Entropy, Relative Entropy and Mutual Information Exercises

Exercise 2.1:

Coin Flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips required.
(a) Find the entropy $H(X)$ in bits. The following expressions may be useful:

$$
\begin{equation*}
\sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r}, \quad \sum_{n=1}^{\infty} n r^{n}=\frac{r}{(1-r)^{2}} \tag{1}
\end{equation*}
$$

(b) A random variable X is drawn according to this distribution. Find an "efficient" sequence of yes-no questions of the form, "Is X contained in the set S ?" Compare $H(X)$ to the expected number of questions required to determine X.

Solution:

The probability for the random variable is given by $P\{X=i\}=0.5^{i}$. Hence,

$$
\begin{align*}
H(X) & =-\sum_{i} p_{i} \log p_{i} \\
& =-\sum_{i} 0.5^{i} \log \left(0.5^{i}\right) \\
& =-\log (0.5) \sum_{i} i \cdot 0.5^{i} \tag{2}\\
& =\frac{0.5}{(1-0.5)^{2}} \\
& =2
\end{align*}
$$

Exercise 2.3:

Minimum entropy. What is the minimum value of $H\left(p_{1}, \ldots, p_{n}\right)=H(\mathbf{p})$ as \mathbf{p} ranges over the set of n-dimensional probability vectors? Find all \mathbf{p} 's which achieve this minimum.

Solution:

Since $H(\mathbf{p}) \geq 0$ and $\sum_{i} p_{i}=1$, then the minimum value for $H(\mathbf{p})$ is 0 which is achieved when $p_{i}=1$ and $p_{j}=0, j \neq i$.

Exercise 2.11:

Average entropy. Let $H(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)$ be the binary entropy function.
(a) Evaluate $H(1 / 4)$.
(b) Calculate the average entropy $H(p)$ when the probability p is chosen uniformly in the range $0 \leq p \leq 1$.

Solution:

(a)

$$
\begin{align*}
H(1 / 4) & =-1 / 4 \log _{2}(1 / 4)-(1-1 / 4) \log _{2}(1-1 / 4) \\
& =0.8113 \tag{3}
\end{align*}
$$

(b)

$$
\begin{align*}
\bar{H}(p) & =\mathbf{E}[H(p)] \\
& =\int_{-\infty}^{\infty} H(p) f(p) d p \tag{4}
\end{align*}
$$

Now,

$$
f(p)= \begin{cases}1, & 0 \leq p \leq 1 \tag{5}\\ 0, & \text { otherwise }\end{cases}
$$

So,

$$
\begin{align*}
\bar{H}(p) & =\int_{0}^{1} H(p) d p \\
& =-\int_{0}^{1}(p \log p+(1-p) \log (1-p)) d p \tag{6}\\
& =-\left[\int_{0}^{1} p \log p d p-\int_{1}^{0} q \log q d q\right] \\
& =-2 \int_{0}^{1} p \log p d p
\end{align*}
$$

Letting $u=\ln p$ and $v=p^{2}$ and integrating by parts, we have:

$$
\begin{align*}
\bar{H}(p) & =-\int u d v \\
& =-\left[u v-\int u d v\right] \\
& =-\left[p^{2} \frac{\ln p}{\ln 2}-\int p^{2} \frac{1}{p \ln 2} d p\right] \tag{7}\\
& =-\left[p^{2} \frac{\ln p}{\ln 2}-\frac{1}{2 \ln 2} p^{2}\right]_{0}^{1} \\
& =\frac{1}{2 \ln 2}
\end{align*}
$$

Exercise 2.16:

Example of joint entropy. Let $p(x, y)$ be given by

$$
\begin{array}{l|cc}
X \backslash Y & 0 & 1 \\
\hline 0 & 1 / 3 & 1 / 3 \\
1 & 0 & 1 / 3
\end{array}
$$

Find
(a) $H(X), H(Y)$.
(b) $H(X \mid Y), H(Y \mid X)$.
(c) $H(X, Y)$.
(d) $H(Y)-H(Y \mid X)$.
(e) $I(X ; Y)$.
(f) Draw a Venn diagram for the quantities in (a) through (e).

Solution:

(a)

$$
\begin{align*}
H(X) & =-\frac{2}{3} \log \left(\frac{2}{3}\right)-\frac{1}{3} \log \left(\frac{1}{3}\right) \\
& =\log 3-\frac{2}{3} \tag{8}\\
& =0.9183 \\
H(Y) & =-\frac{1}{3} \log \left(\frac{1}{3}\right)-\frac{2}{3} \log \left(\frac{2}{3}\right) \tag{9}\\
& =0.9183
\end{align*}
$$

(b)

$$
\begin{align*}
H(X \mid Y) & =\sum_{x} \sum_{y} p(x, y) \log \left(\frac{p(y)}{p(x, y)}\right) \\
& =\frac{1}{3} \log \left(\frac{\frac{1}{3}}{\frac{1}{3}}\right)+\frac{1}{3} \log \left(\frac{\frac{2}{3}}{\frac{1}{3}}\right)+0+\frac{1}{3} \log \left(\frac{\frac{2}{3}}{\frac{1}{3}}\right) \tag{10}\\
& =\frac{2}{3} \log 2+\frac{1}{3} \log 1 \\
& =\frac{2}{3} \\
H(Y \mid X) & =\sum_{x} \sum_{y} p(x, y) \log \left(\frac{p(x)}{p(x, y)}\right) \\
& =\frac{1}{3} \log \left(\frac{\frac{2}{3}}{\frac{1}{3}}\right)+\frac{1}{3} \log \left(\frac{\frac{2}{3}}{\frac{1}{3}}\right)+0+\frac{1}{3} \log \left(\frac{\frac{1}{3}}{\frac{1}{3}}\right) \tag{11}\\
& =\frac{2}{3} \log 2+\frac{1}{3} \log 1 \\
& =\frac{2}{3}
\end{align*}
$$

(c)

$$
\begin{align*}
H(X, Y) & =\sum_{x} \sum_{y} p(x, y) \log p(x, y) \\
& =-\left[\frac{1}{3} \log \left(\frac{1}{3}\right)+\frac{1}{3} \log \left(\frac{1}{3}\right)+0 \log 0+\frac{1}{3} \log \left(\frac{1}{3}\right)\right] \tag{12}\\
& =\log 3
\end{align*}
$$

(d)

$$
\begin{align*}
H(Y)-H(Y \mid X) & =\log 3-\frac{2}{3}-\frac{2}{3} \tag{13}\\
& =\log 3-\frac{4}{3}
\end{align*}
$$

(e)

$$
\begin{align*}
I(X ; Y) & =\sum_{x} \sum_{y} p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right) \\
& =\frac{1}{3} \log \left(\frac{\frac{1}{3}}{\frac{2}{3} \cdot \frac{1}{3}}\right)+\frac{1}{3} \log \left(\frac{\frac{1}{3}}{\frac{2}{3} \cdot \frac{2}{3}}\right)+0+\frac{1}{3} \log \left(\frac{\frac{1}{3}}{\frac{1}{3} \cdot \frac{2}{3}}\right) \tag{14}\\
& =\frac{2}{3} \log \frac{3}{2}+\frac{1}{3} \log \frac{3}{4} \\
& =\log 3-\frac{4}{3}
\end{align*}
$$

Exercise 2.18:

Entropy of a sum. Let X and Y be random variables that take on values $x_{1}, x_{2}, \ldots, x_{r}$ and $y_{1}, y_{2}, \ldots, y_{s}$. Let $Z=X+Y$.
(a) Show that $H(Z \mid X)=H(Y \mid X)$. Argue that if X, Y are independent then $H(Y) \leq H(Z)$ and $H(X) \leq H(Z)$. Thus the addition of independent random variables adds uncertainty.
(b) Give an example (of necessarily dependent random variables) in which $H(X)>H(Z)$ and $H(Y)>H(Z)$.
(c) Under what conditions does $H(Z)=H(X)+H(Y)$?

Solution:

(a)

$$
\begin{align*}
H(Z \mid X) & =\sum_{x} \sum_{z} p(z, x) \log p(z \mid x) \\
& =\sum_{x} p(x) \sum_{z} p(z \mid x) \log p(z \mid x) \tag{15}\\
& =\sum_{x} p(x) \sum_{y} p(y \mid x) \log p(y \mid x) \\
& =H(Y \mid X)
\end{align*}
$$

If X, Y are independent, then $H(Y \mid X)=H(Y)$. Now, $H(Z) \geq H(Z \mid X)=H(Y \mid X)=$ $H(Y)$. Similarly $H(X) \leq H(Z)$
(b) If X, Y are dependent such that $\operatorname{Pr}\{Y=-x \mid X=x\}=1$, then $\operatorname{Pr}\{Z=0\}=1$, so that $H(X)=H(Y)>0$, but $H(Z)=0$. Hence $H(X)>H(Z)$ and $H(Y)>H(Z)$. Another example is the sum of the two opposite faces on a dice, which always add to seven.
(c) The random variables X, Y are independent and $x_{i}+y_{j} \neq x_{m}+y_{n}$ for all $i, m \in R$ and $j, n \in S$, ie the two random variables X, Y never sum up to the same value. In other words, the alphabet of Z is $r \times s$. The proof is as follows. Notice that $Z=X+Y=\phi(X, Y)$. Now

$$
\begin{align*}
H(Z) & =H(\phi(X, Y)) \\
& \leq H(X, Y) \tag{16}\\
& =H(X)+H(Y \mid X) \\
& \leq H(X)+H(Y)
\end{align*}
$$

Now if $\phi(\cdot)$ is a bijection (ie only one pair of x, y maps to one value of z), then $H(\phi(X, Y))=$ $H(X, Y)$ and if X, Y are independent then $H(Y \mid X)=H(Y)$. Hence, with these two conditions, $H(Z)=H(X)+H(Y)$.

Exercise 2.21:

Data processing. Let $X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow \cdots \rightarrow X_{n}$ form a Markov chain in this order; i.e., let

$$
\begin{equation*}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \cdots p\left(x_{n} \mid x_{n-1}\right) \tag{17}
\end{equation*}
$$

Reduce $I\left(X_{1} ; X_{2}, \ldots, X_{n}\right)$ to its simplest form.

Solution:

$$
\begin{align*}
I\left(X_{1} ; X_{2}, \ldots, X_{n}\right) & =H\left(X_{1}\right)-H\left(X_{1} \mid X_{2}, \ldots, X_{n}\right) \\
& =H\left(X_{1}\right)-\left[H\left(X_{1}, X_{2}, \ldots, X_{n}\right)-H\left(X_{2}, \ldots, X_{n}\right)\right] \\
& =H\left(X_{1}\right)-\left[\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)-\sum_{i=2}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{2}\right)\right] \\
& =H\left(X_{1}\right)-\left[\left(H\left(X_{1}\right)+\sum_{i=2}^{n} H\left(X_{i} \mid X_{i-1}\right)\right)-\left(H\left(X_{2}\right)+\sum_{i=3}^{n} H\left(X_{i} \mid X_{i-1}\right)\right)\right] \\
& =H\left(X_{2}\right)-H\left(X_{2} \mid X_{1}\right) \\
& =I\left(X_{2} ; X_{1}\right) \\
& =I\left(X_{1} ; X_{2}\right) \tag{18}
\end{align*}
$$

Exercise 2.33:

Fano's inequality. Let $\operatorname{Pr}(X=i)=p_{i}, i=1,2, \ldots, m$ and let $p_{1} \geq p_{2} \geq p_{3} \geq \cdots \geq p_{m}$. The minimal probability of error predictor of X is $\hat{X}=1$, with resulting probability of error $P_{e}=1-p_{1}$. Maximise $H(p)$ subject to the constraint $1-p_{1}=P_{e}$ to find a bound on P_{e} in terms of H. This is Fano's inequality in the absence of conditioning.

Solution:

We want to maximise $H(p)=\sum_{i=1}^{m} p_{i} \log p_{i}$ subject to the constraints $1-p_{1}=P_{e}$ and $\sum p_{i}=1$. Form the Lagrangian:

$$
\begin{equation*}
\mathcal{L}=H(p)+\lambda\left(P_{e}-1+p_{1}\right)+\mu\left(\sum p_{i}-1\right) \tag{19}
\end{equation*}
$$

and take the partial derivatives for each p_{i} and the Lagrangian multipliers:

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial p_{i}}=-\left(\log p_{i}+1\right)+\mu, i \neq 1 \\
& \frac{\partial \mathcal{L}}{\partial p_{1}}=-\left(\log p_{i}+1\right)+\lambda+\mu \tag{20}\\
& \frac{\partial \mathcal{L}}{\partial \lambda}=P_{e}-1+p_{1} \\
& \frac{\partial \mathcal{L}}{\partial \mu}=\sum p_{i}-1
\end{align*}
$$

Setting these equations to zero, we have

$$
\begin{align*}
p_{i} & =2^{\mu-1} \\
p_{1} & =2^{\lambda+\mu-1} \\
p_{1} & =1-P_{e} \tag{21}\\
\sum p_{i} & =1
\end{align*}
$$

We proceed by eliminating μ. Since the probabilities must sum to one,

$$
\begin{align*}
1-P_{e}+\sum_{i \neq 1} 2^{\mu-1} & =1 \\
\Rightarrow \mu & =1+\log \left(\frac{P_{e}}{m-1}\right) \tag{22}
\end{align*}
$$

Hence, we have

$$
\begin{align*}
p_{1} & =1-P_{e} \\
p_{i} & =\frac{P_{e}}{m-1}, \forall i \neq 1 \tag{23}
\end{align*}
$$

Since we know that for these probabilities the entropy is maximised,

$$
\begin{align*}
H(p) & \leq-\left[\left(1-P_{e}\right) \log \left(1-P_{e}\right)+\sum_{i \neq 1} \frac{P_{e}}{m-1} \log \left(\frac{P_{e}}{m-1}\right)\right] \\
& =-\left[\left(1-P_{e}\right) \log \left(1-P_{e}\right)+P_{e} \log P_{e}+P_{e} \sum_{i \neq 1} \frac{1}{m-1} \log \left(\frac{1}{m-1}\right)\right] \tag{24}\\
& =H\left(P_{e}\right)+P_{e} \log (|\mathcal{H}|-1)
\end{align*}
$$

from which we get Fano's inequality in the absence of conditioning.

