Mathematical Tripos Part IA

1988 Paper 6 Question 10

Discrete Mathematics

Let R be a relation on a set X. Define the reflexive, symmetric and transitive closures $r(R), s(R)$ and $t(R)$ of R. Let Δ be the relation $\{(x, x) \mid x \in X\}$.

Prove that:
(a) $R \circ \Delta=R$,
(b) $\quad(R \cup \Delta)^{n}=\Delta \cup \bigsqcup\left\{R^{i} \mid 1 \leq i \leq n\right\}$, for all $n \geq 1$,
(c) $\quad \operatorname{tr}(R)=r t(R)$.

Show also that $s t(R) \subseteq t s(R)$. If $X=\mathbb{N}$ and
$R=\Delta \cup\{(x, y) \mid x, y \in \mathbb{N}$ s.t. $y=p . x$ for some prime $p \in \mathbb{N}\}$,
describe $s t(R)$ and $t s(R)$.
[Notation. In this question $r t(R)$ stands for $r(t(R))$, and so on.]

