Entropy, Relative Entropy
and Mutual Information Exercises

Exercise 2.1:
Coin Flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips
required.

(a) Find the entropy H(X) in bits. The following expressions may be useful:
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(b) A random variable X is drawn according to this distribution. Find an “efficient” sequence
of yes-no questions of the form, “Is X contained in the set S?” Compare H(X) to the
expected number of questions required to determine X.

Solution:
The probability for the random variable is given by P{X =14} = 0.5". Hence,

H(X) == pilogpi
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Exercise 2.3:

Minimum entropy. What is the minimum value of H(p1,...,pn) = H(p) as p ranges over the
set of n-dimensional probability vectors? Find all p’s which achieve this minimum.

Solution:
Since H(p) > 0 and ), p; = 1, then the minimum value for H(p) is 0 which is achieved when
pi=1and p; =0, j#1i.

Exercise 2.11:
Average entropy. Let H(p) = —plogyp — (1 — p)log,(1 — p) be the binary entropy function.
(a) Evaluate H(1/4).

(b) Calculate the average entropy H (p) when the probability p is chosen uniformly in the range
0<p<1l



Solution:

H(L/4) = —1/4logy(1/4) — (1 — 1/4) logy(1 — 1/4)

—0.8113
(b)
H(p) = E[H(p)]
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and integrating by parts, we have:

AQp) = — / udv

oo [

[ 5Inp 1
2 2
— |l d
_p In2 /p pln2 p}
[ 5lnp 1 !
_ 2I0p 2
~ [P n2 21n2p}

1
"~ 2In2

Letting u =Inpand v =p
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Exercise 2.16:
Ezample of joint entropy. Let p(x,y) be given by

X\Y| o0 1
0 1/3 1/3
1 0 1/3

Find



(a) H(X), H(Y).
(b) H(X[Y), H(Y[X).
(c) HX,Y).
(d) H(Y) - H(Y|X).
(e) I(X;Y).
(f) Draw a Venn diagram for the quantities in (a) through (e).
Solution:
(a)
H(X) =~ log(3) ~ 3 log(3)
2
=log3 — 3
=0.9183
H(Y) = -3 log() — 2 log(3)
= 0.9183
(b)
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=> " pla,y)logp(z,y)
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Exercise 2.18:
Entropy of a sum. Let X and Y be random variables that take on values x1,z2,...,z, and
Y1,Y2,.--,Ys. Let Z =X +Y.

(a) Show that H(Z|X) = H(Y|X). Argue that if X, Y are independent then H(Y) < H(Z)
and H(X) < H(Z). Thus the addition of independent random variables adds uncertainty.

(b) Give an example (of necessarily dependent random variables) in which H(X) > H(Z) and
H(Y) > H(Z).

(c¢) Under what conditions does H(Z) = H(X)+ H(Y)?

Solution:

(a)
H(Z|X) = ZZp z,x)log p(z|z)

= Zp x Zp z|z) log p(2|x)
= Zp Zp y|z) log p(y|x)

= H(Y|X)

(15)

If X,Y are independent, then H(Y|X) = H(Y). Now, H(Z) > H(Z|X) = H(Y|X) =
H(Y). Similarly H(X) < H(Z)



(b) If X,Y are dependent such that Pr{Y = —z|X =z} = 1, then Pr{Z = 0} = 1, so that
H(X)=H(Y) >0, but H(Z) = 0. Hence H(X) > H(Z) and H(Y) > H(Z). Another
example is the sum of the two opposite faces on a dice, which always add to seven.

(c) The random variables X,Y are independent and z; + y; # @ + yy, for all i,m € R and
j,m € S, ie the two random variables X, Y never sum up to the same value. In other words,
the alphabet of Z is r x s. The proof is as follows. Notice that Z = X +Y = ¢(X,Y).

Now
H(Z) = H(¢(X,Y))
< H(X,Y)
(16)
=H(X)+ H(Y|X)
<HX)+H(Y)

Now if ¢(+) is a bijection (ie only one pair of z, y maps to one value of z), then H(¢(X,Y)) =
H(X,Y) and if X,Y are independent then H(Y|X) = H(Y). Hence, with these two
conditions, H(Z) = H(X) + H(Y).

Exercise 2.21:
Data processing. Let X1 — X9 — X3 — --- — X, form a Markov chain in this order; i.e., let

p(x1, 22, ..., ) = p(1)p(2|21) - - - P(@N|T0-1) (17)

Reduce I(X7;Xo,...,X,) to its simplest form.

Solution:

I(Xl;XQ,...,Xn) = H(Xl) —H(X1|X2,...,Xn)
= H(X))— [H(X1,X2,...,X,) — H(Xo, ..., X,)]

= H(X;) — [Z H(Xi| X1, .., X1) = Y H(Xi| X, ... ,Xg)]

i1 i—2

= H(X1) - [(H(Xl) + ZH(XZ'|X@'1)> - (H(Xz) + ZH(Xi|Xi1))]
i—2 =3

= H(X2) — H(X2|X1)

= I(X2; X1)

= I(X1; X2)

(18)

Exercise 2.33:

Fano’s inequality. Let Pr(X = i) = p;,t = 1,2,...,m and let p; > pa > p3 > -+ > pp.
The minimal probability of error predictor of X is X =1, with resulting probability of error
P, =1 — p;. Maximise H(p) subject to the constraint 1 — p; = P, to find a bound on P, in
terms of H. This is Fano’s inequality in the absence of conditioning.

Solution:
We want to maximise H(p) = Y ;" p;log p; subject to the constraints 1 —p; = P, and ) p; = 1.
Form the Lagrangian:

L=Hp) +MPe—1+p)+pd pi—1) (19)



and take the partial derivatives for each p; and the Lagrangian multipliers:
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o —(logpi +1) +p, i # 1
7
oL
- —(logpi +1) + A+
oL
a = Pe -1 +
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g = 2pi— 1
Setting these equations to zero, we have
pi=2"""
pr =22t
p1=1- P,

Zpizl

We proceed by eliminating p. Since the probabilities must sum to one,

1-P.+) 27t =1

i#1
= pu=14log <mp_e1>
Hence, we have
p=1-F
pi= Vi

m—1’

Since we know that for these probabilities the entropy is maximised,

P, P,
H(p) < - (1_P6)10g(1_P8)+Zm10g <m—1>
i#1

i£1

=H(P.)+ P.log (|H| — 1)

from which we get Fano’s inequality in the absence of conditioning.

1 1
= — (1—Pe)log(1—Pe)—i-PelogPe—i-PeZm_llog <m—1>
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