
Database Theory: Lecture 1

Introduction and the relational model

Dr G.M. Bierman

www.cl.cam.ac.uk/Teaching/2002/DBaseThy

Database Theory 2003 1 c� GMB/AD

Background

A database model contains the means for

� Specifying particular data structures

� Constraining the data sets

� Manipulating the data

A DDL (Data Definition Language) provides the means to specify the structures

and constraints.

A DML (Data Manipulation Language) provides the means to manipulate the

data; specifically querying and updating.

Database Theory 2003 2 c� GMB/AD

Database models

Database models are typically characterized by the prominent data structure, e.g.

� Graphs:

– Network model

– Semantic model

– Object model

– XML (?)

� Trees:

– Hierarchical model

� Relations:

– Relational model

Database Theory 2003 3 c� GMB/AD

This lecture course

We will study some of these database models from a theoretical perspective.

� Study closely the data model

� Study closely the associated query languages:

– Choices of query languages

– Relationships between them

– Their characteristics (typically expressivity)

Three database models considered in this course:

1. Relational

2. Object

3. Semi-structured/XML

Database Theory 2003 4 c� GMB/AD

Warning

This is a brand new course!

There will be eight lectures, two examples classes, and two lecturers!

Schedule:

1. GMB - (now!) relational model

2. AD - Relational calculus

3. AD - Deductive databases

4. AD - Recursion and negation

5. AD - Expressivity and complexity

6. GMB - Complex values

7. GMB - Object model

8. GMB - Semistructured/XML model

Database Theory 2003 5 c� GMB/AD

Books

Recommended textbooks:

� Foundations of databases Abiteboul, Hull and Vianu. Addison Wesley, 1995

� Data on the web Abiteboul, Buneman and Suciu. Morgan Kaufmann, 2000.

Also: Some useful information in any of the database books from the IB

Databases course.

Database Theory 2003 6 c	 GMB/AD

The relational model

Database Theory 2003 7 c
 GMB/AD

What is the relational model?

� Codd 70:

– Data structure: flat relations

– Simple algebra of queries

– No constraints

– No updates

� Codd 72-:

– Same data structure

– Second query language (based on FOL)

– Proof of equivalence to algebra language

– Integrity constraints - functional dependencies

Database Theory 2003 8 c� GMB/AD

What is the relational model? cont.

Therafter a whole host of extensions. Thus the relational model means the class

of database models that have relations as the core data structure and incorporate

some of Codd’s approach.

Database Theory 2003 9 c GMB/AD

Basics

� Fix a countably infinite set �� � of attribute names, with a total order � �� �

� Fix a single countably infinite set �� � : the underlying domain

� Fix a countably infinite set � ��� � � � of relation names

� Assume that there is a sort for each element of � ��� � � � , i.e. a function

��� �� � �� � � � � ! " �� � # .

� The arity of a relation $ is then defined

%&' () *+ ,.- /01 & (*+ , /

� A relation schema is just a relation name. We may write $ 23 4 to denote $ is

of sort 3 , and $ 265 4 to denote it is of arity 5

� A database schema is just a nonempty finite set of relation schema, e.g.

7 8 9 $: 2 3 : 4;< < < ; $ = 23 = 4>

Database Theory 2003 10 c? GMB/AD

Example relations

@AB CD EF GH IJ A CK LM NOP IQ ER A IB LM N OS TAU C LM NV

Movies Title Director Actor

Magnolia Anderson Moore

Magnolia Anderson Cruise

Spiderman Raimi Maguire

Spiderman Raimi Dunst

...

Rocky Avildsen Stallone

RockyII Stalone Stallone

Guide Title Cinema Time

Rocky Warner 12:00

Spiderman Picturehouse 19:00

...

Spiderman Phoenix 19:00

Magnolia Picturehouse 22:00

Location Cinema Address Tel

Picturehouse Cambridge 504444

Phoenix Oxford 512526

Warner Cambridge 560225

Database Theory 2003 11 cW GMB/AD

Choicepoint: names

Q: Are the attribute names part of the explicit database schema or not?

In SQL they are available, e.g. SELECT p.Name FROM Persons p

But are they compiled away by the system to just integers?

More theoretically:

X Named: A tuple over relation schema Y Z[\ is a map from [to]^ _

X Unnamed: A tuple over relation schema Y Z6` \ is a element of the cartesian

product]^ _ba
The choice of model impacts on the query language.

Having assumed a total order on the attribute names provides us with a

correspondence between the two. Thus we’ll flip between the two during this

course

Database Theory 2003 12 cc GMB/AD

Unnamed: SPC algebra

(Simplest possible algebra first)

SPC query d e ef g Base relation

h ij6k lm Singleton constant relation

h n op q r d s Select (constant)
h n op t r d s Select (attribute)

h u ov wx x x w oy r d s Projection

h dz d Cartesian product

Database Theory 2003 13 c{ GMB/AD

Example

List the name and addresses of cinemas playing a Almodovar film

| } ~� �6� �� } � | � �6� �� � �6� } � Almodovar ��� ��� �� ��� �� � � � � �� � ��� �� �� � �

Alternatively:

| � ~� �6� � � � �6� � � � � � } � Almodovar ��� ��� �� � �� � � � � � �� � �� � � � � � �

What is this? (Assume � is of arity�)

| � ~� � � ~� �6� �� � � � � � � � � ¡¢ � �

Database Theory 2003 14 c£ GMB/AD

Arity judgements for SPC queries

¤ ¥¦ §¨ ©

©ª ¤« ¦ ©ª ¬® ¯° « ±

©ª ²« ¦ ¦ ³ ´

©ª µ ¶· ¸ ¹ ² º« ¦

©ª ²« ¦ ¦ ³» ® ¼ ¹ ´½¾ º

©ª µ ¶· ¿ ¹ ² º« ¦

©ª ²« ¦ ¦ ³» ® ¼ ¹ ´À ½Á Á Á ½ ´ ¿ º

©ª Â ¶ÃÄÅ Å Å Ä ¶ Æ ¹ ² º« ¾

©ª ²À « ¦ ©ª ²Ç « »

©ª ²ÀÈ ²Ç « ¦ É»

A query Ê is well-formed wrt a schema Ë if there exists Ì such that ËÍ ÊÎ Ì .

Database Theory 2003 15 cÏ GMB/AD

Semantics

Ð ÐÑ Ò ÒÓ ÔÕÖ × Ø Ù Ñ Ú

Ð ÐÛÜÝ Þß Ò Ò Ó ÔÕÖ × ÛÜÝ Þß

Ð Ðà áâ ã Ùä Ú Ò ÒÓ ÔÕÖ × Ûå æ Ð Ðä Ò ÒÓ çå Ùè Ú ×Ý ß

Ð Ðà áâ é Ùä Ú Ò ÒÓ ÔÕÖ × Ûå æ Ð Ðä Ò ÒÓ çå Ùè Ú × å Ùê Úß

Ð Ðë áìíî î î í á ï Ùä Ú Ò ÒÓ ÔÕÖ × ÛÜ å Ùèð Úñò ò ò ñ å Ùè é Ú Þ çå æ Ð Ðä Ò ÒÓ ß

Ð Ðä ð ó äô Ò ÒÓ ÔÕÖ × ÛÜ å Ù6õ Úñ ò ò ò ñ å Ùö Úñ÷ Ù6õ Úñ ò ò ò ñ÷ Ùø Ú Þ çå æ Ð Ðä ð Ò Ò Ó ñ÷ æ Ð Ðäô Ò Ò Ó ß

where ùú ä ðû ö

ùú ä ðû ø

Aside: Some queries can return ü for all instances, e.g.

ýþ ÿ� ��� � ÿ� ��� � 	
 ��
� ��ð â ã � �ð â � �� � �� � Ó � �

Database Theory 2003 16 c� GMB/AD

Generalized SPC algebra
1. Intersection � �� � �

2. Generalized Selection

Of form � � �� where ! " # �$ % % %$ #& and ' () and #* is + " , or

+ " -

3. Equijoin

� �. / � � � where ! " # �$ % % %$ #& where # * is + " - .

0 1 23 4 5 3 0 1 26 4 5 6 5 3 78 9: ;<= > ;? @ @ 5 6 78 9: ;A = > ;? @ @

0 1 23 BC D 26 4 5 3 E 5 6
Exercise 1

1. Code up these operators

2. Formalise the semantics of the equijoin operator

Database Theory 2003 17 cF GMB/AD

Normal forms

Define an SPC normal form to be a query of the form

G HI JK K K J HL MNO P Q RS T U U U T NO P V RS T W X MY Q T U U U T Y Z [[

where \]^]_ `a] Ncb]d d d]^ S e Nf Q]d d d]f g S

Proposition 1 For every (extended) SPC query h , there exists an extended

query hi j in normal form such that k k h l lnm k k h i j l l .

Database Theory 2003 18 co GMB/AD

Named perspective

p Recall: Tuples are functions q to rs t

p We write them as, e.g. ucv w x yz w { |

p Note: We do not allow repeated names in a relation sort

p We have to ensure that the result of a query does not have repeated names,

e.g. }~ }

– We’ll need to be able to rename attributes

p A natural join operator reveals itself: join on the common attributes

Database Theory 2003 19 c� GMB/AD

Named: SPJR algebra

SPJR query � � �� � Base relation

� ��c� � � �� Singleton constant relation

� � �� � � � � Select (constant)

� � �� � � � � Select (attributes)

� � � � �� � � � � � � � � Projection

� � � � � � Renaming

� ��� � Natural join

Database Theory 2003 20 c� GMB/AD

Sort judgements for SPJR queries

� �� � ¡

¡¢ �£ � ¡¢ ¤¥§¦ £ ¨ ©ª £ ¦

¡¢ «£ � ¦ �

¡¢ ¬ ® ¯ ° « ±£ �
¡¢ «£ � ¦ ²³ �

¡¢ ¬ ® ´ ° « ±£ �

¡¢ «£ � ¤¦ µ ²¶ ¶ ¶ ²¦ · ª¸ � ¦ ¹ distinct

¡¢ º »¼½ ½ ½ ¼ ¾ ° « ±£ ¦ µ ² ¶ ¶ ¶ ²¦ ·

¡¢ « µ£ � µ ¡¢ «¿ £ � ¿

¡¢ « µÀÁ « ¿ £ � µÂ � ¿

¡¢ «£ �

¡¢ Ã Ä ° « ±£ Å ° � ±
Database Theory 2003 21 cÆ GMB/AD

Natural join

Ç È ÉÊË Ì Ê Ç È ÉÍË Ì Í

Ç È ÉÊ ÎÏ ÉÍË Ì Ê Ð Ì Í

Ñ If Ì Ê Ò Ì Í Ó Ô then ÎÏ Ó Õ

Ñ If Ì Í Ò Ì Í Ó Ì Ê Ó Ì Í then ÎÏ Ó Ò

Database Theory 2003 22 cÖ GMB/AD

More

× Can define similar generalizations to SPC algebra

× Normal form:

Ø Ù Ú ÛÜ Ü Ü Û Ù ÝÞß àcá âã ä â åæ çè é é é çè ß àcá ê ã ä ê åæ çè ë ì Þ§í î ÚÞï â ð çè é é é çè í îñ Þï ò ð ð ð

where ó ôõ ö÷ ôß á â ôø ø ø ô á ê æ ù ß ú â ôø ø ø ô ú û æ andá ü are distinct

× A corresponding normal form theorem

Database Theory 2003 23 cý GMB/AD

Union

We’d like to add some disjunctive flavour to our query language, e.g.

Where can I watch “Magnolia” or “Spiderman”?

1. Union

þ ÿ� �� �� ��� �� 	
 � � Magnolia �� � �� �� � �� 	
 � � Spiderman �� � �� � �

2. Extended (disjunctive) selection

þ ÿ � �� �� ��� �� 	
 � � Magnolia � �� 	
 � � Spiderman � � � �� � �

3. Non-singleton constant relations
þ ÿ� �� �� � � � �� �� �� ��� � �� � � Magnolia �� ��� � �� � � Spiderman � �� �

The addition of Union to our algebras, leads to SPCU and SPJRU algebra

Aside The addition of union to the corresponding calculus is non-trivial!

Database Theory 2003 24 c GMB/AD

Further power

Even with Union, our algebra is quite weak, e.g.

Which movies where Stallone did not act were directed by Stallone?

Put more formally, our query algebras are monotonic.

Definition 1 An algebra! is monotonic if " #$! % If& ' & (then

)) # * *+ ,)) # * *+- .

To rectify this we’ll add the difference operator.

Database Theory 2003 25 c. GMB/AD

Difference operator

Unnamed Named

/ 0 12 3 4 / 0 15 3 4

/ 0 12 6 1 5 3 4

/ 0 12 3 7 / 0 15 3 7

/ 0 12 6 1 5 3 7

Our example becomes, e.g.

8 9 :;<= >? @ :A= B ;C AD Stallone >�E FGH IJ K K 6 8 9 : ;< = >? L B ; C AD Stallone >�E FGH IJ K K

M The (unnamed) relational algebra is SPCU with difference operator.

M The (named) relational algebra is SPJRU with difference operator.

(It is traditional to add to these the generalizations, e.g. N for unnamed relational

algebra)

Database Theory 2003 26 cO GMB/AD

What’s coming up

P Relational model

– Different query language perspective: logic

– Obvious questions:

Q Equivalence with algebra

Q Expressivity?

Q Natural extensions and their expressivity

P Different data models

Database Theory 2003 27 cR GMB/AD

Database Theory: Lecture 2

The Relational Calculus

Dr A. Dawar

www.cl.cam.ac.uk/Teaching/2002/DBaseThy

Database Theory 2003 28 cS GMB/AD

Queries

A query is a formal syntactic rendering of a question we wish to pose to a

database.

Examples

T Who is the director of “Spiderman”?

T Where is “Spiderman” playing?

T Is there a film directed by Almodovar playing in Cambridge?

Formally, a query defines a query mapping U . It has an input schema (typically

a database schema) and an output schema (typically a relation schema).

It maps an instance V over the input schema to an instance U W V X over the output

schema.

Database Theory 2003 29 cY GMB/AD

Queries in Algebra

In the (SPC or SPJR) relational algebra, a query is a term in the algebra.

Each term denotes a relation.

Relations are combined using various unary operations (selection, projection) and

binary operations (Cartesian product, union).

A Boolean query is one where the output schema is a relation of arity Z .

So, for any instance [, \] [^ is either _` or _ab ` .

Database Theory 2003 30 cc GMB/AD

Conjunctive Queries

The various relational calculi (of which the conjunctive calculus is the

simplest) are based on first-order predicate logic.

If d is a relation of arity e and f gh ij kl , then d m f gh n is a fact that is either

true or false in a given database instance o .

If p is a variable, then d m f g p n is true or false given an instance o and a

valuation for p .

q p r d m f g p ns is a simple query.

Example

t Who is the director of “Spiderman”?

q p r�u v Movies m “Spiderman” g p g v ns

Database Theory 2003 31 cw GMB/AD

Conjunctive Calculus
Formally, a conjunctive formula x is given by the following syntax

x y yz { |�} ~ �� � � � } � � atom

� x� x conjunction

� � � x existential quantification

where { is a relation name, � is a variable and each} � is either a variable or a

constant in �� � .

A conjunctive query has the form

�� } ~ �� � � � } � � � x �

where

� x is a conjunctive formula;

� each} � is either a variable or a constant; and

� the set of variables in} ~ �� � � � } � is exactly ��� � | x � .

Database Theory 2003 32 c� GMB/AD

Semantics

A valuation is a function �� �� �� � , where � is a set of variables.

If � includes all free variables in a formula � , we can define satisfaction � ��� �

inductively by:
� � ¡ ¢¤£ ¥ ¦ and � ¢ £ ¥ ¦§ � ¢ ¡ ¦

� � �¨ © �ª and � ��� �¨ and � ��� �ª

� � « ¬ and there is a ® § �� � with � ��� ¯° ±² ³

The query mapping ´ defined by the query µ £ ¥ � � ¶ maps the instance � to

´ ¢ � ¦ � µ � ¢·£ ¥ ¦ � � � � � for some � ¶

Database Theory 2003 33 c¸ GMB/AD

Active Domain

The active domain of a formula ¹ , denoted º»¼ ½ ¾ ¹ ¿ is the set of constants

appearing in ¹ .

Similarly, the active domain of an instance À , denoted º»¼ ½ ¾ À ¿ is the set of all

constants appearing in any relation of À .

Show, by induction, that if À Á�Â Ã Ä , then for any free variable Å of Ä ,

Æ ¾ Å ¿Ç º»¼ ½ ¾ À ¿�È

Exercise!

It follows that in evaluating a query ¹ , we only need to consider valuations whose

range is in º»¼ ½ ¾ ¹ ¿É º»¼ ½ ¾ À ¿ .

Database Theory 2003 34 cÊ GMB/AD

Normal Form

A conjuctive formula is said to be in normal form if all quantifiers precede all

conjunctions. That is, it’s of the form

Ë Ì Í ÎÏ Ï Ï Î Ì Ð ÑÒ Í Ñ�Ó Í ÔÕ Ö Ö ÖÕ Ò × Ñ�Ó × Ô ÔÏ

Every query in the conjunctive calculus can be defined with a formula in normal

form.

Use,

1. Ë Ì Ø is equivalent to Ë Ù Ø Ú Ì Û Ù Ü if Ù does not occur in Ø .

2. Ñ Ë Ì Ø ÔÕ Ñ Ë ÙÝ Ô is equivalent to Ë Ì Ë Ù Ñ Ø Õ Ý Ô if Ì is not free inÝ , Ù is not

free in Ø and Ì Þàß Ù .

Database Theory 2003 35 cá GMB/AD

Equality

Every query in the calculus defined so far is satisfiable.

That is, for every â , there is anã such that â äã å is not empty.

Compare æ çè é ä æ çè ê äë å å

The calculus could be extended to express such queries by allowing equalities

(ì çîí ì ï) as atomic formulae.

ð�ñ ò ë äñ åó ñ í ô ó ñ í õ ö

Database Theory 2003 36 c÷ GMB/AD

Equivalence

Every query definable in SPC algebra is definable in the conjunctive calculus

Moreover, if the query is satisfiable, then it is definable without the use of

equality.

Every query definable in the conjunctive calculus is definable in the SPC algebra

Database Theory 2003 37 cø GMB/AD

Algebra to Calculus

Given a query ù in the SPC algebra, we define a query ùûú in the calculus.

ü ú ýþÿ � ��� � �� � � �� � � ü 	� � �� � � �� �
�

�� �� ú ýþÿ � � � true�

If ùú � � ��� � �� � � �� � �� � � and ùú � � ��� � �� � � �� � �� � � and there are no

variables in common, then

	 ù �� ù �
ú ýþÿ � ��� � �� � � �� � �� � �� � � �� � �� �� � � �

	�� �� �� � � � �� 	 ù �

ú ýþÿ � ��� �� �� � � �� �� ��� � � � � � � � �� � � �

where � � �� � � � �� enumerates all variables among� � �� � � �� � that are not in

� �� �� � � �� �� .

Database Theory 2003 38 c GMB/AD

Selection

If !#" $ %�& ' ())) (& * +, - ,

.�/ 01 2 . ! 3 3"

is obtained by replacing& 0 by 4 .

For

.�/ 01 5 . ! 3 3"

if either& 0 or& 5 is a variable, it can be replaced by the other. If they are both

constants, we need equality!

Database Theory 2003 39 c6 GMB/AD

Calculus to Algebra

Given a query

798 :<
; = >�? ; @ AB C A�D C EF G G GF B H A�D H E EI

take the cross-productB CJ G G GJ B H ,

apply a selection K LM N for each constant O appearing among theD P ,
apply a selection K LM Q for every repeated variable among theD P ,
apply a projection R LS TU U U T LV to get rid of the columns corresponding to

; @ ,

apply further selections corresponding to constants and repeated variables in; = .

Database Theory 2003 40 cW GMB/AD

Disjunction

To extend the conjunctive calculus to one equivalent to SPCU algebra, it would

appear we need disjunction.

Where can I watch “Magnolia” or “Spiderman”?

X�Y Z�[\] Guide] “Magnolia” ^Y ^ \ _` Guide] “Spiderman” ^Y ^ \ _ _a

Aside: How would you prove this cannot be done in the conjunctive calculus?

However, allowing unrestricted disjunction can result in unsafe queries, i.e.

queries with possibly infinite answers.

X�Y ^ \ ^b Zc]Y ^ \ _ ` c] \ ^b _a
It is no longer the case that a satisfying valuation is restricted to the active domain.

Database Theory 2003 41 cd GMB/AD

Negation

The full relational calculus is obtained by allowing negation in addition to

disjunction. This allows the full power of first-order predicate logic in specifying a

query.

e9f g�h i jk k k jh l mn o

with rules for formulae (in addition to those of conjunctive formulae):

n p pf q n negation

m n r n disjunction

m st n universal quantification

In the presence of negation, the last two are not strictly necessary, but they are

convenient.

Database Theory 2003 42 cu GMB/AD

Safety

Using negation and disjunction, one can write queries that admit infinite relations

as answers.

v�w xzy Movies { “Kika” | “Almodovar” |w }~

vw | � x Movies { “Kika” | “Almodovar” |w }� Movies { � | “Almodovar” | “Maura” }~

One possibility might be to restrict �� � to some fixed finite set. Still, some

queries are not domain independent.

v�w x� �� {w | � }~

Database Theory 2003 43 c� GMB/AD

Domain Independence

If we fix a domain � � �� � , the interpretation of a query � over an instance �

can be relativized to � .

All valuations are restricted to have range in � .

The resulting interpretation is �� � � � .
A query � is domain independent if for any � � ��� � �� � and any � ,

�� � � ��� ��� � � ���

It is undecidable whether a given expression of the relational calculus defines a

domain independent query.

If a query is domain independent, it can be evaluated by restricting all valuations

to the active domain.

Database Theory 2003 44 c� GMB/AD

Equivalence

Every query expressible in the relational algebra is equivalent to a domain

independent query in the relational calculus.

Every query � in the relational calculus interpreted with domain restricted to

��� � � ��� is equivalent to a query in the relational algebra.

Database Theory 2003 45 c¡ GMB/AD

Database Theory: Lecture 3

Deductive Databases

Dr A. Dawar

www.cl.cam.ac.uk/Teaching/2002/DBaseThy

Database Theory 2003 46 c¢ GMB/AD

Rules

Rules provide an alternative syntax (inspired by logic programming) for

conjunctive queries.

£ ¤�¥ ¦ § ¨�© Movies ¤�ª « ¦ “Almodovar” ¦ ª ¬ ¨ ¦ Guide ¤�¥ ¦ ª « ¦ ª ¨ ¦ Location ¤ ¥ ¦ § ¦ ª ® ¨

expresses the query

¯ ¥ ¦ § °�± ª « ¦² ² ² ¦ ª ® Movies ¤�ª « ¦ “Almodovar” ¦ ª ¬ ¨³ Guide ¤�¥ ¦ ª « ¦ ª ¨³ Location ¤�¥ ¦ § ¦ ª ® ¨´

and, in addition, gives the resulting relation the name £ .

Database Theory 2003 47 cµ GMB/AD

Syntax

Formally, a conjunctive rule is:

¶ ·�¸ ¹�º ¶ » ·�¸ » ¹¼½ ½ ½ ¼ ¶ ¾ ·�¸ ¾ ¹

where

¿ ¶ is a relation name not in the input database schema.

¿ Each ¶ À is a relation in the input schema.

¿ Each of¸ and¸ À is a tuple of terms (i.e. variables or constants).
¿ Every variable occurring in¸ occurs in at least one of the¸ À .

Database Theory 2003 48 cÁ GMB/AD

Semantics

The meaning of the rule

Â Ã�Ä Å�Æ Â Ç Ã�Ä Ç ÅÈÉ É É È Â Ê Ã�Ä Ê Å

is given by

Ë Ä Ì�Í ÎÏ Â Ç Ã�Ä Ç ÅÐ É É É Ð Â Ê Ã Ä Ê ÅÑ

where

ÎÏ is the sequence of all variables inÄ Ç ÈÉ É É È Ä Ê not occurring inÄ .

Â Ã�Ä Å is called the head of the rule.

Â Ç Ã�Ä Ç Å ÈÉ É É È Â Ê Ã�Ä Ê Å is the body of the rule.

Aside: by allowing equalities (ÒÓ Ô) in the body, we can ensure that there are no

constants or repeated variables in the head.

Database Theory 2003 49 cÕ GMB/AD

Disjunction

Disjunction is easily added by allowing multiple rules for the same relation

Where can I watch “Magnolia” or “Spiderman”?

Ö ×�Ø Ù�Ú Û Ü × Guide × “Magnolia” Ý Ø Ý Ü Ù

Ö ×Ø Ù�Ú Û Ü × Guide × “Spiderman” Ý Ø Ý Ü Ù

Note: Occurrences of a variable in distinct rules are to be treated as distinct

variables.

This form of disjunction is always safe.

Database Theory 2003 50 cÞ GMB/AD

Multiple Relations

As the syntax of conjunctive rules allows us to name the result of the query, it is

easy to simultaneously define multiple relations.

ß à á�â ãä å æ ç á�â ã è å ãé á è ãä ãê å

ß ë á�â ã è ãä å æ ß à á â ã ê å ãé áê ã è ãì å ã ß à áì ãä å

As long as the dependencies among the relations are non-circular, each

individual relation is still a conjunctive query. For instance,

ß ë á â ã è ãä å æ ç á�â ã è à å ãé á è à ã ê ã ê à å ãé áê ã è ã ì å ã ç áì ã è ë å ãé á è ë ãä ãê ë å�í

Relations (such as ç ã é) occurring in the database schema are called

extensional database relations. Relations that occur in the heads of rules are

intensional database relations.

Database Theory 2003 51 cî GMB/AD

Negation

One possible extension would be to allow negation on atomic formulae in the

body of a rule.

This can allow unsafe queries.

ï ð�ñ ò�ó ô Movies ð “Kika” õ “Almodovar” õ ñ ò

However, there is a simple syntactic restriction that guarantees safety.

Database Theory 2003 52 cö GMB/AD

Range Restriction

A Range-restricted conjunctive rule with negation is

÷ ø�ù ú�û ü ý ø�ù ý úþÿ ÿ ÿ þ ü � ø�ù � ú

where

� Each ü � is a literal, i.e. either � or � � for some relation � in the database

schema.

� Every variable occurring inù occurs in at least one of theù � .

� Every variable in the body appears in some positive literal.

A literal is positive if it’s of the form � �� � 	 . It is negative if it’s of the form
 � �� � 	 .

Database Theory 2003 53 c� GMB/AD

Universal Quantification

If negation is restricted to edb (extensional database) relations, not all relational

calculus queries are expressible.

Who are the actors that appeared in every Almodovar film?

�� �� � ���� � Movies� �� “Almodovar”� � � ��� Movies� �� “Almodovar”� ���

Informally, a set of conjunctive rules with negation only on edb relations is

equivalent to a formula that is the disjunction of formulae of the form

� ��� � � � � ��� � �� � �! " " "� # �� # � �

Simulating the universal quantifier requires placing a negation outside the

existential quantifier.

Database Theory 2003 54 c$ GMB/AD

Universal Quantification

Who are the actors that appeared in every Almodovar film?

Almo-actor %�& ' () * Movies % (' “Almodovar” ' &)

Not-all %�+) * Almo-actor %�+ ' & ,) ' Almo-actor % (' & -) '/. Almo-actor %�+ ' & -)

All %�+) * Almo-actor %�+ ' &) '/. Not-all %�+)�0

Database Theory 2003 55 c1 GMB/AD

Example: Path Finding

A railway database contains the relation

Railway Service From To

WAGN Cambridge Ely

WAGN Cambridge King’s Cross

Central Ely Birmingham

Virgin Euston Birmingham

...

GNER Peterbrough Newcastle

Great Western Paddington Cardiff

This is dynamically updated, to reflect cancellations and line failures.

Is it possible to get from Cambridge to Glasgow?

Database Theory 2003 56 c2 GMB/AD

Path Finding

In the relational calculus, we can ask:

Which stations are reachable from Cambridge without change?

Reach 3 4�5 6�7 Railway 489 “Cambridge”9 5 6

Which stations are reachable from Cambridge with one change?

Reach : 4�5 6�7 Railway 48 :9 “Cambridge”9 ; 69 Railway 48< 9 ;9 5 6

Which stations are reachable from Cambridge with two changes?

Reach< 4�5 6�7 Railway 4 8 :9 “Cambridge”9 ; : 69 Railway 48< 9 ; :9 ;< 69 Railway 4 8= 9 ;< 9 5 6

But, there is no way to ask “which stations are reachable from Cambridge?”.

Database Theory 2003 57 c> GMB/AD

Recursion

We can allow recursion, by allowing a relation name to appear in both the head

and body of a rule.

Example:

? @�A B C D E F @�A B C D

? @�A B C D E F @�A BG D B ? @G B C D�H

Here, F is a relation given in the database. The query defines a relation ? that is

the transitive closure of F .

Datalog is the language of conjunctive rules with recursion.

Database Theory 2003 58 cI GMB/AD

Route Finding

Which stations are reachable from Cambridge?

Reach J�K L M Railway JNO “Cambridge”O K L

Reach J�K L M Railway JNP O QO K LO Reach J Q L

Is it possible to get from Cambridge to Glasgow?

Camb-Glas M Reach J “Glasgow” L

Database Theory 2003 59 cR GMB/AD

Syntax

A Datalog rule is an expression

S T�U V�W S X T�U X VYZ Z Z Y S [T�U [V

where

\ The tuples of termsU Y U X Y Z Z Z Y U [satisfy the restrictions on conjunctive rules.

\ Each S] is either a relation in the input database scheme, or appears in the

head of some rule.

A Datalog program ^ is a sequence of rules.

We write _`a T ^ V for the database schema consisting of the relation names that

occur only in the body of rules in ^ . bcd T ^ V is the schema consisting of all

relations occurring in ^ .

Note: no negation.

Database Theory 2003 60 ce GMB/AD

Model-Theoretic Semantics
With a rule

f g�h i�j f k g�h k ilm m m l f n g�h n i

we associate the formula of first-order predicate logic:
op k lm m m l p n q g f k g�h k ir s s sr f n g h n i i�t f g�h iu

wherep k l m m m l p n enumerates all the variables appearing in the rule.

For a program v , we write w x for the conjunction of all formulae associated

with rules in v .

Since there are no free variables in w x , for any instance y over z{| g v i , we

have either

y }�~ w x y satisfies w x .

or

y �}�~ w x y does not satisfy w x .

Database Theory 2003 61 c� GMB/AD

Model-Theoretic Semantics contd.

If� is a program, a database instance over ��� �� � is said to be a model of� if

it satisfies � � .

If � is a database instance over ��� �� � , the semantics of� over � is defined to

be the minimum instance � such that � � � and � is a model of� .

How do we know such a model exists?

Database Theory 2003 62 c� GMB/AD

Fixed-point Semantics

Let � be a program and � an instance over ��� � � � .
Define the instance � � � � � as follows

� For every relation � in ��� � � � , � � � � � � � ��� � � � � .

� For every relation � not in ��� � � � , a tuple is in � if, and only if, there is a

rule

� �¢¡ £ ��¤ � ¥ ��¦ ¥ �§¨ ¨ ¨ § � © ��¦ © �

and a valuation ª such that ª �¡ £ � � and � «� ¬ � � ¦ � for each ® .
That is, � � � � � is formed of the set of facts that can be immediately justified by

the program � and the instance � .

Database Theory 2003 63 c¯ GMB/AD

Fixed-point Semantics contd.

The function ° ± is a monotone map on instances.

If² ³´ , then ° ± µ² ¶ ³ ° ± µ´ ¶ .
Exercise: prove it!

Fixed-point theorem

For any instance² , there is a least´ such that² ³´ which is a fixed-point of

° ± .

° ± µ´ ¶�· ´ ¸

Database Theory 2003 64 c¹ GMB/AD

Iteration

The least fixed point can be reached by iteration.

Given a program º and an instance » over ¼½¾ ¿ º À , take

Á ÂÄÃ »
Á Å ÆÇ Ã È É ¿ Á Å À .

Repeat until Á Å Æ Ç Ã Á Å .

Database Theory 2003 65 cÊ GMB/AD

Database Theory: Lecture 4

Recursion and Negation

Dr A. Dawar

www.cl.cam.ac.uk/Teaching/2002/DBaseThy

Database Theory 2003 66 cË GMB/AD

Datalog

Datalog extends the conjunctive calculus with recursion, but does not allow

negation.

We can express

Which stations are reachable from Cambridge?

but not

For which pairs of stations is there no direct connection?

The expressive power of Datalog and the relational calculus are incomparable.

Database Theory 2003 67 cÌ GMB/AD

Monotonicity

Every query definable in Datalog is monotonic.

IfÍ is a Datalog program and Î Ï Î�Ð instances over ÑÒÓ ÔÍ Õ , then

If Î Ö Î�Ð thenÍ Ô Î Õ Ö Í Ô ÎÐ Õ .

Î Ö ÎÐ

× Ø Ô Î Õ Ö × Ø Ô ÎÐ Õ

× Ø Ô × Ø Ô Î Õ Õ Ö × Ø Ô × Ø Ô ÎÐ Õ Õ

×ÚÙ Ø Ô Î Õ Ö ×ÚÙ Ø Ô ÎÐ Õ

...

Database Theory 2003 68 cÛ GMB/AD

Example

Given a graph as a binary relation

Edge Source Target

a c

a b

b d

We can ask for which pairs of nodes there is a path:

Path Ü�Ý Þ ß à á Edge Ü Ý Þ ß à

Path Ü�Ý Þ ß à á Edge Ü Ý Þâ à Þ Path Üâ Þ ß à�ã

But we cannot ask: for which pairsÝ Þ ß is every path of even length.

Adding the pair Ü�ä Þå à to the above table would require removing it from the result

of the query. This shows that the query is not monotone.

Database Theory 2003 69 cæ GMB/AD

Adding Negation

Allowing negation in datalog programs is not a trivial task, as the fixed-point

semantics was based on monotonicity.

We now consider a series of ever more expressive query languages obtained by

different ways of incorporating negation into datalog.

All have the proviso that negation is range-restricted.

That is, if aç è é�ê ë appears in the body of a rule, every variable inê

appears in some positive literal in the body of the same rule.

Database Theory 2003 70 cì GMB/AD

Semipositive Datalog

The simplest method of extending datalog is to allow negation only on edb

predicates.

A semipositive datalog program is a collection of rules

í î�ï ð�ñ ò ó î�ï ó ðôõ õ õ ô ò ö î ï ö ð

where if ò ÷ isø í ÷ , then í ÷ does not appear in the head of any rule.

and the usual restrictions on variables apply.

ù î�ú ô û ð ñ ø ü î�ú ô û ð

ù î�ú ô û ð ñ ø ü î�ú ôý ðô ù îý ô û ðõ

This computes the transitive closure of the complement of ü .

Database Theory 2003 71 cþ GMB/AD

Semipositive Datalog contd.

For a semipositive datalog program ÿ , the map � � on instances is still monotone

in a restricted sense.

If � and ��� are instances over �� � � ÿ 	 such that:

 � � ��� , and

 for each � in � � � ÿ 	 , � � � 	�� ��� � � 	 .
then

ÿ � � 	 � ÿ � � � 	��

This suffices for proving the existence of minimal fixed-points and therefore giving

a semantics for semipositive datalog.

Database Theory 2003 72 c� GMB/AD

Semipositive Datalog contd.

While semipositive datalog can express some queries that are neither in the

relational calculus nor in datalog, it cannot express universal quantification.

��� �� � ���� � Movies� �� “Almodovar”� � �! Movies� �� “Almodovar”� � "#

Suppose $ % $�& are two instances over '() ��* such that for any tuple + over

, (- . � $, + / $ �0 if, and only if, + / $& �0 .
Then* � $ % * � $& .

The proof of this is similar to monotonicity of ordinary datalog programs.

To get universal quantification, we have to find a way of alternating rule

application with negation.

Database Theory 2003 73 c1 GMB/AD

Stratified Datalog

A stratified datalog program 2 is a set of rules

3 4�5 6�7 8 9 4�5 9 6:; ; ; : 8 < 4 5 < 6

, which can be partitioned into sets 2= 2 9> ? ? ?> 2 < such that

@ For every relation 3 , there is an A such that every rule such that all rules with

3 in the head are in 2 B (we call A the defining stratum for 3 ; for edb

relations, the defining stratum is 0).

@ If 8 C is a positive literal 3 C , then the defining stratum of 3 CD the defining

stratum of 3 .

@ If 8 C is a negative literal 3 C , then the defining stratum of 3 CFE the defining

stratum of 3 .

Database Theory 2003 74 cG GMB/AD

Example

Almo-actor H�I J K L M Movies H K J “Almodovar” J I L

Not-all H�N L M Almo-actor H�N J I O L J Almo-actor H K J I P L JRQ Almo-actor H�N J I P L

All H�N L M Almo-actor H�N J I L JRQ Not-all H�N L�S

This example does not involve recursion.

Indeed, stratified datalog without recursion is exactly equivalent to the relational

calculus.

Database Theory 2003 75 cT GMB/AD

Semantics

If U is a database instance over VWX Y�Z [, whereZ is a stratified datalog program

Z \ Z]^ _ _ _^ Z ` , we define the following sequence of instances for

a bc bd .

U e fgh \ U

U i j] fgh \ U i^ Z i j] Y U i [

Then,Z Y U [fgh \ U ` .

For a given program k , there may be more than one valid stratification. Show that

the semantics does not depend on which stratification is chosen.

Database Theory 2003 76 cl GMB/AD

Example: Game

mno pq r�s tu p vw xyz {| v�} x~

Move Player Position Next

Black n �
White n �
White � �
. . .

Win Position Player

� White

. . .

Win � �� � ���q Win �� y “White” �

Win � �� �� � ���q � � Move � “White”y � y � �� ��� Move � “Black”y � y� �� Win � �� � �

Each Win � is definable in stratified datalog but the set of all winning positions for

White is not definable.

Database Theory 2003 77 c� GMB/AD

Fixed-Point Calculus

Relational equations such as

Win-pos ��� � � Win ��� � “White” ��

� � Move � “White” � � � � �� ��� Move � “Black” � � �� ��� Win-pos �� � �

have solutions.

If

 ¡ is a relational expression over schema ¢ £ ¤¥ ¦ ;

 no occurrence of¥ in ¡ is in the scope of a negation; and

 § is an instance over schema ¢ .

There is a minimum extension of § satisfying¥ ¨ ¡ .

Database Theory 2003 78 c© GMB/AD

Fixed-Point Calculus Definition

Predicate ª « «¬ Base relation

® ¯° ±² ³ where occurs only positively in²

Formula ² « «¬ ª ±µ´ ¶ ³ with matching arities

® ² · ²

® ¸ ¹ ²

® º ²

For the semantics, interpret ¯ ° ±² ³ as the least relation satisfying » ² .

Every query definable in stratified datalog is expressible in the fixed-point calculus.

Database Theory 2003 79 c¼ GMB/AD

Extending the Algebra

One way of extending relational algebra to express recursive queries like

transitive closure

½ ¾�¿ À Á Â Ã Ä ¾�¿ À Á Â

½ ¾�¿ À Á Â Ã Ä ¾�¿ ÀÅ Â À ½ ¾Å À Á Â�Æ

is to add while loops.

½Ç È Ä
while change do

begin
½Ç È ½ ÉÊ ËÌ Í ¾�Î Ï Ì Ð ¾ ÄÑ ½ Â Â

end

Database Theory 2003 80 cÒ GMB/AD

While Programs

Every query definable in the fixed-point calculus is definable by a while program

of the form.

ÓÔ Õ Ö ×

while change do

begin

ÓÔ Õ Ö Ø

end

where Ö × and Ö Ø are terms of the relational algebra.

Moreover, if Ö Ø is of the form ÓÙ Ú Ú Ú , the converse holds as well.

Database Theory 2003 81 cÛ GMB/AD

Database Theory: Lecture 5

Expressivity and Complexity

Dr A. Dawar

www.cl.cam.ac.uk/Teaching/2002/DBaseThy

Database Theory 2003 82 cÜ GMB/AD

Evaluating a Query

Given a datalog program Ý , a naı̈ve method of evaluating it on a database

instance Þ would proceed as follows:

1. ß àá Þ â ãä åæ ç ä èé êë ì Ý íî .

2. For every valuation ï of the variables occurring in Ý over ð êñò ì Ý ó Þ í , if

ä ìõô ö í�÷ body

is a rule such that ß çá ø body, then

ß ìä í àá ß ìä í â ã ï ìõô ö íî�ù

3. Repeat step (2) until no new tuples are added.

Database Theory 2003 83 cú GMB/AD

Running Time

Let

û üý þ�ÿ� �� ��� �� � þ

û 	ý the maximum number of distinct variables occurring in any rule in�

û
ý the maximum arity of any relation in the head of a rule in�

Then, the naı̈ve evaluation of� on� takes � � ü� �� � steps.

û We only need to consider ü� distinct evaluations for any given rule.
û The number of iterations is at most ü � .

For any program� , there is a polynomial � such that� can be evaluated in time

� � þ� þ � on an instance� .

Database Theory 2003 84 c� GMB/AD

Running Time

The upper bound on the running time also holds for stratified datalog, as each

stratum is evaluated to completion just once.

One can also derive such bounds for relational algebra.

� For any relational algebra query � , there is a polynomial-time algorithm to

evaluate it on all instances.

� The degree of the polynomial is bounded by the maximum arity of any

sub-query of � .

Many optimization techniques are designed to reduce the arities of intermediate

relations.

Database Theory 2003 85 c� GMB/AD

NP-complete Query

Is there a way to travel around Britain so that I visit every railway station

exactly once?

Since the query expressed above is an NP-complete property of a database

instance, we cannot hope to express it in datalog.

Indeed, one can prove that it is not definable.

Is every polynomial-time computable query expressible in datalog? In stratified

datalog? In the fixed-point calculus?

Database Theory 2003 86 c� GMB/AD

Polynomial-time Queries

Give me the set of elements in the active domain which are at even

positions when listed lexicographically.

This query is computable in polynomial time.

Unless the lexicographical order is explicitly given as a relation, it is not definable

in any language we have considered.

The query is not generic

Database Theory 2003 87 c� GMB/AD

Generic Queries

Given database instances � �� over the same schema, a bijection

�� �� � � �� �

is an isomorphism from � to� if for any relation and any tuple ! :

! " � # $ iff � # ! $ " � # $�%

A query mapping & is generic if, whenever � is an isomorphism from � to� , it is

also an isomorphism from & # � $ to # � & $ #� $.
'(denotes the query obtained from(by replacing every constant) by ' *) + .

Every query language we have considered only defines generic queries.

Database Theory 2003 88 c, GMB/AD

Order

Let - be a total order relation on ./ 0 .

(for instance, if ./ 0 is the set of natural numbers)

Allow queries in the fixed-point calculus to use the order.

Predicate 1 2 23 4 Base relation
5 67 89 : where 4 occurs only positively in9

Formula 9 2 23 1 8<; = : with matching arities

5 = > =

5 9? 9

5 @ A 9

5 B 9

Database Theory 2003 89 cC GMB/AD

Fixed-Point with Order

The fixed-point calculus with order can express non-generic queries:

Is there a pair DFE GH I in the relation J withE K H ?

Immerman and Vardi showed:

A query is expressible in fixed-point calculus with order if, and only if, it is

computable in polynomial time.

In the absence of order, there are polynomial-time, generic queries that cannot

be expressed in the fixed-point calculus.

Is the number of tuples in J even?

Open Question: Is there a language that can express exactly the

polynomial-time computable generic queries?

Database Theory 2003 90 cL GMB/AD

Proving Inexpressivity

Database Theory 2003 91 cM GMB/AD

Inexpressivity

The transitive closure query:

N OFP Q R S T U OFP Q R S

N OFP Q R S T U OFP QV S Q N OV Q R S�W

is not definable in the relational calculus, without recursion.

How do we prove this?

We can show that the query:

Is the graph U strongly connected?

is not definable.

If N were definable, this query would be X P X R N OFP Q R S .

Database Theory 2003 92 cY GMB/AD

Quantifier Rank

For a formula Z , we define its quantifier rank [\] Z ^ by:

1. if Z is atomic then [\] Z ^_ ` ,

2. if Z _ a b then [\] Z ^_ [\] b ^ ,
3. if Z _ bc d be or Z _ bc f be then

[\] Z ^_ g hi] [\] bc ^j [\] be ^ ^ .
4. if Z _ k l b or Z _ m l b then [\] Z ^_ [\] b ^n o

That is, [\] Z ^ is the depth of nesting of quantifiers in Z .

Database Theory 2003 93 cp GMB/AD

Proving Inexpressibility

For two instances q rs , we write qt u s to denote that for any formula v with

wx y v z{ | and no free variables:

q }~ v iff s } ~ v�

To prove that strong connectedness is not definable in relational calculus, we

show that for each | there are graphs � u and � u such that

� u t u � u

but � u is strongly connected while � u is not.

Database Theory 2003 94 c� GMB/AD

Ehrenfeucht Games

We define a game played between two players Spoiler and Duplicator on two

database instances � and � over the same schema.

The game consists of � rounds, where in each round � :

1. Spoiler chooses an element from the active domain of one of the two

instances: either � �� ��� � � � � or � � � ��� � � .
2. Duplicator responds with an element from the active domain of the other

instance: � � or � � .

At the end of play, we have two sequences � � �� � � � � � and � � �� � � � � � .

Let � denote the mapping � �� � � � .

Database Theory 2003 95 c� GMB/AD

Ehrenfeucht Games contd.

If, for any relation � and any tuple � taken from � � �� � � � � we have

� ¡¢ £ � ¤ if, and only if, ¥ £ � ¤ ¡ ¦ £ � ¤

then Duplicator has won the game. Otherwise Spoiler has won.

Duplicator has a strategy for winning the § -round Ehrenfeucht game on

¢ and ¦ if, and only if,

¢ ¨ ¦ �

Database Theory 2003 96 c© GMB/AD

Cycles

Take ª « to be a graph consisting of a single cycle of length ¬ « and « to be a

graph consisting of two disconnected cycles, each of length ® « .

We can show ª «¯ « «
This proves that the transitive closure query is not definable in the relational

calculus.

Database Theory 2003 97 c° GMB/AD

Database Theory: Lecture 6

Complex value model

Dr G.M. Bierman

www.cl.cam.ac.uk/Teaching/2002/DBaseThy

Database Theory 2003 98 c± GMB/AD

History

² First Normal Form: Assumption in original Codd 1970 paper

² But...lots of application areas require more flexible model (even our Cinema

database from lecture 1!)

² First proposal: Makinouchi [1977]

² Main activity in 80s:

– Jaeschke & Schell [1982]

– Thomas & Fischer [1983]

– Abiteboul & Bidoit [1984]

– Roth, Korth & Silberschatz [1986/8]

– Schek & Scholl [1986]

Some differences, but basic idea: drop requirement that entries are atomic

Other names: NFNF, NF ³ ,´ 1NF, nested relational model, ...

Database Theory 2003 99 cµ GMB/AD

Foundations

The notions of relation names, attributes and constants are as in the relational

model

Sorts ¶ · ·¸ ¹º » Base relation

¼ ½�¾ ¿ · ¶ ÀÁ Á Á À ¾ Â · ¶ Â Ã Tuples ÄFÅ ÆÇ È

¼ É ¶ Ê Sets

Ë An element of a sort is called a complex value

Ë Useful shorthand: Often eliminate occurrences of ¹º » , e.g.

ÌÍÎ ÏÐÑ ÒÓ Î ÏÐÑ ÒÔ Î Õ ÌÍÎ Ï ÐÑ ÒÖ Î ÏÐÑ ×Ø ×ÚÙ ÌÍ ÒÓ ÒÔ Î Õ ÌÍ ÒÖ ×Ø ×

Ë Note that a complex value may belong to more than one sort

Database Theory 2003 100 cÛ GMB/AD

Extended language
Ü Relational algebra deals with sets of tuples. Thus complex value algebra

should deal with sets of complex values.

Ü A complex value relation of sort Ý is a finite set of values of sort Ý .

Ü Common confusion: A complex value relation of sort Þ�ß àá àâ ã is a set of

tuples over attributesß á â . The entire relation is also a complex value of

sort ä Þ�ß á â ãå .

Ü Note: Sort of a relation need not be a tuple.

Database Theory 2003 101 cæ GMB/AD

ALGcv: Complex value algebra

ALGcv ç è èé ê Base relation

ë ìí î Constant values

ë çï ç Union

ë çñð ç Set difference

ë ò ó ôõ ö ÷ ç ø Select (constant)

ë ò ó ôõ ó ù ÷ ç ø Select (attribute)

ë ò ó ôú ó ù ÷ ç ø Select (attribute mem)

ë ò ó ôõ ó ùû ü ÷ ç ø Select (attribute comp)

ë ý ó þÿ û û û ÿ ó � ÷ ç ø Projection

ë �� � �� � �� ÷ ç ø Powerset

ë � � �	 � �
 � � ó þ ÿ û û û ÿ ó � ÷ ç� � � ç� ø Tuple

ë � �� 	 � �
 � � ÷ ç ø Set creation

ë � � �� � �� � � � ÷ ç ø Tuple destroy

ë � �� � � �� � � � ÷ ç ø Set destroy

Database Theory 2003 102 c� GMB/AD

Semantics of ALGcv

� �� � �� ��� � � � � �

� ��� � � �� ��� � �� �

� � ! " # � � � ��� � � � ! � �� " � � # � � �

� � ! $ # � � � ��� � � � ! � �� $ � � # � ��

� �% & '() � � � � � ��� � �* + � � � � � ,* -. / � � �

� �% & '(& 0 � � � � � ��� � �* + � � � � � ,* -. / � * -. 1 �

� �% & '2 & 0 � � � � � ��� � �* + � � � � � ,* -. / + * -. 1 �

� �% & ' (& 043 5 � � � � � ��� � �* + � � � � � ,* -. / � * -. 1 - 6 �

� �7 & 89 3 3 3 9 & : � � � � � ��� � �; . ! <* -. ! = - - - = . > <* -. > ? ,* + � � � �� �

� �@A B CD E CF � � � � � ��� � �G ,G H � � � �� �

� �FI @J D CK F C & 89 3 3 3 9 & : � ! = - - - = > � � � � ��� � �; . ! <G ! = - - - . > <G > ? ,G ! + � � ! � � � = - - - =G > + � � > � � � �

� � E CF J D CK F C � � � � � ��� � � � � � � � �

� �FI @L C EF D A M � � � � � ��� � �G ,; N <G ? + � � � �� �

� � E CF L C EF D A M � � � � � ��� � O � � � � �

Database Theory 2003 103 cP GMB/AD

Sort judgements

Q R ST U means that S denotes a relation of sort U , given database schema Q .

V WX YZ [

[\ V] X [\ ^_ `] ab c

[\ de] X [\ df] X

[\ deg df] X

[\ de] X [\ df] X

[\ de h df] X

Database Theory 2003 104 ci GMB/AD

Sort judgements cont.

jk lm n no pq q q rs tm uv w r q q q x

j k y z {| } ~ l �m n

j k lm n no p q q q rs tm u v w r q q q rs ��m u v w r q q q x

j k y z {| z � ~ l �m n

j k lm n no pq q q rs tm n t r q q q rs � m � n t � r q q q x

j k y z {� z � ~ l �m n

jk lm n no pq q q rs tm n t r q q q rs ��m p q q q r� m n t r q q q x r q q q x

jk y z { | z ��� � ~ l �m n

Database Theory 2003 105 c� GMB/AD

Sort judgements cont.

�� �� �� �� � � ��� � � � � � � � � �� �� ��� � � � � � �� � � ��� � � � � � �

�� � �¡¢ ¢ ¢ ¡ £¤ � ¥� �� �� � ��� � � � � � � � £ �

�� � �� � �� � � �� � � � � �

�� ¦§ ¨©ª «¬ ¦ « �¡ ¢ ¢ ¢ ¡ £¤ � ��� � � � � � ¥� �� �� � ��� � � � � � � � � �

� � �� �� � � �

�� ¦§ ¨ «® ¦ª ¯ °¤ � ¥� �

�� �� �

�� ® « ¦©ª «¬ ¦ «¤ � ¥� � � �

�� �� � � �

�� ® « ¦ «® ¦ª ¯ °¤ � ¥� �

�� �� �

�� ¨ ¯± «ª ® « ¦¤ � ¥� � � �

Database Theory 2003 106 c² GMB/AD

Generalized algebra

As in the relational algebra, there are a number of useful generalizations that can

be coded up in ALGcv

³ Complex Constants, e.g. ´µ�¶ · ¸ ¹º · ´4» ¼½ ¼

³ Renaming

³ Cross Product

³ Join

³ N-ary set creation

Aside: Clear that ALGcv subsumes relational algebra.

Database Theory 2003 107 c¾ GMB/AD

Further extensions: Nest and Unnest

(Simplified forms)

¿ À ÁÂ Ã�Ä Â Å ÆÇ Â È ÃÉ Â ÅËÊ ÆÌ Â ÅÊ Ê ÍÎ Í

¿ À ÏÐ Ð ÑÒÓ Ô Õ Á ÖÂ Ã�Ä Â Å Æ É Â ÅÊ ÆÌ Â ÅÊ Ê Í

¿ À ÁÂ Ã�Ä Â Å ÆÇ Â ÅÊ Æ É Â ÅÊ Ê Í

¿ À Ð Ñ ÒÓ ×Ø Ô ÙÚ Õ Á ÖÂ Ã Ä Â Å Æ Ì Â È ÃÇ Â ÅËÊ Æ É Â ÅËÊ Ê ÍÎ Í

Database Theory 2003 108 cÛ GMB/AD

Examples

Assume Ü Ý Þß àá�â ã äå æ çâ è ã äå æ éê çë àá�ì ã äå æ çì è ã Þ äå æ í éê í .

1. Union ofß and some constant tuples:

îï ðñ4ò ó ô õò ö ó ÷ ø õñ4ò ó ù õò ö ó ù øú

2. Tuples inë where the first component is containing in the second component

û ü ý üþ ÿ� �

3. Cartesian product ofß andë ?

4. Join ofß andë onâ Ý ì

û �� ü ÿ î � � �

Database Theory 2003 109 c� GMB/AD

Further examples

1. Renaming of � attributes to � � 	 �

� � �� � �� � �� � � �� � �� � ��� �� �� �� � � �! � �� " " �� �� �� � � �! �# � � " " "

$% ! � �� � ��& � �' �(� ��& � �' �# (� �� � " " "

2. Unnesting of) on *,+ ?

Database Theory 2003 110 c- GMB/AD

CALCcv: Complex value calculus

Term . / /0 1 Constant value

2 3 Variable

2 345 Tuple element

Literal 6 / /0 7 8 . 9 Relation atoms

2 . 0 . Equality

2 . : . Membership

2 . ; . Subset

Formula < / /0 6 Literal

2 < = < 2 < > < 2@? < Logical connectives

2 A 34 < Powerset

2 B 34 < Tuple

Query C / /0 D 3 2 < E

Database Theory 2003 111 cF GMB/AD

Extensions to CALCcv

Similar to relational calculus

G Complex constants e.g. Assume H I JLK M I N M OP P P O K Q I N Q R

S TU V WX X X W U Y Z\[]^_ ` a X S T a Zb a Xc V _ U V b d d db a Xc Y _ U Y

G Complex terms e.g. egf O h i

G Complex literals e.g. j kl

G Queries as terms e.g. egm nLo i where pq ro s,t em O h M OP P P O h Q i

Database Theory 2003 112 cu GMB/AD

Examples

Again assume

v w xy z{L| } ~� � �| � } ~� � �� �� z{L� } ~� � �� � } x ~� � � �� � .

1. Union ofy and some constant tuples:
�� �� �� �� � � �g� � � � ��� � � �� � � �g� � � � ��� � � ��

2. Tuples in� where the first component is contained in the second component
�� �� �� �� �� � �� �� �

3. Cartesian product ofy and� ?

4. Join ofy and� on| w �

�¡ �g¢ � ��� � �� � � � �� � � ¡ � �g� � �� � � ��� � �� ��� � � � �� � � �� � � � �� ��

Database Theory 2003 113 c£ GMB/AD

Transitive closure!

Recall ¤¥ ¦L§ ¨¥ ©ª « ¬ §® ¥ ©ª « ¯ . Define

°±² ³´µ ¶· ¸ ¹º» ¼ ½¾ ¿À ¿ÁÂ ÃgÄ Å¾ ¿ ÄÇÆ Å À ÈÉ ·Ê ÃgÄ Å À ¿ ÄÇÆ Å Á È É ·

¼ Ë ÃgÄ Å¾ ¿ ÄÇÆ Å Á ÈÉ ·

°² ÌÍÎ Ï Ì ³Ð ¶· ¸ ¹º» ¼ ½ÑÂ Ð ¶Ñ ¸ ¼ Ë Ñ É ·

Then transitive closure can be defined as follows:

ÒÓ Ô ½ ·Â °±² ³´µ ¶· ¸Ê °² ÌÍÎ Ï Ì ³ Ð ¶· ¸ ¼ Ë Ó É · Õ

Recall that this can not be expressed in the relational calculus/algebra!!

Where did this extra expressive power come from?

Database Theory 2003 114 cÖ GMB/AD

Equivalence: From ALGcv to CALCcv

Given an ALGcv expression × we can define a CALCcv query ØgÙ ÚÛ × ÛÜ Ý .

Þß Þà áâã ä ß åæ ç

Þèé ê Þà áâã ä æ ä é

Þë ì íî ï åð ç Þà áâã ä Þ ð Þàñ åæòó ô ä é ç

Þë ì íî ì õ åð ç Þà áâã ä Þ ð Þàñ åæòó ô ä æò ó ö ç

ò ò ò

Þ÷ ì øùú ú ú ù ì û åð ç Þà áâã ä ü ýò åæ ä þó ÿ� ýò ó ÿ �ò ò ò �ó � � ýòó � �ñ Þ ð Þ � ç

Þ ð ÿ � ð � Þà áâã ä Þ ð ÿ Þàñ Þ ð � Þà

Þ� � 	
 � � � � ì øùú ú ú ù ì û å ð ÿ �ò ò ò � ð � ç Þà áâã ä ü ý ÿò ò ò ý �ò å æ ä þó ÿ� ý ÿ �ò ò ò �ó � � ý � �

ñ Þ ð ÿ Þ � øñ � � �ñ Þ ð � Þ � û ç

Þ � � 	� �� � � � � åð ç Þà áâã ä ü ýò å þ� � æ � ä ýñ Þ ð Þ � ç

ò ò ò

Database Theory 2003 115 c� GMB/AD

Equivalence: From CALCcv to ALGcv

� This proof proceeds in exactly the same way as for the relational calculus to

relational algebra

� (Again we will only consider domain-independent queries)

� The only extra complication is in the creation of the active domains

Database Theory 2003 116 c� GMB/AD

Constructing the active domains

Define a function ��� that maps a relation of sort � to a relation of sort �� �

(essentially just returns the ground elements).

�� �! "#$ % &'('

)+* ,- . , / "#$ % &'(. , 012 34 56 17 8 9 0' : :

)+* ,- . , ;(((* < - . < / "#$ % &'(0 0)+* ,- . , / : 0= > ? 0' : : :@ A A A@ 0 0)+* < - . < / : 0= > B 0' : : :

C . D "#$ % &'(. 06 5 1 4 56 17 8 9 0' : :

Then for a relation schema E F GH I J � I KLM M M L H N J � N KO and instance

P F GRQ I LM M M L Q N O
STU V WX L P Y[Z\]F �^� I WQ I Y_ ` ` `_ �^� N WQ N Y_ ab WX Y

where a b WX Y are the free elements inX .

Database Theory 2003 117 cc GMB/AD

Variants of Complex Value Model

Nested relational model: Set and tuple constructors are required to alternate,

e.g.

d+e fg fh i j d+k fl i j d+m fn op op o ok

d+e fg fh i d+k fl o o not ok

V-relation model: further restriction of the nested relational model where at least

one component of every tuple sort must be atomic, e.g.

d+e fg fh i j d+k fl i j d+m fn op op o ok

d+e fg fh i j dl i j d+m fn o p op o not ok

Further assumption: atomic values in a tuple form a key

Work on the complex value model has naturally lead to work on object-relational

and object models (next lecture!).

Database Theory 2003 118 cq GMB/AD

Database Theory: Lecture 7

Object model

Dr G.M. Bierman

www.cl.cam.ac.uk/Teaching/2002/DBaseThy/

Database Theory 2003 119 cr GMB/AD

Manifestos

By the late 80s following from work on Complex Value Models, and from work in

the OO community, came suggestions for adding objects to database systems.

1. The OODBMS manifesto Atkinson, Bancilhon, DeWitt, Dittrich, Maier and

Zdonik. 1989

2. The third-generation database system manifesto Committee for advanced

DBMS function. 1990

(Date and Darwen have subsequently suggested a “third manifesto”)

Database Theory 2003 120 cs GMB/AD

The OODBMS manifesto
t Paper attempts to give a generic definition of an OODBMS

t It describes the main features and characteristics for a system to qualify as an

OODBMS

t These were grouped as follows:

1. Mandatory Features that your system must have

2. Optional Features that might make your system better

3. Open Features where you have free design space

These have had enormous influence both on OODBMSs and RDBMSs too!

Database Theory 2003 121 cu GMB/AD

Mandatory commandments

v Thou shalt support complex objects

v Thou shalt support object identity

v Thou shalt encapusulate thine objects

v Thou shalt support types or classes

v Thine classes or types shalt inherit from their ancestors

v Thou shalt not bind prematurely

v Thou shalt be computationally complete

v Thou shalt be extensible

v Thou shalt remember thy data

v Thou shalt manage very large databases

v Thou shalt accept concurrent users

v Thou shalt recover from hardware and software failures

v Thou shalt have a simple way of querying data

Database Theory 2003 122 cw GMB/AD

ODMG: history

x Essentially an industrial response to the manifesto & a number of competing

products

x Founded by Rick Cattell (Sun) in 1991 to produce an industry standard for

object databases (but “avoid design by committee”!)

x Published various releases of the standard (1.1–Jan 94, 1.2–Jan 96, 2.0–May

97, 3.0–Jan 2000)

x Links with the OMG, and X3H2 (SQL) standard committee (amongst others)

x Now (2001-) refocused on the JDO design effort (Persistent objects for Java)

x Whilst now dormant: still an influential design and most OODBMS products

are “compliant”

Database Theory 2003 123 cy GMB/AD

The ODMG architecture

OIF

ODLObject ModelOQL

Language Binding

SmalltalkJava C++

Database Theory 2003 124 cz GMB/AD

ODL: Object Definition Language
{ Language for specifying the structure of database objects

{ Independent of your host programming language

{ Class-based model

{ (Superset of IDL - CORBA definition language)

{ A class consists of

– Attributes (cf. fields)

– Methods

– Relationships (specific to OODBMS)

Database Theory 2003 125 c| GMB/AD

ODL: Primitive types

A whole host of primitive (non-object) types, e.g.

} float, long, short, unsigned short, unsigned long, ...

} boolean, char, string

} date, time, timestamp, ...

} enumerations and structs (like in C)

} set<T>, bag<T>, list<T>, array<T>, dictionary<T,T>

(The latter are like the polymorphic constructor types in SML)

Database Theory 2003 126 c~ GMB/AD

Example ODL definitions
class Movie �

attribute string title;

attribute integer year;

attribute enum Film � color,BW � filmType;

� ;

class Star �

attribute string name;

attribute Struct Addr

� string street, string city � address;

� ;

Database Theory 2003 127 c� GMB/AD

ODL methods
ODL allows declarations of methods (code is written in your favourite host
language)

class Movie �

attribute string title;

attribute integer year;

attribute enum Film � color,BW � filmType;

float lengthInHours();
set(string) starNames();

� ;

Database Theory 2003 128 c� GMB/AD

ODL relationships
ODL provides binary relationships.

class Movie �
attribute string title;

attribute integer year;

attribute enum Film � color,BW � filmType;

float lengthInHours();

set(string) starNames();

relationship Set<Star> stars
inverse Star::starredin;

� ;
class Star �

attribute string name;

attribute Struct Addr

� string street, string city � address;

relationship Set<Movie> starredin
inverse Movie::stars;

� ;

Database Theory 2003 129 c� GMB/AD

Classes

As in Java and C� , we allow single inheritance between classes, and provide

interfaces with mutiple inheritance.

class Cartoon extends Movie �

relationship Set<Star> voices
inverse Star::VoiceIn;

� ;
class MurderMystery extends Movie �

attribute string weapon;

� ;

Database Theory 2003 130 c� GMB/AD

Extents
ODL provides us with a handle on the collection of all current objects in a class:
extent

class Movie (extent Movies) �

attribute string title;

attribute integer year;

attribute enum Film � color,BW � filmType;

float lengthInHours();

set(string) starNames();

relationship Set<Star> stars

inverse Star::starredin;

� ;
The extent name, e.g. Movies, can be used in queries, cf. relation name in

SQL.

Database Theory 2003 131 c� GMB/AD

Expressivity

Consider the relational schema

�� ��� � Cinema,Title,StartingTime from Lecture 1. In ODL:

class Movie (extent Movies)

{

string Cinema;

string Title;

Time StartingTime;

};

What about Complex Value Model?

Database Theory 2003 132 c� GMB/AD

More types

Rather confusingly, ODL also provides collection classes

� Set<T>, Bag<T>, List<T>, Array<T> and Dictionary<T,T>

� These are classes

� In fact they are generic classes (not yet supported in Java/C � , but like

templates in C++)

Database Theory 2003 133 c� GMB/AD

An introduction to OQL

� Based on SQL’s SELECT FROM WHERE construct

� Looks like SQL-92

� Properly orthogonal:

“OQL is a functional language whose operators can freely be

composed, as long as the operands respect the type system.”

Database Theory 2003 134 c� GMB/AD

Some example queries

1. Movies;

2. select s.name from Stars as s;

3. select m.year from Movies as m where

m.title="Magnolia";

4. select s.name

from Movies as m,

m.stars as s

where m.title="Magnolia";

5. select t.name

from (select m.stars

from Movies as m

where m.title="Magnolia") as t

where t.address.city="Hollywood";

Database Theory 2003 135 c� GMB/AD

Further features

1. Casting

select (Movie)m

from MurderMysteries as m

where m.weapon="AK47";

2. Object creation

select new Studio(owner: s.name)

from Stars as s;

Database Theory 2003 136 c� GMB/AD

Language binding
� Intention is to embed the database operations transparently into the host

programming language

� Database programming now just looks like normal programming

� For most languages this is via an API

� Runtime language objects persist by backend magic

Database Theory 2003 137 c� GMB/AD

Java language binding

� ODMG specify a host of interfaces, e.g. for ODL types, OQL queries, e.g.

public interface OQLQuery public void create(String query) ... public void bind(Object parameter)

... public Object execute ;

� Your vendor supplies the classes that implement them

� Java database programming now becomes just like normal programming

OQLQuery query;

query.create("select ... where p.salary>$1");

x=new Double(50000.0);

query.bind(x);
RichProfs=(DBag)query.execute();

Database Theory 2003 138 c GMB/AD

Formalizing: MiniODMG

¡ One of the big problems with the ODMG was a lack of formalization

¡ So let’s formalize! (Cutting edge [SIGMOD 2003!])

¡ We’ll define

– MiniODL

– MiniOQL

¡ We’ll assume that methods have been written in our favourite programming

language, MiniDFlat.

Database Theory 2003 139 c¢ GMB/AD

MiniODL: Design choices

1. No interfaces

2. Limited primitive types

£ Just integers and booleans

3. No relationships

4. No collection classes (requires generics!)

Database Theory 2003 140 c¤ GMB/AD

MiniODL: Definitions

Class definition

¥¦ § §¨ class C © extends C ª

« extent ¬

®¯ ¦ ©° ° ° ¯ ¦ ±

² ¦ © ° ° ° ² ¦ ³ ´
Attribute definition

¯ ¦ § §¨ attribute µ¶ ·
Method definition

² ¦ § §¨ µ¸ « µ¹º ¹ »° ° ° » µ¼ º ¼ ·

Database Theory 2003 141 c½ GMB/AD

MiniODL: Example

class Employee extends Person

(extent Employees)

{ attribute int EmpID;

attribute int GrossSalary;

attribute Manager UniqueManager;

int NetSalary (int TaxRate); }

Database Theory 2003 142 c¾ GMB/AD

MiniOQL: Definition
Query expression

¿ À ÀÁ Â integer

Ã true Ã false booleans

Ã Ä identifier

Ã Å ¿Æ ÇÈ È È Ç ¿É Ê set

Ã ¿Ë sop ¿Ì set ops

Ã ¿Ë iop ¿Ì int ops

Ã ¿Ë = ¿Ì int equality

Ã ¿Ë == ¿Ì object equality

Ã ÍÎ Ë À ¿Ë ÇÈ È È Ç Î É À ¿É Ï record

Ã ¿ È Î record access

Ã size Ð ¿ Ñ set size

Database Theory 2003 143 cÒ GMB/AD

MiniOQL: Definition cont.
Query expression cont.

Ó Ô ÔÕ Ö Ö Ö

× Ø C Ù Ó cast

× Ó Ö Ú attribute access

× Ó Ö Û Ø ÓÜ Ý Ö Ö Ö Ý ÓÞ Ù method invocation

× new C Ø Ú Ü Ô ÓÜ Ý Ö Ö Ö Ý Ú Þ Ô ÓÞ Ù object creation

× if Óß then Óà else Óá conditional

× select Ó from â in Ó where Ó select

Database Theory 2003 144 cã GMB/AD

Type system for MiniOQL

MiniOQL type

ä å åæ ç è set é ä ê èë+ì í å ä í îï ï ï îì ð å ä ð ñ

Database Theory 2003 145 cò GMB/AD

Type system

A query typing judgement is written

ó ôõ ö ÷ø ù

where

ú ó is a map from extent identifiers to their type

ú õ is a map from free identifiers of the query ÷ to their type

Database Theory 2003 146 cû GMB/AD

Typing judgements

(Int)ü ýþ ÿ � � int
(Bool)ü ýþ ÿ true � false � bool

(Id)ü ýþ � � � � ÿ � � �

(Extent)ü �� � C ýþ ÿ � � set � C �

ü ýþ ÿ � � set � � �

(Size)ü ýþ ÿ size �� � � int

ü ýþ ÿ 	
 � �
 � � � ü ýþ ÿ 	� � � � � � �� � � � � �� �

(Set)ü ýþ ÿ � 	
 �� � � � 	 � � � set � � �

ü ýþ ÿ 	� � set � � � ü ýþ ÿ 	� � set � � �

(Union)ü ý þ ÿ 	� � 	� � set � � �

Database Theory 2003 147 c� GMB/AD

Typing judgements

� �� � �� ! � " " " � �� � �# ! #

(Rec)

� �� � $&% � �� '(((' % # � #) $&% � ! � '(((' % # ! #)

� � � � � $&% � ! � '(((' % # ! #) * + , ((-

(Rec access)

� �� � � (% . ! .

� �� � � C C / C0

(Upcast)

� �� � 1 C0 2 � C0

� �� � �3 set 1 ! 2 � � � '4 ! � �� ! � � �� ' 4 ! � �5 bool
(Select)

� �� � select � � from4 in �3 where �5 set 1 ! � 2

Database Theory 2003 148 c6 GMB/AD

Observable nondeterminism
class P extends Object class F extends Object

(extent Ps) (extent Fs)

{ attribute int name; { attribute int name;

}; attribute P pal;};

SELECT (if size(Fs)<1

then (new F(name:007,pal:p)).name

else p.name)

FROM p in Ps;

Assume we have two P objects (001 and 002) and zero F objects.

What is the result of this query?

Database Theory 2003 149 c7 GMB/AD

Even worse...
class P extends Object

(extent Ps)

{ attribute int name;

F loop(); /* This method always loops! */

};

SELECT (if size(Fs)<1 and p.name=001

then p.loop()

else new F(name:007,pal:p)

FROM p in Ps;

What is the result of this query?

Database Theory 2003 150 c8 GMB/AD

Can it be fixed?

Yes! In two ways:

1. Remove object creation from queries!

2. Make object creation invisible to current query (!)

3. Use a fancy type-based analysis (GMB)

Database Theory 2003 151 c9 GMB/AD

Method support

Notice that MiniOQL allows you to invoke methods, which have been written in

MiniDFlat.

: ALL DBMS maufacturers think you need this!

: What is the meaning of a query?

– Dependent on meaning of arbitrary code!

– How does this tie-in with semantic techniques so-far in DBT?

– Queries can loop - which set is this denoted by?

Database Theory 2003 152 c; GMB/AD

Semantics of queries revisited
< Dependent on meaning of arbitrary code!

Fine - we have operational semantics for Java/SML/...!

< How does this tie-in with semantic techniques in DBT?

Maybe it’s been wrong all along!

< Queries can loop - which set is this denoted by?

Either move to domain theory; or use operational semantics!

Database Theory 2003 153 c= GMB/AD

Useful URLs

> www.odmg.org

> www.service-architecture.com/articles

> java.sun.com/products/jdo

Database Theory 2003 154 c? GMB/AD

Database Theory: Lecture 8

Semistructured model and XML

Dr G.M. Bierman

www.cl.cam.ac.uk/Teaching/2002/DBaseThy

Database Theory 2003 155 c@ GMB/AD

Schema-less data

A Underlying assumption so far: Data has a fixed schema declared in

advance

A E.g. CREATE TABLE in SQL, ODL in ODMG object databases

A Obvious question: What happens if we drop this assumption?

A Note: This predates the web-based applications!

A First prototype system: TSIMMIS/Lore at Stanford [1995]
A [Aside: Another assumption is persistent data sets. Dropping this yields a

data stream model—a HOT area!]

Database Theory 2003 156 cB GMB/AD

Is this a good idea?

The world is really quite unstructured, for example:

C Data exchange formats (pre-XML)

C The World-Wide Web

C ACeDB - a database used by biologists (from Sanger Centre, Cambridge)

Database Theory 2003 157 cD GMB/AD

Is this a good idea?

To query the database one currently needs to understand the schema

But...lots of users either don’t understand the schema or don’t want to know about

the schema

E Where in the database is there information on “Magnolia”?

E Are there integers less than -256?

E Which database objects have attribute names beginning with “Name”?

So let’s move to schema-less data model!

Database Theory 2003 158 cF GMB/AD

Semistructured data

G Rather than devising a syntax for types, we need a general syntax for values

G First start with simple idea: records

{name:"Britney", email:"bspears@hotmail.com"}

G Thus a value can be a collection of label-value pairs, e.g.

{name:{first:"Britney",second:"Spears"}, email:"bspears@hotmail.com"}

G (We’ll drop the standard convention that labels must be unique)

{person:{name:"Britney", email:"bspears@hotmail.com"},

person:{name:"Avril", email:"lavigne@freeserve.com"}}

Database Theory 2003 159 cH GMB/AD

SSD and graphs

person person

name email name email

"Britney" "britney@hotmail.com" "Avril" "lavigne@freeserve.com"

Notice that these values can be represented using edge-labelled trees

Database Theory 2003 160 cI GMB/AD

Relational model

It’s pretty obvious that relational database instances can be represented using

this model.

For example J K LM NPO QR QS T QU NPV QW TX . An instance could be stored as

{R:{row{A:"Britney",B:"St Johns", C:"E1(a)"},

row{A:"Christina",B:"Trinity",C:"F7"}},

S:{row{D:"Myleene",E:"Thursdays"},

row{D:"Avril",E:"Fridays"}

row{D:"Britney",E:"Saturdays"}}

}

Database Theory 2003 161 cY GMB/AD

Object model

Z Objects have identity

Z Let’s extend our semi-structured model to label values with oids and allow

oids to be values, e.g.

{person: &o1{name:"Britney",

friend: &o2,

ex-bf: &o3},

person: &o2{name:"Gavin",

friend: &o2,

friend: &o3},

person: &o3{name:"Justin",

friend: &o2,

ex-gf: &o1}

}

Database Theory 2003 162 c[GMB/AD

Graphs!

Drawing this example graphically: Data is now a graph!

&o1 &o2 &o3

person person
person

"Gavin" "Justin""Britney"

name
friend

ex−bf

name

friend friend

friend

ex−gf

Database Theory 2003 163 c\ GMB/AD

Semi-structured data model
SSD] ^ ^_ ` Value

a &o ` Value with identity

a &o Object identity

Value ` ^ ^_ b Atomic values

a c Complex value

Complex value c ^ ^_ { d ^] ef f f e d ^] }

Database Theory 2003 164 cg GMB/AD

Coding up ODMG schema
class Movie (extent Movies) h

attribute string title;

attribute integer year;

attribute enum Film h color,BW i filmType;

relationship Set<Star> stars

inverse Star::starredin;

i ;

class Star (extent Stars) h
attribute string name;

attribute Struct Addr

h string street, string city i address;

relationship Set<Movie> starredin

inverse Movie::stars;

i ;

Database Theory 2003 165 cj GMB/AD

Some example SSD compliant data

{Movies:{Movie:&m01{title:"Magnolia",

year:1999,

film:{colour},

stars:{Star:&s01,Star:&s02}},

Movie:&m02{title:"Safe",

...}},

Stars:{Star:&s01{name:"Julianne Moore",

Addr:{street:"Sunset Blvd",city:"LA"},

starredin:{Movie:&m01,Movie:&m02}},

Star:&s02{name:"Tom Cruise",

...}}

}

Thus it is easy to embed ODMG data into SSD model

Database Theory 2003 166 ck GMB/AD

Expressivity cont.

l We have seen that we can code up relational and object model instances into

SSD. What about the other direction?

l Not so easy! The point of the SSD model is its flexibility, e.g.

{Friend:{Name:"Britney",

Tel:337890},

Friend:{Name:"Emma",

Email:"baby@spicegirls.com"},

Friend:{Email:"sc@popstars.com",

Tel:898989},

Friend:{Name:"Myleene"}

}

l SSD model offers a very flexible data model!

l How might we store SSD values in a relational model?

Database Theory 2003 167 cm GMB/AD

SSD systems

n A number of these flourished in the mid to late 1990s.

n Most notable work at Stanford:

– TSIMMIS [1995-]

– Lore [1997-]

n Other interesting systems include ACeDB:

– Built at the Sanger Centre (Cambridge)

– Originally to store genetic data about C. elegans organism

– Essentially a SSD model (has a schema language, but allows labels to be

missing)

Database Theory 2003 168 co GMB/AD

XML
p Standard for data exchange on web

p Textual format, consisting of elements wrapped with matching tags (mark-up),
e.g.

<person><name>Britney</name>

<age>21</age>

<email>britney@hotmail.com</email>

</person>

p This clearly has a corresponding SSD value

{person:{name:"Britney",age:21,email:"britney@hotmail.com"}}

Database Theory 2003 169 cq GMB/AD

XML graph model

person

name age email

person

name
age

email

"Britney" "21" "britney@hotmail.com"

"Britney" "21" "britney@hotmail.com"

r XML is a node-labelled graph

r SSD is an edge-labelled graph

Database Theory 2003 170 cs GMB/AD

Building graphs in XML

XML provides special attributes to build graphs: ID and IDREF, e.g.

<IMDB>

<Movies>

<Movie id="&m01">
<title>Magnolia</title>

<year>1999</year>

<film>colour</film>

<stars><star idref="&s01"/>
<star idref="&s02"/>

</stars>

</Movie>

<Movie id="&m02">
<title>Safe</title>

...

</Movie>

...

</Movies>

<Stars>

Database Theory 2003 171 ct GMB/AD

<Star id="&s01">
<name>Julianne Moore</name>

<Addr><street>Sunset Blvd</street><city>LA</city></Addr>

<starredin><Movie idref="&m01"/><Movie idref="&m02"/>
</Star>

<Star id="&s02">
<name>Tom Cruise</name>

...

</Star>

</Stars>

</IMDB>

Database Theory 2003 172 cu GMB/AD

Querying XML
v There were a series of proposals, XML-QL, XQL, UnQL, Quilt...

v Lead to current proposal: XQuery

v XQuery consists of two parts

1. XPath: A language for describing nodes in an XML tree

2. XQuery: Query-like language surrounding XPath

Database Theory 2003 173 cw GMB/AD

XPath

x http://www.w3.org/TR/xpath

x Building block for other W3C standards (not just XQuery) e.g. XLink, XPointer

etc.

Database Theory 2003 174 cy GMB/AD

XPath

z Inspiration is that navigation of a tree is like navigating a Unix-style directory

z All paths start from a context node

z Result is (approximately) the set of nodes reachable from the context node

using the given path expression

Database Theory 2003 175 c{ GMB/AD

Example XML document
<bib>

<book> <publisher> Addison-Wesley </publisher>

<author> Serge Abiteboul </author>

<author> <first-name> Rick </first-name>

<last-name> Hull </last-name>

</author>

<author> Victor Vianu </author>

<title> Foundations of Databases </title>

<year> 1995 </year>

</book>

<book price="55">

<publisher> Freeman </publisher>

<author> Jeffrey D. Ullman </author>

<title> Principles of Database and Knowledge Base Systems</title>

<year> 1998 </year>

</book>

</bib>

Database Theory 2003 176 c| GMB/AD

Example XPath

Query: /bib/book/year

Result: <year>1995</year> <year>1998</year>

Query: /bib/paper/year

Result:

Query: //author

Result: <author> Serge Abiteboul </author>

<author> <first-name> Rick </first-name>...

Query: /bib//first-name

Result: <first-name> Rick </first-name>

Database Theory 2003 177 c} GMB/AD

XPath: Functions

Query: /bib/book/author/text()

Result: Serge Abiteboul

Jeffrey D. Ullman

Functions available:

~ text() – matches the text value

~ node() – matches any node

~ name() – returns the name of the tag

Database Theory 2003 178 c� GMB/AD

XPath: Wildcard

Query: //author/*

Result:

Database Theory 2003 179 c� GMB/AD

XPath: Attribute Nodes

Query: /bib/book/@price

Result: 55

NB: price is an attribute

Database Theory 2003 180 c� GMB/AD

XPath: Qualifiers

Query: /bib/book/author[first-name]

Result: <author><first-name> Rick </first-name>

<last-name> Hull </last-name></author>

Query: /bib/book[@price<"60"]

Query: /bib/book[author/@age<"25"]

Thus we get a primitive form of querying (although result is a set of nodes, not

valid XML)

Database Theory 2003 181 c� GMB/AD

XPath summary

bib matches a bib element

* matches any element

/ matches the root element

/bib matches a bib element under root

bib/paper matches a paper in bib

bib//paper matches a paper in bib, at any depth

//paper matches a paper at any depth

paper|book matches a paper or a book

@price matches a price attribute

bib/book/@price matches price attribute in book, in bib

Database Theory 2003 182 c� GMB/AD

XQuery

XPath is central to XQuery. In addition, XQuery provides

� XML glue to turn XPath results back into XML

� Variables to communicate between XPath and XQuery

� Fancy database features, e.g. joins, aggregates etc.

� Fundamental structure:

for let where return

Database Theory 2003 183 c� GMB/AD

Simple XQuery

FOR $x IN document("bib.xml")/bib/book

WHERE $x/year > 1995

RETURN $x/title

Returns:

<title> abc </title> <title> def </title>

<title> ghi </title>

Database Theory 2003 184 c� GMB/AD

Simple XQuery

FOR $a IN distinct(document("bib.xml")

/bib/book[publisher="Morgan Kaufmann"]/author)

RETURN <result>

$a,

FOR $t IN /bib/book[author=$a]/title

RETURN $t

</result>

distinct is a function that removes duplicates

Database Theory 2003 185 c� GMB/AD

Bindings

� FOR $x IN e – binds $x to each element in the expression e

� LET $x = e’ – binds $x to the entire expression e’

Database Theory 2003 186 c� GMB/AD

Example LET/WHERE query

<big_publishers>

FOR $p IN distinct(document("bib.xml")//publisher)

LET $b := document("bib.xml")/book[publisher = $p]

WHERE count($b) > 100

RETURN $p

</big_publishers>

count is an aggregate function that returns the number of elements

Database Theory 2003 187 c� GMB/AD

XQuery

� Lots of other features (sorting, filters, recursive function definitions,

conditionals, ...)

� Really cool thing:

– http://www.w3.org/TR/query-semantics/

– This contains an operational semantics and type system for the core

fragment of XQuery!

– Industrial application of 1B Semantics material!

Database Theory 2003 188 c� GMB/AD

