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Abstract

This paper outlines a method of implementing large and complex process control applications
where extreme reliability is required and where the application is expected to have a long life
of perhaps between 20 and 50 years. The approach relies on the use of a interpretive abstract
machine that supports a multi-tasking operating system. The entire system including the
operating system and the compiler for the systems implementation language are simple enough
to be maintained as part of the application and so will continue to exist as long as needed. The
abstract machine is simple enough to be easily re-implemented on new hardware as the need
arises. This paper suggests using Cintcode as the abstract machine supporting an interpretive
implementation of the Tripos portable operating system called Cintpos using BCPL as the
systems implementation language. This paper pays particular attention to how synchronization
primitives can be implemented using BCPL coroutines and the multi-tasking features of the
Cintpos portable operating system and why such code will remain reliable throughout the long
lifetime of the process control application.
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1 Introduction

There are many process control applications that can be expected to have a long life. Examples
include the control of chemical plants and nuclear power stations, the control of vehicles and
aircraft, the control of manufacturing plants and even distributed booking systems. In all these
applications reliability is of great importance since the cost of system failure is likely to be measured
in tens or hundreds of thousands of Pounds per minute. The complete system must be constructed
with great care so that component failures will not cause the entire system to fail. Often such
systems run on multiple computers so that if one fails another can automatically replace it without
interrupting the process being controlled.

The proposal is to implement the application using BCPL as the implementation language
supported by the simple multi-tasking operating system called Cintpos which is itself supported
by an interpretive abstract machine that is easy to re-implement on any new hardware that may
become available during the lifetime of the application. The abstract machine, the BCPL to
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Cintcode compiler and Cintpos are treated as part of the application and are easily maintained by
those who maintain the application code.

2 Cintpos

The Tripos Portable Operating System [?] was first implemented in 1978 and ran on a variety
of mini-computers of the day, such as the PDP-11, the Data General Nova and machines based
on the Motorola 68000 processor. It was implemented in the portable programming language
BCPL[?, ?] which still has a freely available implementation available via my home page[1]. Tripos
was used at Cambridge and elsewhere for several years providing a framework for operating system
design and networking research. When the hardware on which Tripos ran became obsolete much
of the original Tripos source code was archived. It was later revived, mainly for historical reasons,
when the 32 bit BCPL Cintcode system[?] was developed. The Cintcode virtual machine was
enhanced to include interrupts, and the Tripos kernel re-implemented in BCPL rather than the
original assembly language. This demonstration version of Tripos was called Cintpos and was made
freely available via my home page. More recently, as machines became larger, faster and cheaper,
it became clear that this interpretive system could form the basis of dependable process control
applications, and so the original “toy” version of Cintpos has undergone substantial development
to improve its reliability and to include new features such as TCP/IP connectivity. It is still freely
available via the web[?], even in its current experimental form.

The reasons that the BCPL Cintpos system provides a good environment for writing high
quality process control applications are as follow:

1. The Cintpos operating system is simple and clearly defined. It has few kernel primitives but
these are sufficient to provide the multi-tasking and synchronization facilities needed for real
time process control.

2. The whole system including the kernel primitives are implemented in BCPL that is itself
supported by a clean simple interpretive virtual machine (Cintcode) that can easily be re-
implemented to run on any hardware. Currently this virtual machine is implemented in ANSI
C but in years to come it could be re-implemented in whatever language is appropriate at
the time. The BCPL to Cintcode compiler is simple and easy to maintain being little more
than 5000 lines of source code and able to compile itself in a fraction of a second.

3. BCPL coroutines[2] can be combined with the Cintpos multi-tasking facilities to provide an
excellent way to control the scheduling and synchronization needed in process control. This
paper shows how easily features such as mutexes, condition variables, semaphores, and sig-
naling and waiting primitives can be implemented in BCPL within the Cintpos system. By
this means these very important and sometime subtle primitives will be guaranteed to behave
identically throughout the lifetime of the application and not be subject to the inevitable dif-
ferences arising from changes in standards, re-implementation of the primitives and operating
system upgrades that are bound to happen in the next 50 years. It is hard to predict what
Windows, Java, Linux or Pthreads will be like that far in the future.

The entire system is implemented in BCPL including the Cintpos Kernel, all the Cintpos
resident tasks, the libraries and the application code. The examples given in this paper are in
BCPL but these should be easy to understand for anyone familiar with C. The main differences
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are that BCPL is typeless with every value, variable and vector element being 32 bits long. The
BCPL operator ! is used for indirection like monadic * in C. It is also used for vector subscription.
The operator @ will form a pointer to a variable just as monadic & does in C. TEST is used instead
of IF in the BCPL version of the if-then-else construct found in C. A complete description of
BCPL can be found in Richards[?].

2.1 Cintpos Kernel Primitives

Cintpos is a simple multi-tasking operating system. Its tasks in modern parlance would be called
threads since they all share the same address space. This allows particularly efficient inter-task
communication.

Tasks communicate with each other and with devices by sending and receiving packets. These
are small vectors (or arrays) of 32-bit fields. The first field is called pkt link and is used to link
packets together to form lists, the next is called pkt id and holds the identity of the task or device
the packet is to be sent to, and the third field (pkt type) holds the type (or purpose) of the packet.
Next there are two fields (pkt res1 and pkt res2) to hold the results of a request and finally there
are up to six fields (pkt arg1 and pkt arg6) which hold the arguments of a request. Since BCPL
is typeless all these fields can contain values of any kind, such as integers, strings, pointers or even
functions.

The call qpkt(pkt) willto add a packet to a work queue, and taskwait to extract a packet from
a work queue, possibly causing the task to wait if no packet is available.

A packet is a vector (or array) of typically fewer than 11 32-bit fields. There is a link field
(pkt link) used to chain packets together, a field (pkt id) used to identify which task or device
the packet is to be sent.

The packet is appended to the end of a work queue at the destination. The identity of the
sender replaces the pkt id field so that it can be returned to the sender by just a simple call of
qpkt.

When a task is ready to process a packet it calls taskwait() which de-queues the first packet
on the task’s work queue, if one is present, otherwise it suspends the task until a packet arrives.
Normally packets are thought of as requests that are sent to server tasks or devices. The reply is
usually returned using the same packet. While a server task is processing the request, the client is
free to continue with other work but more usually it suspends itself in taskwait to await the reply.

Tasks have distinct priorities and the scheduler ensures that the runnable task with the highest
priority has control. For example, if as the result of an interrupt, a device returns a packet to
a client task that is suspended in taskwait and is of higher priority than the currently running
task then control will be given to this higher priority task. The scheduling algorithm is simple
to implement and has predictable properties. Greater fairness can be implemented within the
application by dynamically changing priorities, but this is rarely needed.

A task executing the following infinite loop:

qpkt(taskwait()) REPEAT

will suspend itself in taskwait until a packet arrives. When this happens it immediately returns
it to the sender using qpkt. REPEAT causes this operation to be repeated indefinitely. This bounce
task can be exercised by another task running the following code:

{ LET link, id, type, res1, res2 = notinuse, bouncetaskid, ?, ?, ?
LET pkt = @link
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writef("Sending a packet 10 million times to task %n*n", bouncetaskid)
FOR i = 1 TO 10_000_000 DO
{ qpkt(pkt) // Send the packet
taskwait() // Wait for it to return

}
writef("Done*n")

}

The variable pkt points to the first of five consecutive words of memory named link, id, type,
res1 and res2 which form the packet to be repeatedly sent to the bounce task. A safety check in
qpkt requires the link field to have value notinuse (=-1). The id field is set to the identity of
the bounce task. The usual packet fields type, res1 and res2 have been included although they
are not used in this demonstration. As can be seen, this program will send the packet to the bounce
task and wait for it to return 10 million times. When run on a 1 GHz machine using a Cintpos
interpreter with all debugging aids enabled it takes about 108 seconds to complete, indicating that
control can pass from one task to another in about half a micro-second. This is faster than the
time to execute a single machine instruction on the machines on which Tripos first ran.

With the current BCPL implementation of qpkt and taskwait, it takes the execution of about
121 Cintcode instructions from the moment qpkt is entered to the moment taskwait in the desti-
nation task returns with the packet. Although this figure depends slightly on the relative priorities
of the two tasks it is a fair measure of the cost of transferring control from one task to another. The
above figure was obtained using single step execution which is a standard interactive debugging
aid available in Cintpos.

A typical task in the Cintpos system is the file handler which accepts requests from clients to
open, read, write and close files. These typically cannot be processed instantaneously since the file
handler may need to send a packet to the disk device requesting a disk read or write operation.
For much of the time the file handler will be suspended in taskwait waiting for either a new
request from a client or a reply from the disk or possibly a clock device. Tasks such as this are
called multi-event tasks since they cannot predict what kind of packet will arrive next. A command
language interpreter task (CLI), on the other hand, is a single-event task since it has a single thread
of execution and always knows what packet it is expecting to receive next. Whenever it sends a
request to another task or device it waits for the reply before proceeding. In such tasks the calls
of qpkt and taskwait are usually invoked in a wrapper function sendpkt whose definition is as
follows:

LET sendpkt(link, id, type, r1, r2, a1, a2, a3, a4, a5, a6) = VALOF
{ UNLESS qpkt(@link) DO abort(181)
UNLESS taskwait() = @link DO abort(182)
result2 := r2
RESULTIS r1

}

In BCPL, function arguments are called by value and are laid out in consecutive memory locations
and so behave like an initialized vector. In sendpkt the arguments form the packet to be sent
eliminating the need to allocate, initialize and later release another vector for the packet. The
expression @link yields the pointer to the packet and is the appropriate argument for qpkt. If qpkt
fails, possibly because of a bad task (or device) identifier, it will return FALSE causing abort(181).
Otherwise, sendpkt go on to call taskwait suspending the task until the packet is returned. In
this implementation a safety check is made to ensure that the expected packet is indeed received.
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The normal convention is for tasks and devices to place their results in the fields r1 and r2 of
the packet. These are returned, respectively, as the result of sendpkt and in the global variable
result2.

The code in the sender task of the demonstration given above could have been implemented
using sendpkt as follows:

{ writef("Sending a packet 10 million times to task %n*n", bouncetask)
FOR i = 1 TO 1_000_000 DO sendpkt(notinuse, bouncetaskid)
writef("Done*n")

}

This is more convenient code but is slightly slower because of the extra safety checking done in
sendpkt. All the standard library functions that communicate with other tasks or devices use
sendpkt, including, for example the delay function whose definition is as follows.

LET delay(ticks) BE sendpkt(notinuse, clkdevid, ?,?,?, ticks)

A packet sent to the clock device returns to the sender when the specified number of ticks have
taken place. A task can suspend itself for 5 seconds by executing:

delay(5*tickspersecond)

Notice that the calls of sendpkt above have fewer arguments that its definition expects. BCPL
allows this, either giving the unspecified arguments undefined values or by throwing away unwanted
ones. As an aside, the BCPL formatted output function writef is also variadic and is related to
the C function printf which extends and improves writef, but the implementation of printf is
more complicated since the size of C arguments depend on their types and so cannot be treated as
elements of a vector.

2.2 Other Kernel Primitives

Although most of the flavour of Cintpos derives from the qpkt-taskwait mechanism, it is worth
briefly noting the other kernel primitives. Tasks can be created and deleted using createtask and
deletetask. The priority of a task can be changed using changepri. A task can be held by a call
of hold causing it stop execution until explicitly released by a call of release. These are analogous
to the deprecated functions suspend and resume in Java. Tasks each have a field of 32 flag bits
that can be set and tested using setflags and testflags, and memory can be allocated and freed
using getvec and freevec which are somewhat similar to the C functions malloc and free.

Cintpos is unlike Tripos by not allowing the dynamic creation and deletion of devices, nor does
it provide the function dqpkt to retrieve previously sent packets.

3 BCPL coroutines

BCPL uses a stack to hold function arguments, local variables and anonymous results, and it uses
static variables and an area call the global vector to hold non-local quantities. Each task has its own
global vector. It is often convenient to have separate runtime stacks within a task so that different
activities can proceed in pseudo-parallelism. The coroutine mechanism provides this facility.

A coroutine is created by a call of the form: createco(fn, size) where fn is the main function
of the coroutine and size is the size its stack. The result is a pointer to the newly created coroutine
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stack. Control can be passed to a coroutine by the call: callco(cptr, arg) where cptr is the
result of a previous call of createco and arg is a value to be passed to the coroutine. The first
time this happens fn will be applied to arg. If this function returns a result, res say, the coroutine
will suspend itself and control passed back to the calling coroutine causing callco to return
the result res. Alternatively, fn may explicitly call cowait(res) which has the same effect. The
implementation of createco actually leaves the newly created coroutine suspended in the cowait
call of the following infinite loop:
c := fn(cowait(c)) REPEAT

A few locations near the base of a coroutine stack hold system information including fn, size, c,
and parent which is a pointer to the calling coroutine, if any, for use by cowait.

Any inactive coroutine can be deleted using deleteco. Another important coroutine function
is resumeco. It takes the same arguments as callco but has a subtly different effect. It causes
the specified coroutine to resume execution exactly as callco does, but the parent of the calling
coroutine becomes the parent of the called coroutine. Two typical and important uses of resumeco
are given later in this paper in the definitions of die and coread.

BCPL coroutines were designed in 1978 and their specification has remained unchanged ever
since. They are likely to remain unchanged for the foreseeable future and are thus safe to use in
programs that are expected to have a long life.

A coroutine within a task will keep control until it explicitly calls one of callco, cowait or
resumeco, and so it is safe for it to manipulate data shared by other coroutines in the task without
having to use synchronization primitives such as semaphores, or mutexes, provided the shared data
is left in a consistent state when it passes to another coroutine. Sometimes a coroutine wishes to
retain exclusive access to some resource, such as a file, for a longer period and this will require
the use of synchronization primitives but, as will be seen, these are easy to implement. Sharing
resources between tasks is possible but requires calls of Cintpos kernel primitives such as qpkt and
taskwait which are necessarily more costly.

As an example of the use of coroutines, we will re-implement the bounce demonstration using
them. Firstly two coroutines bounce co and sender co are created by the following code:
LET bouncefn(val) BE val := cowait(val) REPEAT

LET senderfn(count) BE
{ writef("Calling the bounce coroutine %n times*n", count)
FOR i = 1 TO count DO callco(bounce_co, i)
writes("done*n")

}

bounce_co := createco(bouncefn, 200)
sender_co := createco(senderfn, 200)

The sender coroutine can be started by:
callco(senderfn, 10_000_000)

This completes its 20 million control transfers between the two coroutines in about 24 seconds
indicating that the coroutine primitives are many times faster than qpkt and taskwait. More
specifically, in the current implementation only 10 Cintcode instructions are executed between the
start of callco in senderfn and the return from cowait in bouncefn, and 11 between the start
of cowait in bouncefn and the return from callco in senderfn.

As an aside, bouncefn could have been defined as the identity function
LET bouncefn(val) = val, since body of createco already contains a suitable loop.
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4 Multi-event tasks

As was mentioned in section 2.1, tasks can be classified as single- or multi-event tasks. A single-
event task typically uses calls of sendpkt (defined above) to request services from other tasks,
suspending itself for each request until it is answered. Single-event tasks are thus like conventional
single threaded programs. A multi-event task, on the other hand, has an organization that re-
sembles the event loops found in many windowing systems. It typically has a main loop in which
taskwait is called suspending the task until the next packet arrives. The packet is then passed to
the coroutine that was waiting for it, or given to a main coroutine if the packet is a new request. If
the main coroutine is busy processing a previous request, the packet is queued and processed later.
Many tasks within Cintpos and within process control applications are best organized in this fash-
ion. Rather than implementing this mechanism afresh for each multi-event task, it is convenient
to invoke the library function gomultievent. This is defined as follows.

LET gomultievent(maincofn, size) = VALOF
{ LET mainco = createco(maincofn, size)
LET oldsendpkt, wkq = sendpkt, 0
UNLESS mainco RESULTIS FALSE // Unsuccessful return
multi_done, mainco_busy := FALSE, FALSE
sendpkt, pktlist := sndpkt, 0
callco(mainco, 0) // Ask mainco to start everything up

UNTIL multi_done DO // Start of multi-event loop
{ LET pkt = taskwait() // Wait for a packet
LET co = findpkt(pkt) // Find which coroutine, if any, owns it
IF co DO { callco(co, pkt); LOOP }
IF mainco_busy DO // If the main coroutine is busy
{ LET p = @wkq // append the packet onto the
WHILE !p DO p := !p // end of the work queue
!pkt, !p := 0, pkt
LOOP

}
{ callco(mainco, pkt) // Give the packet to the main coroutine
IF mainco_busy | wkq=0 BREAK
pkt := wkq // De-queue the next request
wkq := !pkt
!pkt := notinuse

} REPEAT // Process a waiting request
}
sendpkt := oldsendpkt // Return to single event mode
deleteco(mainco) // and delete the main coroutine
RESULTIS TRUE // Successful return

}

This function makes use of the following global state variables:

multi done which becomes TRUE when all the multi-event coroutines have completed their work,

mainco busy which is TRUE whenever the main coroutine is busy processing a request packet, and

pktlist which holds a list of nodes giving the mapping between packets and the coroutines that
own them.

When running in multi-event mode, the standard version of sendpkt is replaced by the multi-event
version sndpkt. So this is the version called (indirectly) by standard library functions such as
writef when used in multi-event coroutines. The definition of sndpkt is as follows.
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AND sndpkt(link, id, type, r1, r2, a1, a2, a3, a4, a5, a6) = VALOF
{ LET ocis, ocos, ocurrentdir = cis, cos, currentdir
// The following three variables form the pktlist node.
LET next, pkt, co = pktlist, @link, currco
pktlist := @next // Insert [next,pkt,co] as first node in pktlist
UNLESS qpkt(pkt) DO abort(181) // Dispatch the packet
UNLESS cowait() = p DO abort(182) // Wait for the reply
// Restore the saved global state
cis, cos, currentdir := ocis, ocos, ocurrentdir
result2 := r2 // Recover the two results
RESULTIS r1

}

It saves and restores the global state variables: cis the currently selected input stream, cos the
currently selected output stream and currentdir the currently selected filing system directory,
so that the normal input and output library function continue to work as expected. It creates a
pktlist node containing a link to the next in the list, the packet and the current coroutine. After
this node is placed at the head of pktlist, the packet is dispatched by the call of qpkt with a safety
check to ensure that is was valid. Then, unlike sendpkt, it uses cowait to wait for the packet to
be returned, knowing that this will result from callco in the multi-event loop in gomultievent.

The call of findpkt in gomultievent will search pktlist for a specified packet, de-queuing it
if found. Its definition is as follows:

LET findpkt(pkt) = VALOF
{ LET a = @pktlist // a is the address of the next link word
{ LET p = !a
UNLESS p RESULTIS 0 // The packet was not found.
IF p!1 = pkt DO { !a := !p // Remove from pktlist and

RESULTIS p!2 // return the coroutine.
}

a := p
} REPEAT

}

If findpkt finds a node in pktlist that matches the given packet, it unlinks the node and re-
turns the corresponding coroutine pointer. Notice that the saved global variables cis, cos and
currentdir are restored in sndpkt and that the space for the pktlist node and also the packet
itself will be released when control returns from sndpkt. This is clearly more efficient than using
a general purpose space allocator.

After creating the main coroutine and initializing the global state variables multi done and
mainco done, gomultievent enters multi-event mode by overriding sendpkt and setting pktlist
to zero. It then calls main co to create and start the multi-event coroutines. Control returns
to gomultievent when main co has completed its initialization and is ready to receive request
packets. Typically, the main coroutine activates the multi-event coroutines as necessary but the
conventions of how this is scheduled is application dependent and not relevant to gomultievent.
All that is needed is for multi done to be set to TRUE when all the multi-event coroutines and the
main coroutine agree to return to single event mode.

Careful study of the event loop in gomultievent will show that, when a packet is received by
taskwait, if owned by a waiting coroutine it will be given to that coroutine. If not, it must be a
request packet for the main coroutine but if this is busy it is just appended to the end of the work
queue (wkq). Otherwise, it is given to the main coroutine for processing. In due course the main
coroutine will calls cowait. If this happens when mainco busy set to FALSE, the main coroutine
has finished processing a packet and is ready for another one. In this case if there are any packets in
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wkq, the first is de-queued and given to the main coroutine. If mainco busy is TRUE when the main
coroutine call cowait, it will typically be in sndpkt and will remain suspended until the packet
it is expecting is found by findpkt in the event loop. It is up to the application programmer to
decide which requests to handle entirely in the main coroutine and which to sub-contract to other
multi-event coroutines.

5 Coroutine suicide

Sometimes a coroutine in a multi-event task completes the job it was given and must delete itself. It
is a common mistake to think that a coroutine can delete itself using the call: deleteco(currco).
Unfortunately this will not work reliably since the stack frame that was active just before the
call of deleteco resides in the coroutine stack that is being returned to free store (and possibly
reallocated and used by another task). The local variables and more importantly the function
return link information is thus not valid after deleteco returns. A common solution to this
problem is to create a killer coroutine whose sole purpose is to delete other coroutines. It can be
created by the following assignment.

kill_co := createco(deleteco, 100)

Any other coroutine can now commit suicide by executing:

resumeco(kill_co, currco)

since this causes kill co to delete the current coroutine before giving control to its parent. Note
that the loop inside createco allows kill co to be used repeatedly. Sometimes it is convenient to
define the suicide function as follows:

LET die() BE resumeco(kill_co, currco)

If kill co is required it should be created and deleted by the main coroutine of gomultievent.

6 Synchronization primitives

Process control applications typically take input from many sources such as keyboards, bar code
readers, external communication lines and sensor devices of all kinds. These generate data asyn-
chronously and at unpredictable times. The output of the system is typically written to files
and sent down communication lines possibly to devices such as printers, displays, robots or other
computers. Often different parts of the system must access shared resources such as disk files or
shared data structures in memory. So that different activities can proceed in pseudo parallelism,
the access to these shared resources must be controlled using synchronization primitives. Many
such primitives have been proposed in the literature and provided either directly in programming
languages or supplied in library packages. A few examples are (1) the communication primitives
in Occam[?], (2) synchronized objects and methods in Java[?], (3) mutexes and condition variables
in the POSIX Pthreads library[?] and (4) the similar but different facilities available in the WIN32
API[?]. These mechanisms are fairly new and their specifications are still being revised. The
different implementations also vary in subtle ways.

This section shows how a variety of synchronization primitives can be implemented efficiently
using coroutines running within multi-event tasks, and having the advantage that once implemented
they will remain the same unless the application programmers wishes to change them.
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6.1 Occam Style Channels

A channel in Occam provides a synchronized way of transmitting data from one Occam process to
another. One process can execute an input statement to read a value from a channel while another
may execute an output statement to send a value down the same channel. An input statement will
not complete until an output statement on the same channel is executed, and likewise, an output
statement will not complete until an input statement on the same channel is executed. Once the
data has been transmitted both processes may continue independently.

We use coroutines running in multi-event mode to model the Occam processes and use the
functions coread and cowrite to provide the synchronous communication between them. A chan-
nel is represented by a channel word that will contain a pointer to the first coroutine to reach a
coread or cowrite call involving the channel. If no such call has yet been made it will be zero.
The definitions of coread and cowrite are as follows.

LET coread(ptr) = VALOF TEST !ptr
THEN { LET cptr = !ptr

!ptr := 0 // Clear the channel word
RESULTIS resumeco(cptr, currco) // Get value from cowrite

}
ELSE { !ptr := currco // Set channel word to this coroutine

RESULTIS cowait() // Wait for value from cowrite
}

LET cowrite(ptr, val) BE TEST !ptr
THEN { LET cptr = !ptr

!ptr := 0
callco(cptr, val) // Send val to the waiting coread

}
ELSE { !ptr := currco // Wait for coread to be ready

callco(cowait(), val)) // Send val to coread
}

In both functions, ptr is a pointer to a channel word. If the channel word is zero, neither coread
nor cowrite is waiting to communicate, otherwise it points to the first coroutine making the call
of coread or cowrite. A value can be passed when control passes from one coroutine to another
and this is how the value is passed from cowrite to coread.

If coread is executed first, it will find that the channel word is zero and will set it to point
to itself by !ptr := currco, and will then suspend itself in cowait waiting for cowrite to send
a value. When cowrite is called it will find the channel word is non zero and so knows that it
points to the waiting coroutine. All it has to do is clear the channel word by !ptr := 0 and send
the value by the calling callco(cptr, val).

If, however, cowrite is called first, the implementation is somewhat more subtle. As before the
coroutine suspends itself, but this time in the statement callco(cowait(), val), after updating
the channel word to point to itself. At this moment cowrite is waiting to receive the identity of
the coread coroutine. When coread is called, it notices that cowrite is ready to send a value
which coread obtains by calling resumeco(cptr, currco). This gives cowrite the identity of the
coread coroutine so that the call callco(cowait(), val) in cowrite knows where to send the
value. At the same time the parent of coread becomes the parent of cowrite, so that when coread
next suspends itself, control will return to cowrite. This scheme has the merit that execution
preference is given to coread which typically results in the slightly more efficient communication
described earlier.
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The mechanism just described is efficient since there is little code to execute and, as has been
seen, the coroutine primitives are themselves efficient. However, the implementation is subtle and
has other subtle implications. Firstly, these functions must be used within multi-event coroutines
under the control of the event loop in gomultievent. Typically, gomultievent’s main coroutine
would declare and initialize the channel word before creating both the producer and consumer
coroutines. These would then be started successively using callco.

Assuming the consumer was started first, it will run until it chooses to suspend itself, typically
in the cowait call in coread. This will return control to the main coroutine which will call callco
to start the producer which would typically run until it reaches a call of cowrite. This will
find that the channel word is non zero and so immediately passes a value to the consumer which
would be given control at that moment. Control will return to the producer when the consumer
coroutine next calls cowait. This may not be, as expected, in coread, but could be in sndpkt
if the consumer, for example, invokes a service from the file handler task or called delay. If this
happens the consumer will become suspended in sndpkt waiting for the reply to be completed. In
the mean time control will pass to the producer coroutine allowing it to make progress. The reply
from the file handler will not reach the consumer until it is received by taskwait in gomultievent
and this will not happen until all the multi-event coroutines of the task are suspended. Normally
multi-event coroutines require very little CPU time but, if one does, it would probably be wise
for it to subcontract the work to a lower priority task so as not to interfere with the multi-event
scheduling. Provided none of the coroutines require much CPU time they will rapidly all become
suspended waiting for packets. In this state the event loop will be suspended in its call of taskwait.

7 Stream locks

A common situation is when several multi-event coroutines wish to write messages to a log file.
Clearly only one should be allowed to write to the file at a time. To ensure this happens, a
coroutine wishing to write to the log could call lock logfile which only returns when it has
obtained exclusive access to the log file. When this coroutine has finished outputting its message,
it releases the lock by calling unlock logfile. These two functions can be defined as follows.

LET lock_logfile() BE TEST log_wait_queue
THEN { LET link, co = 0, currco // Lock node [link, co]

TEST log_wait_queue=-1
THEN log_wait_queue := @link // Make list of length one
ELSE { LET p = log_wait_queue // or append lock node

WHILE !p DO p := !p // to the end of the queue.
!p := @link

}
cowait() // Suspend until unlock_logfile() called
// We now own the lock and log_wait_queue will be non zero
}

ELSE log_wait_queue := -1 // Mark as locked

LET unlock_logfile() BE TEST log_wait_queue=-1
THEN log_wait_queue := 0
ELSE { LET co = log_wait_queue!1

log_wait_queue := !log_wait_queue
UNLESS log_wait_queue DO log_wait_queue := -1
callco(co)

}

These have been optimized on the assumption that the lock is almost always free. The variable
log wait queue is zero when the file is unlocked, it equals -1 if the current coroutine owns the
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lock and no others are waiting for it, otherwise it contains a list of coroutines waiting for the
lock. If lock log file finds that log wait queue is zero, it just sets it to -1 and returns. If
unlock log file finds log wait queue is -1 it resets it to zero and returns. In the rarer case when
lock log file finds that log wait queue is non zero it appends a node to the log wait queue
being careful with the -1 marker and then suspends itself in cowait. If unlock log file finds
log wait queue is not equal to -1, it must contain a list of waiting coroutines. It de-queues the
first node in the queue and transfers control to the coroutine it contains using callco, being careful
to set log wait queue to -1 if no more coroutines are waiting.

8 Condition variables

Condition variables can be used when an activity must wait for some condition involving shared
variables to become satisfied. When another activity changes a value that might cause the condition
to be satisfied, it must awaken the first activity so that it can re-evaluate the condition. This can
be implemented for use within a multi-event task using a single word for the condition variable
and two functions wait and notify. Assuming, condwaitlist is the condition variable it should
be initialized to zero, and can be used in code of the form:

UNTIL <complicated condition> DO wait(@condwaitlist)

When a variable in the condition is updated by another coroutine it should call:

notify(@condwaitlist)

This will awaken every coroutine waiting on the condition variable so that they can all re-evaluate
the condition and possible continue normal execution. Simple implementations of wait and notify
are given below.

LET wait(ptr) BE
{ // These form a waitlist node [link, cptr]
LET link, cptr = !ptr, currco
!ptr := @link // Insert the node at the head of the list
cowait() // Suspend until the waiting condition

} // may have changed.

LET notify(ptr) BE
{ // Wakeup all coroutines on the given wait list
// so that they can each re-evaluate the condition.
LET p = !ptr
!ptr := 0 // Clear the condition wait list
WHILE p DO { LET cptr = p!1; p := !p; callco(cptr) }

}

A condition variable is just a, possibly empty, list of coroutines containing nodes of the form (link,
cptr), where link is either zero or points to another node and cptr is the coroutine pointer to a
coroutine suspended in wait. As can be seen, wait simply inserts a node at the start of the wait
list pointed to by ptr. Notice that the wait list node is formed from two adjacent local variables
which cease to exist as soon as control returns from wait.

Every coroutine on a wait list can be woken up by calling notify. This simply executes
callco for every coroutine in the list. But, to avoid a possible execution loop, it must first reset
the condition variable to zero. The implementation of wait given above causes the most recent
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coroutine to wait to be the first to be released. In rare situations where this strategy is not
appropriate, it would be easy to modify wait to append the node to the end of the list.

Observe that notify is somewhat analogous to pthread cond broadcast in the Pthreads
library[?] and that wait is analogous to pthread cond wait, but are both much simpler since
coroutines are non preemptive removing the need to declare, lock and unlock a mutex.

9 Discussion

The synchronization mechanisms just described show how easily such primitives can be imple-
mented using coroutines within multi-event tasks under Cintpos, and it should be clear that many
other synchronization primitives could be implemented with similar ease.

As we have seen in the discussion of the Occam channel example, the detailed flow of control
between the coroutines is not always easy to follow and this may cause some users to have doubts
about whether they actually work. The following observations should help.

• A well written multi-event task will have coroutines that never require much CPU time be-
fore transferring control to another coroutine. Such transfers may result from direct calls
of cowait, callco or resumeco, or these may also be called indirectly via calls to the syn-
chronization primitives or library functions (such as writef or delay) that involve calls of
sndpkt.

• Whenever a multi-event coroutine becomes suspended it will have transferred control to
another multi-event coroutine or returned to the main event loop. Whenever a coroutine is
suspended, there must be a reference to it somewhere in the system so that it can be resumed
later. This reference may be the parent link in the coroutine it called using callco, it may
be in a pktlist node that will cause the coroutine to be called by the event loop when
the required packet is received, or it may be in one of the queues maintained by one of the
synchronization primitives, such as log wait queue used in lock logfile.

• The main coroutine will create most of the coroutines used in a multi-event task and schedule
work for them depending on what request packets are received.

• Provided all these coroutines have been implemented correctly, whenever a packet is received
by taskwait in the event loop, control will pass briefly through a sequence of one or more
coroutines before returning to the event loop where the task will typically suspend itself
in another call of taskwait. The exact order in which control passes from one coroutine
to another should not matter, just as the scheduling processes in a conventional operating
system should not affect the correct working of the system as a whole.

10 Final comments

In summary, the strategy suggested in this paper for the implementation of complex real-time
process control applications that are expected to have lifetimes exceeding 20 or even 50 years is as
follows.

• Base the entire system on a simple interpretive abstract machine that can be implemented
easily in any suitable language and run on any hardware. The abstract machine should
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include an interrupt mechanism and should be able to handle asynchronous devices such as
clocks, disks and communication lines.

• Use a simple implementation language that has a simple compiler to implement the entire
application including a multi-task operating system kernel and all the standard tasks such an
operating system needs. The operating system, the implementation language, compiler and
debugging aids should be simple enough to be easily understood in detail and maintained in
house by a single person.

• Implement the necessary synchronization primitives as part of the application in order to
retain control of their precise specification and behaviour. These are best provided using
multi-event coroutines running cooperatively within separate tasks.

• Be aware that, if the system is implemented in a currently fashionable language under a
current modern operating system purchased from an outside vendor, then it will be large,
complex and and probably bug-ridden and that maintenance for these critical parts of the
system is not likely to be available in 50 years time since the language, operating system and
vendor may not then exist. Consider how few operating systems and languages of as little as
35 years ago are still available today and properly maintained.

The hope is that this paper demonstrates that using BCPL coroutines running under the
Cintpos portable operating system is a good basis for implementing a complex process control
application that is expected to have a long life.
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