
COMPUTER SCIENCE TRIPOS,  Part II (General) 
DIPLOMA IN COMPUTER SCIENCE

Mathematics for Computation Theory (KM 2002)  

Study Guide

This course contains two rather separate parts.  The first six lectures (Part A) develop a
rapid course in Discrete Mathematics: an introduction to the basics of sets, functions and
relations, leading to partially ordered sets, well founded relations and proof by induction. 
The second half of the course (Part B) applies these ideas to a specific problem, that of
characterising the power of finite automata in discriminating between sequences of input
symbols: what emerges, the theory of regular languages, is satisfying.  Part A is Pure
Mathematics, while Part B is theoretical Computer Science.

No single guide can be appropriate to all Diploma students, since there’s such a big
variation in mathematical background.  It’s also the case that some students with a good
degree in continuous mathematics find the going hard, while others with little formal
training accept the ideas without difficulty and can do all but the hardest examples.  If
you’re relatively new to the ideas of Part A and you don’t find it easy, then there’s an
excellent book which may help:

Bernard Kolman, Robert C Busby and Sharon C Ross:    ISBN 0-13-083143-3

  Discrete Mathematical Structures for Computer Science  (Prentice-Hall, 4  Ed., 2000).th

There are lots of diagrams and plenty of exercises with each chapter.  Although it covers a
lot of material that you don’t need (but not everything that you do!) it should be clear
from the schedules which sections are relevant.

This is a course of Discrete Mathematics, the second part Applied to computing.  As is the
case with all mathematics courses it’s vital that you tackle lots of examples.  Two
example sheets will be made available as the course proceeds: the first contains a number
of exercises relating to Part A, in roughly the order that the lectures will follow; the
second is a list of Tripos problems that relate to both parts of the course.  All of these
should be accessible from the stance and notation adopted in the lectures.  (Please make
sure that you use the current example sheets, which are improved in a number of ways.)

As in past years I shall be giving Example Classes in connection with the course: these
are not intended to replace supervisions.  There will be four classes, taking place in
room FW11 (Seminar Room 1) of the William Gates Building, starting at 2.15 pm 
on Thursdays November 7th, 14th, 21st and 28th.  At these classes I shall start by
covering any questions arising from the lectures or from the distributed notes, then go on
to give solutions to one or more examples from the sheets (chosen according to demand,
or failing that on my whim).  The classes are aimed at students with less rather than more
background, though experts will of course be welcome.  I am prepared to help anyone
who has specific problems immediately after the class, but not to take solutions away for
correction (it’s up to your supervisor to mark your work).

Please let me know about any problems with the lecture material or the example sheets. 



Overall course structure
There are (many) different approaches to the theory of finite automata and regular
languages, and the one that I’ve followed lies at the mathematical end of the spectrum. 
The reason for this is that my brief is to teach a course of Discrete Mathematics for use in
Computer Science and in addition to cover regular languages, and it seemed natural to tie
the theory to the application.  Previously there were 16 lectures on Discrete Mathematics
(with a separate course on regular algebra), and some of the material was included for its
inherent interest rather than its relevance.  The position now is quite different, there’s no
time for any topic that is not essential to the development.

The result is that a lot of rather desirable material has been cut.  Topics whose absence is
damaging include directed graphs (with reference to binary relations on a set), complete
partial orders and inductive definition through finitary rules.  The final sections of Part A
develop a Principle of Structural Induction that is sufficient for the application to regular
algebra, but it isn’t really adequate for a more general treatment of programming language
syntax and semantics.  The first part of the notes was rewritten for 1998 to develop well-
founded relations, incidentally, and you should beware of obsolete versions.  A side effect
is that there are a few extra pages in Part A, and I’m afraid that I haven’t taken the
trouble to renumber the pages of Part B correspondingly (so each Part has a page 70 . . ).

The notes as distributed include a course schedule and a reading list, as well as a copy of
this study guide.  The syllabus divides both Part A and Part B into 6 apparently separate
sections, but the extra material on induction is likely to stretch Part A into the start of
lecture 7.  I shall be happy if the experts skip the first four lectures at least, because their
presence escalates the pace, and they tend to ask posh questions.  The second half of the
course (on Regular Languages) will start at 12 noon on Thursday November 14 , give orth

take a few minutes, but it’s probably a good idea to turn up on Tuesday 12  to review theth

treatment of well-founded relations and induction (that may well begin on Thursday 7 ).th

Part A

The schedule splits 6 lectures into six sections, which are typically of roughly equal
length.  If you’ve not met sets before then you need to read up basic Boolean algebra, and
undertake some simple exercises.  Not everyone likes pictures, but if you do then getting
the hang of Venn diagrams early on will give you a useful tool.

The rest of Part A is really a quick dash to set up the basic properties of order relations. 
Order relations play a significant role in computer science; the purpose of computation is
often to gain additional information about the solution to some problem that is posed as
input.  A typical example might be to calculate the (irrational) root of some polynomial by
an iterative technique.  After running for some specified time the computation will have
produced only the first however-many digits in the decimal representation of the root, but
the specification of the computation (the program, if you like) is not limited in precision,
instead allowing the calculation of every digit in the (infinite) decimal representation of
the root.  The notion of successive approximation is captured by an order relation.



To establish the correctness of such an iterative computation requires logic to handle the
fact that the expansion of the root is infinite: some notion of limit is needed.  Induction
offers a tool that will help in certain cases; the final section of Part A presents a style of
induction that is tailored for use in Part B.

There are lots of good text books on Discrete Mathematics, and there’s no reason for you
to favour the ones in the reading list particularly.  I’m not aware of any introductory text
that presents the material on well-founded relations that makes up the final two lectures. 

Part B

The aim of these lectures is to prove important results in theoretical Computer Science
fairly rigorously, using the techniques introduced in Part A.  The material is not always
easy, but I hope that once again it’s intuitive.

The problem area that we investigate is to characterise the language accepted by a finite
automaton.  A finite automaton M is modelled as a sequential device with finite logic
(hence a finite set Q of internal states) that responds deterministically to the symbols from
some finite alphabet S by a change of state; the only observation that we may make
distinguishes some subset of states as accepting (a green light flashes, for example).

Suppose that M is started in some nominated initial state.  How can we identify the set of
strings in S (the finite sequences whose elements are input symbols) whose application
symbol-by-symbol to M will cause transition into an accepting state?  It turns out that this
set will always be denoted by some regular expression over S, as introduced in Part A. 
Further, given any regular expression over S, we can construct a finite automaton with
input alphabet S which accepts precisely the event denoted by that regular expression.

How do we prove these statements?  Perhaps the latter is the easier of the two, we use
structural induction in the language of regular expressions over S; in the course of the
proof we show how to construct a suitable finite automaton step-by-step via the parse tree
of the given regular expression.

The first part can be regarded as an instance of a standard technique in theoretical
computer science.  The action of the given finite automaton may be characterised by its
transition matrix M, which specifies its operational behaviour; we want to describe the
language accepted by the automaton, thus providing denotational semantics for the
automaton.  The proof once again uses induction, in this case the familiar mathematical
induction over the size of the matrix M.  The algebra involved is not difficult, but it
depends on manipulating matrices whose entries are sets of strings; there is an unfamiliar
operator * whose properties are sometimes counter-intuitive.  

The notes contain examples of finite automata to which the theory may be applied, and
further simple automata were set as problems in Paper 2 in both 1998 and 2000.  There is
no substitute for experimenting with regular algebra, which is the appropriate tool for
manipulating the languages accepted by finite automata.

There are plenty of books that prove Kleene’s Theorem, but only the one by John Conway
(now out of print, but in some libraries) handles matrices of events in the same style as
the lectures.  Hopcroft and Ullman’s 1974 book is excellent for the final lecture.


