
DigiComm II

Scheduling and queue management



DigiComm II

Traditional queuing behaviour in routers

• Data transfer:
• datagrams: individual packets

• no recognition of flows
• connectionless: no signalling

• Forwarding:
• based on per-datagram, forwarding table look-ups

• no examination of “ type”  of traffic – no priority traffic

• Traffic patterns



DigiComm II

Questions

• How do we modify router scheduling behaviour to 
support QoS?

• What are the alternatives to FCFS?

• How do we deal with congestion?



DigiComm II

Scheduling mechanisms



DigiComm II

Scheduling [1]

• Service request at server:
• e.g. packet at router inputs

• Service order:
• which service request (packet) to service first?

• Scheduler:
• decides service order (based on policy/algorithm)
• manages service (output) queues

• Router (network packet handling server):
• service: packet forwarding
• scheduled resource: output queues
• service requests: packets arriving on input lines



DigiComm II

Scheduling [2]

Simple router schematic
• Input lines:

• no input buffering

• Packet classifier:
• policy-based classification

• Correct output queue:
• forwarding/routing tables

• switching fabric

• output buffer (queue)

• Scheduler:
• which output queue 

serviced next

switching 
fabric

forwarding 
/ routing 
tables

output buffer(s)

packet classifier(s)

forwarding 
/ routing 
policy

scheduler



DigiComm II

FCFS scheduling

• Null packet classifier

• Packets queued to outputs in order they arrive

• Do packet differentiation

• No notion of flows of packets

• Anytime a packet arrives, it is serviced as soon as 
possible:
• FCFS is a work-conserving scheduler



DigiComm II

Conservation law [1]

• FCFS is work-conserving:
• not idle if packets waiting

• Reduce delay of one flow, 
increase the delay of one 
or more others

• We can not give all flows 
a lower delay than they 
would get under FCFS

[s/p] rate servicepacket permean :

[p/s] ratepacket mean :

[s]constant :

scheduler  toduedelay mean :

utlisationlink mean :

1

−

=

=�
=

n

n

n

n

nnn

N

n
nn

C

q

Cq

µ
λ

ρ
µλρ

ρ



DigiComm II

Conservation law [2]

Example

• µn : 0.1ms/p (fixed)

• Flow f1:
• λ1 : 10p/s

• q1 : 0.1ms

• ρ1 q1 = 10-7s

• Flow f2:
• λ2 : 10p/s

• q2 : 0.1ms

• ρ2 q2 = 10-7s

• C = 2×10-7s

• Change f1:
• λ1 : 15p/s

• q2 : 0.1s

• ρ1 q1 = 1.5×10-7s

• For f2 this means:
• decrease λ2?

• decrease q2?

• Note the trade-off for f2:
• delay vs. throughput

• Change service rate (µn):
• change service priority



DigiComm II

Non-work-conserving schedulers

• Non-work conserving 
disciplines:
• can be idle even if packets 

waiting

• allows “smoothing” of 
packet flows

• Do not serve packet as 
soon as it arrives:
• what until packet is eligible

for transmission

• Eligibility:
• fixed time per router, or

• fixed time across network

Less jitter

Makes downstream traffic 
more predictable:
• output flow is controlled

• less bursty traffic

Less buffer space:
• router: output queues

• end-system: de-jitter buffers

Higher end-to-end delay

Complex in practise
• may require time 

synchronisation at routers



DigiComm II

Scheduling: requirements

• Ease of implementation:
• simple fast

• high-speed networks

• low complexity/state

• implementation in hardware

• Fairness and protection:
• local fairness: max-min
• local fairness global 

fairness

• protect any flow from the 
(mis)behaviour of any other

• Performance bounds:
• per-flow bounds

• deterministic (guaranteed)

• statistical/probabilistic

• data rate, delay, jitter, loss

• Admission control:
• (if required)

• should be easy to 
implement

• should be efficient in use



DigiComm II

The max-min fair share criteria

• Flows are allocated 
resource in order of 
increasing demand

• Flows get no more than 
they need

• Flows which have not 
been allocated as they 
demand get an equal share 
of the available resource

• Weighted max-min fair 
share possible

• If max-min fair 
provides protection

nM

xxxnx

nm

C
nN

mC
M

NnMxm

n

Nn

n

n

i
i

n

nnn

 flow  toavailable resource:

, flowby  demand resource:

 flow  toallocation resource actual:

resource) (maximum resource ofcapacity :
1

1),min(

21

1

1

≤≤

+−

−
=

≤≤=

�
−

=

�

Example:

C = 10, four flow with demands of 2, 2.6, 4, 5

actual resource allocations are 2, 2.6, 2.7, 2.7



DigiComm II

Scheduling: dimensions

• Priority levels:
• how many levels?

• higher priority queues 
services first

• can cause starvation lower 
priority queues

• Work-conserving or not:
• must decide if delay/jitter 

control required

• is cost of implementation of 
delay/jitter control in 
network acceptable?

• Degree of aggregation:
• flow granularity

• per application flow?

• per user?

• per end-system?

• cost vs. control

• Servicing within a queue:
• “FCFS” within queue?

• check for other parameters?

• added processing overhead

• queue management



DigiComm II

Simple priority queuing

• K queues:
• 1 ≤ k ≤ K
• queue k + 1 has greater priority than queue k
• higher priority queues serviced first

Very simple to implement
Low processing overhead

• Relative priority:
• no deterministic performance bounds

Fairness and protection:
• not max-min fair: starvation of low priority queues



DigiComm II

Generalised processor sharing (GPS)

• Work-conserving

• Provides max-min fair 
share

• Can provide weighted 
max-min fair share

• Not implementable:
• used as a reference for 

comparing other schedulers

• serves an infinitesimally 
small amount of data from 
flow i

• Visits flows round-robin

queueempty non a has  flow

 intervalin   flow  toservice:),,(

 flow given toweight :)(

)(
)(

),,(
),,(

1),,(

1)(

−

≥

≤≤
≤≤

i

[ ,titiS

nn

j

i

tjS

tiS

NitiS

Nnn

τ
φ

φ
φ

τ
τ
τ

φ



DigiComm II

GPS – relative and absolute fairness

• Use fairness bound to 
evaluate GPS emulations 
(GPS-like schedulers)

• Relative fairness bound:
• fairness of scheduler with 

respect to other flows it is 
servicing

• Absolute fairness bound:
• fairness of scheduler 

compared to GPS for the 
same flow

numberrouter 1

number flow1

router  of rate service:)(

router at   flow given toweight :),(

),(

)(),(
),(

)},(,),1,(min{)(

],[in   flowfor  service GPS:),,(

],[in   flowfor  service actual:),,(

)(
),,(

)(
),,(

)(
),,(

)(
),,(

1

Kk

Ni

kkr

kiki

kj

krki
kig

Kigigig

titiG

titiS

ig

tiG

ig

tiS
AFB

jg

tjS

ig

tiS
RFB

N

j

≤≤
≤≤

=

=

−=

−=

�
=

φ

φ

φ

ττ
ττ

ττ

ττ

�



DigiComm II

Weighted round-robin (WRR)

• Simplest attempt at GPS

• Queues visited round-
robin in proportion to 
weights assigned

• Different means packet 
sizes:
• weight divided by mean 

packet size for each queue

• Mean packets size 
unpredictable:
• may cause unfairness

• Service is fair over long 
timescales:
• must have more than one 

visit to each flow/queue

• short-lived flows?

• small weights?

• large number of flows?



DigiComm II

Deficit round-robin (DRR)

• DRR does not need to 
know mean packet size

• Each queue has deficit 
counter (dc): initially zero

• Scheduler attempts to 
serve one quantum of data 
from a non-empty queue:
• packet at head served if

size ≤ quantum + dc
dc quantum + dc – size

• else dc += quantum

• Queues not served during 
round build up “credits” :
• only non-empty queues

• Quantum normally set to 
max expected packet size:
• ensures one packet per 

round, per non-empty queue

• RFB: 3T/r (T = max pkt
service time, r = link rate)

• Works best for:
• small packet size

• small number of flows



DigiComm II

Weighted Fair Queuing (WFQ) [1]

• Based on GPS:
• GPS emulation to produce 

finish-numbers for packets 
in queue

• Simplification: GPS 
emulation serves packets 
bit-by-bit round-robin

• Finish-number:
• the time packet would have 

completed service under 
(bit-by-bit) GPS

• packets tagged with finish-
number

• smallest finish-number 
across queues served first

• Round-number:
• execution of round by bit-

by-bit round-robin server
• finish-number calculated 

from round number

• If queue is empty:
• finish-number is:

number of bits in packet + 
round-number

• If queue non-empty:
• finish-number is:

highest current finish 
number for queue +
number of bits in packet



DigiComm II

Weighted Fair Queuing (WFQ) [2]

• Rate of change of R(t) depends 
on number of active flows (and 
their weights)

• As R(t) changes, so packets will 
be served at different rates

• Flow completes (empty 
queue):
• one less flow in round, so

• R increases more quickly

• so, more flows complete

• R increases more quickly 

• etc. …

• iterated deletion problem

• WFQ needs to evaluate R
each time packet arrives or 
leaves:
• processing overhead

ii

i

tkiP
tRtkiFtkiF

ttR

t

iktkiP

ti

ktkiF

tkiPtRtkiFtkiF

 flow given toweight :)(

)(
),,(

)}(),,1,(max{),,(

 at timenumber -round:)(

 at time arriving

  flowon  packet  of size:),,(

 at time arriving  flowon 

packet for number -finish:),,(

),,()}(),,1,(max{),,(

φ
φφφ +−=

+−=



DigiComm II

Weighted Fair Queuing (WFQ) [3]

• Buffer drop policy:
• packet arrives at full queue

• drop packets already in queued, in order of decreasing finish-
number

• Can be used for:
• best-effort queuing

• providing guaranteed data rate and deterministic end-to-end delay

• WFQ used in “ real world”

• Alternatives also available:
• self-clocked fair-queuing (SCFQ)

• worst-case fair weighted fair queuing (WF2Q)



DigiComm II

Class-Based Queuing

• Hierarchical link sharing:
• link capacity is shared
• class-based allocation
• policy-based class selection

• Class hierarchy:
• assign capacity/priority to 

each node
• node can “borrow” any 

spare capacity from parent
• fine-grained flows possible

• Note: this is a queuing 
mechanism: requires use 
of a scheduler

root
(link)

X

RT

Y Z

NRT

appNapp1

100%

RT     real-time
NRT  non-real-time

40% 30% 30%

30% 10%

1%

RT NRT
25% 15%



DigiComm II

Queue management and congestion 
control



DigiComm II

Queue management [1]

• Scheduling:
• which output queue to visit

• which packet to transmit from output queue

• Queue management:
• ensuring buffers are available: memory management

• organising packets within queue

• packet dropping when queue is full
• congestion control



DigiComm II

Queue management [2]

• Congestion:
• misbehaving sources

• source synchronisation

• routing instability

• network failure causing re-routing

• congestion could hurt many flows: aggregation

• Drop packets:
• drop “new” packets until queue clears?

• admit new packets, drop existing packets in queue?



DigiComm II

Packet dropping policies

• Drop-from-tail:
• easy to implement

• delayed packets at within  
queue may “expire”

• Drop-from-head:
• old packets purged first

• good for real time

• better for TCP

• Random drop:
• fair if all sources behaving

• misbehaving sources more 
heavily penalised

• Flush queue:
• drop all packets in queue

• simple

• flows should back-off

• inefficient

• Intelligent drop:
• based on level 4 

information

• may need a lot of state 
information

• should be fairer



DigiComm II

End system reaction to packet drops

• Non-real-time – TCP:
• packet drop congestion slow down transmission
• slow start congestion avoidance
• network is happy!

• Real-time – UDP:
• packet drop fill-in at receiver ??
• application-level congestion control required
• flow data rate adaptation not be suited to audio/video?
• real-time flows may not adapt hurts adaptive flows

• Queue management could protect adaptive flows:
• smart queue management required



DigiComm II

RED [1]

• Random Early Detection:
• spot congestion before it happens

• drop packet pre-emptive congestion signal

• source slows down

• prevents real congestion

• Which packets to drop?
• monitor flows

• cost in state and processing overhead vs. overall 
performance of the network



DigiComm II

RED [2]

• Probability of packet drop ∝ queue length
• Queue length value – exponential average:

• smooths reaction to small bursts
• punishes sustained heavy traffic

• Packets can be dropped or marked as “offending” :
• RED-aware routers more likely to drop offending 

packets

• Source must be adaptive:
• OK for TCP
• real-time traffic UDP ?



DigiComm II

TCP-like adaptation for real-time flows

• Mechanisms like RED require adaptive sources

• How to indicate congestion?
• packet drop – OK for TCP

• packet drop – hurts real-time flows

• use ECN?

• Adaptation mechanisms:
• layered audio/video codecs

• TCP is unicast: real-time can be multicast



DigiComm II

Scheduling and queue management:
Discussion

• Fairness and protection:
• queue overflow

• congestion feedback from 
router: packet drop?

• Scalability:
• granularity of flow

• speed of operation

• Flow adaptation:
• non-real time: TCP

• real-time?

• Aggregation:
• granularity of control

• granularity of service

• amount of router state

• lack of protection

• Signalling:
• set-up of router state

• inform router about a flow

• explicit congestion 
notification?



DigiComm II

Summary

• Scheduling mechanisms
• work-conserving vs. non-work-conserving

• Scheduling requirements

• Scheduling dimensions

• Queue management

• Congestion control


