Errata for the Semantics of Programming Languages Notes
Peter Sewell
Time-stamp: <2003-05-19 15:08:54 pes20>

The updated notes available on the course web page includes all these corrections, together with other im-
provements.

1. Slide 51, Ezecuting L1 in mosml, omitted a definition of skip = (). It should read:

L1 is essentially a fragment of mosml - given a typable L1 expression e and an initial store s, e can be
executed in mosml by wrapping it

let val skip = ()
and 11 = ref ni
and 12 = ref n2

and 1k ref nk
in

e
end;

where s is the store {l; — ny, ..., l[x — ni} and all locations that occur in e are contained in {l, ..., lx}.
(watch out for ~1 and -1).

2. The printing process misaligned the — arrows used for writing partial maps. They should be rendered
with the short vertical at the left end of the arrow. Negated turnstiles I/ were also misprinted; they
should render as a turnstile - with a slash through it.

3. The 11 code omitted a clause for if .
4. On Slide 92, the second clause of the definition of substitution should read

{e/z}fnz:T=¢) = fneT={e/z}er) ifx+#z (¥

and z ¢ fv(e) (*)

if (*) is not true, we first have to pick an alpha-variant of fn z: T = e; to make it so (always can)
On Page 13, the two N should be Z.
On Slide 112, the last expression should be let val rec f:T7 — To =fn z: Ty = €1 in ey end.
On Page 73, two () should be skip.

© N > o

One of the L3 rules for records was omitted — add:

(e,5) — (¢, ¢")
(#lab; e, s) —> (Flab; €', s")

(record3)

(a) (an errata erratum) That rule has e’ not e on the right of the conclusion
9. One of the L3 rules for references was omitted — add:

(loc) I'(¢) = T ref
I 2:T ref

10. The statement of store typing for L3 was missing a ref; it should be
Ik sif V0 edom(s).3T.IN¢) = Tref AT F s(€):T.

11. In the proof of Determinacy, the start of the e; op es case had a bogus [:=. It should read:
Case e op ez. Suppose ®(e;) and P(ez).

Take arbitrary s, e’, s’, €’ s” such that (e} op ez, s) — (€', 8') A (e1 op e3,8) — (e, s").

12. The precise definition of the Ordered 2PL discipline should be as below

Now can make the Ordered 2PL Discipline precise

Say e obeys the discipline if for any (finite or infinite)

a1 az as
e —> e —> 6y —> ...

o if a;is (I; := n) or (!l; = n) then for some k < 7 we have

ai, = lock m; without an intervening unlock m;.
Slide 1

e for each 7, the subsequence of ay, ay, ... with labels lock m; and
unlock m; is a prefix of ((lock m;)(unlock m;))*. Moreover, if
a .
—(er —) then the subsequence does not end in a lock 1m;.

e if ; = lock m; and a; = unlock m; then ¢ < ¢’

e if ¢; = lock m; and a; = lock m; and ¢ < 4’ then j < j’

13. The precise definition of deadlock-freedom should have an s’ instead of an s in the final state.

