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Summary

The first part of this course covers the design of the various parts of a fairly basic compiler.
The second part of the course considers various language features and concepts common to many
programming languages, together with an outline of the kind of run-time data structures and
operations they require.

The course is intended to study compilation of a range of languages and accordingly syntax for
example constructs will be taken from various languages (with the intention that the particular
choice of syntax is reasonably clear).

In terms of programming languages in which parts of compilers themselves are to be written,
the preference varies between pseudo-code (as per the ‘Data Structures and Algorithms’ course)
and language features (essentially) common to C/C++/Java. The language Standard ML (which
the Diploma and Part II (general) students will see as part of the ‘Functional Programming’
course) is used when it significantly simplifies the code compared to C.

The following books contain material relevant to the course.

Compilers—Principles, Techniques, and Tools
A.V.Aho, R.Sethi and J.D.Ullman
Addison-Wesley (1986)
Ellis Horwood (1982)

Compiler Design in Java/C/ML (3 editions)
A.Appel
Cambridge University Press (1996)

Compiler Design
R.Wilhelm and D.Maurer
Addison Wesley (1995)

Introduction to Compiling Techniques
J.P.Bennett
McGraw-Hill (1990)

A Retargetable C Compiler: Design and Implementation
C.Frazer and D.Hanson
Benjamin Cummings (1995)

Compiler Construction
W.M.Waite and G.Goos
Springer-Verlag (1984)

High-Level Languages and Their Compilers
D.Watson
Addison Wesley (1989)
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Teaching and Learning Guide

The lectures largely follow the syllabus for the course which is as follows.

• Survey of execution mechanisms. The spectrum of interpreters and compilers; compile-
time and run-time. Structure of a simple compiler. Java virtual machine (JVM).

• Lexical analysis and syntax analysis. Regular expressions and finite state machine im-
plementations. Phrase Structured Grammars. Chomsky classification. Parsing algorithms:
recursive descent and SLR(k)/LALR(k). Syntax error recovery. Abstract syntax tree; ex-
pressions, declarations and commands.

• Simple type-checking. Type of an expression determined by type of subexpressions;
inserting coercions.

• Translation phase. Intermediate code design. Translation of expressions, commands and
declarations.

• Intermediate code interpreter. Essential structure of a JVM interpreter.

• Code generation. Typical machine codes. Code generation from intermediate code. Sim-
ple peephole optimisation.

• Compiler compilers. Compiler compilers. Summary of Lex and Yacc.

• Object Modules and Linkers. Resolving external references. Static and dynamic linking.

• Variable binding and tree-based interpreter. Lambda-calculus as prototype. Problems
with rec and class variables. A simple lambda interpreter. Environments, function values
are closures. Static and Dynamic Binding. Landin’s principle of correspondence.

• Machine implementation of a selection of interesting things. Free variable treat-
ment, static and dynamic chains, ML free variables. Argument passing mechanisms. Objects
and inheritance; the virtual function table. Labels, goto and exceptions. Dynamic and static
typing, polymorphism. Storage allocation, garbage collection.

A good source of exercises is the past 20 or 30 years’ (sic) Tripos questions in that most
of the basic concepts of block-structured languages and their compilation to stack-oriented code
were developed in the 1960s. The course ‘Optimising Compilation’ in CST (part II) considers
more sophisticated techniques for the later stages of compilation and the course ‘Comparative
Programming Languages’ considers programming language concepts in rather more details.

Note: these notes have last year been re-written to use Java and the JVM as the intermediate
code. I would be grateful for comments identifying errors or readability problems.
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1 Introduction and Overview

Never put off till run-time what you can do at compile-time. [David Gries]

A compiler is a program to translate the source form of a program into its equivalent machine
code or relocatable binary form. The number of compilers that exist is very large and considerable
human effort has been expended in constructing them. As a result most parts of the compilation
process have become well understood and the job of writing a compiler is no longer the difficult
task it once was. A compiler tends to be a large program (typically 10,000 to 50,000 machine
instructions for a simple compiler and many million for serious optimising compilers) and it is
wise to structure it in order to make its individual components small enough to think about and
handle conveniently.

If a language is sufficiently simple it and is designed suitably, it can be compiled by a one pass
compiler, that is, it can be compiled a small piece (often just a statement) at a time. During the
compilation process the data types and allocated locations of variables are remembered together
with any other information that may be needed later on during the compilation. The space
required for this is substantially less than the space needed to hold the entire program and there
is usually no limit on the size of the program than may be compiled in this way. Although such a
compiler can be simple and fast, such a route is generally avoided because (a) it is hard to optimise
the code and (b) the techniques developed for multi-pass compilation are better known.

Most languages have features that make compilation in a single pass either difficult or impos-
sible. For example, in Java the definition of names may occur many lines after they are first used,
as in:

class A {

public int g() { return f(); }

// ... many lines before we find ...

public int f() { ... }

}

Similarly in ML, consider programs like:

val g = 3;

fun f(x) = ... g ...

and g(x) = ...;

For most current programming languages, it is normal to compile in a number of stages (or
phases, or passes) with the output of one pass being the input of the next. A compiler designed
in this way is called a multi-pass compiler.

1.1 The structure of a typical multi-pass compiler

We will take as an example a compiler with four passes.

�
�
�
�character

stream
-

lex

�
�
�
�token

stream
-

syn

�
�
�
�parse

tree
-

trans

�
�
�
�intermediate

code
-

cg

�
�
�
�target

code

1.2 The lexical analyser

This reads the characters of the source program and recognises the basic syntactic components
that they represent. It will recognise identifiers, reserved words, numbers, string constants and all
other basic symbols (or tokens) and throw away all other ignorable text such as spaces, newlines
and comments. For example, the result of lexical analysis of the following program phrase:
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{ let x = 1;

x := x + y;

}

might be:

LBRACE LET ID/x EQ NUM/1 SEMIC ID/x ASS ID/x PLUS ID/y SEMIC RBRACE

Lexical tokens are often represented in a compiler by small integers; for composite tokens such as
identifiers, numbers, etc. additional information is passed by means of pointers into appropriate
tables; for example calling a routine lex() might return the next token while setting a global vari-
able lex aux string to the string form of an identifier when ID is returned, similarly lex aux int

might be set to the binary representation of an integer when NUM is returned.

1.3 The syntax analyser

This will recognise the syntactic structure of the sequence of tokens delivered by the lexical anal-
yser. The result of syntax analysis is often a tree representing the syntactic structure of the
program. This tree is sometime called an abstract syntax tree. The syntax analyser would recog-
nise that the above example parses as follows:

id exp exp exp exp

definition exp

declaration command

block

LBRACE LET ID/x EQ NUM/1 SEMIC ID/x ASS ID/x PLUS ID/y SEMIC RBRACE

and it might be represented within the compiler by the following tree structure:

LET EQDEF

ASS

NUMB
ID

PLUS

ID

1
x

y

where the tree operators (e.g. LET and EQDEF) are represented as small integers.
In order that the tree produced is not unnecessarily large it is usually constructed in a condensed

form as above with only essential syntactic features included. It is, for instance, unnecessary to
represent the expression x as a <sum> which is a <factor> which is a <primary> which is an
<identifier>. This would take more tree space space and would also make later processing
less convenient. Similarly, nodes representing identifiers are stored uniquely—this saves store
and reduces the problem of comparing whether identifiers are equal to simple pointer equality.
The phrase ‘abstract syntax tree’ refers to the fact the only semantically important items are
incorporated into the tree; thus a+b and ((a)+(((b))) might have the same representation, as
might while (e) C and for(;e;) C.

1.4 The translation phase

This pass flattens the tree into a linear sequence of intermediate object code. At the same time it
can deal with
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1. the scopes of identifiers,

2. declaration and allocation of storage,

3. selection of overloaded operators and the insertion of automatic type transfers.

However, nowadays often a separate ‘type-checking’ phase is run on the syntax tree below trans-
lation. This phase at least conceptually modifies the syntax tree to indicate which version of an
overloaded operator is required. We will say a little more about this in section 6.7.

The intermediate object code for the statement:

y := x<=3 ? -x : x

might be as follows (using for JVM as an example intermediate code):

iload 4 load x (4th load variable)

iconst 3 load 3

if_icmpgt L36 if greater (i.e. condition false) then jump to L36

iload 4 load x

ineg negate it

goto L37 jump to L37

label L36

iload 4 load x

label L37

istore 7 store y (7th local variable)

Alternatively, the intermediate object code could be represented within the compiler as a directed
graph1 as follows:

iload 4 iconst 3 if icmpgt�
�

A
A

iload 4

iload 4

ineg

A
A

�
�

istore 7 -

1.5 The code generator

This pass converts the intermediate object code into machine instructions and outputs them in
either assembly language or relocatable binary form in so-called object files. The code generator
is mainly concerned with local optimisation, the allocation of target-machine registers and the
selection of machine instructions. Using the above intermediate code form of

y := x<=3 ? -x : x

we can easily produce (simple if inefficient) ARM code of the form using the traditional downwards-
growing ARM stack:

LDR r0,[fp,#40-16] load x (4th local variable, out of 10 say)

MOV r1,#3 load 3

CMP r0,r1

BGT L36 if greater then jump to L36

LDR r0,[sp,#40-16] load x

RSB r0,r0,#0 negate it

STMDB sp!,{r0} i.e. PUSH r0 (to local stack)

B L37 jump to L37

L36: LDR r0,[sp,#40-16] load x

STMDB sp!,{r0} i.e. PUSH r0 (to local stack)

L37: LDMIA sp!,{r0} i.e. POP r0 (from local stack)

STR r0,[sp,#40-28] store y (7th local variable)

1The Part II course on optimising compilers will take this approach but here it would merely add to the weight
of concepts for no clear gain.

8



(Pentium code would be very similar, if spelt differently—see Section 7.) This code has the
property that it can simply be generated from the above JVM code on an instruction-by-instruction
basis (which explains why I have not hand-optimised the PUSHes and POPs away).

When compilers produce textual output in a file (for example gcc) it is necessary to have a
separate program (usually called an assembler) to convert this into an object file. An assembler
is effectively a simple compiler which reads an instruction at a time from the input stream and
writes the binary representation of these into the object file output. One might well argue that
this is a separate pass, which separates the formatting of the binary file from the issue of deciding
which code to generate.

1.6 Compiler Summary

The four passes just described form a clear-cut logical division of a compiler, but are not necessarily
applied in sequence. It is, for instance, common for the lexical analyser to be a subroutine of the
syntax analyser and for it to be called whenever the syntax analyser requires another lexical token.
In simple compilers It is also quite common for the translation phase and the code generator to be
merged into one pass. Some compilers have additional passes, particularly for complex language
features or if a high degree of optimisation is required. Examples might be separating the type-
checking phase from the translation phase (for example as code which replaces source-level types in
the syntax tree with more machine-oriented type information), or by adding additional phases to
optimise the intermediate code structures (e.g. common sub-expression elimination which reworks
code to avoid re-calculating common subexpressions).

The advantages of the multi-pass approach can be summarised as.

1. It breaks a large and complicated task into smaller, more manageable pieces. [Anyone can
juggle with one ball at a time, but juggling four balls at once is much harder.]

2. Modifications to the compiler (e.g. the addition of a synonym for a reserved word, or a minor
improvement in compiler code) often require changes to one pass only and are thus simple
to make.

3. A multi-pass compiler tends to be easier to describe and understand.

4. More of the design of the compiler is language independent. It is sometimes possible to
arrange that all language dependent parts are in the lexical and syntax analysis (and type-
checking) phases.

5. More of the design of the compiler is machine independent. It is sometimes possible to
arrange that all machine dependent parts are in the code generator.

6. The job of writing the compiler can be shared between a number of programmers each
working on separate passes. The interface between the passes is easy to specify precisely.

1.7 Reading compiler output

Reading assembly-level output is often useful to aid understanding of how language features are
implemented; if the compiler can produce assembly code directly then use this feature, for example

gcc -S foo.c

will write a file foo.s containing assembly instructions. Otherwise, use a disassembler to convert
the object file back into assembler level form, e.g. in Java

javac foo.java

javap -c foo

Note that the ‘-c’ switch seems not to work on all versions of javap. It works at least on the
Linux PWF facility and also on the following variants of thor:

Solaris Release 8 [hammer] Linux Red Hat Release 7.1 [belt, gloves] (Thor)
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1.8 The linker

Most programs written in high-level languages are not self-contained. In particular they may
be written in several modules which are separately compiled, or they may merely use library
routines which have been separately compiled. With the exception of Java (or at least the current
implementations of Java), the task of combining all these separate units is performed by a linker
(on Linux the linker is called ld for ‘loader’ for rather historical reasons). A linker concatenates its
provided object files, determines which library object files are necessary to complete the program
and concatenates all these to form a single executable output file. Thus classically there is a total
separation between the idea of compile-time (compiling and linking commands) and run-time
(actual execution of a program).

In Java, the tendency is to write out what is logically the intermediate language form (i.e.
JVM instructions) into a .class file. This is then dynamically loaded (i.e. read at run-time) into
the running application. Because (most) processors do not execute JVM code directly, the JVM
code must be interpreted (i.e. simulated by a program implementing the JVM virtual machine).
An alternative approach is to use a so-called just in time (JIT) compiler in which the above code-
generator phase of the compiler is invoked to convert the loaded JVM code into native machine
instructions (selected to match the hardware on which the Java program is running). This idea
forms part of the “write once, compile once, run anywhere” model which propelled Java into
prominence when the internet enabled .class files (applets) to be down-loaded to execute under
an Internet browser

1.9 Compilers and Interpreters

The above discussion on Java execution mechanism highlights one final point. Traditionally user-
written code is translated to machine code appropriate to its execution environment where it
is executed directly by the hardware. The JVM virtual machine above is an alternative of an
interpreter-based system. Other languages which are often interpreted are Basic, various scripting
languages (for shells, spreadsheets and the like), perl etc. The common thread of these languages
is that traditional compilation as above is not completed and some data structure analogous to the
input data-structure of one of the above compiler phases. For example, some Basic interpreters will
decode lexical items whenever a statement is executed (thus syntax errors will only be seen at run-
time); others will represent each Basic statement as a parse tree and refuse to accept syntactically
invalid programs (so that run-time never starts). What perhaps enables Java to claim to be a
compiled language is that compilation proceeds far enough that all erroneous programs are rejected
at compile-time. Remaining run-time problems (e.g. de-referencing a NULL pointer) are treated
as exceptions which can be handled within the language.

I will present a rather revisionist view on compilers and interpreters in the second part of the
course.
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Part A: A Simple Compiler

2 Lexical analysis

This is a critical part of a simple compiler since it can account for more than 50% of the compile
time. This is because:

1. character handling tends to be expensive,

2. there are a large number of characters in a program compared with the number of lexical
tokens, and

3. the lexical analyser usually constructs name tables and performs the binary conversion of
constants.

2.1 Regular expressions

The recognition of lexical tokens is straightforward and does not require a sophisticated analyser.
This results from the simple syntax of lexical tokens. It is usually the case that all the lexical tokens
of a language can be described by regular expressions, which then implies that the recognition can
be performed by a finite state algorithm.

A regular expression is composed of characters, operators for concatenation (juxtaposition), al-
ternation (|) and repetition *, and parentheses are used for grouping. For example, (a b | c)* d

is a regular expression. It can be regarded as a specification of a potentially infinite set of strings,
in this case:

d

abd cd

ababd abcd cabd ccd

etc.

From other courses you know that, given any regular expression, there is a finite state automaton
which will accept exactly those strings generated by the regular expression. A (deterministic)
finite state automaton is a 5-tuple (A,Q, q0, δ, F ) where A is a alphabet (a set of symbols), Q is
a set of states, q0 ∈ Q is the start state, δ : Q×A→ Q is a transition function and F ⊆ Q is the
set of accepting states. It is often simpler first to construct a non-deterministic finite automaton
which is as above, but the transition function is replaced by a transition relation δ ⊆ Q×A×Q.

When such a automaton is drawn diagramatically we often refer to it as a transition diagram.
Constructing the finite state automaton from a regular expression can be then seen with a starting
with a single transition labelled (rather illegally for our definition of finite state automaton) with
the regular expression and then repeatedly applying the following rules to the transition diagram.

=> E

=>

=>

E1

E2

E1 E2

E

E1|E2

E*

=>

E1 E2

(E)

The transition diagram for the expression “(a b | c)* d” is:

11



a b

d

c

A finite state automaton can be regarded as a generator of strings by applying the following
algorithm:

1. Follow any path from the starting point to any accessible box.

2. Output the character in the box.

3. Follow any path from that box to another box (possibly the same) and continue from step
(2). The process stops when an exit point is reached (exit points correspond to accepting
states).

We can also use the transition diagram as the basis of a recogniser algorithm. For example, an
analyser to recognise :=, :, <numb> and <id> might have the following transition diagram:

: =

letter

digit

letter

digit digit

COLON

ID
etc

yes
ASS

NUMB

yes

no

no

no

no

no
yes

yes

no

no

Optimisation is possible (and needed) in the organisation of the tests. This method is only
satisfactory if one can arrange that only one point in the diagram is active at any one time (i.e.
the finite state automaton is deterministic).

Note that finite state automata are alternatively (and more usually) written as a directed graph
with nodes representing states and labelled edges representing the transition function or relation.
For example, the graph for the expression “(a b | c)* d” can also be drawn as follows:

1

2

3
d

b

a

c

With state 3 designated an accepting state, this graph is a finite state automaton for the given
regular expression. The automaton is easily implemented using a transition matrix to represent
the graph.

We will demonstrate the method by considering the following syntax of floating point numbers
(the ‘−→’ notation is introduced below in section 3):

N −→ U | s U Number

U −→ D | E | D E Unsigned number

D −→ J | F | J F Unsigned decimal number

E −→ e I Exponent part

F −→ p J Decimal fraction

I −→ J | s J Integer

J −→ d | d J Unsigned integer

12



where s is a sign + or -

e is the exponent symbol E

p is the decimal point .

d is a digit 0-9

The corresponding graph is:

1 2 3 87654

p p

d

d

d

e s

dd

d ee e
dd ps

The corresponding matrix is as follows:

s d p e other
S1 S2 S3 S4 S6 .

S2 . S3 S4 S6 .

S3 . S3 S4 S6 acc

S4 . S5 . . .

S5 . S5 . S6 acc

S6 S7 S8 . . .

S7 . S8 . . .

S8 . S8 . . acc

In a program that uses this technique each matrix entry would specify the address of some code to
deal with the transition2 and note the next matrix row to be used. The entry acc would point to
the code that processes a complete floating point number. Blank entries correspond to syntactic
error conditions.

In general, this technique is fast and efficient, but if used on a large scale it requires skill and
cunning to reduce the size of the matrix and to reduce the number of separate transition routines.

Later we will look at automated methods for producing such tables from a regular expression.

3 Phrase structured grammars

We start with an alphabet, Σ, of symbols (think of these as characters to lexing or tokens resulting
from lexing). A string over this alphabet is just a finite sequence σ1 · · ·σn of symbols from Σ. A
language is then merely a set of such strings. (Using the ‘star’ notation from regular expressions
earlier, we can hence say that a language L over an alphabet Σ is a subset of Σ∗, i.e. L ⊆ Σ∗.

To make this definition workable we need a rule to describe those strings in the language. For
a rather boring language, consider the alphabet to be set of all letters {a ... z} and the rule to
be “all strings of length three” then we would have the language whose strings are:

aaa, aab, ... zzy, zzz

Note that this is a finite language, but some languages may be infinite (e.g. “all strings of even
length”). Such informal rules (specified by English) are not terribly useful to Computer Science
(e.g. think of the rule “all valid Java programs”), so we turn to grammars.

Informally a grammar (more precisely a phrase structured grammar) has additional symbols
(non-terminals) which are not part of the language we wish to describe. The ‘rule’ for determining

2E.g. multiply the current total by 10 and add on the current digit
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which strings are part of the language is then a two-part process: strings containing such non-
terminals can be re-written to other strings (perhaps also containing other non-terminals) using
production rules; strings containing no non-terminal symbols are considered part of the language.

A grammar is can then be defined to be a 4-tuple (T,N, S,R) where T and N are disjoint sets
of respectively terminal and non-terminal symbols, S ∈ N is the start (or sentence) symbol, and
R is a set of productions. T performs the rôle of Σ above, but now it is convenient to use the word
‘symbol’ to mean any symbol in T ∪N . The most general form of a production is:

A1 A2 · · · Am −→ B1 B2 · · · Bn
where the Ai and Bi are symbols and A1 A2 · · · Am contains at least one non-terminal.

The above rule specifies that if A1 A2 · · · Am occurs in a string generated by the grammar then
the string formed by replacing A1 A2 · · · Am by B1 B2 · · · Bn is also generated by the grammar
(note that the symbol ‘::=’ is sometimes used as an alternative to ‘−→’). The string consisting of
just the start symbol S is defined to be trivially generated by the grammar. Any string that can
be formed by the application of productions to S is called a sentential form. A sentential form
containing no non-terminals is called a sentence. The language generated by a grammar is the set
of sentences it generates. The problem of syntax analysis is to discover which series of applications
of productions that will convert the sentence symbol into the given sentence.

It is important not to confuse T and N . Elements of T occur in programs, in examples terminal
symbols may be a, b, c as in the length-3 string example above and occur in input text. Non-
terminals like Term or Declaration do not occur in input text but instead are place holders for
other sequences of symbols.

It is useful to impose certain restrictions on A1 A2 · · · Am and B1 B2 · · · Bn and this has been
done by Chomsky to form four different types of grammar. The most important of these in the
Chomsky Type 2 grammar (commonly known as a context-free grammar for reasons which will
become clear below).

3.1 Type 2 grammar

In the Chomsky type 2 grammar the left hand side of every production is restricted to just a single
non-terminal symbol. Such symbols are often called syntactic categories. Type 2 grammars are
known as context-free grammars and have been used frequently in the specification of the syntax of
programming languages, most notably Algol 60 where it was first used. The notation is sometime
called Backus Naur Form or BNF after two of the designers of Algol 60. A simple example of a
type 2 grammar is as follows:

S −→ A B

A −→ a

A −→ A B b

B −→ b c

B −→ B a

A slightly more convenient way of writing the above grammar is:

S −→ A B

A −→ a | A B b

B −→ b c | B a

The alphabet for this grammar is {S, A, B, a, b, c, d}. The non-terminals are S, A, B being
the symbols occurring on the left-hand-side of productions, with S being identified as the start
symbol. The terminal symbols are a, b, c, d, these being the characters that only appear on
the right hand side. Sentences that this grammar generates include, for instance:

abc

abcbbc

abcbca

abcbbcaabca

14



Where the last sentence, for instance, is generated from the sentence symbol by means of the
following productions:

S

|

A---------------B

| |

A-------B-----b B---a

| | | | |

A-B---b B---a | b-c |

| | | | | | | | |

a b-c | b-c | | | | |

| | | | | | | | | | |

a b c b b c a b b c a

A grammar is ambiguous if there are two or more ways of generating the same sentence.
Convince yourself that the follow three grammars are ambiguous:

a) S −→ A B

A −→ a | a c

B −→ b | c b

b) S −→ a T b | T T

T −→ a b | b a

c) C −→ if E then C else C | if E then C

Clearly every type 2 grammar is either ambiguous or it is not. However, it turns out that it is not
possible to write a program which, when given an arbitrary type 2 grammar, will terminate with
a result stating whether the grammar is ambiguous or not. It is surprisingly difficult for humans
to tell whether a grammar in ambiguous. One example of this is that the productions in (c) above
appeared in the original Algol 60 published specification. As an exercise, determine whether the
example grammar given above is ambiguous.

For completeness, the other grammars in the Chomsky classification are as follows.

3.2 Type 0 grammars

Here there are no restrictions on the sequences on either side of productions. Consider the following
example:

S −→ a S B C | a B C

C B −→ B C

a B −→ a b

b B −→ b b

b C −→ b c

c C −→ c c

This generates all strings of the form anbncn for all n ≥ 1.
To derive aaaaabbbbbccccc, first apply S −→aSBC four times giving:

aaaaSBCBCBCBC

Then apply S −→aBC giving:

aaaaaBCBCBCBCBC

Then apply CB −→BC many times until all the Cs are at the right hand end.
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aaaaaBBBBBCCCCC

Finally, use the last four productions to convert all the Bs and Cs to lower case giving the required
result. The resulting parse tree is as follows:

S

a-S-----------------------B-C

| a-S-----------------B-C | |

| | a-S-----------B-C | | | |

| | | a-S-----B-C | | | | | |

| | | | a-B-C | | | | | | | |

| | | | a-b B-C B-C B-C B-C |

| | | | | b-b B-C B-C B-C | |

| | | | | | b-b B-C B-C | | |

| | | | | | | b-b B-C | | | |

| | | | | | | | b-b | | | | |

| | | | | | | | | b-c | | | |

| | | | | | | | | | c-c | | |

| | | | | | | | | | | c-c | |

| | | | | | | | | | | | c-c |

| | | | | | | | | | | | | c-c

| | | | | | | | | | | | | | |

a a a a a b b b b b c c c c c

As a final remark on type 0 grammars, it should be clear that one can write a grammar
which essentially specifies the behaviour of a Turing machine, and syntax analysis in this case is
equivalent to deciding whether a given string is the answer to some program. This is undecidable
and syntax analysis of type 0 grammars is thus, in general, undecidable.

3.3 Type 1 grammars

A production in a type 1 grammar takes the following form:

L1 · · ·Ll︸ ︷︷ ︸ A R1 · · ·Rr︸ ︷︷ ︸ −→ L1 · · ·Ll︸ ︷︷ ︸
︷ ︸︸ ︷
B1 · · ·Bn R1 · · ·Rr︸ ︷︷ ︸

where A is a single non-terminal symbol, and the L1 · · ·Ll, R1 · · ·Rr and B1 · · ·Bn are sequences of
terminal and non-terminal symbols. The sequence B1 · · ·Bn may not be empty. These grammars
are called context sensitive since A can only be replaced by B1 · · ·Bn if it occurs in a suitable
context (the Li are the left context and the Ri the right context).

3.4 Type 3 grammars

This is the most restrictive of the phrase structured grammars. In it all productions are limited
to being one of the following two forms:

A −→ a

A −→ a B

That is, the right hand side must consist of a single terminal symbol possibly followed by a single
non-terminal. It is sometimes possible to convert a type 2 grammar into an equivalent type 3
grammar. Try this for the grammar for floating point constants given earlier.

Type 3 grammars can clearly be parsed using a finite state recogniser, and for this reason
they are often called regular grammars. [To get precise correspondence to regular languages it is
necessary also to allow the empty production S −→ε otherwise the regular language consisting of
the empty string (accepted by an automaton whose initial state is accepting, but any non-empty
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input sequence causes it to move to a non-accepting state) cannot be represented as a type 3
grammar.]

Finally, note that clearly every Type 3 grammar is a Type 2 grammar and every Type 2
grammar is a Type 1 grammar etc. Moreover these inclusions are strict in that there are languages
which can be generated by (e.g.) a Type 2 grammar and which cannot be generated by any Type
3 grammar. However, just because a particular language can be described by (say) a Type 2
grammar does not automatically mean that there is no Type 3 grammar which describes the
language. An example would be the grammar G given by

S −→ a

S −→ S a

which is of Type 2 (and not Type 3) but the grammar G′ given by

S −→ a

S −→ a S

clearly generates the same set of strings (is equivalent to G) and is Type 3.

4 Syntax analysis

The type 2 (or context-free) grammar is the most useful for the description of programming
languages since it is powerful enough to describe the constructions one typically needs and yet
is sufficiently simple to be analysed by a small and generally efficient algorithm. Some compiler
writing systems use BNF (often with slight extensions) as the notation in which the syntax of the
language is defined. The parser is then automatically constructed from this description.

We will now look at two main parsing techniques, namely: recursive descent and SLR(1)
(SLR(1) is a simpler form of LALR(1) used by yacc and CUP).

4.1 Recursive descent

In this method the syntax is converted into transition diagrams for some or all of the syntac-
tic categories of the grammar and these are then implemented by means of recursive functions.
Consider, for example, the following syntax:

P −→ ( T ) | n

F −→ F * P | F / P | P

T −→ T + F | T - F | F

where the terminal symbol n represents name or number token from the lexer. The corresponding
transition diagrams are:

P

P*

/

F P

FT + F

- F

( T )

n

P
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Notice that the original syntax has been modified to avoid left recursion3 to avoid the possibility
of a recursive loop in the parser. The recursive descent parsing functions are outlined below
(implemented in C):

void RdP()

{ switch (token)

{ case ’(’: lex(); RdT();

if (token != ’)’) error("expected ’)’);

lex(); return;

case ’n’: lex(); return;

default: error("unexpected token");

}

}

void RdF()

{ RdP();

for (;;) switch (token)

{ case ’*’: lex(); RdP(); continue;

case ’/’: lex(); RdP(); continue;

default: return;

}

}

void RdT()

{ RdF();

for (;;) switch (token)

{ case ’+’: lex(); RdF(); continue;

case ’-’: lex(); RdF(); continue;

default: return;

}

}

4.2 Data structures for parse trees

It is usually best to use a data structure for a parse tree which corresponds closely to the abstract
syntax for the language in question rather than the concrete syntax. The abstract syntax for the
above language is

E −→ E + E | E - E | E * E | E / E | ( E ) | n

This is clearly ambiguous seen as a grammar on strings, but it specifies parse trees precisely and
corresponds directly to ML’s

datatype E = Add of E * E | Sub of E * E |

Mult of E * E | Div of E * E |

Paren of E | Num of int;

Indeed one can go further and ignore the ( E ) construct in the common case parentheses often
have no semantic import beyond specifying grouping. In C the construct tends to look like:

struct E {

enum { E_Add, E_Sub, E_Mult, E_Div, E_Paren, E_Numb } flavour;

union { struct { struct E *left, *right; } diad;

// selected by E_Add, E_Sub, E_Mult, E_Div.

3By replacing the production F −→F * P | F / P | P with F −→P * F | P / F | P which has no effect on
the strings accepted, although it does affect their parse tree—see later.
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struct { struct E *child; } monad;

// selected by E_Paren.

int num;

// selected by E_Numb.

} u;

};

It is not generally helpful to reliability and maintainability to make a single datatype which
can represent all sub-structures of a parse tree. For parsing C, for example, one might well expect
to have separate abstract parse trees for Expr, Cmd and Decl.

It is easy to augment a recursive descent parser so that it builds a parse tree while doing
syntax analysis. The ML datatype definition defines constructor functions, e.g. Mult which maps
two expression trees into one tree which represents multiplying their operands. In C one needs to
work a little by defining such functions by hand:

struct E *mkE_Mult(E *a, E *b)

{ struct E *result = malloc(sizeof (struct E));

result->flavour = E_Mult;

result->u.diad.left = a;

result->u.diad.right = b;

return result;

}

A recursive descent parser which builds a parse tree for the parsed expression is given in
Figure 1.

When there are many such operators like +, -, *, / with similar syntax it can often simplify
the code to associate a binding power (or precedence) with each operator and to define a single
routine RdE(int n) which will read an expression which binds at least as tightly as n. In this case
RdT() might correspond to RdE(0), RdF() to RdE(1) and RdP() to RdE(2).
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struct E *RdP()

{ struct E *a;

switch (token)

{ case ’(’: lex(); a = RdT();

if (token != ’)’) error("expected ’)’);

lex(); return a;

case ’n’: a = mkE_Numb(lex_aux_int); lex(); return a;

/* do names by

** case ’i’: a = mkE_Name(lex_aux_string): lex(); return a;

*/

default: error("unexpected token");

}

}

/* This example code includes a right associative ’^’ operator too... */

/* ’^’ binds more tightly than ’*’ or ’/’. For this example, The rule */

/* F ::= P | F * P | F / P */

/* has been changed into the two rules */

/* F ::= G | F * G | F / G G ::= P | P ^ G */

struct E *RdG()

{ struct E *a = RdP();

switch (token)

{ case ’^’: lex(); a = mkE_Pow(a, RdG()); return a;

default: return a;

}

}

struct E *RdF()

{ struct E *a = RdG();

for (;;) switch (token)

{ case ’*’: lex(); a = mkE_Mult(a, RdG()); continue;

case ’/’: lex(); a = mkE_Div(a, RdG()); continue;

default: return a;

}

}

struct E *RdT()

{ struct E *a = RdF();

for (;;) switch (token)

{ case ’+’: lex(); a = mkE_Add(a, RdF()); continue;

case ’-’: lex(); a = mkE_Sub(a, RdF()); continue;

default: return a;

}

}

Figure 1: Recursive descent parser yielding a parse tree
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4.3 SLR parsing

Various parsing algorithms based on the so called LR(k) approach have become become popular.
These are specifically LR(0), SLR(1), LALR(1) and LR(1). These four methods can parse a source
text using a very simple program controlled by a table derived from the grammar. The methods
only differ in the size and content of the controlling table.

To exemplify this style of syntax analysis, consider the following grammar (here E, T, P ab-
breviate ‘expression’, ‘term’ and ‘primary’—an alternative notation would use names like <expr>,
<term> and <primary> instead):

#0 S −→ E eof

#1 E −→ E + T

#2 E −→ T

#3 T −→ P ** T

#4 T −→ P

#5 P −→ i

#6 P −→ ( E )

The form of production #0 is important. It defines the sentence symbol S and its RHS consists of
a single non-terminal followed by the special terminal symbol eof which must not occur anywhere
else in the grammar. (When you revisit this issue you will note that this ensures the value parsed
is an E and what would be a reduce transition using rule #0 is used for the acc accept marker.)

We first construct what is called the characteristic finite state machine or CFSM for the
grammar. Each state in the CFSM corresponds to a different set of items where an item consists
of a production together with a position marker (represented by .) marking some position on the
right hand side. There are, for instance, four possible items involving production #1, as follows:

E −→ .E + T

E −→ E .+ T

E −→ E + .T

E −→ E + T .

If the marker in an item is at the beginning of the right hand side then the item is called an
initial item. If it is at the right hand end the the item is called a completed item. In forming item
sets a closure operation must be performed to ensure that whenever the marker in an item of a set
precedes a non-terminal, E say, then initial items must be included in the set for all productions
with E on the left hand side.

The first item set is formed by taking the initial item for the production defining the sentence
symbol (S −→.E eof ) and then performing the closure operation, giving the item set:

1: { S −→ .E eof

E −→ .E + T

E −→ .T

T −→ .P ** T

T −→ .P

P −→ .i

P −→ .( E )

}

States have successor states formed by advancing the marker over the symbol it precedes. For
state 1 there are successor states reached by advancing the marker over the symbols E, T, P, i or
(. Consider, first, the E successor (state 2), it contains two items derived from state 1 and the
closure operation adds no more (since neither marker precedes a non terminal). State 2 is thus:

2: { S −→ E . eof

E −→ E .+ T

}
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The other successor states are defined similarly, except that the successor of eof is always the
special state accept. If a new item set is identical to an already existing set then the existing set
is used. The successor of a completed item is a special state represented by $ and the transition
is labelled by the production number (#i) of the production involved. The process of forming the
complete collection of item sets continues until all successors of all item sets have been formed.
This necessarily terminates because there are only a finite number of different item sets.

For the example grammar the complete collection of item sets given in Figure 2. Note that for
completed items the successor state is reached via the application of a production (whose number
is given in the diagram).
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1: { S -> .E eof \

E -> .E + T / E => 2

E -> .T T => 5

T -> .P ** T \

T -> .P / P => 6

P -> .i i => 9

P -> .( E ) ( => 10

}

2: { S -> E .eof eof => accept

E -> E .+ T + => 3

}

3: { E -> E + .T T => 4

T -> .P ** T \

T -> .P / P => 6

P -> .i i => 9

P -> .( E ) ( => 10

}

4: { E -> E + T . #1 => $

}

5: { E -> T . #2 => $

}

6: { T -> P .** T ** => 7

T -> P . #4 => $

}

7: { T -> P ** .T T => 8

T -> .P ** T \

T -> .P / P => 6

P -> .i i => 9

P -> .( E ) ( => 10

}

8: { T -> P ** T . #3 => $

}

9: { P -> i . #5 => $

}

10:{ P -> ( .E ) \

E -> .E + T / E => 11

E -> .T T => 5

T -> .P ** T \

T -> .P / P => 6

P -> .i i => 9

P -> .( E ) ( => 10

}

11:{ P -> ( E .) ) => 12

E -> E .+ T + => 3

}

12:{ P -> ( E ) . #6 => $

}

Figure 2: CFSM item sets
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The CFSM can be represented diagrammatically as follows:

5

6

7

10 12

8

1

43$

$

$
#2 #1

#4P

T

T

E

(

T +

2
eof

accept

**
$

$

i
9

#5
$

11
)E #6

#3

4.3.1 SLR(0) parser

From the CFSM we can construct the two matrices action and goto:

1. If there is a transition from state i to state j under the terminal symbol k, then set
action[i, k] to Sj.

2. If there is a transition under a non-terminal symbol A, say, from state i to state j, set
goto[i, A] to Sj.

3. If state i contains a transition under eof set action[i, eof ] to acc.

4. If there is a reduce transition #p from state i, set action[i, k] to #p for all terminals k.

If any entry is multiply defined then the grammar is not SLR(0).
The example grammar given is not SLR(0), because state 6 admits both a shift transition and

a reduce transition for the terminal ∗∗. In general right associative operators do not give SLR(0)
grammars.

The key idea is to determine whether to shift or reduce according to the next terminal in the
input stream—i.e. to use a 1-token lookahead to determine whether it is appropriate to perform
reduce transition. This leads to the idea of an SLR(1) grammar to which we now turn.

4.3.2 SLR(1) parser

To construct an SLR(1) parser we must define and compute the sets FOLLOW(U) for all non-terminal
symbols U . FOLLOW(U) is defined to be the set of all symbols (terminal and non-terminal) that can
immediately follow the non-terminal symbol U in a sentential form. To do this, it is helpful to define
the notion of the set of symbols Left(U) (again terminal and non-terminal) which can appear at

the start of a sentential form generated from the non-terminal symbol U . I.e. if U
1+−→ B1 · · ·Bn

then B1 is in Left(U) where the notation
1+−→ means using one or more production rules.

The sets Left(U) can be calculated for all non-terminals in the grammar by the following
algorithm:

1. Initialise all sets Left(U) to empty.

2. For each production U −→ B1 · · ·Bn enter B1 into Left(U).

3. For each production U −→ B1 · · ·Bn where B1 is also a non-terminal enter all the elements
of Left(B1) into Left(U)

4. Repeat 3. until no further change.
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For the example grammar the Left sets are as follows:

U Left(U)
S E T P ( i

E E T P ( i

T P ( i

P ( I

The sets FOLLOW(U) can now be formed using the following rules.

1. If there is a production of the form X −→ . . . Y Z . . . put Z and all symbols in Left(Z) into
FOLLOW(Y ).

2. If there is a production of the form X −→ . . . Y put all symbols in FOLLOW(X) into
FOLLOW(Y ).

We are assuming here that no production in the grammar has an empty right hand side. For our
example grammar, the FOLLOW sets are as follows:

U FOLLOW(U)

E eof + )

T eof + )

P eof + ) **

The action and goto matrices are formed from the CFSM as in the SLR(0) case, but with
rule 4 modified:

4’ If there is a reduce transition #p from state i, set action[i, k] to #p for all terminals k
belonging to FOLLOW(U) where U is the subject of production #p.

If any entry is multiply defined then the grammar is not SLR(1). Blank entries are represented
by dash (-).

action goto

state eof ( i ) + ** P T E

S1 - S10 S9 - - - S6 S5 S2

S2 acc - - - S3 - - - -

S3 - S10 S9 - - - S6 S4 -

S4 #1 - - #1 #1 - - - -

S5 #2 - - #2 #2 - - - -

S6 #4 - - #4 #4 S7 - - -

S7 - S10 S9 - - - S6 S8 -

S8 #3 - - #3 #3 - - - -

S9 #5 - - #5 #5 #5 - - -

S10 - S10 S9 - - - S6 S5 S11

S11 - - - S12 S3 - - - -

S12 #6 - - #6 #6 #6 - - -

The parsing algorithm used for all LR methods uses a stack that contains alternately state
numbers and symbols from the grammar, and a list of input terminal symbols terminated by eof .
A typical situation is represented below:

a A b B c C d D e E f | u v w x y z eof

Here a ... f are state numbers, A ... E are grammar symbols (either terminal or non-terminal)
and u ... z are the terminal symbols of the text still to be parsed. If the original text was
syntactically correct, then
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A B C D E u v w x y z

will be a sentential form.
The parsing algorithm starts in state S1 with the whole program, i.e. configuration

1 | 〈the whole program upto eof 〉
and then repeatedly applies the following rules until either a syntactic error is found or the parse
is complete.

1. If action[f, u] = Si, then transform

a A b B c C d D e E f | u v w x y z eof

to

a A b B c C d D e E f u i | v w x y z eof

This is called a shift transition.

2. If action[f, u] = #p, and production #p is of length 3, say, then it will be of the form
P −→ C D E where C D E exactly matches the top three symbols on the stack, and P is some
non-terminal, then assuming goto[c, P] = g

a A b B c C d D e E f | u v w x y z eof

will transform to

a A b B c P g | u v w x y z eof

Notice that the symbols in the stack corresponding to the right hand side of the production
have been replaced by the subject of the production and a new state chosen using the goto

table. This is called a reduce transition.

3. If action[f, u] = acc then the situation will be as follows:

a Q f | eof

and the parse will be complete. (Here Q will necessarily be the single non-terminal in the
start symbol production (#0) and u will be the symbol eof .)

4. If action[f, u] = - then the text being parsed is syntactically incorrect.

Note again that there is a single program for all grammars; the grammar is coded in the action

and goto matrices.
As an example, the following steps are used in the parsing of i+i:

Stack text production to use

1 i + i eof

1 i 9 + i eof P −→ i

1 P 6 + i eof T −→ P

1 T 5 + i eof E −→ T

1 E 2 + i eof

1 E 2 + 3 i eof

1 E 2 + 3 i 9 eof P −→ i

1 E 2 + 3 P 6 eof T −→ P

1 E 2 + 3 T 4 eof E −→ E + T

1 E 2 eof acc (E is result)

In practice a tree will be produced and stored attached to terminals and non-terminals on the
stack. Thus the final E will in reality be a pair of values: the non-terminal E along with a tree
representing i+i.
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%%

[ \t] /* ignore blanks and tabs */ ;

[0-9]+ { yylval = atoi(yytext); return NUMBER; }

"mod" return MOD;

"div" return DIV;

"sqr" return SQR;

\n|. return yytext[0]; /* return everything else */

Figure 3: calc.l

4.3.3 Errors

A syntactic error is detected by encountering a blank entry in the action or goto tables. If this
happens the parser can recover by systematically inserting, deleting or replacing symbols near the
current point in the source text, and choosing the modification that yields the most satisfactory
recovery. A suitable error message can then be generated.

4.3.4 Table compaction

In a typical language we can expect there to be over 200 symbols in the grammar and perhaps
rather more states in the CFSM. The action and goto tables are thus likely to require over 40000
entries between them. There are good ways of compacting these by about a factor of ten.

5 Automated tools to write compilers

These tools are often known as compiler compilers (i.e. they compile a textual specification of part
of your compiler into regular, if sordid, source code instead of you having to write it yourself).

Lex and Yacc are programs that run on Unix and provide a convenient system for constructing
lexical and syntax analysers. JLex and CUP provide similar facilities in a Java environment.
There are also similar tools for ML.

5.1 Lex

Lex takes as input a file (e.g. calc.l) specifying the syntax of the lexical tokens to be recognised
and it outputs a C program (normally lex.yy.c) to perform the recognition. The syntax of
each token is specified by means of a regular expression and the corresponding action when that
token is found is supplied as a fragment of C program that is incorporated into the resulting
lexical analyser. Consider the lex program calc.l in Figure 3. The regular expressions obey the
usual unix conventions allowing, for instance, [0-9] to match any digit, the character + to denote
repetition of one or more times, and dot (.) to match any character other than newline. Next to
each regular expression is the fragment of C program for the specified token. This may use some
predefined variables and constants such as yylval, yytext and NUMBER. yytext is a character
vector that holds the characters of the current token (its length is held in yyleng). The fragment
of code is placed in the body of an external function called lex, and thus a return statement
will cause a return from this function with a specified value. Compound tokens such as NUMBER

return auxiliary information in suitably declared variables. For example, the converted value of a
NUMBER is passed in the variable lexlval. If a code fragment does not explicitly return from lex

then after processing the current token the lexical analyser will start searching for the next token.
In more detail, a Lex program consists of three parts separated by %%s.

declarations
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%%

translation rules

%%

auxiliary C code

The declarations allows a fragment of C program to be placed near the start of the resulting lexical
analyser. This is a convenient place to declare constants and variables used be the lexical analyser.
One may also make regular expression definitions in this section, for instance:

ws [ \t\n]+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

These named regular expressions may be used by enclosing them in braces ({ or }) in later
definitions or in the translations rules.

The translation rules are as above and the auxiliary C code is just treated as a text to be
copied into the resulting lexical analyser.

5.2 Yacc

Yacc (yet another compiler compiler) is like Lex in that it takes an input file (e.g. calc.y) speci-
fying the syntax and translation rule of a language and it output a C program (usually y.tab.c)
to perform the syntax analysis.

Like Lex, a Yacc program has three parts separated by %%s.

declarations

%%

translation rules

%%

auxiliary C code

Within the declaration one can specify fragments of C code (enclosed within special brackets %{

and %}) that will be incorporated near the beginning of the resulting syntax analyser. One may
also declare token names and the precedence and associativity of operators in the declaration
section by means of statements such as:

%token NUMBER

%left ’*’ DIV MOD

The translation rules consist of BNF-like productions that include fragments of C code for
execution when the production is invoked during syntax analysis. This C code is enclosed in
braces ({ and }) and may contain special symbols such as $$, $1 and $2 that provide a convenient
means of accessing the result of translating the terms on the right hand side of the corresponding
production.

The auxiliary C code section of a Yacc program is just treated as text to be included at the
end of the resulting syntax analyser. It could for instance be used to define the main program.

An example of a Yacc program (that makes use of the result of Lex applied to calc.l) is
calc.y listed in Figure 4.

Yacc parses using the LALR(1) technique. It has the interesting and convenient feature that
the grammar is allowed to be ambiguous resulting in numerous shift-reduce and reduce-reduce
conflicts that are resolved by means of the precedence and associativity declarations provided by
the user. This allows the grammar to be given using fewer syntactic categories with the result
that it is in general more readable.

The above example uses Lex and Yacc to construct a simple interactive calculator; the trans-
lation of each expression construct is just the integer result of evaluating the expression. Note
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%{

#include <stdio.h>

%}

%token NUMBER

%left ’+’ ’-’

%left ’*’ DIV MOD

/* gives higher precedence to ’*’, DIV and MOD */

%left SQR

%%

comm: comm ’\n’

| /* empty */

| comm expr ’\n’ { printf("%d\n", $2); }

| comm error ’\n’ { yyerrok; printf("Try again\n"); }

;

expr: ’(’ expr ’)’ { $$ = $2; }

| expr ’+’ expr { $$ = $1 + $3; }

| expr ’-’ expr { $$ = $1 - $3; }

| expr ’*’ expr { $$ = $1 * $3; }

| expr DIV expr { $$ = $1 / $3; }

| expr MOD expr { $$ = $1 % $3; }

| SQR expr { $$ = $2 * $2; }

| NUMBER

;

%%

#include "lex.yy.c"

yyerror(s)

char *s;

{ printf("%s\n", s);

}

main()

{ return yyparse();

}

Figure 4: calc.y
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that in one sense it is not typical in that it does not construct a parse tree—instead the value of
the input expression is evaluated as the expression is parsed. The first two productions for ‘expr’
would more typically look like:

expr: ’(’ expr ’)’ { $$ = $2; }

| expr ’+’ expr { $$ = mkbinop(’+’, $1, $3); }

where mkbinop() is a C function which takes two parse trees for operands and makes a new one
representing the addition of those operands.

6 Translation to intermediate code

The translation phase of a compiler normally converts the abstract syntax tree representation of
a program into intermediate object code which is usually either a linear sequence of statements or
an internal representation of a flowchart. We will assume that the translation phase deals with (1)
the scope and allocation of variables, (2) determining the type of all expressions, (3) the selection
of overloaded operators, and (4) generating of the intermediate code.

Before we can give algorithms to translate a parse-tree into linear intermediate code form, we
need to be a little more precise about the particular representation of the parse tree and also the
intermediate code used. We present a JVM-style4 intermediate code, which consists of a linear
sequence of simple (virtual machine) instructions which act on a run-time stack. Note that the
explanation given here corresponds to a subset of the JVM (e.g. we will not explore exceptions or
non-static method invocation) and will prefer pedagogic simplicity over precision. Nevertheless,
you should be able to read disassembled (using ‘javap -c’) JVM .class files and I recommend
you do this to aid your understanding.

6.1 Relevant JVM instruction set

The JVM has already been covered in the course “Computer Design”. This section can be seen
as a reminder which focuses on particular points relevant to compilation.

In these notes the stack is upwards growing, so that subsequent parameters and local variables
occupy increasing memory locations (this is not necessary for the JVM but makes the pictures
easier to understand). The version of the JVM we present has a stack-pointer SP register which
points to the first free location on the stack. In addition, it has a so-called frame-pointer FP

register which points to a constant place during the activation of a procedures. Although strictly
not necessary, this simplifies explanations and aids debuggers, since local variables will remain at
the same constant offset from FP but their offset from SP will vary during pushes and pops to
the stack. (N.B. on both the Pentium and the ARM, the convention instead is to have the stack
downward growing, and SP to hold the lowest currently used location on the stack.) Evaluation of
a procedure uses a stack frame which will be addressed from FP. A stack frame has the following
form:

parameters local vars

FP

6

FP′ L local stack

SP

6

Here FP points to (or rather into) the current stack frame. FP points to the so-called linkage
information which allows a function call to return. This consists of the previous value of FP, here
called FP′ and a pointer L (the return address) to the machine instruction to be next evaluated
after the function’s return. To the left (at lower addresses) of the linkage informations are stored
the functions parameters and (user-declared) local variables; on the right is the local stack (used
for evaluating temporaries and for storing arguments), SP is a pointer to first free cell of this (which

4The Microsoft language C# has a very close resemblance to Java and their .net virtual machine code a similar
relationship to JVM code. Their divergence owes more to commercial reasons that technological ones.
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coincides with the first free cell of the whole stack). To clarify explanations of function call, we
will use the word parameters to refer to the identifiers holding arguments to the current procedure
and restrict the word arguments to refer to expressions are being, or have been, evaluated on the
stack in order to be passed to a further function. At the end of each Java statement we can expect
the local stack to be empty and hence SP to point exactly two words further along the stack from
FP. In general these notes will assume that the JVM stack is an array of (32-bit) words, and so
addresses of stack items will differ by one.

One more point is worthy of note. A Java routine has a fixed number of parameters (say np)
and local variables (say nv) and similarly the maximum depth of its local stack can be determined
in advance. The latter means it is simple to check, at procedure invocation, that there is enough
space beyond SP for a new stack frame, thus avoiding over-writing issues. The JVM does not have
distinct instructions for addressing parameters and local variables, they are just accessed with the
instruction iload i, using offsets 0..(np + nv − 1).

Turning to the JVM instructions, variables and parameters are accessed by instructions iload i
and istore i, with operand 0..(np+nv−1). Thus “read the first parameter to a function” would
be written iload 0.

More formally, and showing the use of the local stack, these JVM instructions have the following
effects:

iload i SP[0] = FP[i− (np + nv)]; SP++;

istore i SP--; FP[i− (np + nv)] = SP[0];

Note that we have just written, following C, the name of a pointer as an array name, in particular
SP[0] means “the cell pointed to by SP”, SP[-5] means “the cell five cells before that pointed to
by SP etc. If you find this (C-like) use of pointers confusing, then you may instead perfectly validly
consider program data to be stored in a big Java array int [] dmem; . This this viewpoint can
be exemplified by how iload is then represented:

iload i dmem[SP+0] = dmem[FP + i− (np + nv)]; SP++;

Note in this viewpoint that SP and FP are now integers (rather than pointers) which reflect the
offset within dmem at which values are stored (which, in the pointer model, would have been
represented by “pointed-to” memory locations).

Some of the other JVM instructions are as follows:

iadd SP[-2] = SP[-2] + SP[-1]; SP--;

isub SP[-2] = SP[-2] - SP[-1]; SP--;

ineg SP[-1] = - SP[-1];

if icmpgt L if (SP[-2] > SP[-1]) PC = L; SP-=2;

if icmpeq L if (SP[-2] == SP[-1]) PC = L; SP-=2;

goto L PC = L;

Function calls and return are more tricky because they have to create or deallocate a stack frame
(the general principle is to avoid trampling on one’s own feet, especially in ireturn if np+nv = 0).

invokestatic L SP = SP + ncalled-fnv + 2; SP[-2] = FP; SP[-1] = PC;

FP = SP - 2; PC = L;

ireturn tempSP = FP - (np + nv); PC = FP[1]; FP = FP[0];

tempSP[0] = SP[-1]; SP = tempSP+1;

The use of the JVM instructions can be illustrated by considering the following Java program
fragment:

class fntest {

public static void main(String args[]) {

System.out.println("Hello World!" + f(f(1,2),f(3,4)));

}

static int f(int a, int b) { int y = a+b; return y*a; }

}
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The JVM function code generated for the function f might be:

iload 0 ; load a

iload 1 ; load b

iadd

istore 2 ; store result to y

iload 2 ; re-load y

iload 0 ; re-load a

imul

ireturn ; return from fn with top-of-stack value as result

and the series of calls in the println in main as:

iconst_1

iconst_2

invokestatic f

iconst_3

iconst_4

invokestatic f

invokestatic f

Note how two-argument function calls just behave like binary operators in that they remove two
items from the stack and replace them with one; the instructions invokestatic and ireturn both
play their part in the conspiracy to make this happen. You really must work through the above
code step-by-step to understand the function call/return protocol.

Instructions, such the first few instructions of f above, will be generated by translation phase
of the compiler using a series of calls such as:

Gen2(OP_iload, 0);

Gen2(OP_iload, 1);

Gen1(OP_iadd);

Gen2(OP_istore, 2);

where OP iload etc. will be represented by different values in an enumeration, for example (using
the barbarous Java syntax for this)

static final const OP_iload = 1;

static final const OP_istore = 2;

static final const OP_iadd = 3;

static final const OP_isub = 4;

static final const OP_itimes = 5;

The magic numbers can correspond directly to the bit patterns in a .class file, or can be decoded
in the Geni routines into readable strings. Alternatively successive instructions can be stored in
memory ready to be translated into native machine instructions in the CG phase.

6.2 JVM Interpreter

This section illustrates the structure of an interpreter for JVM code. It is useful to help familiari-
sation with the JVM instruction set, but also stands as an example of a “byte-code interpreter”.

The JVM is an example of a “byte-code” interpreter. Each instruction on the JVM consists of
a single byte specifying the opcode, followed by one or more operands depending on this opcode.

The structure of a JVM interpreter will be of the form:

void interpret()

{ byte [] imem; // instruction memory

int [] dmem; // data memory
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int PC, SP, FP; // JVM registers

int T; // a temporary

...

for (;;) switch (imem[PC++])

{

case OP_ICONST_0: dmem[SP++] = 0; break;

case OP_ICONST_1: dmem[SP++] = 1; break;

case OP_ICONST_B: dmem[SP++] = imem[PC++]; break;

case OP_ICONST_W: T = imem[PC++]; dmem[SP++] = T<<8 | imem[PC++]; break;

case OP_ILOAD_1: dmem[SP++] = dmem[FP+1]; break;

case OP_ILOAD_B: dmem[SP++] = dmem[FP+imem[PC++]]; break;

case OP_IADD: dmem[SP-2] = dmem[SP-2]+dmem[SP-1]; --SP; break;

case OP_ISTORE_B: dmem[FP+imem[PC++]] = dmem[--SP]; break;

case OP_GOTO_B: PC += imem[PC++]; break;

// etc

}

}

Note that, for efficiency, many JVM instructions come in various forms, thus while iconst w is
perfectly able to load the constant zero to the stack (taking 3 bytes of instruction), the compiler
will prefer to use the 1-byte form iconst 0.

6.3 Example tree form used in this section

In this section we will use a simple example language reflecting a subset of Java without types or
classes. It has the following abstract syntax tree structure (expressed in ML for conciseness):

type N = string; (* shorthand for ’name’ *)

datatype E = Var of N | Num of int | Apply of N * (E list) |

Neg of E | Pos of E | Not of E |

Add of E * E | Sub of E * E |

Mult of E * E | Div of E * E |

Eq of E * E | Ne of E * E |

Lt of E * E | Gt of E * E |

Le of E * E | Ge of E * E |

And of E * E | Or of E * E | (* for && and || *)

Cond of E * E * E |

and C = Seq of C * C | Assign of N * E

If3 of E * C * C | While of E * C |

Block of D list * C list | Return of E

and D = Vardef of N * E | Fndef of N * (N list) * C;

type P = D list; (* shorthand for ’program’ *)

A program in this language essentially consists of an interleaved sequence of initialised variable
definitions let x = e and function definitions let f(x1, . . . , xk) c.

6.4 Dealing with names and scoping

To generate the appropriate instruction for a variable or function reference (e.g. iload 7 instead
of y) we require the compiler to maintain a table (often called a symbol table although beware
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that this sometimes is used for for other things). This table keeps a record of which variables are
currently in scope and how the compiler may access them. For example, in Java

class A {

public static int g;

public int n,m;

public int f(int x) { int y = x+1; return foo(g,n,m,x,y); }

}

the variables x and y will be accessed via the iload and istore as above, but there will be another
pair of instructions to access a variable like g which is logically a global variable which can live in
a fixed position in memory and be addressed using absolute addressing. Accessing per-instance
variables, such as n above, is really beyond the scope of this part of the course which deals with
translation, but how a translation might work will be covered in the second part of the course.

Essentially, the routine trdecl will save the current state of the symbol table and add the
new declared names to the table. The routine trname consults the symbol table to determine the
access path for a given name. Finally, the compiler will arrange, when it has concluded treatment
a scope which has definitions, that the symbol table is restored to that which was extant at the
start of the scope (and saved by trdecl).

As an example for the above the table might contain

"g" static variable

"n" class variable 0

"m" class variable 1

"f" method

"x" local variable 0

"y" local variable 1

when compiling the call to foo, but just the first four items when merely in the scope of A. In
more detail, the symbol table will be extended by the entry (x, loc, 0) when f’s parameters (x) are
scanned, and then by (y, loc, 1) when the local definition of y is encountered. The issue of how
environments (the abstract concept corresponding to our symbol table) behave will be given in
the second part of the course.

6.5 Translation of expressions

Some of the functions used during translation are as follows:

trexp(x) translate an expression
trexplist(x) translate an expression list
trname(op,x) translate a name, op is one of

OP iload, OP istore, OP invokestatic

jumpcond(x,b,n) translate a conditional jump
trcmd(x) translate a command
trdecl(x) translate a declaration

The argument to trexp is the tree for the expression being translated. An outline of its
definition is as follows:5

fun trexp(Num(k)) = gen2(OP_iconst, k);

| trexp(Id(s)) = trname(OP_iload,s);

| trexp(Add(x,y)) = (trexp(x); trexp(y); gen1(OP_iadd))

| trexp(Sub(x,y)) = (trexp(x); trexp(y); gen1(OP_isub))

5We have adopted an ML-like syntax to describe this code since we can exploit pattern matching to make the
code more concise than C or Java would be. For ML experts there are still things left undone, like defining the ++

and -- operators of type int ref -> int.

34



| trexp(Mult(x,y)) = (trexp(x); trexp(y); gen1(OP_imul))

| trexp(Div(x,y)) = (trexp(x); trexp(y); gen1(OP_idiv))

| trexp(Neg(x)) = (trexp(x); gen1(OP_ineg))

| trexp(Apply(f, el)) =

( trexplist(el); // translate args

trname(OP_Invokestatic, f)) // Compile call to f

| trexp(Cond(b,x,y)) =

let val p = ++label; // Allocate two labels

val q = ++label in

jumpcond(b,false,p); // (see below for jumpcond)

trexp(x); // code to put x on stack

gen2(OP_goto,q); // jump to common point

gen2(OP_Lab,p);

trexp(y); // code to put y on stack

gen2(OP_Lab,q) // common point; result on stack

end;

etc...

fun trexplist[] = ()

| trexplist(e::es) = (trexp(e); trexplist(es));

6.6 Translation of short-circuit boolean expressions

In Java, the operators && and || are required not to evaluate their second operand if the result of
the expression is determined by the value of their first operand. For example, consider code like

if (i>=0 && A[i]==42) { ... }

If i>=0 is false then we are forbidden to evaluate A[i] as it may give rise to an exception. We will
use the function jumpcond to compile such expressions. Its first argument is the tree structure of
the expression, the second is a truth value stating whether a jump is to be made on true or on
false, and the third argument is the number of the label to jump to. We follow C and assume that
a boolean is represented as an int value with 0 corresponding to false and all other values being
treated as true. The definition of jumpcond is outlined below:

fun jumpcond(Num(c), true, n) = if (c!=0) gen2(OP_goto, n) else ();

| jumpcond(Num(c), false, n) = if (c==0) gen2(OP_goto, n) else ();

| jumpcond(Le(x,y), b, n) = (trexp(x); trexpr(y);

gen2((b ? OP_if_cmple:OP_if_cmpgt), n))

| jumpcond(Ne(x,y), b, n) = (trexp(x); trexpr(y);

gen2((b ? OP_if_cmpne:OP_if_cmpeq), n))

(* the cases Lt, Eq, Gt, Gt have been omitted here *)

| jumpcond(Not(x), b, n) = jumpcond(x, not b, n)

| jumpcond(And(x, y), true, n) =

let val m = ++label in

jumpcond(x, false, m);

jumpcond(y, true, n);

gen2(OP_Lab, m)

end

| jumpcond(And(x, y), false, n) = (jumpcond(x, false, n);

jumpcond(y, false, n))

| jumpcond( Or(x, y), true, n) = (jumpcond(x, true, n);

jumpcond(y, true, n))

| jumpcond( Or(x, y), false, n) =

let val m = ++label in
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jumpcond(x, true, m);

jumpcond(y, false, n);

gen2(OP_Lab, m);

end

| jumpcond(x, b, n) = ( trexp(x);

gen2(OP_iconst, 0);

gen2((b ? OP_if_cmpne:OP_if_cmpeq), n))

6.7 Type checking

So far in this section we have ignored type information (or rather, just assumed every variable
and operator is of type int—hence the integer operators iadd, ineg, iload etc). In a language
like Java, every variable and function name is given an explicit type when it is declared. This
can be added to the symbol table along with other (location and name) attributes. The language
specification then gives a way of determining the type of each sub-expression of the program. For
example, the language would typically specify that e+ e′ would have type float if e had type int

and e′ had type float.
This is implemented as follows. Internally, we have a data type representing language types

(e.g. Java types), with elements like T float and T int (and more structured values representing
things like function and class types which we will not discuss further here). A function typeof

gives the type of an expression. It would be coded :

fun typeof(Num(k)) = T_int

| typeof(Float(f)) = T_float

| typeof(Id(s)) = lookuptype(s) // looks in symbol table

| typeof(Add(x,y)) = arith(typeof(x), typeof(y));

| typeof(Sub(x,y)) = arith(typeof(x), typeof(y));

...

fun arith(T_int, T_int ) = T_int

| arith(T_int, T_float) = T_float

| arith(T_float, T_int) = T_float

| arith(T_float, T_float) = T_float

| arith(t, t’) = raise type_error("invalid types for arithmetic");

So, when presented with an expression like e+ e′, the compiler first determines (using typeof)
the type t of e and t′ of e′. The function arith tells us the type of e + e′. Knowing this latter
type enables us to output either a iadd or a fadd JVM operation. Now consider an expression
x+y, say, with x of type int and y of type float. It can be seen that the type of x differs from the
type of x+y; hence a coercion, represented by a cast in Java, is applied to x. Thus the compiler
(typically in trexp or in an earlier phase which only does type analysis) effectively treats x+y as
((float)x)+y. These type coercions are also elementary instructions in intermediate code, for
example in Java, float f(int x, float y) { return x+y; } generates

iload 0

i2f

fload 1

fadd

freturn

Overloading (having two simultaneous active definitions for the same name, but distinguished
by type) of user defined names can require careful language design and specification. Consider the
C++ class definition

class A

{ int f(int, int) { ... }

float f(float, char) { ... }
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void main() { ... f(1,’a’); ... }

}

The C++ rules say (roughly) that, because the call (with arguments of type char and int) does
not match any declaration of f exactly, the closest in type variant of f is selected and appropriate
coercions are inserted, thus the definition of main() corresponds to one of the following:

void main() { ... f(1, (int)’a’); ... }

void main() { ... f((float)1, ’a’); ... }

Which is a matter of fine language explanation, and to avoid subtle errors I would suggest that
you do not make your programs depend on such fine details.
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7 Code Generation for Target Machine

The part II course on ‘Optimising Compilation’ will cover this topic in an alternative manner, but
let us for now merely observe that each intermediate instruction listed above can be mapped into
a small number of ARM or Pentium instructions, essentially treating JVM instructions as a macro

for a sequence of Pentium instructions. Doing this näıvely will produce very unpleasant code, for
example recalling the

y := x<=3 ? -x : x

example and its intermediate code with

iload 4 load x (4th load variable)

iconst 3 load 3

if_icmpgt L36 if greater (i.e. condition false) then jump to L36

iload 4 load x

ineg negate it

goto L37 jump to L37

label L36

iload 4 load x

label L37

istore 7 store y (7th local variable)

could expand to (assuming a descending stack and 10 stack locations used for parameters and
local variables):

movl %eax,40-16(%fp) ; iload 4

pushl %eax ; iload 4

movl %eax,#3 ; iconst 3

pushl %eax ; iconst 3

popl %ebx ; if icmpgt

popl %eax ; if icmpgt

cmpl %eax,%ebx ; if icmpgt

bgt L36 ; if icmpgt

movl %eax,40-16(%fp) ; iload 4

...

However, delaying output of PUSHes to stack by caching values in registers and having the compiler
hold a table representing the state of the cache can improve the code significantly:

movl %eax,40-16(%fp) ; iload 4 stackcache=[%eax]

movl %ebx,#3 ; iconst 3 stackcache=[%eax,%ebx]

cmpl %eax,%ebx ; if icmpgt stackcache=[]

bgt L36 ; if icmpgt stackcache=[]

movl %eax,40-16(%fp) ; iload 4 stackcache=[%eax]

negl %eax ; ineg stackcache=[%eax]

pushl %eax ; (flush/goto) stackcache=[]

b L37 ; goto stackcache=[]

L36: movl %eax,40-16(%fp) ; iload 4 stackcache=[%eax]

pushl %eax ; (flush/label) stackcache=[]

L37: popl %eax ; istore 7 stackcache=[]

movl 40-28(%fp),%eax ; istore 7 stackcache=[]

I would claim that this code is near enough to code one might write by hand, especially when
we are required to keep to the JVM allocation of local variables to %fp-address storage locations.
The generation process is sufficiently simple to be understandable in an introductory course such
as this one; and indeed we would not in general to seek to produce ‘optimised’ code by small
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adjustments to the instruction-by-instruction algorithm we used as a basis. (For more powerful
techniques see the Part II course “Optimising Compilers”).

However, were one to seek to improve this scheme a little, then the code could be extended to
include the concept that the top of stack cache can represent integer constants as well as registers.
This would mean that the movl #3 could fold into the cmpl. Another extension is to check jumps
and labels sufficiently to allow the cache to be preserved over a jump or label (this is quite an effort,
by the way). Register values could also be remembered until the register was used for something
else (we have to be careful about this for variables accessible by another thread or volatile in
C). These techniques would jointly give code like:

movl %eax,40-16(%fp) ; iload 4 stackcache=[%eax], memo=[]

; iconst 3 stackcache=[%eax,3], memo=[%eax=local4]

cmpl %eax,#3 ; if icmpgt stackcache=[], memo=[%eax=local4]

bgt L36 ; if icmpgt stackcache=[], memo=[%eax=local4]

negl %eax ; ineg stackcache=[%eax], memo=[]

b L37 ; goto stackcache=[%eax], memo=[]

L36: ; (label) stackcache=[], memo=[%eax=local4]

; iload 4 stackcache=[%eax], memo=[%eax=local4]

L37: ; (label) stackcache=[%eax], memo=[]

movl 40-28(%fp),%eax ; istore 7 stackcache=[], memo=[%eax=local7]

This is now about as good as one can do with this strategy.

7.1 Table-Driven Translation to Target Code

Having shown how parser-generator tools often made it easier to produce a parser than hand-
writing a recursive-descent parser, you might expect this part of the course to suggest a cor-
responding replacement of the translation and code-generation phases by a simple table-driven
tool—just feed in a description of the target architecture get a module to perform translation
directly from parse-tree to target code.6

In practice it is not so simple—machine instructions have detailed effects and moreover there
are often idiomatic way of achieving certain effects (e.g. generating bool y=(x<0); as if it were
bool y=(x>>>31); (assuming bool values are stored as 0 or 1 and x is a 32-bit value) or code
optimisations based on information about the code which it is hard to represent in such tables.
The search for near-perfect code leads to the tables becoming more and more complicated until
they become a programming language, in which case we may as well (instead of writing code for
this language) write in some more mainstream language!).

An additional reason is that modern optimising compilers tend to do have many more phases
and the tree is first translated to an intermediate code which is then repeatedly hit with optimi-
sations before being finally translated into target-specific code.

6If you are interested (i.e. non-examinable) in knowing more, then a technique for generating CISC-like code
directly from a tree based on tree matching and rewriting techniques is given in:
Aho, A.V., Ganapathi, M. and Tjiang, S.W.K. Code Generation Using tree matching and Dynamic programming”.
ACM Transactions on Programming Languages and Systems, Vol 11, No 4, October 1989.
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8 Object Modules and Linkers

We have shown how to generate assembly-style code for a typical programming language using
relatively simple techniques. What we have still omitted is how this code might be got into a
state suitable for execution. Usually a compiler (or an assembler, which after all is only the word
used to describe the direct translation of each assembler instruction into machine code) takes a
source language and produces an object file or object module (.o on Unix and .OBJ on MS-DOS).
These object files are linked (together with other object files from program libraries) to produce an
executable file (.EXE on MS-DOS) which can then be loaded directly into memory for execution.
Here we sketch briefly how this process works.

Consider the C source file:

int m = 37;

extern int h(void);

int f(int x) { return x+1; }

int g(int x) { return x+m+h(); }

Such a file will produce a code segment (often called a text segment on Unix) here containing code
for the functions f and g and a data segment containing static data (here m only).

The data segment will contain 4 bytes probably [0x25 00 00 00].
The code for f will be fairly straightforward containing a few bytes containing bit-patterns for

the instruction to add one to the argument (maybe passed in a register like %eax)) and return
the value as result (maybe also passed in %eax). The code for g is more problematic. Firstly it
invokes the procedure h() whose final location in memory is not known to g so how can we compile
the call? The answer is that we compile a ‘branch subroutine’ instruction with a dummy 32-bit
address as its target; we also output a relocation entry in a relocation table noting that before the
module can be executed, it must be linked with another module which gives a definition to h().

Of course this means that the compilation of f() (and g()) cannot simply output the code
corresponding to f; it must also register that f has been defined by placing an entry to the effect
that f was defined at (say) offset 0 in the code segment for this module.

It turns out that even though the reference to m within g() is defined locally we will still need
the linker to assist by filling in its final location. Hence a relocation entry will be made for the
‘add m’ instruction within g() like that for ‘call h’ but for ‘offset 0 of the current data segment’
instead of ‘undefined symbol h’.

A typical format of an object module is shown in Figure 5 for the format ELF often used on
Linux (we only summarise the essential features of ELF).

8.1 The linker

Having got a sensible object module format as above, the job of the linker is relatively straight-
forward. All code segments from all input modules are concatenated as are all data segments.
These form the code and data segments of the executable file.

Now the relocation entries for the input files are scanned and any symbols required, but not
yet defined, are searched for in (the symbol tables of) the library modules. (If they still cannot
be found an error is reported and linking fails.) Object files for such modules are concatenated as
above and the process repeated until all unresolved names have been found a definition.

Now we have simply to update all the dummy locations inserted in the code and data segments
to reflect their position of their definitions in the concatenated code or data segment. This is
achieved by scanning all the relocation entries and using their definitions of ‘offset-within-segment’
together with the (now know) absolute positioning of the segment in the resultant image to replace
the dummy value references with the address specified by the relocation entry.

(On some systems exact locations for code and data are selected now by simply concatenating
code and data, possibly aligning to page boundaries to fit in with virtual memory; we want code
to be read-only but data can be read-write.)
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Header information; positions and sizes of sections
.text segment (code segment): binary data
.data segment: binary data
.rela.text code segment relocation table:
list of (offset,symbol) pairs showing which offset within
.text is to be relocated by which symbol (described
as an offset in .symtab)
.rela.data data segment relocation table:
list of (offset,symbol) pairs showing which offset within
.data is to be relocated by which symbol (described
as an offset in .symtab)
.symtab symbol table:
List of external symbols used by the module:
each is listed together with attribute
1. undef: externally defined;
2. defined in code segment (with offset of definition);
3. defined in data segment (with offset of definition).
Symbol names are given as offsets within .strtab

to keep table entries of the same size.
.strtab string table:
the string form of all external names used in the module

Figure 5: Summary of ELF

The result is a file which can be immediately executed by program fetch; this is the process by
which the code and data segments are read into virtual memory at their predetermined locations
and branching to the entry point which will also have been marked in the executable module.

8.2 Dynamic linking

Consider a situation in which a user has many small programs (maybe 50k bytes each in terms of
object files) each of which uses a graphics library which is several megabytes big. The classical idea
of linking (static linking) presented above would lead to each executable file being megabytes big
too. In the end the user’s disc space would fill up essentially because multiple copies of library code
rather than because of his/her programs. Another disadvantage of static linking is the following.
Suppose a bug is found in a graphics library. Fixing it in the library (.OBJ) file will only fix it in
my program when I re-link it, so the bug will linger in the system in all programs which have not
been re-linked—possibly for years.

An alternative to static linking is dynamic linking. We create a library which defines stub
procedures for every name in the full library. The procedures have forms like the following for
(say) sin():

static double (*realsin)(double) = 0; /* pointer to fn */

double sin(double x)

{ if (realsin == 0)

{ FILE *f = fopen("SIN.DLL"); /* find object file */

int n = readword(f); /* size of code to load */

char *p = malloc(n); /* get new program space */

fread(p, n, 1, f); /* read code */

realsin = (double (*)(double))p; /* remember code address */

}

return (*realsin)(x);

}
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Essentially, the first time the sin stub is called, it allocates space and loads the current version
of the object file (SIN.DLL here) into memory. The loaded code is then called. Subsequent calls
essentially are only delayed by two or three instructions.

In this scheme we need to distinguish the stub file (SIN.OBJ) which is small and statically linked
to the user’s code and the dynamically loaded file (SIN.DLL) which is loaded in and referenced
at run-time. (Some systems try to hide these issues by using different parts of the same file or
generating stubs automatically, but it is important to understand the principle that (a) the linker
does some work resolving external symbols and (b) the actual code for the library is loaded (or
possibly shared with another application on a sensible virtual memory system!) at run-time.)

Dynamic libraries have extension .DLL (dynamic link library) on Microsoft Windows and
.so (shared object file) on Linux. Note that they should incorporate a version number so that an
out-of-date DLL file cannot be picked up accidentally by a program which relies on the features
of a later version.

The principal disadvantage of dynamic libraries is the management problem of ensuring that a
program has access to acceptable versions of all DLL’s which it uses. It is sadly not rare to try to
run a Windows .EXE file only to be told that given DLL’s are missing or out-of-date because the
distributor forgot to provide them or assumed that you kept your system up to date by loading
newer versions of DLL’s from web sites! Probably static linking is more reliable for executables
which you wish still to work in 10 years’ time—even if you cannot find the a hardware form of the
processor you may be able to find an emulator.
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Part B: Implementing Language Features
In the first section of the course we showed how to translate a subset of Java into both JVM-style
code and to native machine code and how such latter code can be linked to form an executable.
The subset of Java considered was a single class containing static methods and variables—this is
very similar in expressiveness to the language C.

In this second part of the course we will try to crystalise various notions which appeared
informally in the first part into formal concepts. We break this into two main aspects: first
investigate some of the interactions or equivalences which occur in a simple language and how
these are reflected in a simple interpreter. Then we consider how other aspects of programming
languages might be implemented on a computer, in particular we focus on: how free variables (used
by a function but not defined in it) are accessed, how exceptions and inheritance are implemented,
and how types and storage allocation interact.

9 Foundations

First we look at foundational issues and how these are important for properly understanding the
fine details of a programming language.

9.1 Declarations, Expressions and Commands

A idea common to most modern programming languages is the identification of three particular
concepts: expressions whose principal purpose is to calculate a value; commands whose principal
purpose is to update the values held in variables or to perform I/O; and declarations whose job
is to introduce new variables and (optionally) to give them an initial value. Declarations can also
be used to introduce new functions (sometimes called procedures) and to introduce new types.
Some languages identify some subset of declaration and refer to them definitions, for example in
C int x; is a declaration but int x=2; is a definition. We will use definition for declaration
informally, saying “the function f is defined by f(x) = e” etc. Object-oriented languages often
use the word “methods” to refer to functions; and phrases like “class variables” or “attributes” for
variables declared within a class.

There is a circular dependence here: a command (e.g. x:=e;) may contain an expression which
may refer to a variable introduced in a declaration which was initialised by an expression containing
a function call which contains an expression etc. Although often convenient for programming, the
mixing of commands and declarations under the concept of statements in Java is not generally
helpful for understanding—declarations and commands serve very different rôles. One can see
side-effects within expressions similarly—expressions like A[i++]=e; can be very convenient for
the programmer, but the way that a (rather restricted) set of commands be executed during the
evaluation of an expression can make it hard to reason about a program.

One can see the concept of variable as a high-level abstraction of the concept of a cell in
computer memory, and those of expression and command as abstractions of sequences of machine
instructions. In this view, the rôle of declarations is merely to give names to items (previously
unused memory locations, functions, types and the like) but this machine-oriented view understates
the importance for humans of structuring a large system in terms of named components.

Note that, in general, the left-hand-side of an assignment may be more complicated than a
simple variable, for example in Java we may have

a[x>0 ? x : y+1] = 42;

whereas in C++, for suitable variable declarations, one can even have

(x>0 ? x : A[y+1]) = 42;
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In such languages it is common to consider the left-hand-side of an assignment as a syntactically
restricted form of expression; then an assignment statement e:=e′; can be seen as having meaning
(semantics is the proper word here) as:

1. evaluate e to give an address;

2. evaluate e′ to give a value;

3. update the addressed cell with the value.

To avoid the overtones and confusion that go with the terms address and value we will use the
more neutral words Lvalue and Rvalue (first coined by C. Strachey); this is useful for languages
like C where addresses are just one particular form of value. An Lvalue (left hand value) is the
address (or location) of an area of store capable of holding the Rvalue. An Rvalue (right hand
value) is a bit pattern used to represent an object (such as an integer, a floating point number, a
function, etc.). In general, see the examples above, both Lvalues and Rvalues require work done
when they are being evaluated—viewing x=y+1; as a ‘typical’ assignment gives an over-simplified
view of the world.

Note that in Java, the above description of e:=e′; is precise, but other languages (such as C
and C++) say that the exact ordering and possible interleaving of evaluation of e and e′ is left to
the implementation; this matters if expressions contain side-effects, e.g.

A[x] = f();

where the call to f updates x.
Warning: many inscrutable errors in C and C++ occur because the compiler, as permitted

by the ISO language standards, chooses (for efficiency reasons) to evaluate an expression in a
different order from what the programmer intended. If the order does matter then it is clearer
(even in Java) and better for maintenance to break down a single complicated expression by using
assignments, executed in sequence, to temporary named variables.

9.2 Variables and Names

Programmers use names (or identifiers) to declare variables (actual storage locations). Note that
a single name may refer to more than one variable, e.g. the name of the parameter to procedure
which is recursively called, or in examples like

void f() { ... { int n; ... } ... { int n; ... } ... }

In discussion below we will also see situations where multiple names refer to the same variable—
this is called aliasing.

Consider the following C/C++/Java code:

float p = 3.4;

float q = p;

This causes a new storage cell to be allocated, initialised with the value 3.4 and associated with
the name p. Then a second new storage cell (identified by q) is initialised with the (Rvalue)
contents of p (clearly also 3.4). Here the defining operator = is said to define by value. One can
also imagine language constructs permitting definition by reference (also called aliasing) where
the defining expression is evaluated to give an Lvalue which is then associated with the identifier
instead of a new storage cell being allocated, e.g.

float r ' p;

Since p and r have the same Lvalue they share the same storage cell and so the assignments:
p := 1.63 and r := 1.63 will have the same effect, whereas assignments to q happen without
affecting p and r. In C++ definition by reference is written:
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float &r = p;

whereas (for ML experts) in ML mutable storage cells are defined explicitly so the above example
would be expressed:

val p = ref 3.4;

val q = ref (!p);

val r = p;

Recall from the previous section that evaluation to an Lvalue may require computation to be
performed:

int i = 2;

int x ' m[i+2];

...

i := 3;

...// here x still refers to m[4]

Finally, note that defining a new variable is quite different from assigning to a pre-existing
variable. Consider the Java programs:

int a = 1; int a = 1;

int f() { return a; } int f() { return a; }

void g() { a = 2; println(f()); } void g() { int a = 2; println(f()); }

9.3 Functional Programming—Life without Commands

In the next few sections we will consider the interplay between declarations and side-effect-free
expressions—the so-called functional languages.7 There is synergy between these and the ML and
Computation Theory courses. The simpler scenario of declarations and side-effect-free expressions
will enable us to study interesting issues (at the same time avoiding issues such as whether eval-
uation is to give an Lvalue or Rvalue—since if the values stored in Lvalues cannot change it does
not matter at what time the Rvalue is taken from it or whether aliasing takes place). However, we
ensure that declarations still associate each name with a memory location so that later introducing
an assignment operator is easy.

A useful property of functional languages is referential transparency which means that the
value of an expression only depends on the values of its subexpressions. This means that normal
mathematical equivalences hold, e.g. e + e = 2 ∗ e. However in the presence of side-effects this
fails, e.g. in Java we have (x++ + x++) is very different from 2*(x++).

Because this part of the course is not concerned with any particular language, we will introduce
an ML-like expression-based language which captures ideas common in other languages. We
assume that the (abstract) syntax of expressions e is:

• c, an integer;

• x, a name;

• e1 + e2, provided e1 and e2 are (smaller) expressions;

• e1 − e2, provided e1 and e2 are (smaller) expressions;

• e1?e2 : e3, provided e1, e2 and e3 are (smaller) expressions;

• let x = e1 in e2, provided x is a name and e1 and e2 are (smaller) expressions. The phrase
x = e1 is seen as a declaration;

• e1 e2, (an application) provided e1 and e2 are (smaller) expressions;

7Sometimes to emphasise the difference between this simple framework full ML (which does have assignment)
the phrase “pure functional language” is used.
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• λx.e1, (a lambda-abstraction) provided e1 is a (smaller) expression. The identifier x is called
the bound variable and the expression e1 is called the body of the abstraction.

The first forms will be familiar to everyone. The final form λx.e1 is an (anonymous) function
which takes an argument x and yields e1. Thus the conventional function definition f(x) = e
would here be written f = λx.e, i.e. one can view λx.e as equivalent to f where f(x) = e. We
will later note that for many purposes (λx.e2)e1 and let x = e1 in e2 can be treated almost
identically.

In examples, we will allow abstractions and applications to take multiple arguments and use
additional operators from the above.

9.4 Environments

In order to evaluate a+5+b/a we need to know the values of a and b. We speak of evaluating
an expression in an environment which provides the values of the names in the expression. (An
environment is the run-time equivalent (associating names to values) of the compile-time notion
of symbol tables (associating names to locations where variables will reside).) One way to provide
such an environment is by the above let form, e.g.

let a = 2+3/7 in a+3/a

let x = y+2/y in x+y+3/x

or, equivalently—as we will see—by the lambda form:

(λa. a+3/a)(2+3/7)

(λx. x+y+3/x)(y+2/y)

(Note that in programming languages like ML, λ is often written fn and we will occasionally
adopt this convention in these notes.) These two methods are exactly equivalent and have the
same meaning. The name y in the second expression is not bound and its value must still be found
in the environment in which the whole expression is to be evaluated. Variables of this sort are
known as free variables. Variables having local definitions in scope are known as bound variables.

Given an expression we can formally define its bound variables BV (e) and its free variables
FV (e) inductively:

BV (c) = {}
BV (x) = {}

BV (e1 + e2) = BV (e1) ∪BV (e2)
BV (λx.e) = BV (e) ∪ {x}

BV (let x = e1 in e2) = BV (e1) ∪BV (e2) ∪ {x}

FV (c) = {}
FV (x) = {x}

FV (e1 + e2) = FV (e1) ∪ FV (e2)
FV (λx.e) = FV (e) \ {x}

FV (let x = e1 in e2) = FV (e1) ∪ (FV (e2) \ {x})

Note that the expected BV (e) ∩ FV (e) = {} does not always hold—consider

(let a = 2 in a)+a

This has FV (e) = {a} because of the final a (which is unbound) but also BV (e) = {a} because
of the let which binds a to 2 within the parentheses. Note also that this shows the idea of scope
already exists such a simple language.
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9.5 Abstract Syntax Tree Representation

As an example as to how lambda-forms and applications (we will use the symbol “@” to represent
application since juxtaposition used above is otherwise invisible!) are represented as trees, the
expression (λa. 3*a)(2+3/7) would have a tree:

@
"

"
""

b
b
bb

λ
""

a
bb

*
""

3
bb

a

+
""

2
bb

/
""

3
bb

7

9.6 Lambda calculus

The lambda calculus is the subset of expressions comprised solely of variables, applications,
lambda-abstractions and (sometimes) constants. There are three main reasons for studying it
when considering programming languages:

1. It is a useful notation for specifying the scope rules of identifiers in programming languages,
and helps to demonstrate such notions as “holes in the scope of variables”.

2. It helps one to understand what a function is, and what it means to pass a parameter.

3. There is a well established mathematical theory of lambda calculus.

Evaluation of lambda expressions is by means of two simple rewrite rules. We write e → e′ to
mean e can be rewritten to e′:

• α-conversion. λx.e→ λy.e′ where y is any identifier that does not occur in e and where e′

is a copy of e with all occurrences of the identifier x replaced by y;

• β-reduction. (λx.e1)e2 → e1[e2/x] where the right-hand-side just means “a copy of of e1

with all occurrences of x replaced by the argument e2”, provided that

1. e1 contains no (inner) bound occurrences of identifier x, and

2. e2 contains no free variables that are bound in e1.

The α-conversion rule is used to remove conflicts that prevent β-reductions from being applicable.
To enhance readability in these notes, lists of bound variables enclosed in parentheses will be

allowed after λ instead of a single variable and lists of arguments will be allowed in applications;
this follows the ML practice.

A few example evaluations are given below (there would normally be additional reduction rules
to reduce arithmetic expressions):

(λt.t + 16)(4) → 4 + 16
(λ(a, b).a + b)(5, 6) → 5 + 6

(λf.((λx.f(x + 1))(3)))(λy.y ∗ 2) → (λx.(λy.y ∗ 2)(x + 1))(3)
→ (λy.y ∗ 2)(3 + 1)
→ (3 + 1) ∗ 2

(λy.yy)(λx.xx) → (λx.xx)(λx.xx)
→ (λx.xx)(λx.xx)
→ · · · 〈forever〉

An important property of a lambda expression is that one can determine from the text of the
expression (i.e. without having to evaluate it) to which bound variable each occurrence of a name
is bound (unless it is free). A suitable algorithm is as follows:
Given an occurrence of the name x
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1. Find the smallest textually enclosing lambda (or let) expression.

2. Compare x with the bound variables names, if there is a match we have finished, otherwise
repeat from (1) to try the lambda expression one level further out.

9.7 The correspondence between programming languages and lambda
calculus

Here we show that the let notation, both for introducing definitions of simple names and functions,
can be eliminated in favour of λ.

Consider the following expression:

{ let f(y) = y*2

in let x = 3

in f(x+1)

}

In this f is a function with one bound variable y whose body is the expression y*2. We might
write: let f = (λy. y*2). Similarly x is like a bound variable of a lambda expression whose
body is f(x+1) and whose argument is 3. Thus we could re-write the whole expression as:

{ let f = λy. y*2

in (λx. f(x+1)) (3)

}

which further can be re-written as:

{λf. (λx. f(x+1)) (3)} (λy. y*2)

Hence, the lambda notation can completely express both simple variable and function definitions.
Indeed it can usefully be seen as a machine code in its own right (there was even a machine built
at Cambridge some years back which used essentially λ-calculus as its machine code!). Just as
we chose to prefer higher level notation than (say) Pentium machine code, one prefers the more
usual let and function forms rather than the rebarbarative λ form for real programming—its real
benefit is that of understanding concepts like scoping.

9.8 A short interlude on recursion

When a function is defined in terms of itself as in the following Java definition

int scantree(Tree x) { ...

... scantree(x.left) ...

...

... scantree(x.right) ...

...

}

It is said to be defined recursively. If several functions are defined in terms of themselves they are
said to be mutually recursive. Suppose there is a call scantree(sometree) to the function given
above, then while this call is being evaluated it may happen that the call scantree(x.left) is
executed. While this second call is active there are two activations of scantree in existence at
once. The second call is said to be a recursive call of scantree. Note that therefore there will be
two distinct variables called x (holding different values) in such circumstances; we therefore need
to use fresh storage for variable x at each call to scantree. This was the purpose of using a new
stack frame for each activation of a function in the JVM.

Notice that it is possible to call a function recursively without defining it recursively.
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let f(g,n) = { ...

... g(g,n-1)

...

}

in f(f, 5)

Here the call g(g,n-1) is a recursive call of f.
[Exercise: complete the body of f so that the call yields 5! = 120.]

9.9 The need for the word rec

Consider the following expression:

{ let f(n) = n=0 ? 1 : n*f(n-1)

in f(4)

}

The corresponding lambda expression is

(λf. f(4)) (λn. n=0 ? 1 : n*f(n-1) )

We observe that the scope of f is f(4), and that the f in f(n-1) is unbound and certainly different
from the f in f(4). However, here the programmer presumably was trying to define the recursive
factorial function and so meant the f on the right hand side to be the same as the f being defined.
To indicate that the scope of x in (let x=e in e′) extends to include both e as well as e′ the
keyword rec is normally used.

let rec f(n) = n=0 ? 1 : n*f(n-1)

which can be more primitively written as

let rec f = λn. n=0 ? 1 : n*f(n-1)

The linguistic effect of rec is to extend the the scope of the defined name to include the right
hand side of the definition.

In ML, all fun-based definitions are assumed to be recursive, and so the definition

fun f(x) = e;

is first simplified (de-sugared) by the most ML systems to

val rec f = fn x => e;

9.10 The Y operator

At first sight, the rec construction seems to have no lambda calculus equivalent; however, postu-
lating a new constant Y (just like 0, 1, . . . , +, cond) operating on functions enables a solution to
be found. Consider

let H = λf. λn. n=0 ? 1 : n*f(n-1)

f is now bound, but H is not the factorial function, for

H(λx. x)(6) = {λn. n=0 ? 1 : n*(λx. x)(n-1)} (6)

= {λn. n=0 ? 1 : n*(n-1)} (6)

= 6*5

= 30

However, if g were the factorial function, then
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H(g) = λn. n=0 ? 1 : n*g(n-1)

= the factorial function
= g

thus H(g)=g if g is the factorial function. It therefore seems plausible that, if we can find a g for
which H(g)=g, then the g we found would be the factorial function. Given an function, Φ say, any
value v such that Φ(v) = v called a fixed point of Φ. (Observe that 1 and 2 are both fixed points
of the ordinary function on reals given by φ(x) = x2 − 2x + 2, but note that our Φ will typically
map functions to functions.)

In the same sense that the fixed points of a quadratic ax2 + bx+ c can be found by a formula
(this can be seen as a function which operates on φ and gives us x)

x =
−(b− 1)±

√
(b− 1)2 − 4ac

2a

we could hope for a function Y which returns the fixed point of its argument, e.g. Y (H) = factorial
or more generally

Y Φ = some value f such that Φf = f.

Put more simply we want
Y Φ = Φ(Y Φ).

If this can be done, then we can rewrite any recursive function simply using Y , e.g. writing

let rec f = λn. n=0 ? 1 : n*f(n-1)

as

let f = Y( λf. λn. n=0 ? 1 : n*f(n-1) )

and we can evaluate a call of f knowing no more about Y than the property Y Φ = Φ(Y Φ). For
example, with H = λf. λn. n=0 ? 1 : n*f(n-1)

f(3) = Y(H) (3) [definition of f]

= H(Y(H)) (3) [property of Y]

= {λn. n=0 ? 1 : n*(Y(H)(n-1))} (3) [lambda reduction]

= 3 * Y(H)(2)

= 3 * 2 * Y(H)(1) [similarly]

= 3 * 2 * 1 * Y(H)(0) [similarly]

= 3 * 2 * 1 * 1 [similarly]

It is somewhat remarkable at first that such a Y exists at all and moreover that it can be
written just using λ and apply. One can write8

Y = λf. (λg. (f(λa. (gg)a)))(λg. (f(λa. (gg)a))).

(Please note that learning this lambda-definition for Y is not examinable for this course!) For
those entertained by the “Computation Theory” course, this (and a bit more argument) means
that the lambda-calculus is “Turing powerful”.

Note that the definition of Y given here will only find fixed points of functions, like H above
of type (int → int) → (int → int) and in doing so yield a function of type int → int . It will not
find the numeric fixed points of

λx. x2 − 2x+ 2.

(Why?)
Finally, an alternative implementation of Y (there seen as a primitive rather as the above

arcane lambda-term) suitable for an interpreter is given in section 9.12.

8The form
Y = λf. (λg. gg)(λg. f(gg))

is usually quoted, but (for reasons involving the fact that our lambda-evaluator uses call-by-value and the above
definition requires call-by-name) will not work on the lambda-evaluator presented here.
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9.11 Object-oriented languages

The view that lambda-calculus provides a fairly complete model for binding constructs in pro-
gramming languages has generally been well-accepted. However, notions in inheritance in object-
oriented languages seem to require a generalised notion of binding. Consider the following C++
program:

const int i = 1;

class A { const int i = 2; };

class B : A { int f(); };

int B::f() { return i; }

There are two i variables visible to f(): one being i=1 by lexical scoping, the other i=2 visible
via inheritance. Which should win? C++ defines that the latter is visible (because the definition
of f() essentially happens in the scope of B which is effectively nested within A). The i=1 is only
found if the inheritance hierarchy has no i. Note this argument still applies if the const int

i=1; were moved two lines down the page. The following program amplifies that the definition of
the order of visibility of variables is delicate:

const int i = 1;

class A { const int j = 2; };

void g()

{ const int i = 2;

class B : A { int f() { return i; }; }

// which i does f() see?

}

The lambda-calculus for years provided a neat understanding of scoping which language designers
could follow simply; now such standards committees have to use their (not generally reliable!)
powers of decision.

Note that here we have merely talked about (scope) visibility of identifiers; languages like
C/Java also have declaration qualifier concerning accessibility (public, private, etc.). It is for
standards bodies to determine whether, in the first example above, changing the declaration of
i in A to be private should invalidate the program or merely cause the private i to become
invisible so that the i=1 declaration becomes visible within B::f(). (Actually draft ISO C++
checks accessibility after determining scoping.)

We will later return to implementation of objects and methods as data and procedures.

9.12 Mechanical evaluation of lambda expressions

We will now describe a simple way in which lambda expressions may be evaluated in a computer.9

We will represent the expression as a parse tree and evaluate it in an environment that is initially
empty. As above there will be tree nodes representing variables, constants, addition, function
abstraction and function application. In ML this can be written:

datatype Expr = Name of string |

Numb of int |

Plus of Expr * Expr |

Fn of string * Expr |

Apply of Expr * Expr;

The expression: (λx. (λn. n+x)(4)) (3) would be written in ML (or C, assuming appropri-
ate (constructor) functions like Apply, Fn etc. were defined to allocated and initialise structures)
as:

9We do not do the evaluation by textual re-writing (as in Section 9.6 or the Part 1b course on semantics) because
we later to translate the programs into machine code and this is only possible if we have a fixed set of expressions
rather than dynamically re-writing potentially new expressions during evaluation.
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Apply(Fn("x", Apply(Fn("n", Plus(Name("n"), Name("x"))),

Numb(4))),

Numb(3))

and be represented as follows:

Apply
Fn

Apply

Name
n

NumbNumb
3 4

Fn

Name
x

Plus

When we evaluate such an Expr we expect to get a value which is either a integer or a function.
For non-ML experts the details of this do not matter, but in ML we write this as

datatype Val = IntVal of int | FnVal of string * Expr * Env;

(the justification for why functions consist of more than simply their text will become apparent
when we study the evaluator ‘eval’ below).

We will represent the environment of defined names (names in scope) as a linked list with the
following structure:

datatype Env = Empty | Defn of string * Val * Env;

(I.e. an Env value is either Empty or is a 3-tuple giving the most recent binding of a name to a
value and the rest of the environment.) The function to look up a name in an environment10 could
be defined in ML as follows.

fun lookup(n, Defn(s, v, r)) =

if s=n then v else lookup(n, r);

| lookup(n, Empty) = raise oddity("unbound name");

We are now ready to define the evaluation function itself:

fun eval(Name(s), r) = lookup(s, r)

| eval(Numb(n), r) = IntVal(n)

| eval(Plus(e, e’), r) =

let val v = eval(e,r);

val v’ = eval(e’,r)

in case (v,v’) of (IntVal(i), IntVal(i’)) => IntVal(i+i’)

| (v, v’) => raise oddity("plus of non-number")

end

| eval(Fn(s, e), r) = FnVal(s, e, r)

| eval(Apply(e, e’), r) =

case eval(e, r)

of IntVal(i) => raise oddity("apply of non-function")

| FnVal(bv, body, r_fromdef) =>

let val arg = eval(e’, r)

in eval(body, Defn(bv, arg, r_fromdef))

end;

10There is a tradition of using letters like r or ρ for ‘environment’ to avoid clashing with the natural use of e for
‘expression’.
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The immediate action of eval depends on the leading operator of the expression it is evaluating. If
it is Name, the bound variable is looked up in the current environment using the function lookup. If
it is Numb, the value can be obtained directly from the node (and tagged as an IntVal). If it is Plus,
the two operands are evaluated by (recursive) calls of eval using the current environment and
their values summed (note the slightly tedious code to check both values correspond to numbers
else to report an error). The value of a lambda expression (tagged as a FnVal) is called a closure
and consists of three parts: the bound variable, the body and the current environment. These
three components are all needed at the time the closure is eventually applied to an argument.
To evaluate a function application we first evaluate both operands in the current environment
to produce (hopefully) a closure (FnVal(bv, body, r_fromdef)) and a suitable argument value
(arg). Finally, the body is evaluated in an environment composed of the environment held in the
closure (r fromdef) augmented by (bv, arg), the bound variable and the argument of the call.

At this point it is appropriate to mention that recursion via the Y operator can be simply
incorporated into the interpreter. Instead of using the gory definition in terms of λ, we can
implement the recursion directly by

| eval(Y(Fn(f,e)), r) =

let val fv = IntVal(999);

val r’ = Defn(f, fv, r);

val v = eval(e, r’)

in

fv := v; (* updates value stored in r’ *)

v

end;

This first creates an extended closure r’ for evaluating e which is r extended by the (false)
assumption that f is bound to 999. e (which should really be an expression of the form λx. e′

to ensure that the false value of f is not used) is then evaluated to yield a closure, which serves
as result, but only after the value for f stored in the closure environment has been updated to
its proper, recursive, value fv. This construction is sometimes known as “tying the knot [in the
environment]” since the closure for f is circular in that its environment contains the the closure
itself (under name f).

A more detailed working evaluator including Y and let) can be found on the web page for this
course (see front cover).

9.13 Static and dynamic scoping

This final point is worth a small section on its own; the normal state in modern programming
languages is that free variables in are looked up in the environment of existing at the time the
function was defined rather than when it is called. This is called static scoping or static binding
or even lexical scoping; the alternative of using the calling environment is called dynamic binding
and was used in many dialects of Lisp. The difference is most easily seen in the following example:

let a = 1;

let f() = a;

let g(a) = f();

print g(2);

Check your understanding of static and dynamic scoping by observing that this prints 1 under the
former and 2 under the latter.

You might be tempted to believe that rebinding a variable like ‘a’ in dynamic scoping is
equivalent to assigning to ‘a’. This is untrue, since when the scope ends (in the above by g being
exited) the previous binding of ‘a’ (of value one) again becomes visible, whereas assignments are
not undone on procedure exit.
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Exercises

1. Draw the tree structure representing the lambda expression form of the following program.

{ let x = 3

in let f(n) = n+x

in let x = 4

in f(x)

}

Apply the eval function by hand to this tree and an empty environment and draw the
structure of every environment that is used in the course of the evaluation.

2. Is it possible to write a finite program that would cause this evaluator to attempt to create
an infinitely long environment?

3. Modify the interpreter to use dynamic scoping; is it now possible to write a finite program
that would cause this evaluator to attempt to create an infinitely long environment?

9.14 A more efficient implementation of the environment

The previous lambda evaluator (also known as an interpreter) is particularly inefficient in its
treatment of names since it searches a potentially long environment chain every time a name
is used. This search can be done much more efficiently if the environment were represented
differently; moreover the technique we describe is much more appropriate for a compiler which
generates machine code for a target machine. Consider the following:

R1

R2
R3 R4

(λ(a,b,c). (λ(x,y,z). (λt. B1 ))((λ(u,v). B2 ),12,63) )(1,6,3)

Modulo ignoring function names f, g, h, k this environment structure can also be generated by:
can also be seen as:

let f(a,b,c) =

( let g(x,y,z) = (let h(t) = B1 in h)

in g((let k(u,v) = B2 in k), 12, 63)

)

in f(1,6,3)

The environment structure can be represented as a tree as follows (note that here the tree is
logically backwards from usual in that each node has a single edge to its parent, rather than each
node having an edge to its children):

�
��

6

Q
QQk

R1:(a,b,c)

R3:(t)

R2:(x,y,z) R4:(u,v)

The levels on the right give the depth of textual nesting of lambda bodies, thus the maximum
number of levels can be determined by inspecting the given expression. When evaluating B1, we
are in environment R3 which looks like:
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R1:(a,b,c) level 1

R2:(x,y,z) level 2

R3:(t) level 3

We can associate with any name used in B1 an ‘address’ consisting of a pair of numbers, namely,
a level number and a position within that level. For example:

a:(1,1) b:(1,2) c:(1,3)

x:(2,1) y:(2,2) z:(2,3)

t:(3,1)

Similarly within B2:

a:(1,1) b:(1,2) c:(1,3)

u:(2,1) v:(2,2)

At execution time, the environment could be represented as a vector of vectors. For example,

x
R2

R4

y
z

u
v

a
b
c

A vector such as the one pointed to by R2 is called a display (first coined by Dijkstra). Notice
that while evaluating B2 in environment R4 we may use the “address” (2,1) to access the variable
u. It should be clear that the pointer to the current display provides sufficient information to
access any currently declared variable and so may be used in place of the environment chain used
in the eval function.

You will recall that a closure (the value representing a function) consists of three parts—the
bound variable, the body and the environment information. If we are using the display technique
then the environment part can be represented by a pointer to the appropriate display vector. For
instance, the environment part of the closure for λt.B1 in the last example is the pointer to the
display vector for R2.

x
R2

y
z

a
b
c

In order to apply this closure to an argument value k, we must first create a new display which
consists of a copy of R2 augmented with a new level. The new display will be as follows:

k

R3

t

Copy of R2 pointers

The body of B1 is then evaluated in this new environment. When the application is complete the
value is returned and the previous environment reinstated.

The compiled form of a function often consists of code which first constructs the new display
and then evaluates the body; hence the closure is often represented as a pair of pointers:

� -
Compiled code Display

The beauty of displays is that every free variable is accessible from any procedure (no matter
how deeply nested) in two instructions. However, in practice, even in languages which permit such
procedure nesting, we find that only about 3% of variable accesses are to variables which are neither
local (addressable from FP) nor top-level (addressable using absolute addressing). Therefore the
cost of setting them up on procedure entry can easily outweigh the saving over the alternative
scheme (the ‘static link’ method) which we consider later as a sensible implementation for modern
machines.
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Exercise

Re-implement the eval function defined above using a display mechanism for the environment
(instead of the linked list).

9.15 Landin’s Principle of Correspondence

Landin first emphasised the connection between declarations (e.g. let a=3 in e and argument
passing f(3) where f(a)=e which, in this form arises naturally for call-by-value in the λ-calculus.
He suggested that well-designed languages would extend this to other situations: so if a language
can pass a parameter by reference then it should have a let-construct to alias two variables,
similarly, if it can define a procedure in a declaration it should be passable as a parameter. ML
embodies much of this principle for values.

However, many languages break it for types; we often allow a type or class to be defined locally
to a procedure, but do not have constructs like

f(int, fn x=>x+1) where f(t: type, g: t->t) = ...

Even if the principle is often violated, it often gives a good perspective to ask ‘what if’ questions
about programming languages.

10 Machine Implementation of Various Interesting Things

In this section we address how various concepts in high-level languages can be implemented in
terms of data structures and instructions of on a typical modern CPU, e.g. the Pentium or the
ARM.

10.1 Evaluation Using a Stack—Static Link Method

We saw in the first part of the notes how the JVM uses a stack to evaluate expressions and function
calls. Essentially, two registers (FP and SP) respectively point to the current stack frame and its
fringe.

Evaluation on a stack is more efficient than in the lambda-interpreter presented above in
that no search happens for variables, they are just extracted from their location. However, the
JVM as defined only provides instructions which can access local variables (i.e. those on the local
stack frame accessed by FP) and static variables (often called global or top-level variables in other
languages) which are allocated once at a fixed location.

Indeed Java forbids the textual nesting of one function within another, so the question of how
to access the local variables of the outer function from within the inner function does not need to
be addressed in the JVM. However, for more general languages we need to address this issue.

The usual answer is to extend the linkage information so that in addition to holding the return
address L and the old frame pointer FP′, also known as the dynamic link as it points to the frame
of its caller, it also holds a pointer S, the static link11 which points to the frame of its definer.

Because the definer also has its static link, access to a non-local variable (say the ith local
variable in the routine nested j levels out from my current nesting) can be achieved by following
the static link pointer j times to give a frame pointer from which the ith local can be extracted.
Thus access to non-local variables can be slower than with a display, but the set-up time of the
static link field is much quicker than creating a display. In the example in section 9.14, the
environment for B1 was R3 with variables as follows:

R1:(a,b,c) level 1

R2:(x,y,z) level 2

R3:(t) level 3

11Note that the similarity to static linking is totally accidental.
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Thus t is accessed relative to FP in one instruction, access to variables in R2 first load the S field
from the linkage information and then access x, y or z from that (two instructions), and variables
in R1 use three instructions first chaining twice down the S chain and then accessing the variable.

Hence the instruction effecting a call to a closure (now represented by a pair of the function
entry point and the stack frame pointer in which it was defined) now merely copies this latter
environment pointer from the closure to the S field in the linkage information in addition to the
work detailed for the JVM.

Exercise: give a simple example in which S and FP’ pointers differ.

An example

Consider the following fragment of program:

...

let G() =

{ let a, b = 1, 2

let f(x, y) = a*x + b*y

let c = 3

c := f(4,5)

}

...

At the moment when f is just about to be entered the current stack frame is as follows:

FP’ L S 4 5

Arguments for f
FP

1 2 3

a b cf

Code for f

At the moment just after f has been entered (when a*x+b*y is about to be evaluated) the state is
as follows:

L2 S2FP2FP’ L S .......
x y

1 2 3

a b cf

Code for f

FP
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We see that f can now access x and y from FP (at offsets −1 and −2), and a and b from the
definer’s stack frame (offsets −4 and −3) which is available as S2. Beware: we cannot access a

and b as a constant offset from FP since f may be called twice (or more) from within G (or even
from a further function to which it was passed as a parameter) and so the stack frame for G()

may or may not be contiguous with x as it is in the example.

You might wonder why we allocated f, or more properly its closure, to a local variable when
we knew that it was constant. The answer was that we treated the local definition of f as if it
were

let f = λ(x,y). a*x + b*y

and further that f was an updatable variable. This can help you see how first-class function-valued
variables can be represented. In practice, if we knew that the call to f was calling a given piece of
code (here λ(x, y).a ∗ x + b ∗ y) with a given environment pointer (here the FP of the caller) then
the calling sequence can be simplified.
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10.2 Situations where a stack does not work

If the language allows the manipulation of pointers then erroneous situations are possible. Suppose
we have the “address of” operator & which is defined so that &x yields the address of (or pointer
to) the storage cell for x. Suppose we also have “contents of” operator * which takes a pointer
as operand and yields the contents of the cell to which it refers. Naturally we expect *(&x)=x.
Consider the program:

let f() = { let a = 0

in &a

}

let p = f()

...

The result of f is a pointer to the local variable a but unfortunately when we return from the call
this variable no longer exists and p is initialised to hold a pointer which is no longer valid and
if used may cause an extremely obscure runtime error. Many languages (e.g. Pascal, Java) avoid
this problem by only allowing pointers into the heap.

NB. Apart from the JVM, it is usually more convenient to arrange that arguments appear
to the left of the linkage information, and first local variables and then local evaluation stack to
the right of the linkage information. We sometimes adopt this convention in the examples below
because they show more clearly such pointers pointing the ’wrong direction’ up the stack.

Some other objects such as functions and arrays contain implicit pointers to the stack and so
have to be restricted if a stack implementation is to work. Consider:

let f(x) = { let g(t) = x+t

in g

}

let add1 = f(1)

...

The result of f(1) should be a function which will add one to its argument. Thus one might hope
that add1(23) would yield 24. It would, however, fail if implemented using a simple stack. We
can demonstrate this by giving the state of the stack at various stages of the evaluation. Just after
the f has been declared the stack is as follows:

FP

f

Code for f

P0 L0 S0

At the time when g has just been declared in the evaluation of f(1) the stack is as follows:

f

Code for f

P0 L0 S0 P1 L1 S1 1
x g

FP

Code for g

After the declaration of add1 the stack would be as follows:

f

Code for f

P0 L0 S0

FP

add1

Code for g

where x used to be
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Thus if we now try to use add1 it will fail since its implicit reference to x will not work. If g

had free variables which were also free variables of f then failure would also result since the static
chain for g is liable to be overwritten.

The simple safe rule that many high level languages adopt to make a stack implementation
possible is that no object with implicit pointers into the stack (procedures, arrays or labels) may
be assigned or returned as the result of a procedure call. Algol-60 first coined these restrictions
as enabling a stack-based implementation to work.

ML clearly does allow objects to be returned from procedure calls. We can see that the
problem in such languages is that the above implementation would forbid stack frames from being
deallocated on return from a function, instead we have to wait until the last use of any of its bound
variables.12 This implementation is called a “Spaghetti stack” and stack-frame deallocation is
handled by a garbage collector. However, the overhead of keeping a whole stack-frame for possibly
a single variable is excessive and we now turn to an efficient implementation.

10.3 Implementing ML free variables

In ML programs like

val a = 1;

fun g(b) = (let fun f(x) = x + a + b in f end);

val p = g 2;

val q = g 3;

we have seen that an implementation which permanently allocates b to the stack location where
it is passed will not work.

A mechanism originally proposed by Strachey is as follows. To declare a function such as

let f(x) = x + a + b

a tuple is constructed (called the free variable list) which contains the values (Lvalues or Rvalues
whichever is appropriate) of the free variables. A pointer to this list is sufficient environment
information for the closure. For f defined above the list would be as follows:

- a
b

FV

During the evaluation of a function call, two pointers are needed: the FP pointer, as before,
to address the arguments and local variables, and a pointer FV to point to the free variable
list (although note that the FV pointer could be treated as an additional hidden argument to
functions—this would be appropriate for expressing the translation as C code rather than machine
code).

This mechanism requires more work at function definition time but less work within the call
since all free variables can be accessed via a simple indirection. It is used in the Edinburgh SML
implementation. (An additional trick is to store a pointer to the function code in offset 0 of the
free variable list as if it were the first free variable. A pointer to the free variable list can then
represent the whole closure as a single word.)

Note that this works most effectively when free variables are Rvalues and hence can be copied
freely. When free variables are Lvalues we need to enter a pointer to the actual aliased location in
the free variable list of each function which references it. It is then necessary also to allocate the
location itself on the heap. (For ML experts: note that ML’s use of ref for updatable variables
means that this is already the case in ML.)

12More precisely, using static links, to the last use of any free variable of the called function.
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10.4 Parameter passing mechanisms

Strachey [Fundamental Concepts in Programming Languages. Oxford University Press, 1967]
described the ”Principle of Correspondence” in which, motivated by the lambda-calculus equiv-
alence, he argued that simple declaration forms (e.g. of an initialised variable) and parameter
passing mechanisms were two sides of the same coin.13

Thus if a simple variable may be defined (see section 9.2) to be either a copy or an alias of an
existing variable, then so should a parameter passing mechanism. To put this another way, should
parameter passing communicate the Lvalue of a parameter (if it exists) or the Rvalue?

Many languages (e.g. Pascal, Ada) allow the user to specify which is to be used. For example:

let f(VALUE x) = ...

might declare a function whose argument is an Rvalue. The parameter is said to be called by
value. Alternatively, the declaration:

let f(REF x) = ...

might declare a function whose argument is an Lvalue. The parameter is said to be called by
reference. The difference in the effect of these two modes of calling is demonstrated by the
following example.

let r(REF x) = { x := x+1 } let r(VALUE x) = { x := x+1 }

let a = 10 let a = 10

r(a) r(a)

// a now equals 11 // a now equals 10

10.5 Note on Algol call-by-name

Algol 60 is a language that attempted to be mathematically clean and was influenced by the simple
calling-as-substitution-of-argument-expression-into-function-body mechanism of lambda calculus.
In the standard report on Algol 60 the procedure calling mechanism is described in terms of
textually replacing a call by a copy of the appropriate procedure body. Systematic renaming
of identifiers (α-conversion) is used to avoid problems with the scope of names. With this ap-
proach the natural treatment for an actual parameter of a procedure was to use it as a textual
replacement for every occurrence of the corresponding formal parameter. This is precisely the
effect of the lambda calculus evaluation rules and in the absence of the assignment command it is
indistinguishable from call-by-value or call-by-reference.14

When an actual parameter in Algol is called by name it is not evaluated to give an Lvalue or
Rvalue but is passed to the procedure as an unevaluated expression. Whenever this parameter is
used within the procedure, the expression is evaluated. Hence the expression may be evaluated
many times (possibly yielding a different value each time). Consider the following Algol program.

INTEGER a,i,b;

PROCEDURE f(x) INTEGER;

BEGIN a := x;

i := i+1;

b := x

END;

a:=i:=b:=10;

f(i+2);

COMMENT a=12, i=11 and b=13;

13You might care to note that even ML falls down here—you can declare a new type in a simple declaration, but
not pass a type as an argument to a function!

14Well, there is a slight difference in that an unused call-by-name parameter will never be evaluated! This is
exploited in so-called ‘lazy’ languages and the Part II course looks at optimisations which select most appropriate
calling mechanism for each definition in such languages.
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ML and C/C++ have no call-by-name mechanism, but the same effect can be achieved by passing
a suitable function by value. The following convention works:

1. Declare the parameter as a parameterless function (a ‘thunk’).

2. Replace all occurrences of it in the body by parameterless calls.

3. Replace the actual parameter expression by a parameterless function whose body is that
expression.

The above Algol example then transforms into the following C program:

int a = 10, i = 10, b = 10;

int pointlessname() { return i+2;}

void f(int x(void)) { a = x();

i = i+1;

b = x();

}

f(pointlessname);

[C experts might care to note that this trick only works for C when all variables free to the thunk
are declared at top level; Java cannot even express passing a function as a parameter to another
function.]

10.6 A source-to-source view of argument passing

Many modern languages only provide call-by-value. This invites us to explain, as we did above,
other calling mechanisms in terms of call-by-value (indeed such translations, and languages capable
of expressing them, have probably had much to do with the disappearance of such mechanisms!).

For example, values passed by reference (or by result—Ada’s out parameter) typically have to
be Lvalues. Therefore they can be address-taken in C. Hence we can represent:

void f1(REF int x) { ... x ... }

void f2(IN OUT int x) { ... x ... } // Ada-style

void f3(OUT int x) { ... x ... } // Ada-style

void f4(NAME int x) { ... x ... }

... f1(e) ...

... f2(e) ...

... f3(e) ...

... f4(e) ...

as

void f1’(int *xp) { ... *xp ... }

void f2’(int *xp) { int x = *xp; { ... x ... } *xp = x; }

void f3’(int *xp) { int x; { ... x ... } *xp = x; }

void f4’(int xf()) { ... xf() ... }

... f1’(&e) ...

... f2’(&e) ...

... f3’(&e) ...

... f4’(fn () => e) ...

It is a good exercise (and a frequent source of tripos questions) to write a program which prints
different numbers based on which (unknown) parameter passing mechanism a sample language
uses.

61



10.7 Labels and jumps

Many languages, like C and Java, provide the ability to label a statement. In C one can branch to
such statements from anywhere in the current routine using a ‘goto’ statement. (In Java this is
achieved by the ‘break’ statement which has rather more restrictions on its placement). In such
situations the branch only involves a simple transfer of control (the goto instruction in JVM);
note that because only goto is a statement and one can only label statements, the JVM local
evaluation stack will be empty at both source and destination of the goto—this rather implicitly
depends on the fact that statements cannot be nested within expressions.

However, if the destination is in a outermore procedure (either by static nesting or passing a
label-valued variable) then the branch will cause an exit from one or more procedures. Consider:

{ let r(lab) = { ...

... goto lab;

...

}

...

r(M);

...

M: ...

}

In terms of the stack implementation it is necessary to reset the FP pointer to the value it had
at the moment when execution entered the body of M. Notice that, at the time when the jump is
about to be made, the current FP pointer may differ. One way to implement this kind of jump
is to represent the value of a label as a pair of pointers—a pointer to compiled code and a FP
pointer (note the similarity to a function closure—we need to get to the correct code location and
also to have the correct environment when we arrive). The action to take at the jump is then:

1. reset the FP pointer,

2. transfer control.

We should notice that the value of a label (like the value of a function) contains an implicit
frame pointer and so some restrictions must be imposed to avoid nonsensical situations. Typically
labels (as in Algol) may not be assigned or returned as results of functions. This will ensure that
all jumps are jumps to activations that dynamically enclose the jump statement. (I.e. one cannot
jump back into a previously exited function!)

10.8 Exceptions

ML and Java exceptions and their handlers are conveniently seen as a restricted form of goto,
albeit with an argument.

This leads to the following implementation: a try (Java) or handle (ML) construct effectively
places a label on the handler code. Entering the try block pushes the label value (recall a
label/frame-pointer pair) onto a stack (H) of handlers and successful execution of the try block
pops H. When an exception occurs its argument is stored in a reserved variable (just like a procedure
argument) and the label at the top of H is popped and a goto executed to it. The handler code
then checks its argument to see if it matches the exceptions intended to be caught. If there is no
match the exception is re-raised therefore invoking the next (dynamically) outermore handler. If
the match succeeds the code continues in the handler and then with the statement following the
try-except block.

For example given exception foo; we would implement

try C1 except foo => C2 end; C3

as
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push(H, L2);

C1

pop(H);

goto L3:

L2: if (raised_exc != foo) doraise(raised_exc);

C2;

L3: C3;

and the doraise() function looks like

void doraise(exc)

{ raised_exc = exc;

goto pop(H);

}

An alternative implementation of ‘active exception handlers’, which avoids using a separate ex-
ception stack, is to implement H as a linked list of handlers (label-value, next) and keep a
pointer to its top item. This has the advantage that each element can be stored in the stack frame
which is active when the try block is entered; thus a single stack suffices for function calls and
exception handlers.

Finally, sadly ISO C labels cannot be used as values as indicated above, and so code shown
above would have to be implemented using the library function setjmp() instead.

10.9 Arrays

When an array is declared space must be allocated for its elements. In most languages the
lifetime of an array is the same as that of a simple variable declared at the same point, and so it
would be natural to allocate space for the array on the runtime stack. This is indeed what many
implementations do. However, this is not always convenient for various reasons. Consider, for
example, the following:

...

{ int x=1, y=2;

int v[n]; // an array from 0 to n-1

int a=3, b=4;

...

}

...

Within the body of the above block the current stack frame might look like the following (again
note we are putting local variables to the right of FP):

a b

0 1 n

x
elements of v

y
1 2 3 4

subscripts
FP

In this example, n may be large and so the variables a and b may be a great distance from FP.
On some machines access to such variables is less efficient. Moreover, if n is not a compile-time
constant,15 the position of a and b relative to FP will not be known until runtime, again causing
inefficiency.

For this reason, large or compile-time-unknown size arrays are normally allocated on the heap16

In Java, arrays are all allocated on the heap (like other objects) and so the above techniques
are restricted to languages of the C family.

15C requires n to be a compile-time constant.
16Experts might care to look at the (non-ISO) Linux C function alloca() for an interesting trick of allocating

such arrays in the current stack frame between the received formal parameters and the out-going actual parameters.
I am not recommending its use as not all implementations provide it and there is the hidden cost of the waste of a
register on many implementations.
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10.10 Object-oriented language storage layout

Declarations (in C++) like

class A { int a1,a2; } x;

allocate storage for two integers and record the fact that a1 is at offset zero, and a2 is at offset 4
(assuming ints are 4 bytes wide). Now after

class B : A { int b; };

objects of type B have 3 integer fields a1 and a2 (by inheritance) normally stored at offsets 0 and 4
so that (pointers to) objects of type B can be passed to functions expecting objects of type A with
no run-time cost. The member b would then be at offset 8. The following definition is similar.

class C : A { int c; };

[Note that Java uses the word ‘extends’ instead of ‘:’.]
Now, suppose one has multiple inheritance (as in C++) so we can inherit the members and

methods from two or more classes and writes:

class D : B,C { int d; };

Firstly there is the observation that passing an object of type D to a routine expecting C must
involve a run-time cost of an addition so that element c can be accessed at offset 8 in the received
C. (This assumes that B is stored at offset zero in D.)

There is also the more fundamental question as to what are the members of objects of type D.
Does it have 7 (3 in both B and C and also d)? Or maybe 5 (a1, a2, b, c, d)? C++ by default
has 7, i.e. the two copies of A are separate. In C++ we can cause the two copies of A to share by
replacing the definitions for B and C by

class B : virtual A { int b; };

class C : virtual A { int c; };

class D : B,C { int d; };

But now the need to treat objects of type D as objects of type B or C means that the storage layout
for D is likely to be implemented as

struct { A *__p, int b; A *__q, int c; A x; } s =

{ &s.x, 0, &s.x, 0, { 0, 0 }};

I.e. there is a single A object and both the p field of the logical B object and the q field of the
logical C object share it. This is necessary so that a D object can be passed to routines which
expect a B or a C object—but note that is causes declarations like B x to be of 16 bytes: 8 for the
A, 4 for the indirect pointer (after all, routines need to be compiled which access the elements of
a B not knowing whether is it a ‘true’ B or actually a D).

Such arguments are one reason why Java omits multiple inheritance. Its interface facility
provides similar facilities.

The above details only dealt with ordinary members and inheritance. Suppose we now add
member functions (methods). Firstly consider the implementation of a method like:

class C {

int a;

static int b;

int f(int x) { return a+b+x;}

};

How is f() to access its variables? Recall that a static variable is per-class, and a non-static one
per-instance. Hence the code could be re-written as:
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int unique_name_for_b_of_C;

class C {

int a;

int f(int x) { return a + unique_name_for_b_of_C + x;}

};

Now consider a call to f() such as c.f(x) where c is of class C. This is typically implemented as
an ordinary procedure call unique name for f of C(c,x) and the definition of f() implemented
as:

int unique_name_for_f_of_C(C c, int x)

{ return c.a // fixed offset from c

+ unique_name_for_b_of_C // global variable

+ x; // argument

};

Let us now turn to how inheritance affects this model of functions, say in Java:

class A { void f() { printf("I am an A"); }};

class B:A { void f() { printf("I am a B"); }};

A x;

B y;

void g(A p) { p.f(); }

main() { x.f(); // gives: I am an A

y.f(); // gives: I am a B

g(x); // gives I am an A

g(y); // gives what?

}

There are two cases to be made; should the fact that in the call p.f(); we have that p is of type
A cause A::f(); to be activated, or should the fact that the value of p, although now an A was
originally a B cause B::f(); to be activated and hence “I am a B” to be printed? In Java the
latter happens; by default in C++ the former happens, to achieve the arguably more useful Java
effect it is necessary to use the virtual keyword:

class A { virtual void f() { printf("I am an A"); }};

class B:A { virtual void f() { printf("I am a B"); }};

So how is this implemented? Although it appears that objects of type A have no data, they
need to represent that fact that one or other f is to be called. This means that their underlying
implementation is of a storage cell containing the address of the function to be called. (In practice,
since there may be many virtual functions a virtual function table is used whereby a class which
has one or more virtual functions has a single additional cell which points to a table of functions
to be called by this object. This can be shared among all objects declared at that type, although
each type inheriting the given type will in general need its own table).

For more details on this topic the interested reader is referred to Ellis and Stroustrup “The
annotated C++ reference manual”.

10.11 Heap Allocation and new

Languages like C++ and Java which provide an operator new to allocate new storage generally
allocate such storage from a heap. A heap17 is a storage area (separate from the stack and from
statically allocated global variables) from which storage blocks can be allocated to a program (i.e.
the heap data-structure also contains a record of which parts of it are in use and which parts are
free to be allocated). You might care to note that a heap is very similar to that part of a filing

17Note this is a completely use of the work ‘heap’ meaning implementation of a priority queue within an array.
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system which records which blocks on disc are used and which are available for allocation for new
files.

The expression new C allocates enough storage for an object of type C by making a request
of the heap allocation function. In C++ we have that the above request is very similar to
malloc(sizeof(C)) , although note some calculation may be necessary for requests like new

A[n+1] to allocate an array of unknown size.

Systems may either have explicit de-allocation (C++ provides a delete) operator and a free()

function which returns storage to the heap for subsequent re-allocation) or may provide implicit
de-allocation via a Garbage Collector. In the latter case storage is simply allocated until the area
allocated for the heap is full. Then the garbage collector is called. Its job is to first scan the
global variables, the stack and the heap, marking which allocated storage units are reachable from
any future execution of the program and flagging the rest as ‘available for allocation’. It can
then simply (logically) call the heap de-allocation function on these before returning. If garbage
collection did not free any storage then you are out of memory!

This is how Sun’s JVM default Garbage Collector works; it is called a conservative garbage
collector in that it does not care whether a value on the stack (say 0x001b3460) is a pointer, or an
integer. All such items are presumed to point to (or into!) valid objects which are thus marked as
used (hence the name—it marks at least as much as it should). Note that the above “de-allocate
all unmarked heap items” is as good as one can do with a conservative garbage collector. (Why?)
Note also that a conservative garbage collector may signal out-of-memory when there is plenty of
unused memory—in a 16Mb heap, first allocate 1 million 16-byte objects, stop using every second
one, and then ask for a 1Mb array allocation!

On the other hand, if the garbage collector has access to sufficient type information to know
which global variable, stack locations and heap-allocated object offsets hold pointers and which
hold non-pointer data, then it is possible to move (contiguify, improving both cache and virtual
memory performance) used data so that after garbage collection the unused data forms a single
block of store which can be allocated sequentially. The moving process can be achieved by com-
paction (squeezing in the same space, like a disc de-fragmenter), or by copying from an old heap
into a new heap (the rôles of these are reversed in the next garbage collection). This latter process
is called a two-space garbage collector and generally works better than a conservative collector
with respect to cache and virtual memory.

There are many exotic types of garbage collectors, including generational garbage collectors
(exploiting the fact that allocated data tends to be quite short-lived or last for a significant time)
and concurrent garbage collectors (these run in a separate thread, preferably using a separate
CPU and are a significantly challenge to program, especially if minimising time wasted on locking
concurrently accessed date is an issue).

10.12 Data types

With a small exception in Section 6.7, the course so far has essentially ignored the idea of data
type. Indeed we have used ‘int x = 1’ and ‘let x = 1’ almost interchangeably. Now we come
to look at the possibilities of typing. One possibility (adopted in Lisp, Prolog and the like) is to
decree that types are part of an Rvalue and that the type of a name (or storage cell) is the value
last stored in it. This is a scheme of dynamic types and in general each operation in the language
need to check whether the value stored in the cell is of the correct type. (This manifested itself
in the lambda calculus evaluator in section 9.12 where errors occur if we apply an integer as a
function or attempt to add a function to a value).

Most mainstream languages associate the concept of data type with that of an identifier. This
is a scheme of static types and generally providing an explicit type for all identifiers leads to the
data type of all expressions being known at compile time. The type of an expression can be
thought of as a constraint on the possible values that the expression may have. The type is used
to determine the way in which the value is represented and hence the amount of storage space
required to hold it. The types of variables are often declared explicitly, as in:
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float x;

double d;

int i;

Knowing the type of a variable has the following advantages:

1. It helps the compiler to allocate space efficiently, (ints take less space than doubles).

2. It allows for overloading. That is the ability to use the same symbol (e.g. +) to mean different
things depending on the types of the operands. For instance, i+i performs integer addition
while d+d is a double operation.

3. Some type conversions can be inserted automatically. For instance, x := i is converted to
x := itof(i) where itof is the conversion function from int to float. Similarly, i+x is
converted to itof(i)+x.

4. Automatic type checking is possible. This improves error diagnostics and, in many cases,
helps the compiler to generate programs that are incapable of losing control. For example,
goto L will compile into a legal jump provided L is of type label. Nonsensical jumps such
as goto 42 cannot escape the check. Similar considerations apply to procedure calls.

Overloading, automatic type conversions and type checking are all available to a language with
dynamic types but such operations must be handled at runtime and this is like to have a drastic
effect on runtime efficiency. A second inherent inefficiency of such languages is caused by not
knowing at compile time how much space is required to represent the value of an expression. This
leads to an implementation where most values are represented by pointers to where the actual
value is stored. This mechanism is costly both because of the extra indirection and the need for a
garbage collecting space allocation package. In implementation of this kind of language the type
of a value is often packed in with the pointer.

One advantage of dynamic typing over static typing is that it is easy to write functions which
take a list of any type of values and applies a given function to it (usually called the map function).
Many statically typed languages render this impossible (one can see problems might arise if lists of
(say) characters were stored differently from lists of integers). Some languages (most notably ML)
have polymorphic types which are static types18 but which retain some flexibility expressed as
parameterisation. For example the above map function has ML type

(α -> β) * (α list) -> (β list)

If one wishes to emphasise that a statically typed system is not polymorphic one sometimes says
it is a monomorphic type system.

Polymorphic type systems often allow for type inference, often called nowadays type recon-
struction in which types can be omitted by the user and reconstructed by the system. Note that
in a monomorphic type system, there is no problem in reconstructing the type of λx. x+1 nor
λx. x ? false:true but the simpler λx. x causes problems, since a wrong ‘guess’ by the type
reconstructor may cause later parts of code to fail to type-check.

We observe that overloading and polymorphism do not always fit well together: consider writing
in ML λx. x+x. The + function has both type

(int * int -> int) and (real * real -> real)

so it is not immediately obvious how to reconstruct the type for this expression (ML rejects it).
It may be worth talking about inheritance based polymorphism here.
Finally, sometimes languages are described as typeless. BCPL (a forerunner of C) is an exam-

ple. The idea here is that we have a single data type, the word (e.g. 32-bit bit-pattern), within
which all values are represented, be they integers, pointers or function entry points. Each value

18One might note with some sadness that if functions like map are compiled to one piece of code for all types then
values will need to have type-determining tags (like dynamic compilation above) to allow garbage collection.
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is treated as required by the operator which is applied to it. E.g. in f(x+1,y[z]) we treat
the values in f, x, y, z as function entry point, integer, pointer to array of words, and integer
respectively. Although such languages are not common today, one can see them as being in the
intersection of dynamically and statically type languages. Moreover, they are often effectively
used as intermediate languages for typed languages whose type information has been removed by
a previous pass (e.g. in intermediate code in a C compiler there is often no difference between a
pointer and an integer, whereas there is a fundamental difference in C itself).

10.13 Source-to-source translation

It is often convenient (and you will have seen it done several times above in the notes) to explain
a higher-level feature (e.g. exceptions or method invocation) in terms of lower-level features (e.g.
gotos or procedure call with a hidden ‘object’ parameter).

This is often a convenient way to specify precisely how a feature behaves by expanding it into
phrases in a ‘core’ subset language. Another example is the definition of

while e do e′

construct in Standard ML as being shorthand (syntactic sugar) for

let fun f() = if e then (e′; f()) else () in f() end

(provided that f is chosen to avoid clashes with free variables of e and e′).
A related idea (becoming more and more popular) is that of compiling a higher-level language

(e.g. Java) into a lower-level language (e.g. C) instead of directly to machine code. This has
advantages of portability of the resultant system (i.e. it runs on any system which has a C compiler)
and allows one to address issues (e.g. of how to implement Java synchronized methods) by
translating them by inserting mutex function calls into the C translation instead of worrying
about this and keeping the surrounding generated code in order.

11 Compilation Revisited and Debugging

11.1 Spectrum of Compilers and Interpreters

One might think that it is pretty clear whether a language is compiled (like C say) or interpreted
(like BASIC say). Even leaving aside issues like microcoded machines (when the instruction set is
actually executed by a lower-level program at the hardware level “Big fleas have little fleas upon
their backs to bite them”) this question is more subtle than first appears.

Consider Sun’s Java system. A Java program is indeed compiled to instructions (for the
Java Virtual Machine—JVM) which is then typically interpreted (one tends to use the word
‘emulated’ when the structure being interpreted resembles a machine) by a C program. One
recent development is that of Just-In-Time—JIT compilers for Java in which the ‘compiled’ JVM
code is translated to native code just before execution.

If you think that there is a world of difference between emulating JVM instructions and exe-
cuting a native translation of them then consider a simple JIT compiler which replaces each JVM
instruction with a procedure call, so instead of emulating

iload 3

we execute

iload(3);

where the procedure iload() merely performs the code that the interpreter would have performed.
Similarly, does parsing our simple expression language into trees before interpreting them cause

us to have a compiler, and should we reserve the word ‘interpreter’ for a system which interprets
text (like some BASIC systems)?
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So, we conclude there is no line-in-the-sand difference between a compiled system and and an
interpreted system. Instead there is a spectrum whose essential variable is how much work is done
statically (i.e. before execution starts) and how much is done during execution.

In our simple lambda evaluator earlier in the notes, we do assume that the program-reading
phase has arranged the expression as a tree and faulted any mismatched brackets etc. However,
we still arrange to search for names (see lookup) and check type information (see the code for
e1 + e2) at run-time.

Designing a language (e.g. its type system) so that as much work as possible can be done before
execution starts clearly helps one to build efficient implementations by allowing the compiler to
generate good code.

11.2 Debugging

One aspect of debugging is to allow the user to set a ‘breakpoint’ to stop execution when control
reaches a particular point. This is often achieved by replacing the instruction at the breakpointed
instruction with a special trap opcode.

Often extra information is stored the ELF object file and/or in a stack frame to allow for
improved runtime diagnostics. Similarly, in many languages it is possible to address all variables
with respect to SP and not use a FP register at all; however then giving a ‘back-trace’ of currently
active procedures at a debugger breakpoint can be difficult.

Debuggers often represent a difficult compromise between space efficiency, execution efficiency
and the effectiveness of the debugging aids.

11.3 The Debugging Illusion

Source-level debuggers (like gdb) attempt to give the user the impression that the source code is
being interpreted. The more optimising the compiler, the harder this is to achieve and the more
information debugger tables need to hold. (Do you want to be able to put a breakpoint on a
branch-to-a-branch which might have been optimised into a single branch? What if user-code has
been duplicated, e.g. loop unrolling, or shared, e.g. optimising several computations of a+b into a
single one?).

[The end]
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