Continuous Mathematics

Computer Laboratory

Computer Science Tripos, Part IB & Part II (General) Diploma in Computer Science

Michaelmas Term 2003

R. J. Gibbens

Problem sheet

William Gates Building JJ Thomson Avenue Cambridge CB3 0FD

http://www.cl.cam.ac.uk/

- 1. Given $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ what are the real and imaginary parts of $z_3 = z_1 z_2$?
- 2. Given $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ what is the modulus, $|z_1|$, of z_1 and what is the modulus of $z_3 = z_1 z_2$?
- 3. Given $z_1 = x_1 + iy_1$ what is $arg(z_1)$, the argument of z_1 ? Is it unique? What happens if $z_1 = 0$?
- 4. Given $z_1 = x_1 + iy_1$ with $x_1 \neq 0$ and $y_1 \neq 0$ show that

$$Arg(z_1) = \tan^{-1}(y_1/x_1) + \frac{\pi}{2}sign(y_1)(1 - sign(x_1))$$

where for $a \neq 0$

$$\operatorname{sign}(a) = \begin{cases} +1 & a > 0 \\ -1 & a < 0 \end{cases}.$$

What happens if $x_1 = 0$ or $y_1 = 0$?

- 5. Suppose that $|z_1| = |z_2| = 1$. Using an Argand diagram, explain how computing their product $z_3 = z_1 z_2$ amounts to a rotation in the complex plane. Why is the multiplication of these complex variables reduced an addition? What is the value of $|z_3|$?
- 6. Given $z = \exp(2\pi i/5)$, what is the value of z^5 ? Explain your result using an Argand diagram.
- 7. Consider the complex exponential function $f(x) = \exp(2\pi i\omega x)$. What are the real and imaginary parts of f(x) as functions of x?
- 8. For the imaginary number $i = \sqrt{-1}$, consider the quantity \sqrt{i} . Express \sqrt{i} as a complex exponential. In what quadrant of the complex plane does it lie? What are the real and imaginary parts of \sqrt{i} ? What is the modulus of \sqrt{i} ?
- 9. Given $f(x) = \cos(1/x)$, does $\lim_{x\to 0} f(x)$ exist? What happens if instead $f(x) = x\cos(1/x)$?
- 10. Show that "continuity at x = a" does not imply "differentiable at x = a" by constructing a suitable counterexample.
- 11. Write down the Taylor's series approximation to the value of a function f(b) given only the function and it's first three derivatives evaluated at x = a, namely, f(a), f'(a), f''(a) and f'''(a). You may assume that these derivatives exist and that f and each of its derivatives is a continuous function.
- 12. Give an expression for computing f(t) if we know only its projections f(t), $\Psi_j(t)$ onto this set of orthonormal basis functions $\{\Psi_j(t)\}$. Explain what is happening.
- 13. What will be the Fourier Transform of the m^{th} derivative of f(x) with respect to x in terms of the Fourier Transform, $F(\mu)$, of f(x): $\left(\frac{d}{dx}\right)^m f(x)$?
- 14. What happens to the Fourier Transform after shifting f(x) by a distance α : $f(x-\alpha)$?
- 15. What happens to the Fourier Transform after dilating f(x) by a factor a: f(x/a)?
- 16. What is the principal computational advantage of using orthogonal functions, over non-orthogonal ones, when representing a set of data as a linear combination of a universal set of basis functions?
 - If $\Psi_k(x)$ belongs to a set of orthonormal basis functions, and f(x) is a function or a set of data that we wish to represent in terms of these basis functions, what is the basic computational operation we need to perform involving $\Psi_k(x)$ and f(x)?
- 17. Any real-valued function f(x) can be represented as the sum of one function $f_e(x)$ that has even symmetry (it is unchanged after being flipped around the origin x = 0) so that $f_e(x) = f_e(-x)$, plus one function $f_o(x)$ that has odd symmetry, so that $f_o(x) = -f_o(-x)$. Such a decomposition of any function f(x) into $f_e(x) + f_o(x)$ is illustrated by

$$f_e(x) = \frac{1}{2}f(x) + \frac{1}{2}f(-x)$$

$$f_o(x) = \frac{1}{2}f(x) - \frac{1}{2}f(-x)$$
.

Use this type of decomposition to explain why the Fourier transform of any real-valued function has *Hermitian symmetry*: its real-part has even symmetry, and its imaginary-part has odd symmetry. Comment on how this redundancy can be exploited to simplify computation of Fourier transforms of real-valued, as opposed to complex-valued, data.

18. Newton's definition of a derivative in his formulation of The Calculus captures the notion of integerorder differentiation, *e.g.* the first or second derivative, etc. But in scientific computing we sometimes need a notion of fractional-order derivatives, as for example in fluid mechanics.

Explain how "Fractional Differentiation" (derivatives of non-integer order) can be given precise quantitative meaning through Fourier analysis.

Suppose that a continuous function f(x) has Fourier Transform $F(\mu)$. Outline an algorithm (as a sequence of mathematical steps, not an actual program) for computing the 1.5^{th} derivative of some function f(x)

$$\frac{d^{(1.5)}f(x)}{dx^{(1.5)}}$$

19. Given the definition of the Fourier transform and its inverse show that if α and A are non-zero constants then

$$\widehat{F}(\mu) = A \int_{-\infty}^{\infty} f(x) e^{-i\alpha\mu x} dx$$

implies that

$$f(x) = \frac{|\alpha|}{2\pi A} \int_{-\infty}^{\infty} \widehat{F}(\mu) e^{i\alpha\mu x} d\mu$$

In order to see what is going on start with the case $\alpha = 1$ and $A = 1/2\pi$.

20. Comment on the strengths and weakness of the Fourier analysis approach compared with an approach using wavelets.