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Kleene’s Theorem

The aim of the lectures on Finite Automata is to prove important results in theoretical
Computer Science fairly rigorously, using the techniques introduced in Part A.  The
material is not always easy, but I hope that the intuition is clear.

There are a number of conceptual sticking points, but the first and probably the most
serious is the introduction of NDFA.  The presentations via random choice of action and
parallel execution are essentially equivalent, but it’s easier to kill off a machine that’s
exploring paths in parallel, and that’s the view that I adopt when proving Kleene’s
synthesis theorem (that "one can build a DFA to recognise any regular language").

Arden’s rule for events is that the event A B is the least solution of the event equation*

X  =  B + A.X

Stanat and McAllister present this result beautifully, including the demonstration that if A
does not contain the null string, then the solution is unique.  One way of thinking about
this result is to view it as an inductive definition that enables the construction of better
and better approximations to X: start off by defining

X  = 
�

the null event, the empty set of strings0

and by induction extend to

X   =  B + A.X  .n+1 n

We prove Kleene’s analysis theorem by extending Arden’s rule for events to the case of
event matrices.  There is no particular technical difficulty in the extension, but again the
notation may be intimidating.  Once Arden’s Rule has been established for matrices we
apply it to the action of the given DFA whose event transition matrix is M: the entries of
M are (possibly empty) events containing only strings of length 1.  If you like, M gives
the operational description for the action of M.  The language recognised by a particular
output of M is an entry in the matrix M .*

Arden’s rule for event matrices allows us to characterise M  as the least solution of the  *

(k x k) event matrix equation

X  =  I + M.X

and the inductive view generates successively longer strings in each element of M .*

Diploma 1996, Paper 1, Q 9 shows that in this case the solution is in fact unique.



That’s it, really.  The formula for the Kleene closure of an (m+k) x (m+k) matrix M
partitioned symmetrically follows at once from the uniqueness of the solution; from that
result it’s simple to show by induction that the entries of M  are regular expressions over*

the entries of M. 

The last lecture covers the Pumping Lemma, the first tool encountered for proving
systematically that particular languages are not regular.  Examples of such languages
usually depend on the fact that a DFA can’t maintain a count of arbitrary size.

Kleene’s theorem shows that regular languages are closed under (symmetric) difference,
and it is easy to establish algorithms for determining the equivalence of two languages
described by different regular expressions over the same alphabet.  Unfortunately taking
differences requires the formation of complements, and so explicitly defined NDFA are
ruled out.  The notes show why the complexity of the equivalence problem may well be
high: a formal proof that the problem is non-elementary is given in Hopcroft & Ullman’s
1974 book "The Design and Analysis of Computer Algorithms".

Note The inductive view of Arden’s rule for event matrices constructs a sequence of
approximations to M  :*

X  = 
�

the null event matrix, each element the empty set0

by induction extending to

X   =  I + M.X  ,    so that X   =  I + M + M  + M  +  . . . + M  ..n+1 n n+1
2 3 n

Why does the sequence {X } converge ?   Two different approaches, both familiar fromn

denotational semantics, will work in this case.  In each we consider the function defined
on �  , the set of all (k x k) event matrices, byk

f(X)  =  I + M.X 

with binary operation + representing set-theoretic union elementwise on matrices M  , M  .1  2

a) consider �  as a complete partially ordered set, as suggested in the notes.  Then   k

f : �  → �   is a continuous function, hence has a least fixed-point: this fixed-point is  k  k

the least upper bound of the countable chain {X }.n

b) consider �  as a complete metric space, the finite product of k  copies of the set ofk
2

events � .  Within each copy of �  define the distance between distinct events E  , E  by1  2

� (E , E ) = 2  ,  where  l  =  Min {length(w) �  w ∈ (E  �  E )}.1 2 1 2
-l

Then ( � , � ) is a complete metric space, hence so also is �  , taking the distance betweenk

matrices M  , M  to be the maximum of the distances elementwise between component1  2

events.  The binary operation + is actually the symmetric difference in the case being
considered, since each element in the matrix M  contains words of length n only.  Then

mapping f : �  → �   is a contraction, hence has a unique fixed-point: this fixed-point isk  k

the limit of the Cauchy sequence {X }.n


