
Errata for the Semantics of Programming Languages Notes

Peter Sewell

Time-stamp: <2003-05-19 15:08:54 pes20>

The updated notes available on the course web page includes all these corrections, together with other im-
provements.

1. Slide 51, Executing L1 in mosml, omitted a definition of skip = (). It should read:

L1 is essentially a fragment of mosml - given a typable L1 expression e and an initial store s, e can be
executed in mosml by wrapping it

let val skip = ()

and l1 = ref n1

and l2 = ref n2

..

and lk = ref nk

in

e

end;

where s is the store {l1 7→ n1, ..., lk 7→ nk} and all locations that occur in e are contained in {l1, ..., lk}.
(watch out for ∼1 and -1).

2. The printing process misaligned the 7→ arrows used for writing partial maps. They should be rendered
with the short vertical at the left end of the arrow. Negated turnstiles 6` were also misprinted; they
should render as a turnstile ` with a slash through it.

3. The l1 code omitted a clause for if .

4. On Slide 92, the second clause of the definition of substitution should read

{e/z}(fn x :T ⇒ e1) = fn x :T ⇒ ({e/z}e1) if x 6= z (*)
and x /∈ fv(e) (*)

if (*) is not true, we first have to pick an alpha-variant of fn x :T ⇒ e1 to make it so (always can)

5. On Page 13, the two N should be Z.

6. On Slide 112, the last expression should be let val rec f :T1 → T2 = fn x :T1 ⇒ e1 in e2 end.

7. On Page 73, two () should be skip.

8. One of the L3 rules for records was omitted – add:

(record3)
〈e, s〉 −→ 〈e ′, s ′〉

〈#labi e, s〉 −→ 〈#labi e ′, s ′〉

(a) (an errata erratum) That rule has e ′ not e on the right of the conclusion

9. One of the L3 rules for references was omitted – add:

(loc)
Γ(`) = T ref

Γ ` `:T ref

10. The statement of store typing for L3 was missing a ref; it should be

Γ ` s if ∀` ∈ dom(s).∃T .Γ(`) = T ref ∧ Γ ` s(`):T .

11. In the proof of Determinacy, the start of the e1 op e2 case had a bogus l :=. It should read:

Case e1 op e2. Suppose Φ(e1) and Φ(e2).

Take arbitrary s, e ′, s ′, e ′′, s ′′ such that 〈e1 op e2, s〉 −→ 〈e ′, s ′〉 ∧ 〈e1 op e2, s〉 −→ 〈e ′′, s ′′〉.

1



12. The precise definition of the Ordered 2PL discipline should be as below

Slide 1

Now can make the Ordered 2PL Discipline precise

Say e obeys the discipline if for any (finite or infinite)

e
a1−→ e1

a2−→ e2
a3−→ ...

• if ai is (lj := n) or (!lj = n) then for some k < i we have

ak = lock mj without an intervening unlock mj .

• for each j , the subsequence of a1, a2, ... with labels lock mj and

unlock mj is a prefix of ((lock mj)(unlock mj))
∗. Moreover, if

¬(ek
a−→ ) then the subsequence does not end in a lock mj .

• if ai = lock mj and ai′ = unlock mj′ then i < i′

• if ai = lock mj and ai′ = lock mj′ and i < i′ then j < j ′

13. The precise definition of deadlock-freedom should have an s ′ instead of an s in the final state.

2


