
(
π
T x
)

has period p = 2T
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Fourier coefficients

Suppose that f(x) is any integrable function

defined on the interval −π < x ≤ π. Let,

a0 =
1

π

∫ π

−π
f(x) dx ,

ar =
1

π

∫ π

−π
f(x) cos rx dx , r = 1, 2, 3, . . . ,

br =
1

π

∫ π

−π
f(x) sin rx dx , r = 1, 2, 3, . . .

then the resulting series is called the Fourier series

and the coefficients are the Fourier coefficients

a0

2
+

∞∑

r=1

(ar cos rx+ br sin rx) .

Question: when does the Fourier series for f(x)

converge to f(x)?

To answer this question we need to define

Dirichlet’s conditions.
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Dirichlet’s conditions

Suppose f(x) is defined arbitrarily in the

interval −π < x ≤ π and extended to other

values of x by the periodicity

condition f(x+ 2kπ) = f(x) where k is an

integer.

The function f(x) satisfies the Dirichlet’s

conditions, if in −π < x ≤ π,

ä f(x) is continuous except for a finite number

of points of finite discontinuities, and

ä has only a finite number of maxima and

minima.

(Such functions are also called piecewise regular.)
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Fourier’s theorem

Fourier was able to show that a function, f(x),

satisfying the Dirichlet conditions has a Fourier

series which converges to f(x) at all points in the

interval where f(x) is continuous.

Moreover, at a point of discontinuity (necessarily

finite), say at x = x0, the Fourier series converges

to the value

1

2
lim
δ→0
{f(x0 + δ) + f(x0 − δ)} ,

which is just the mean of the two limiting values

of f(x) as x approaches x0 from the right and

left-hand sides.
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Derivation of Fourier coefficients

If r and s are positive integers or zero then it

follows by simple integration that

∫ π

−π
cos rx cos sx dx =





0 for r 6= s

2π for r = s = 0

π for r = s > 0

∫ π

−π
sin rx sin sx dx =





0 for r 6= s

0 for r = s = 0

π for r = s > 0
∫ π

−π
sin rx cos sx dx = 0 for all r and s

∫ π

−π
cos rx dx =





0 for r > 0

2π for r = 0
∫ π

−π
sin rx dx = 0 for all r .
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Derivation of

Fourier coefficients, ctd

Using these results and multiplying both sides of

f(x) =
a0

2
+

∞∑

r=1

(ar cos rx+ br sin rx)

by cos sx and integrating from x = −π to π

yields expressions for a0 and ar (r = 1, 2, 3, . . .).

Similarly, multiplying both sides by sin sx and

integrating from x = −π to π yields expressions

for br (r = 1, 2, 3, . . .).

Note that we can merge the expressions for a0

and ar into the single formula

ar =
1

π

∫ π

−π
f(x) cos rx dx ,

as r takes values r = 0, 1, 2, . . ..
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Even and odd functions

A function f(x) is said to be even if for all x

f(x) = f(−x)

So, for example, f(x) = cos(x) is an even

function.

Similarly, a function f(x) is said to be odd if for

all x

f(x) = −f(−x)

So, for example, f(x) = sin(x) is an odd

function.
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Even functions: cosine series

Suppose that f(x) in the interval −π < x ≤ π is

an even function then for all r = 1, 2, 3, . . .

a0 =
1

π

∫ π

−π
f(x) dx =

2

π

∫ π

0

f(x) dx ,

ar =
1

π

∫ π

−π
f(x) cos rx dx =

2

π

∫ π

0

f(x) cos rx dx ,

br =
1

π

∫ π

−π
f(x) sin rx dx = 0 .

Hence, if f(x) is an even function its Fourier

series reduces to a series where all the sine terms

vanish.
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Odd functions: sine series

Alternatively, suppose that f(x) in the

interval −π < x ≤ π is an odd function then for

all r = 1, 2, 3, . . .

a0 =
1

π

∫ π

−π
f(x) dx = 0 ,

ar =
1

π

∫ π

−π
f(x) cos rx dx = 0 ,

br =
1

π

∫ π

−π
f(x) sin rx dx =

2

π

∫ π

0

f(x) sin rx dx .

Hence, if f(x) is an odd function its Fourier

series reduces to a series where all the cosine

terms vanish.
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Change of interval (period)

Instead of using the interval −π < x ≤ π and a

period of 2π consider the more general situation

of an interval −T < x ≤ T with period 2T .

So suppose that f(x) satisifes the Dirichlet

conditions in −T < x ≤ T and is defined outside

this interval by the periodicity

condition f(x+ 2Tk) = f(x), where k is an

integer. Then, writing z = πx/T gives

f(x) = f

(
Tz

π

)
= F (z) ,

where now F (z) is a periodic function of z of

period 2π.
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Change of interval (period), ctd

Hence in −π < z ≤ π

F (z) =
a0

2
+

∞∑

r=1

(ar cos rz + br sin rz) ,

where

ar =
1

π

∫ π

−π
F (z) cos rz dz , (r = 0, 1, 2, . . .) ,

br =
1

π

∫ π

−π
F (z) sin rz dz , (r = 1, 2, 3, . . .) .

Thus, putting z = πx/T , gives in −T < x ≤ T

f(x) =
a0

2
+

∞∑

r=1

(
ar cos

πxr

T
+ br sin

πxr

T

)

where

ar =
1

T

∫ T

−T
f(x) cos

πxr

T
dx , (r = 0, 1, 2, , . . .) ,

br =
1

T

∫ T

−T
f(x) sin

πxr

T
dx , (r = 1, 2, 3, . . .) .
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Compact complex representation

Using the Euler relation eiθ = cos θ + i sin θ

f(x) =
a0

2
+

∞∑

r=1

(ar cos rx+ br sin rx)

can be written as

f(x) =

∞∑

r=−∞
cre

irx

where for all r > 0

cr =
1

2
(ar − ibr) and c−r =

1

2
(ar + ibr)

and

c0 =
1

2
a0 .

Also, for r = 0,±1,±2, . . .,

cr =
1

2π

∫ π

−π
f(x)e−irx dx .
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Compact complex

representation, ctd

Note that the coefficients, cr, are complex

numbers and that for each positive

integer r = 1, 2, 3, . . . we have two coefficients: cr
and c−r.

Assuming f(x) is a real-valued function, these

two coefficients are complex conjugates, that is,

c−r = c∗r for r > 0 .

In summary, we have obtained a represention

of f(x) in terms of a (doubly) infinite series of

complex exponential functions

f(x) =

∞∑

r=−∞
cre

irx

where

cr =
1

2π

∫ π

−π
f(x)e−irx dx .
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Examples

Consider two examples

ä square wave

f(x) =




−1 −π < x < 0 ,

1 0 < x ≤ π .

with period 2π, and

ä sawtooth wave

f(x) = x − 1 < x ≤ 1

with period 2.
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The square wave

The square wave is an odd function so ar = 0 for

all r ≥ 0. The cosine terms can be evaluated by

br =
2

π

∫ π

0

sin rx dx

=
2

rπ
(1− cos rπ)

=





4
rπ r odd ,

0 r even .

Hence, the Fourier series expansion of the square

wave function in −π < x ≤ π is

f(x) =
4

π

(
sinx+

sin 3x

3
+

sin 5x

5
+ · · ·

)
.
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The square wave, ctd
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The sawtooth wave

Again we have an odd function and, using the

change of interval relations,

br =

∫ 1

−1

x sinπrx dx

= − 2

πr
(−1)r .

Hence in the interval −1 < x < 1

f(x) = x =
2

π

(
sinπx− 1

2
sin 2πx+

1

3
sin 3πx− · · ·

)
.

At x = ±1, finite discontinuities occur. Hence at

these points the series does not represent x but

converges to the value

1

2
lim
δ→0
{f(x0 + δ) + f(x0 − δ)} =

1

2
{1 + (−1)} = 0 .
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The sawtooth wave, ctd
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Superpositions of waves
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Examples of series representation:

Taylor’s series

Recall, that Taylor’s series allows us to represent

certain functions as

f(x) =
∞∑

r=0

(x− a)r

r!
f (r)(a)

or, equivalently, for some constants cr, as the

power series
∞∑

r=0

crx
r .

For example,

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·
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Basis functions

and

decompositions
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Examples of series representation:

Fourier series

Fourier series allows us to represent certain

periodic functions by the series

∞∑

r=−∞
cre

irx

that is, using Euler’s equation, in terms of the

functions

1, cosx, sinx, cos 2x, sin 2x, cos 3x, sin 3x, . . .

For example, the periodic sawtooth function in

the interval −1 < x < 1 has the Fourier series

2

π

(
sinπx− 1

2
sin 2πx+

1

3
sin 3πx− · · ·

)
.
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Basis functions: general approach

The Taylor and Fourier series are just two

examples of a general approach where we seek to

represent a given function f(x) in terms of linear

combinations

f(x) =
∑

k

ckΨk(x)

of certain other functions, Ψk(x), called the

expansion basis functions.

For example, with the Fourier series the basis

functions are the complex exponentials

Ψk(x) = eiµkx

where k = 0,±1,±2, . . . and the frequency of the

kth basis function Ψk(x) is µk = k.

Note that changing the period from 2π to 2T has

the effect of changing the frequency of the kth

basis function to µk = πk/T .
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Basis functions: application to

systems analysis

This approach proves to be very useful because it

allows us to choose some universal set of

functions (the basis functions) and then represent

many other functions in terms of just a set of

numerical coefficients (the constants, ck).

In the analysis of systems a major benefit of

doing this is that knowledge of how members of

the chosen universal set of basis functions behave

in the system gives us knowledge about how

arbitrary input functions will be treated by the

system.

For periodic functions we only need to derive the

response when the input is in one of the relatively

simple forms: cos(rx) or sin(rx), for integer

choices of r.
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Definition of orthogonality

A set of basis functions is called orthogonal if

they satisfy the rule that the integral of the

conjugate product of any two distinct basis

functions equals zero, that is,

∫ T

−T
Ψ∗k(x)Ψj(x) dx = 0 (k 6= j)

where the integral is taken over one

period, −T < x ≤ T .

We will later consider the case of aperiodic

functions corresponding to letting T →∞ so that

the orthogonality condition then becomes
∫ ∞

−∞
Ψ∗k(x)Ψj(x) dx = 0 (k 6= j) .
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Inner products

We call such integrals, inner products, and use

the angle bracket notation

< Ψk(x), Ψj(x) > :=

∫ ∞

−∞
Ψ∗k(x)Ψj(x) dx .

The analogous notion for vectors is the scalar

product,

x · y
between two vectors x and y — a notion which is

closely related to notions of length, distance and

projection in Euclidean space.
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Orthogonality example

Consider Ψk(x) = eikx then Ψ∗k(x) = e−ikx and

so the inner product < Ψk(x), Ψj(x) > is given

by
∫ π

−π
Ψ∗k(x)Ψj(x) dx

=

∫ π

−π
e−ikxeijx dx

=

∫ π

−π
ei(j−k)x dx

=

∫ π

−π
(cos((j − k)x) + i sin((j − k)x) dx

=





0 (k 6= j)

2π (k = j)

So, we see that the basis functions eikx are

indeed orthogonal with period 2π.
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Orthonormal basis functions

If, in addition to orthogonality, the set of basis

functions satisfy the property that the inner

product of every basis function with itself is equal

to one, that is,

< Ψj(x), Ψj(x) >=

∫ ∞

−∞
Ψ∗j (x)Ψj(x) dx = 1

then the set of basis functions is said to be

orthonormal.

That is,

< Ψk(x), Ψj(x) >=





0 (k 6= j)

1 (k = j) .

Given a set of orthogonal basis functions we can

make them orthonormal just by scaling each of

them by a suitable factor.
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Derivation of expansion coefficients

Consider a function represented in terms of

orthonormal basis functions

f(x) =
∑

k

ckΨk(x) .

Question: How do we determine the ck?

Consider, for any k,

< Ψk(x), f(x) > =

∫ T

−T
Ψ∗k(x)f(x) dx

=

∫ T

−T
Ψ∗k(x)

∑

j

cjΨj(x) dx

=
∑

j

cj

∫ T

−T
Ψ∗k(x)Ψj(x) dx

=
∑

j

cj < Ψk(x), Ψj(x) >

= ck
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Completeness of basis functions

We say that a set of basis functions is complete

when all functions of interest can be represented

by an expansion of the form
∑

k

ckΨ(x) .

In other words, the space of basis functions spans

the required set of functions.

More rigorously, we can say that a set of basis

functions is complete if no nontrivial function of

interest, f(x), is orthogonal to all the basis

functions Ψk(x). That is,

< f(x), Ψk(x) >= 0 for all k

implies that f is the trivial function f(x) = 0 for

all x.
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Interpretations

Suppose that the functions Ψk(x) form

orthonormal basis functions.

ä One way to think of the coefficients, ck, is

that they measure the projection of the some

function f(x) along the “coordinate” given

by basis function Ψk(x).

ä The set of basis functions of the form eikx

(k = 0,±1,±2, . . .) can be shown to be

complete for the space of piecewise regular

functions with period 2π.

ä Each function eikx gives one “coordinate”

which together are sufficient to represent any

such piecewise regular function.
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Representation

of

signals
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Fourier transforms: motivation

Fourier series allow us to represent a class of

periodic functions on the interval −T < x ≤ T .

We now look at the representation of aperiodic

functions over the infinite range −∞ < x <∞.

Consider the Fourier series

f(x) =
∑

k

cke
iµkx

and, informally, take the limit to add up over all

possible frequencies −∞ < µ <∞ to yield the

integral representation for f(x)

f(x) =

∫ ∞

−∞
F (µ)eiµx dµ .
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Fourier transform and its inverse

The orthogonality relations for complex

exponentials then gives us that

F (µ) =
1

2π

∫ ∞

−∞
f(x)e−iµx dx .

The function F (µ) is known as the Fourier

transform of f(x).

Whereas, the expression

f(x) =

∫ ∞

−∞
F (µ)eiµx dµ

allows us to invert the transform, F (µ), and

return to the original function f(x).

Beware: there are other conventions for the

choice of basis functions which lead to minor

variants of these definitions, the position of

the 2π’s is critical!
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Properties of the Fourier transform

The Fourier transform F (µ) of a function f(x)

tells us about the contribution to f made by the

complex exponential eiµx at frequency µ.

The transformation can be thought of as taking

us from the time (or space) domain, x, to a

representation in the frequency domain, µ.

There are a number of helpful properties of

Fourier transforms according to the following

operations of

ä shift;

ä scale (or dilation);

ä differentiation;

ä convolution.
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Shift property

Suppose we shift the original function f(x) by

some displacement α. What happens to the

Fourier transform?

Taking the Fourier transform of f(x− α) gives

1

2π

∫ ∞

−∞
f(x− α)e−iµx dx

=
e−iµα

2π

∫ ∞

−∞
f(u)e−iµu du

= e−iµαF (µ)

Thus the Fourier transform of the shifted

function f(x− α) is obtained by multiplication of

the original Fourier transform by the factor e−iµα.
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Scale property

The scale (or dilation) property tells us what

happens when we consider f(αx) instead of f(x)

(for α 6= 0).

The Fourier transform of f(αx) is given by

1

2π

∫ ∞

−∞
f(αx)e−iµx dx

=





1
2πα

∫∞
−∞ f(u)e−i(µ/α)u du (α > 0)

1
2πα

∫ −∞
∞ f(u)e−i(µ/α)u du (α < 0)

=
1

|α|F
(µ
α

)
.
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Differentiation property

Suppose f(x) is a differentiable function. What

does the Fourier transform of f ′(x) look like?

Informally, we have that

1

2π

∫ ∞

−∞
f ′(x)e−iµx dx

=
1

2π

[
e−iµxf(x)

]x=∞

x=−∞
+
iµ

2π

∫ ∞

−∞
f(x)e−iµx dx

= iµF (µ) .

Using integration by parts as well as assuming a

regularity condition that f(x)→ 0 as x→ ±∞.

For higher order derivatives we have that
(
d

dx

)m
f(x) has Fourier transform (iµ)mF (µ)

where m is the order of the derivative.
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Convolution

The convolution of two functions f(x) and g(x)

is given by

h(x) = (f ∗ g)(x) =
1

2π

∫ α=∞

α=−∞
f(α)g(x−α) dα .

Thus the convolution is a way of combining two

functions which in a sense uses one to “blur” the

other, making all possible relative shifts between

two functions when computing the integral of

their product.

Convolution is an extremely important operation

in systems theory because it describes how any

linear system f(t) acts on any input g(t) to

generate the corresponding output h(t). The

output is just given by the convolution of the

input with the characteristic system response

function, so that,

h(t) = f(t) ∗ g(t) .
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Fourier transforms and convolutions

Consider the Fourier transform of f ∗ g given by

1

2π

x=∞∫

x=−∞

1

2π

α=∞∫

α=−∞

f(α)g(x− α)e−iµx dαdx

=
1

2π

α=∞∫

α=−∞

x=∞∫

x=−∞

f(α)e−iµα
g(x− α)e−iµ(x−α)

2π
dxdα

=
1

2π

α=∞∫

α=−∞

f(α)e−iµαG(µ) dα

= F (µ)G(µ) .

Here f(x) and g(x) have Fourier transforms F (µ)

and G(µ), respectively.
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Wavelets

Wavelets are a further method of representing

functions which have received much interest in

applied fields over the last several decades.

The approach fits into the general scheme of

expansion using basis functions. Here we expand

the functions f(x) in terms of a doubly-infinite

series

f(x) =

∞∑

j=−∞

∞∑

k=−∞
djkΨjk(x)

where Ψjk(x) are the basis functions.

The basis functions arise from shifting and scaling

operations applied to a single function, Ψ(x),

known as the mother wavelet.

The basis functions are given for integers j and k

by

Ψjk(x) = Ψ(2jx− k)
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The Haar wavelet

A common example is the Haar wavelet whose

mother function is both localised and oscillatory

defined by

Ψ(x) =





1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1 ,

0 otherwise .

–1

–0.5

0

0.5

1

y

–2 –1 1 2x
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Wavelet dilations and translations

The Haar mother wavelet oscillates and has a

width (or scale) of one. The dyadic dilates

of Ψ(x), namely,

. . . ,Ψ(2−2x),Ψ(2−1x),Ψ(x),Ψ(2x),Ψ(22x), . . .

have widths

. . . , 22, 21, 1, 2−1, 2−2, . . .

respectively. Since the dilate Ψ(2jx) has

width 2−j , its translates

Ψ(2jx−k) = Ψ(2j(x−k2−j)), k = 0,±1,±2, . . .

will cover the whole x-axis. The collection of

coefficients djk are termed the discrete wavelet

transform of the function f(x).
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Interpretation of djk

How should we intrepret the values djk?

Since the Haar basis function Ψ(2jx− k)

vanishes except when

0 ≤ 2jx−k < 1 , that is k2−j ≤ x < (k+1)2−j

we see that djk gives us information about the

bahaviour of f near the point x = k2−j measured

on the scale of 2−j .

For example, the coefficients d−10,k,

k = 0,±1,±2, . . . correspond to variations of f

that take place over intervals of

length 210 = 1024 while the coefficients d10,k

k = 0,±1,±2, . . . correspond to fluctuations of f

over intervals of length 2−10.

These observations help explain how the discrete

wavelet transform can be an exceptionally

efficient scheme for representing functions.
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Comparison with Fourier analysis

Some of the practical motivations underlying the

use of expansion basis functions such as Fourier

analysis or wavelet analysis are

ä improved understanding,

ä denoising signals, and

ä data compression.

By representation of signals or functions in other

forms these tasks become easier.

The approach taken with Fourier analysis

represents signals in terms of trigonometric

functions and as such is particularly suited to

situations where the signal is relatively smooth

and is not of limited extent.
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Properties of naturally arising data

Much naturally arising data has been found to be

better represented using wavelets which are

better able to cope with discontinuities and where

the signal is of local extent. Generally, the

efficiency of the representation depends on the

types of signal involved. If your signal contains

ä discontinuities (in both the signal and its

derivatives), or

ä varying frequency behaviour

then wavelets are likely to represent the signal

more efficiently than is possible with Fourier

analysis.
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Other classes of wavelets

One of the most useful features of wavelets is the

ease with which a scientist can select the basis

functions adapted for the given problem.

In fact, the Haar mother wavelet is perhaps the

simplest of a very wide class of possible wavelet

systems used in practice today.

Many applied fields have started to make use of

wavelets including astronomy, acoustics, signal

and image processing, neurophysiology, music,

magnetic resonance imaging, speach

discrimination, optics, fractals, turbulence,

earthquake prediction, radar, human vision, etc.
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Sampled data

Suppose we have sampled N uniformly spaced

function evaluations, f(0), f(1), . . . , f(N − 1),

say. The complex exponentials eiµn, as functions

of n, have period N if

eiµ(n+N) = eiµn, n = 0,±1,±2, . . . .

So that,

eiµN = 1

that is, µ = k2π/N , for integer k.

Furthermore, when m is an integer

ei2πkn/N = ei2π(k+mN)n/N

so the parameters

µ =
k2π

N
,

(k ±N)2π

N
,

(k ± 2N)2π

N
, . . .

all give the same function.
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Sampled data, ctd

So there are just N distinct complex exponentials

with period N , namely,

eik2π/N , k = 0, 1, . . . , N − 1 .

Hence, we can write each f(n) as

f(n) =

N−1∑

k=0

F (k)eik2πn/N n = 0,±1,±2, . . . .

The corresponding expression for the

coefficients F (k) turns out to be

F (k) =
1

N

N−1∑

n=0

f(n)e−ik2πn/N k = 0, 1, . . . , N−1 .

The quantities, F (k), are known as the Discrete

Fourier Transform (DFT) of f .
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Application to image compression

The basic steps of the JPEG compression

algorithm can be summarized as follows.

Take blocks of 8× 8 pixels (each pixel is encoded

as 24 bits) and then use a discrete Fourier

transform (in fact, the related discrete cosine

transform is used) to produce 8× 8 = 64 separate

frequency coefficients, per block.

Next use quantization factors (involving 64

tunable parameters) to compress each frequency

coefficient block by block.

Store the resulting (integer) values with runlength

encoding, etc.

This is a lossy form of compression but the idea is

that when we invert the transformation and

re-assemble the image the eye is not sensitive to

the losses.
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FBI fingerprint database

Each of the FBI’s fingerprint cards when digitized

amounts to about 10Mb of data. They have 200

million such cards!

These cards must be both stored as well as

transmitted so compression is very important.

A wavelet-based approach called Wavelet Scalar

Quantization compression was developed by Los

Alamos Labs and NIST in the US.

Reference

http://www.c3.lanl.gov/∼brislawn/FBI/FBI.html
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