
Entropy, Relative Entropy
and Mutual Information Exercises

Exercise 2.1:
Coin Flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips
required.

(a) Find the entropy H(X) in bits. The following expressions may be useful:

∞∑

n=1

rn =
r

1− r ,
∞∑

n=1

nrn =
r

(1− r)2
(1)

(b) A random variable X is drawn according to this distribution. Find an “efficient” sequence
of yes-no questions of the form, “Is X contained in the set S?” Compare H(X) to the
expected number of questions required to determine X.

Solution:
The probability for the random variable is given by P{X = i} = 0.5i. Hence,

H(X) = −
∑

i

pi log pi

= −
∑

i

0.5i log(0.5i)

= − log(0.5)
∑

i

i · 0.5i

=
0.5

(1− 0.5)2

= 2

(2)

Exercise 2.3:
Minimum entropy. What is the minimum value of H(p1, . . . , pn) = H(p) as p ranges over the
set of n-dimensional probability vectors? Find all p’s which achieve this minimum.

Solution:
Since H(p) ≥ 0 and

∑
i pi = 1, then the minimum value for H(p) is 0 which is achieved when

pi = 1 and pj = 0, j 6= i.

Exercise 2.11:
Average entropy. Let H(p) = −p log2 p− (1− p) log2(1− p) be the binary entropy function.

(a) Evaluate H(1/4).

(b) Calculate the average entropy H(p) when the probability p is chosen uniformly in the range
0 ≤ p ≤ 1.
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Solution:

(a)

H(1/4) = −1/4 log2(1/4)− (1− 1/4) log2(1− 1/4)

= 0.8113
(3)

(b)

H̄(p) = E[H(p)]

=

∫ ∞

−∞
H(p)f(p)dp

(4)

Now,

f(p) =

{
1, 0 ≤ p ≤ 1,
0, otherwise.

(5)

So,

H̄(p) =

∫ 1

0
H(p)dp

= −
∫ 1

0
(p log p+ (1− p) log(1− p)) dp

= −
[∫ 1

0
p log pdp−

∫ 0

1
q log qdq

]

= −2

∫ 1

0
p log p dp

(6)

Letting u = ln p and v = p2 and integrating by parts, we have:

H̄(p) = −
∫
udv

= −
[
uv −

∫
udv

]

= −
[
p2 ln p

ln 2
−
∫
p2 1

p ln 2
dp

]

= −
[
p2 ln p

ln 2
− 1

2 ln 2
p2

]1

0

=
1

2 ln 2

(7)

Exercise 2.16:
Example of joint entropy. Let p(x, y) be given by

X \ Y 0 1

0 1/3 1/3
1 0 1/3

Find
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(a) H(X), H(Y ).

(b) H(X|Y ), H(Y |X).

(c) H(X,Y ).

(d) H(Y )−H(Y |X).

(e) I(X;Y ).

(f) Draw a Venn diagram for the quantities in (a) through (e).

Solution:

(a)

H(X) = −2

3
log(

2

3
)− 1

3
log(

1

3
)

= log 3− 2

3
= 0.9183

(8)

H(Y ) = −1

3
log(

1

3
)− 2

3
log(

2

3
)

= 0.9183
(9)

(b)

H(X|Y ) =
∑

x

∑

y

p(x, y) log

(
p(y)

p(x, y)

)

=
1

3
log(

1
3
1
3

) +
1

3
log(

2
3
1
3

) + 0 +
1

3
log(

2
3
1
3

)

=
2

3
log 2 +

1

3
log 1

=
2

3

(10)

H(Y |X) =
∑

x

∑

y

p(x, y) log

(
p(x)

p(x, y)

)

=
1

3
log(

2
3
1
3

) +
1

3
log(

2
3
1
3

) + 0 +
1

3
log(

1
3
1
3

)

=
2

3
log 2 +

1

3
log 1

=
2

3

(11)
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(c)

H(X,Y ) =
∑

x

∑

y

p(x, y) log p(x, y)

= −
[

1

3
log(

1

3
) +

1

3
log(

1

3
) + 0 log 0 +

1

3
log(

1

3
)

]

= log 3

(12)

(d)

H(Y )−H(Y |X) = log 3− 2

3
− 2

3

= log 3− 4

3

(13)

(e)

I(X;Y ) =
∑

x

∑

y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

=
1

3
log(

1
3

2
3 · 1

3

) +
1

3
log(

1
3

2
3 · 2

3

) + 0 +
1

3
log(

1
3

1
3 · 2

3

)

=
2

3
log

3

2
+

1

3
log

3

4

= log 3− 4

3

(14)

Exercise 2.18:
Entropy of a sum. Let X and Y be random variables that take on values x1, x2, . . . , xr and
y1, y2, . . . , ys. Let Z = X + Y .

(a) Show that H(Z|X) = H(Y |X). Argue that if X,Y are independent then H(Y ) ≤ H(Z)
and H(X) ≤ H(Z). Thus the addition of independent random variables adds uncertainty.

(b) Give an example (of necessarily dependent random variables) in which H(X) > H(Z) and
H(Y ) > H(Z).

(c) Under what conditions does H(Z) = H(X) +H(Y )?

Solution:

(a)

H(Z|X) =
∑

x

∑

z

p(z, x) log p(z|x)

=
∑

x

p(x)
∑

z

p(z|x) log p(z|x)

=
∑

x

p(x)
∑

y

p(y|x) log p(y|x)

= H(Y |X)

(15)

If X,Y are independent, then H(Y |X) = H(Y ). Now, H(Z) ≥ H(Z|X) = H(Y |X) =
H(Y ). Similarly H(X) ≤ H(Z)
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(b) If X,Y are dependent such that Pr{Y = −x|X = x} = 1, then Pr{Z = 0} = 1, so that
H(X) = H(Y ) > 0, but H(Z) = 0. Hence H(X) > H(Z) and H(Y ) > H(Z). Another
example is the sum of the two opposite faces on a dice, which always add to seven.

(c) The random variables X,Y are independent and xi + yj 6= xm + yn for all i,m ∈ R and
j, n ∈ S, ie the two random variables X,Y never sum up to the same value. In other words,
the alphabet of Z is r × s. The proof is as follows. Notice that Z = X + Y = φ(X,Y ).
Now

H(Z) = H(φ(X,Y ))

≤ H(X,Y )

= H(X) +H(Y |X)

≤ H(X) +H(Y )

(16)

Now if φ(·) is a bijection (ie only one pair of x, y maps to one value of z), then H(φ(X,Y )) =
H(X,Y ) and if X,Y are independent then H(Y |X) = H(Y ). Hence, with these two
conditions, H(Z) = H(X) +H(Y ).

Exercise 2.21:
Data processing. Let X1 → X2 → X3 → · · · → Xn form a Markov chain in this order; i.e., let

p(x1, x2, . . . , xn) = p(x1)p(x2|x1) · · · p(xn|xn−1) (17)

Reduce I(X1;X2, . . . , Xn) to its simplest form.

Solution:

I(X1;X2, . . . , Xn) = H(X1)−H(X1|X2, . . . , Xn)

= H(X1)− [H(X1, X2, . . . , Xn)−H(X2, . . . , Xn)]

= H(X1)−
[

n∑

i=1

H(Xi|Xi−1, . . . , X1)−
n∑

i=2

H(Xi|Xi−1, . . . , X2)

]

= H(X1)−
[(

H(X1) +

n∑

i=2

H(Xi|Xi−1)

)
−
(
H(X2) +

n∑

i=3

H(Xi|Xi−1)

)]

= H(X2)−H(X2|X1)

= I(X2;X1)

= I(X1;X2)

(18)

Exercise 2.33:
Fano’s inequality. Let Pr(X = i) = pi, i = 1, 2, . . . ,m and let p1 ≥ p2 ≥ p3 ≥ · · · ≥ pm.
The minimal probability of error predictor of X is X̂ = 1, with resulting probability of error
Pe = 1 − p1. Maximise H(p) subject to the constraint 1 − p1 = Pe to find a bound on Pe in
terms of H. This is Fano’s inequality in the absence of conditioning.

Solution:
We want to maximise H(p) =

∑m
i=1 pi log pi subject to the constraints 1−p1 = Pe and

∑
pi = 1.

Form the Lagrangian:

L = H(p) + λ(Pe − 1 + p1) + µ(
∑

pi − 1) (19)
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and take the partial derivatives for each pi and the Lagrangian multipliers:

∂L
∂pi

= −(log pi + 1) + µ, i 6= 1

∂L
∂p1

= −(log pi + 1) + λ+ µ

∂L
∂λ

= Pe − 1 + p1

∂L
∂µ

=
∑

pi − 1

(20)

Setting these equations to zero, we have

pi = 2µ−1

p1 = 2λ+µ−1

p1 = 1− Pe∑
pi = 1

(21)

We proceed by eliminating µ. Since the probabilities must sum to one,

1− Pe +
∑

i6=1

2µ−1 = 1

⇒ µ = 1 + log

(
Pe

m− 1

) (22)

Hence, we have

p1 = 1− Pe

pi =
Pe

m− 1
, ∀i 6= 1

(23)

Since we know that for these probabilities the entropy is maximised,

H(p) ≤ −


(1− Pe) log(1− Pe) +

∑

i6=1

Pe
m− 1

log

(
Pe

m− 1

)


= −


(1− Pe) log(1− Pe) + Pe logPe + Pe

∑

i6=1

1

m− 1
log

(
1

m− 1

)


= H(Pe) + Pe log (|H| − 1)

(24)

from which we get Fano’s inequality in the absence of conditioning.
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