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Lecture 1: Introduction

Course aims:

➤ to introduce the modular design of application software,
using the facilities of the Java programming language as
running examples

➤ to explore the need for and implementation of
concurrency control and communication in inter-process
and intra-process contexts

➤ to introduce the concept of transactions and their
implementation and uses

Concurrent Systems and Applications was developed from
the Further Java (and before that Further Modula-3) and
Concurrent Systems courses

Where possible concrete examples and source code are used
to illustrate topics in concurrent systems

More background information and principles will be given
than in the old Further Java course

Feedback’s useful at any point – either through the lab web-
site, or e-mail tlh20@cam.ac.uk (or turn up at FN06).

Introduction Slide 1-1



Concurrency

‘Concurrent systems’ just means those consisting of multiple
things that might be happening at the same time, e.g.

➤ Between the system as a whole and its user, external
devices, etc.

➤ Between applications running at the same time on a
computer – whether through context switching by the OS
or by genuine parallelism on a multi-processor machine

➤ Explicitly between multiple threads within an application

➤ Implicitly within an application, e.g. when receiving
call-backs through a user-interface tool-kit

➤ Other ‘housekeeping’ activities within an application,
e.g. garbage collection

class Simple {

public static void main(String args[]) {

while (true) { }

}

}

How many threads?
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Concurrency (2)

➤ Run it in HotSpot Client VM 1.4 on Linux, interrupt it
with Ctrl-backslash

"Signal Dispatcher" daemon prio=1 tid=0x0x807b

"Finalizer" daemon prio=1 tid=0x0x80744e0 nid=
at java.lang.Object.wait(Native Method
- waiting on <0x440e0490> (a java.lang
at java.lang.ref.ReferenceQueue.remove
- locked <0x440e0490> (a java.lang.ref
at java.lang.ref.ReferenceQueue.remove
at java.lang.ref.Finalizer$FinalizerTh

"Reference Handler" daemon prio=1 tid=0x0x8073
at java.lang.Object.wait(Native Method
- waiting on <0x440e0380> (a java.lang
at java.lang.Object.wait(Object.java:4
at java.lang.ref.Reference$ReferenceHa
- locked <0x440e0380> (a java.lang.ref

"main" prio=1 tid=0x0x8051510 nid=0x519e runna
at Simple.main(Simple.java:3)

"VM Thread" prio=1 tid=0x0x8070718 nid=0x51a1

"VM Periodic Task Thread" prio=1 tid=0x0x807a3

"Suspend Checker Thread" prio=1 tid=0x0x807ae1

➤ There are 7
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Outline

Part 1 : Programming with objects

➤ Lecture 1: Introduction

➤ Lecture 2: Objects and classes

➤ Lecture 3: Packages, interfaces, nested classes

➤ Lecture 4: Design patterns

Part 2 : Further Java topics

➤ Lecture 5: Reflection & serialization

➤ Lecture 6: Memory management

➤ Lecture 7: Graphical interfaces (1)

➤ Lecture 8: Graphical interfaces (2)

➤ Lecture 9: Miscellany
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Outline (2)

Part 3 : Communication within
an address space

➤ Lecture 10: Threads

➤ Lecture 11: Mutual exclusion

➤ Lecture 12: Deadlock

➤ Lecture 13: Condition synchronization

➤ Lecture 14: Worked examples

➤ Lecture 15: Low-level synchronization

Part 4 : Communication between
address spaces

➤ Lecture 16: Distributed systems

➤ Lecture 17: Network sockets (TCP & UDP)

➤ Lecture 18: RPC & RMI
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Outline (3)

Part 5 : Transactions

➤ Lecture 19: Transactions, durability

➤ Lecture 20: Isolation, serializability, 2PL

➤ Lecture 21: TSO & OCC

Resources

➤ Progamming documentation is available on the web.
http://www-uxsup.csx.cam.ac.uk/java/jdk-
1.2.2/docs

➤ This includes the Java language specification + details
about Java Bytecode and the Java Virtual Machine

➤ The full-program examples I use are all in
$CLTEACH/tlh20/csaa-examples on the PWF Linux
system

➤ http://www.cl.cam.ac.uk/Teaching/2002/ConcSys/
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Books

These course notes are not intended as a complete reference
text – either to the subject of concurrency or for practical
programming in Java.

➤ Bacon, J. (1997). Concurrent Systems. Addison-Wesley
(2nd ed.)

— Updated to form Bacon, J. & Harris, T. (2003).
Operating Systems. Published around the end of 2002.

➤ Bracha, G., Gosling, J., Joy, B. & Steele, G. (2000). The
Java Language Specification. Addison-Wesley (2nd ed.).
http://java.sun.com/docs/books/jls/

➤ Lea, D. (1999). Concurrent Programming in Java.
Addison-Wesley (2nd ed.)

➤ Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994).
Design Patterns. Addison-Wesley

Introduction Slide 1-7



Notation

Many examples are illustrated using UML-style class
diagrams in which nodes represent classes and edges
between them denote different kinds of relationship between
those classes

operation1()
operation2()

aggregated from

instantiates

refers to

extends

A

C

B

D E

The notation is consistent with Gamma et al ’s text book;
others may vary
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Recap: basic Java

➤ The Slime Volleyball program will be used as a running
example through the course

➤ The original is written entirely in one Java class file and
available freely on the Intenet:
� We’ll restructure it into separate classes, improve the

quality of the graphical display, add networked playing
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Exercises

1-1 Compile the Simple class using the javac compiler.

1-2 Compile the source code of the initial version of Slime
Volleyball.

The javac compiler will report that it uses a deprecated
API, meaning one which still works but which should
now be avoided. Practice using the on-line Java
references by looking up the methods in question.

1-3 Now look at the source code of Slime Volleyball.
Describe briefly the problems that may emerge (other
than crowding around the keyboard) when changing it to
a ‘doubles’ game with 2 players on each side.
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Lecture 2: Objects and classes

Previous lecture

➤ Course structure etc.

➤ Recap of basic Java using the single-class Slime
Volleyball example

Overview of this lecture

➤ Terminology: objects, classes, types, object references

➤ Composition

➤ Overloading methods

➤ Inheritance
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Object-oriented programming

Programs in Java are made up of objects, packaging together
data and the operations that may be performed on the data

For example, we could define:

class TelephoneEntry {1

String name;2

String number;3

4

TelephoneEntry(String name, String number) {5

this.name = name;6

this.number = number;7

}8

9

String getName () {10

return name;11

}12

13

TelephoneEntry duplicate() {14

return new TelephoneEntry(name, number);15

}16

}17
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Object-oriented programming (2)

This example shows a number of concepts:

➤ Lines 1-17 comprise a complete class definition. A class
defines how a particular kind of object works. Each
object is said to be an instance of a particular class, e.g.
line 15 creates a new instance of the TelephoneEntry
class

➤ Lines 2-3 are field definitions. These are ordinary
’instance fields’ and so a separate value is held for each
object

➤ Lines 5-8 define a constructor. This provides
initialization code for setting the field values for a new
object

➤ Lines 10-12, 14-16 define two methods. These are
’instance methods’ and so must be invoked on a specific
object

This can support encapsulation: other parts of the program
using a TelephoneEntry object can do so through its
methods without knowing how its fields are defined
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Object-oriented programming (3)

➤ A program manipulates objects through object references

➤ A value of an object reference type either (i ) identifies a
particular instance or (ii ) is the special value null

➤ More than one reference can refer to the same object, for
example:

TelephoneEntry te1 =

new TelephoneEntry ("Tim", "34476");

TelephoneEntry te2 = te1;

creates two references to the same object:

name = "Tim"te1

te2
number = "34476"

➤ If te1.name is updated then that new value can also be
accessed by te2.name
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Overloaded methods

➤ The same name can be used for more than one method in
any class. They are said to be overloaded

➤ ...however, they must have distinct parameter types to
disambiguate which one to call

➤ It is insufficient to merely have distinct return types, e.g.
how would the following invocations behave?

void doSomething (String number) {

this.number = number;

}

String doSomething (String c) throws IOException

{

Runtime.getRuntime().exec(c);

return "OK";

}

String s = o.doSomething ("rm -rf /");

o.doSomething ("12345");

➤ The choice would have to depend on the context in
which an expression occurs
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Overloaded methods (2)

➤ Calls to overloaded methods must also be unambiguous,
e.g.

void f(int x, long y)

{

...

}

void f(long x, int y)

{

...

}

➤ Which should f(10,10) call? There is no best match

➤ However, unlike before, the caller can easily resolve the
ambiguity by writing e.g. f((long)10,10) to convert
the first parameter to a value of type long

Programming with objects Slide 2-6



Constructors

➤ Using constructors makes it easier to ensure that all fields
are appropriately initialized

➤ If the constructor signature changes (e.g. an extra
parameter is added) then other classes using the old
signature will fail to compile: the error is detected earlier

➤ As with methods, constructors can be overloaded

class TelephoneEntry {

TelephoneEntry (String name) {

this(name, "");

}

...

}

➤ Unlike methods, constructors do not have a declared
return type or use the return statement

➤ A default constructor without any parameters is
generated automatically if the programmer does not
define any
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Composition

➤ Placing a field of reference type in a class definition is a
form of composition

➤ A new kind of data structure is defined in terms of
existing ones, e.g.

class TEList

{

TelephoneEntry te;

TEList next;

}

➤ Used when modelling things related by a ‘has a’
relationship

� e.g. a Car class might be expected to have a field of
type Engine and a field of type Wheels[]

� it would be less likely to have a field of type Vehicle

➤ By convention field names are spelled with an initial
lower-case letter and have names that are nouns, e.g.
steeringWheel or leftChild
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Inheritance

➤ Inheritance is another way of combining classes – it
typically models an is a relationship

� e.g. between a Car class and a more general
Vehicle class

➤ Inheritance defines a new sub-class in terms of an
existing super-class. The sub-class is intended to be a
more specialized version of the super-class. It can

� add new fields

� add new methods

� provide new implementations of existing methods

class NameNumberPlace extends NameNumber

{

String place;

NameNumberPlace (String name,

String number, String place) {

super(name, number);

this.place = place;

}

...

}
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Types and inheritance

➤ Reference types in Java are associated with particular
classes:

class A {

A anotherA; // Reference type A

}

➤ Such fields can also refer to any object of a sub-class of
the one named, e.g. B that extends A

➤ A particular object may be accessed through fields and
variables of different reference types over the course of its
lifetime; it’s class is fixed at its time of creation

someA.anotherA = new B();

➤ Casting operations convert references to an object
between different reference types, e.g.

A ref1 = new B();1

B ref2 = (B) ref1; // super -> sub2

ref1 = ref2; // no cast needed: sub -> super3

➤ The cast in line 2 is needed because the variable ref1
may refer to any instance of A or B. ref2 may only refer
to instances of B. Casts are checked for safety in Java
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Arrays and inheritance

➤ If B extends A then how are B[] and A[] related?

➤ An array of type A[] can hold objects of class B or class A

➤ An array of type B[] can only hold objects of class B

➤ B[] is a sub-type of A[]

A[] array1 = new A[2];1

B[] array2 = new B[2];2

A[] temp;3

temp = array1;4

temp[0] = new B(); // A[] <- B, ok5

temp[1] = new A(); // A[] <- A, ok6

temp = array2;7

temp[0] = new B(); // B[] <- B, ok8

temp[1] = new A(); // B[] <- A, fails9

➤ Line 6 fails at run-time: array2 refers to an object that is
an array of references to things of type B and so an object
of class A is incompatible

➤ Array sub-typing is covariant

Programming with objects Slide 2-11



Fields and inheritance

➤ A field in the sub-class is said to hide a field in the
super-class if it has the same name. The hidden field can
be accessed by writing super.name rather than
this.name .

➤ For example:

class A {

int x;

int y;

int z;

}

class B extends A {

String x;

int y;

void f () {

x = "Field defined in B";

y = 42; // B

super.x = 17; // A

super.y = 20; // A

z = 23; // A

}

}
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Methods and inheritance

A class inherits methods from its superclass

➤ It can overload them by making additional definitions
with different signatures

➤ It can override them by supplying new definitions with
the same signature

class A {

int f () { }

}

class B extends A {

int f () {

System.out.println ("Override");

}

int f (int x) {

System.out.println ("Overload");

}

}
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Methods and inheritance (2)

➤ When an overridden method is called, the code to
execute is based on the class of the target object, not the
type of the object reference

➤ Consequently, the type of an object reference does not
effect the chosen method in these examples. A common
mistake:

class A {1

void f () {2

System.out.println ("Super-class");3

}4

}5

class B extends A {6

void f () {7

System.out.println ("Sub-class");8

((A)this).f(); // Try to call original9

}10

}11

➤ As with fields, the super keyword is used:

super.f();9
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Exercises

2-1 Write concise definitions of object, class, object reference
and type with respect to a simple example in Java.

2-2 “If s is a sub-type of t then something of type s can be
used anywhere something of type t can be used”. Is this
true for Java?

2-3 The super keyword can be used to access a field that
has been hidden or a method that has been overridden.
However, super.super is not valid in Java. What are
the advantages and disadvantages of this restriction?

2-4� Suppose that instead of being covariant, array sub-typing
in Java was contravariant – i.e. that if B extends A then
A[] is considered a sub-type of B[] . Is this a reasonable
proposition?

2-5� Is the lack of super.super something enforced just by
the Java programming language, or also by the Java
Virtual Machine?

‘Starred’ exercises are outside the syllabus of the course
and are included as extensions or as topics for discussion
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Lecture 3: Packages, interfaces, nested classes

Previous lecture

➤ Classes in Java

➤ Encapsulation

➤ Composition

➤ Inheritance

Overview of this lecture

➤ Packages for grouping related classes

➤ Modifiers and enforced encapsulation

➤ Interfaces & abstract classes

➤ Nested classes
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Packages

➤ Java groups classes into packages. Classes within a
package are typically written by co-operating
programmers and expected to be used together

➤ Each class has a fully qualified name consisting of its
package name, a full stop, and then the class name. e.g.
uk.ac.cam.cl.tlh20.NameNumber

➤ The package keyword is used to select which package a
class definition is placed in, e.g.

package uk.ac.cam.cl.tlh20.examples;

class TelephoneEntry { ... }

➤ Definitions in the current package and java.lang can
always be accessed. Otherwise, the import keyword
can be used:

import java.util.*; // All from that package

import java.awt.Graphics; // Just named class
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Modifiers

➤ This section looks at a number of modifiers that may be
used when defining classes, fields and methods. Only
access modifiers may be applied to constructors

<class-modifiers> class NameNumber {

<field-modifiers> String name;

<field-modifiers> String number;

NameNumber () {

/* Only access modifiers are allowed */

}

<method-modifiers> String getName () {

return name;

}

<method-modifiers> String getNumber () {

return number;

}

}
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The final modifier

➤ A final method cannot be overridden in a sub-class –
typically used because it allows faster calls to the
method, but also used for security

➤ A final class cannot be sub-classed at all

➤ The value of a final field is fixed after initialization –
either directly or in every constructor, e.g.

class FinalField {

final String A = "Initial value";

final String B;

FinalField () {

B = "Initial value";

}

}

➤ final fields are also used to define constants, e.g.:

class ThreeColours {

public static final int BLUE = 1;

public static final int WHITE = 2;

public static final int RED = 3;

}
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The abstract modifier

➤ Used on class and method definitions. An abstract
method is one for which the class does not supply an
implementation

➤ A class is abstract if declared so or if it contains any
abstract methods. Abstract classes cannot be instantiated

public class A {1

abstract int methodName ();2

}3

4

public class B extends A {5

int methodName () {6

return 42;7

}8

}9

➤ Abstract classes are used where functionality is moved
into a super-class, e.g. an abstract super-class
representing ‘sets of objects’ supporting iteration,
counting, etc., but relying on sub-classes to provide the
actual representation

➤ Note that fields cannot be abstract : they cannot be
overridden in sub-classes
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The static modifier

➤ The static modifier can be applied to any method or
field definition. (It can also be applied to nested classes,
discussed later)

➤ It means that the field/method is associated with the class
as a whole rather than with any particular object

➤ For example, suppose the example TelephoneEntry
class maintains a count of the number of times that it has
ever been instantiated: there is only 1 value for the whole
class, rather than a separate value for each object

➤ Similarly, static methods are not associated with a
current object – unqualified field names and the this
keyword cannot be used

➤ static methods can be called by explicitly naming the
class within which the method is defined. The named
class is searched, then its super-class, etc. Otherwise the
search begins from the class in which the method call is
made
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The static modifier (2)

class Example {1

static int instantiationCount = 0;2

3

String name;4

5

Example (String name) {6

this.name = name;7

instantiationCount ++;8

}9

10

String getName () {11

return String;12

}13

14

static int getInstantiationCount () {15

return instantiationCount;16

}17

}18
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Access modifiers

➤ Previous examples have relied on the programmer being
careful when implementing encapsulation

� e.g. to interact with classes through their methods
rather than directly accessing their fields

➤ Access modifiers can be used to ensure that
encapsulation is honoured and also, in some standard
libraries, to ensure that untrusted downloaded code
executes safely

Sa
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public

protected some

default

private
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The protected modifier

➤ A protected entity is always accessible in the package
within which it is defined

➤ Additionally, it is accessible within sub-classes (B) of the
defining class (A), but only when actually accessed on
instances of B or its sub-classes

public class A {1

protected int field1;2

}3

4

public class B extends A {5

public void method2 (B b_ref, A a_ref) {6

System.out.println (field1);7

System.out.println (b_ref.field1);8

System.out.println (a_ref.field1);9

}10

}11

➤ Lines 7-8 are OK: this and b ref must refer to
instances of B or its sub-classes

➤ Line 9 is incorrect: a ref may refer to any instance of A
or its sub-classes
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Other modifiers

➤ A strictfp method is implemented at run-time using
IEEE 754/854 arithmetic (see Numerical Analysis 1) –
identical results are guaranteed on all computers. Can be
applied to classes () all methods are then implicitly
strictfp )

➤ A native method is implemented in native code – e.g.
to interact with existing code or for (perceived)
performance reasons. The mechanism for locating the
native implementation is system-dependent

➤ There are three other modifiers to be covered later:

� synchronized and volatile are used in
multi-threaded applications

� transient is used with the serialization API
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Interfaces

➤ There are often groups of classes that provide different
implementations of the same kind of functionality

� e.g. the collection classes in Java 1.2 – HashSet and
ArraySet provide set operations, ArrayList and
LinkedList provide list-based operations

➤ In that example there are some operations available on
all collections, further operations on all sets and a third
set of operations on the HashSet class itself

➤ Inheritance and abstract classes can be used to move
common functionality into super-classes such as
Collection and Set

� Each class can only have a single super-class, so
should HashSet extend a class representing the
hashtable aspects of its behaviour, or a class
representing the set-like operations available on it?

➤ More generally, it is often desirable to separate the
definition of a standard programming interface (e.g.
set-like operations) from their implementation using an
actual data structure (e.g. a hash table)
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Interfaces (2)

➤ Each Java class may only extend a single super-class,
but it can implement a number of interfaces

interface Set {

boolean isEmpty();

void insert(Object o);

boolean contains(Object o);

}

class HashSet implements Hashtable, Set {

...

}

➤ An interface definition just declares method
signatures and static final fields

➤ An ordinary interface may have public or default
access. All methods and fields are implicitly public

➤ An interface may extend one or more super-interfaces

➤ A class that implements an interface must supply
definitions for each of the declared methods (or be
declared an abstract class)
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Nested classes

➤ A nested class/interface is one whose definition appears
inside another class or interface

➤ There are four cases:

� inner classes in which the enclosed class is an
ordinary class (i.e. non-static )

� static nested classes in which the enclosed definition
is declared static

� nested interfaces in which an interface is declared
within an enclosing class or interface

� anonymous inner classes

➤ Beware: the term inner class is sometimes used
incorrectly to refer to all nested classes

inner classes � nested classes

➤ In general nested classes are used (i ) for programming
convenience to associate related classes for readability
(ii ) as a shorthand for defining common kinds of
relationship (iii ) to provide one class with access to
private members or local variables from its enclosing
class
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Nested classes (2)

➤ An inner class definition associates each instance of the
enclosed class with an instance of the enclosing class,
e.g.

class Bus {1

Engine e;2

3

class Wheel {4

...5

}6

}7

➤ Each instance of Wheel is associated with an enclosing
instance of Bus. For example methods defined at Line 5
can access the field e without qualification or access the
enclosing Bus as Bus.this

➤ An instance of Bus must explicitly keep track of the
associated Wheel instances, if it wishes to do so

➤ As with static fields and static methods, a static
nested class is not associated with any instance of an
enclosing class. They are often used to organise ‘helper’
classes that are only useful in combination with the
enclosing class. Nested interfaces are implicitly static
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Anonymous inner classes

➤ Anonymous inner classes provide a short-hand way of
defining inner classes

class A {1

void method1 () {2

Object ref = new Object () {3

void method2 () { };4

};5

}6

}7

➤ An anonymous inner class may be defined using an
interface name rather than a class name, e.g.

interface Ifc {1

void interfaceMethod ();2

}3

4

class A {5

void method1 () {6

Ifc i = new Ifc () {7

void interfaceMethod () {8

};9

};10

}11

}12
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Exercises

3-1 Describe the facilities in Java for defining classes and for
combining them through composition, inheritance and
interfaces. Explain with a worked example how they
support the principle of encapsulation in an
object-oriented language.

3-2 Describe the differences and similarities between abstract
classes and interfaces in Java. How would you select
which kind of definition to use?

3-3 Why is it sensible that (i ) interfaces cannot be private ,
(ii ) methods signatures on interfaces are implicitly
public , (iii ) nested interfaces are implicitly static?

3-4 A common programming mistake in Java is to try to
define a class to have more than one superclass. For
example a naïve programmer may write

class FlyingHorse extends Horse, FlyingBeast

{

...

}

Describe three ways in which this problem can be
resolved to produce (one or more) valid class definitions.
What are the advantages and disadvantages of each?
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Exercises (2)

3-5 An enthusiast for programming with closures proposes a
new language, D[, extending Java so that the following
method definition would be valid:

Closure myCounter (int start) {

int counter = start;

return {

System.out.println (counter ++);

}

}

The programmer intends that no output would be made
on System.out when this method is executed, but that
it would return an object implementing a new built-in
interface, Closure :

interface Closure {

void apply();

}

Invoking apply() on the object returned by
myCounter will cause successive values to be printed.
By using an inner class definition, show how this
example could be re-written as a valid Java program.
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Lecture 4: Design patterns

Previous lecture

➤ Finished looking at the facilities for defining classing

➤ Access modifiers to enforce encapsulation

➤ Interfaces & abstract classes

➤ Nested classes

Overview of this lecture

➤ Some ways of using these facilities effectively

➤ Think back to the first Slime Volleyball example and the
difficulties there in supporting extra players, computer
controlled players etc
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Design patterns

A number of common idioms frequently emerge in
object-oriented programming. Studying these design
patterns provides

➤ common terminology for describing program
organization in terms of inter-related classes

➤ examples of how to structure programs for flexibility and
re-use

operation1()
operation2()

aggregated from

instantiates

refers to

extends

A

C

B

D E
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Abstract factory pattern

Suppose we’ve got a set of interfaces Window, ScrollBar ,
etc defining components used to build GUIs

There may be several sets of these components – e.g. with
different visual appearance

How does an application get hold of appropriate instances of
classes implementing those interfaces?

➤ Option 1: have it know about all of the options

switch (lf) {

case MACINTOSH: w = new MacWindow (); break;

case MOTIF: w = new MotifWindow (); break;

...

}

✘ All applications have to be changed to add a new family

✘ A buggy application might try to use a MacWindow with
a MotifScrollbar ...
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Abstract factory pattern (3)

➤ The client application invokes operations on an instance
of abstract class Factory

➤ Code for these methods is provided by one of a number
of sub-classes, e.g. AFactory or BFactory

➤ The factory class instantiates objects on behalf of the
client from one of a family of related classes, e.g.
AFactory instantiates AWindow and AScrollBar

✔ New families can be introduced by providing the client
with an instance of a new sub-class of Factory

✔ The factory can ensure classes are instantiated
consistently; e.g. AWindow always with AScrollBar

✘ Adding a new operation involves co-ordinated change to
the Factory class and all its sub-classes

...the problem hasn’t entirely gone away: how does the
application know which Factory to use?
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Singleton pattern

if (theInstance == null)
 theInstance = new Singleton();

return theInstance;

static getInstance()
operation1()
operation2()

static theInstance

Singleton

➤ The Singleton pattern solves the Highlander problem:
there can be only one instance of a particular class:

� e.g. of a factory class in the previous Abstract Factory
pattern

➤ Clients invoke getInstance() to retrieve the unique
instance. The first invocation triggers instantiation of a
(private) constructor

✔ More flexibile than a suite of static methods: allows
sub-classing, e.g. getInstance on Toolkit could
return MotifToolkit / MacToolkit as appropriate

✔ Constraint is enforced (and could subsequently be
relaxed) in a single place

✘ We’ll return to the multi-threaded case later
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Adapter pattern

➤ Suppose you’ve got an existing application that accesses
a data structure through the Dictionary interface

public interface Dictionary {

int size ();

boolean isEmpty ();

Object get(Object key);

...

}

➤ ...and a good implementation BinomialTree that
instead implements some other interface, say
LookupTable :

public interface LookupTable {

int numElements ();

Object lookupKey (Object key);

...

}

✘ Rewrite BinomialTree so it implements Dictionary ?

✘ Define a sub-class DictionaryBinomialTree that
implements both?
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Adapter pattern (2)

operation()

operation()

operation2()

[process operands]
adaptee -> operation2();
[process result]

Target

Adapter

Adaptee

Client

➤ The Client wishes to invoke operations on the Target
interface which the Adaptee does not implement

➤ The Adapter class implements the Target interface, in
terms of operations the Adaptee supports

✔ The adapter can be used with any sub-class of the
adaptee (unlike sub-classing adaptee directly)
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Visitor pattern

The Visitor pattern is one way of structuring operations that
work on data structures comprising objects of different
classes

visitA(A a)
visitB(B b)

visitA(A a)
visitB(B b)

visitA(A a)
visitB(B b)

v->visitB(this)

v->visitA(this)

accept(Visitor v)

accept(Visitor v) accept(Visitor v)

Visitor

Visitor1 Visitor2

Element

ElementA ElementB

Client
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Visitor pattern (2)

➤ The data structure is built from instances of ElementA,
ElementB, etc., all sub-classes of Element

➤ These classes, or a separate object structure class, provide
some mechanism for traversing the data structure

➤ The abstract Visitor class defines operations
corresponding to each sub-class of Element

➤ A concrete sub-class of Visitor is constructed for each
kind of operation on the data structure

✔ The methods implementing a particular operation are
kept together in a single sub-class of Visitor

✔ Operations can be added and updated without changing
the data structure’s definition

✘ As with the Abstract Factory pattern, changing the data
structure requires changes to many classes
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Observer pattern

attach(Observer o)
detach(Observer o)
notify()

for all o in observers
  o->update();

update(Subject s)

Subject

ConcreteSubjectB

ConcreteObserver1ConcreteSubjectA

Observer

✔ In Java Observer can be an interface rather than a
concrete class

✔ A many-to-many dynamically changing relationship can
exist between subjects and observers

✘ The flexibility limits the extent of compile-time
type-checking

✘ If observers can change the subject then cascading or
cyclic updates may occur
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Summary

Some common themes to the examples here:

➤ Explicitly creating objects by specifying their class
(e.g. new XYZ() ) commits to a particular
implementation

— it’s often better to separate code responsible for
instantiating objects (as in the Abstract Factory and
Singleton patterns)

➤ Tight coupling between classes makes independent
re-use difficult

— e.g. the Visitor pattern separates the structure-traversal
code from the visitor-specific operations to apply to each
item found

java.util.Iterator is a simpler example

➤ Extending functionality by sub-classing commits at
compile time to a particular organisation of extensions

— composition and delegation may be preferable (as in
the Adapter pattern)
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Exercises

4-1 The Memento design pattern can be used when designing
an ‘undo’ facility for part of a program – e.g. in a
graphical drawing environment to allow parts of the
drawing to be restored to an earlier state.

In this pattern classes occupy one of three rôles: the
originator is the class whose state must be saved and
restored (e.g. a component in the graphical design),
instances of the memento class represent snapshots of the
saved state that are created and restored under the control
of the caretaker class (typically the ‘main’ part of the
application acting in response to user requests to undo
operations). The originator is responsible for instantiating
the memento class, for saving its state into such an
instance and for restoring its state from an instance.

Suggest how the classes in the Memento pattern may be
organized:

(a) As a UML class diagram.

(b) In terms of example Java code. Justify your answer’s
use (or otherwise) of access modifiers, inheritance,
interfaces and abstract or nested classes.
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Lecture 5: Reflection & serialization

Previous section

➤ Recap of Java syntax

➤ Facilities for designing and using classes

➤ Design patterns

Overview of this section

➤ Important library facilities for

➤ Saving & restoring object state

➤ Managing memory

➤ Graphical interfaces
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Reflection

➤ Java provides facilities for reflection or introspection of
type information about objects at run time

➤ Given the name of a class, a program can...
� find the methods and fields defined on that class,
� instantiate the class to create new objects

➤ Given an object reference, a program can...
� determine the class of the object it refers to,
� invoke methods or update the values in fields.

➤ It is not possible to obtain or change the source code of
methods

➤ These facilities are often used ‘behind the scenes’ in the
Java libraries, e.g. RMI, and in visual program
developments environments – presenting a graphical
representation of the facilities provided by each class, or
showing the way in which classes are combined through
composition or inheritance
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Reflection (2)

➤ Reflection is provided by a number of classes in the
java.lang and java.lang.reflect packages. Each
class models one aspect of the Java programming
language

➤ An instance of Class represents a Java class definition.
The Class associated with an object is obtained by the
getClass() method defined on it

➤ An instance of Field represents a field definition,
obtained from the Class object by getFields()

➤ Instances of Method and Constructor represent
method and constructor definitions, similarly obtained by
getMethods() and getConstructors()

➤ Similarly for getSuperclass() and
getInterfaces()
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Reflection (3)

➤ For example:

public class ReflExample1

{2

public static void main (String args[])3

{4

ReflExample re = new ReflExample ();5

Class reclass = re.getClass ();6

String name = reclass.getName ();7

System.out.println (name);8

}9

}10

➤ Line 5 creates a new instance of ReflExample

➤ Line 6 obtains the Class object for that instance

➤ Line 7 obtains the name of that class
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Reflection (4)

➤ We could do the same in reverse:

public class ReflExample21

{2

public static void main (String args[])3

{4

try5

{6

Class c = Class.forName (args[0]);7

Object o = c.newInstance ();8

System.out.println (o);9

}10

catch (Exception e)11

{12

System.out.println (e);13

}14

}15

}16
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Reflection (5)

➤ Here we’re taking a class name supplied as a parameter
to the program and then instantiating it. For example

$ java ReflExample2 java.lang.Object

java.lang.Object@80cb54d

➤ We could have named any class on the command line

➤ By default a 0-argument constructor is called (and must
exist)

➤ Specific constructors are also modelled by
Constructor objects and define a newInstance
method

➤ Why would anyone want to write

Class c = Class.forName (args[0]);

Object o = c.newInstance ();

instead of an ordinary new expression?
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Fields and reflection

➤ We can invoke getFields() on a Class object to
obtain an array of the fields defined on that class

➤ As a shortcut we can also use getField(...) , passing
the name required, to obtain information about an
individual field

➤ If there is a security manager then its
checkMemberAccess method must permit general
access for Member.PUBLIC and
checkPackageAccess must permit reflection within
the package

➤ Only public fields are returned by getFields()

➤ A general getDeclaredFields() method provides
full access (subject to a checkMemberAccess test for
member.DECLARED)

➤ Given an instance of Field we can use...
� Class getDeclaringClass ()
� String getName ()
� int getModifiers ()
� Class getType ()
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Fields and reflection (2)

public class ReflExample31

{2

public static int field1 = 17;3

public static int field2 = 42;4

5

public static void main (String args[])6

{7

try8

{9

Class c = Class.forName (args[0]);10

java.lang.reflect.Field f;11

f = c.getField (args[1]);12

int value = f.getInt (null);13

System.out.println (value);14

}15

catch (Exception e)16

{17

System.out.println (e);18

}19

}20

}21
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Fields and reflection (3)

➤ For example,

$ java ReflExample3 ReflExample3 field1

17

$ java ReflExample3 ReflExample3 field2

42

$ java ReflExample3 ReflExample3 incorrect

java.lang.NoSuchFieldException

➤ There are similar methods for setting the value of the
field, e.g.

f.setInt (null, 1234);
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Methods and reflection

➤ The reflection API represents Java methods as instances of
a Method class

➤ This has an invoke operation defined on it that calls the
underlying method, for example, given a reference mto
an instance of Method :

Object parameters[] = new Object [2];

parameters[0] = ref1;

parameters[1] = ref2;

m.invoke (target, parameters);

is equivalent to making the call

target.mth (ref1, ref2);

where mth is the name of the method being called
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Methods and reflection (2)

➤ The first value passed to invoke identifies the object on
which to make the invocation. It must be a reference to
an appropriate object (target in the example), or null
for a static method

➤ Note how the parameters are passed as an array of type
Object[] : this means that each element of the array
can refer to any kind of Java object

➤ If a primitive value (such as an int or a boolean ) is to
be passed then this must be wrapped as an instance of
Integer , Boolean , etc For example new
Integer(42)

➤ The result is also returned as an object reference and may
need unwrapping – e.g. invoking intValue() on an
instance of Integer
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Serialization

Reflection lets you inspect the definition of classes and
manipulate objects without knowing their structure at
compile-time

One use for this is automatically saving/loading data
structures

➤ starting from a particular object you could use
getClass() to find what it is, getFields() to find
the fields defined on that class and then use the resulting
Field objects to get the field values

➤ the data structure can be reconstructed by using
newInstance() to instantiate classes and invocations
on Field objects to restore their values

The ObjectInputStream and ObjectOutputStream
classes automate this procedure

Beware: the term’s used with two distinct meanings. Here
it means taking objects and making a ‘serial’ representation
for storage. We’ll use it in a different sense when talking
about transactions.
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Serialization (2)

In its simplest form the writeObject() method on
ObjectOutputStream and readObject() method on
ObjectInputStream transfer objects to/from an
underlying stream, e.g.

FileOutputStream s = new FileOutputStream ("file");

ObjectOutputStream o = new ObjectOutputStream (s);

o.writeObject (drawing);

o.close ();

or

FileInputStream s = new FileInputStream ("file");

ObjectInputStream o = new ObjectInputStream (s);

Vector v = (Vector) o.readObject ();

o.close ();

➤ A real example must consider exceptions as well

➤ Fields with the transient modifier applied to them are
not saved or restored
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java.io.Serializable

These methods attempt to transfer the complete structure
reachable from the initial object

However, classes must implement the
java.io.Serializable interface to indicate that the
programmer believes this is a suitable way of loading or
saving instance state, e.g. considering

➤ whether field values make sense between invocations –
e.g. time stamps or sequence numbrs

➤ whether the complete structure should be saved/restored
– e.g. if it refers to a data structure used as a cache

➤ any impact on application-level access control – e.g. if
security checks were performed at instantiation time

The definition of Serializable is trivial:

public interface Serializable {

}
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java.io.Serializable (2)

➤ A 0-argument constructor must be accessible to the
subclass being serialized: it’s used to initialize fields of
non-serializable superclasses

➤ More control can be achieved by implementing
Serializable and also two special methods to save
and restore that particular class’s aspect of the object’s
state:

private void writeObject(

java.io.ObjectOutputStream out)

throws IOException;

private void readObject(

java.io.ObjectInputStream in)

throws IOException, ClassNotFoundException;

➤ Further methods allow alternative objects to be
introduced at each step, e.g. to canonicalize data
structures:

ANY-ACCESS-MODIFIER Object writeReplace()

throws ObjectStreamException;

ANY-ACCESS-MODIFIER Object readResolve()

throws ObjectStreamException;
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java.io.Externalizable

➤ writeObject and readObject are fiddly to use: they
may require careful co-ordination within the class
hierarchy. The documentation is unclear about the order
in which they’re called on different classes.

➤ The interface java.io.Externalizable is more
useful in practice

public interface Externalizable

extends java.io.Serializable

{

void writeExternal(ObjectOutput out)

throws IOException;

void readExternal(ObjectInput in)

throws IOException,

ClassNotFoundException;

}

➤ It is invoked using the normal rules of method dispatch

➤ It is responsible for transferring the complete state of the
object on which it is invoked

➤ But note: readExternal is called after instantiating the
new object
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Exercises

5-1 What is meant by reflection or introspection in Java? Give
an example of how and why these facilities may be
useful.

5-2 What are the advantages and disadvantages, with respect
to encapsulation, of using Externalizable rather than
Serializable for customised serialization?

5-3* Write a general-purpose implementation of methods

void writeObjectExternal (Object target,

ObjectOutputStream out);

void readObjectExternal (Object target,

ObjectInputStream in);

to save/restore the state of target to/from the the stream
out or in . You will need to use the reflection API to
interrogate the target object.

Hint: the slides headed ‘Serialization’ show how to
instantiate an the input and output streams. Notice that
ObjectOutputStream extends ObjectOutput (for
saving fields of reference types) which extends
DataOutput (for saving fields of int, char, boolean, etc).

5-4* Now implement it without using the writeObject or
readObject methods on the stream classes.

Past exam questions: 1999 Paper 3 Q3
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Lecture 6: Memory management

Previous lecture

➤ Reflection: APIs to interrogate objects and class
definitions at run-time, access fields and call methods

➤ Serialization: API to save & restore object state e.g. to a
file

Overview of this lecture

➤ Garbage collection in Java

➤ Interaction between the application & the collector

➤ Reference objects

Further Java topics Slide 6-1



Garbage collection

As with Standard ML, a Java program does not need to
explicitly reclaim storage space from objects and arrays that
are no longer needed

class Loop {

public static final void main (String args[]) {

while (true) {

int x[] = new int[42];

}

}

}

➤ This code will run forever without any problems and
without requiring additional storage space for each
iteration of the loop

➤ The garbage collector is responsible for identifying when
storage space can be reclaimed

$ java -verbose:gc Loop

[GC 511K->95K(1984K), 0.0031071 secs]

[GC 607K->95K(1984K), 0.0006847 secs]

[GC 607K->95K(1984K), 0.0001221 secs]

[GC 607K->95K(1984K), 0.0002499 secs]

[GC 607K->95K(1984K), 0.0001106 secs]
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Garbage collection (2)

There are lots of different techniques that might be used to
implement the garbage collector (see Part 1B DS&A, Part 2
Advanced Algorithms)

The JVM guarantees that storage space will not be reclaimed
while an object remains reachable, i.e. if it

➤ is referred to by a static field in a class,

➤ is referred to by a local variable in a running thread,

➤ still needs to be finalized,

➤ is referred to by from another reachable object

A
B

C

D

E

Objects A, B, C are all reachable. Objects D and E are not
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Garbage collection (3)

Early languages with GC had a reputation for being slow and
for adding annoying pauses to an application’s execution.
Modern collectors do better:

➤ generational collection (‘most objects die young’! keep
a small young generation which can be collected quickly
and frequently)

➤ parallel collection (multiple processors work on GC at
the same time! application pauses for less time)

➤ concurrent collection (GC occurs at the same time as
application execution)

➤ incremental collection (GC occurs in small bursts, e.g.
each time an object is allocated -Xincgc )

In complex multi-threaded systems GC may have indirect
benefits over explicit deallocation:

➤ no need to agree which module is responsible for
deallocation

➤ this may aid sharing of data structures rather than having
each module take a private copy
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Finalizers

When the GC detects that an object is otherwise
unreachable (e.g. D and E on the previous slide) then it can
run a finalizer method on it. These are ordinary methods that
override a default version defined on java.lang.Object

protected void finalize() throws Throwable { }

Why might this be useful?

➤ To perform some clean-up operation

� although the GC can reclaim the storage space
allocated to the object, it will not be able to reclaim
other resources associated with it

� e.g. if a network connection is set up in the
constructor then perhaps the finalizer should close it
so that the remote machine knows that the connection
is no longer in use

➤ To aid debugging

� e.g. to check that objects are becoming unreachable at
the times at which the programmer intended
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Finalizers (2)

What about examples like this? The Restore class
implements a simple singly-linked-list:

class Restore {

int value;

Restore next;

static Restore found;

Restore (int value) {

this.value=value; this.next=null;

}

public void finalize () {

synchronized (Restore.class) {

this.next = found;

found = this;

}

}

}

The finalize method will be invoked on objects once
they cease to be accessible to the application...

...but it then restores access to through the static found
field. This is perfectly safe, but very unclear
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Finalizers (3)

Beware! The JVM gives few guarantees about exactly when a
finalizer will be executed

➤ A finalizer will not be run on an object before it becomes
unreachable. It is invoked at most once on an object

➤ The method System.runFinalization() will cause
the JVM to ‘make a best effort’ to complete any
outstanding finalizations

➤ There is no built-in control over the order in which
finalizers are executed on different objects

➤ There is no control over the thread that executes finalizer
methods – there may be a dedicated thread for executing
them, there may be one thread per class, they may be
executed by one of the threads performing garbage
collection

Finalizers (and everything they access!) should be written
defensively: assume that they may run concurrently with
anything else and make sure that they do not deadlock
(Lecture 12) or enter endless loops
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Reference objects

Reference objects provide a more general mechanism for

➤ scheduling cleanup actions when objects become
unreachable via ordinary references,

➤ managing caches in which the presence of an object in
the cache should not prevent its garbage collection, or

➤ accessing temporary objects which can be removed
when memory is low

A reference object holds a reference to some other object
introducing an extra level of indirection. The referent is
selected at the time that the reference object is instantiated
and can subsequently be obtained using the get method:

import java.lang.ref.*;

class RefExample {

public static void main (String args[]) {

int obj[] = new int[42];

Reference ref = new WeakReference (obj);

System.out.println ("ref: " + ref);

System.out.println (r.get());

}

}
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Reference objects (2)

The garbage collector is aware of reference objects and will
clear the reference that they contain in certain situations.
Suppose that the object (obj ) is accessible through a weak
reference object (ref ) and through an ordinary object (x ):

x

objref

If x becomes unreachable then obj is said to be weakly
reachable and the GC is permitted to clear the reference in
ref :

x

objref

Further calls to ref.get() will return null . The reference
object can be cleared explicitly by invoking ref.clear()

✘ Traversal requires extra calls to get()

✔ ...but reference objects are simpler conceptually than
separate ‘weak reference types’ to the language
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Reference objects (3)

A reference object can be associated with a reference queue
(instantiated from java.lang.ref.ReferenceQueue ):

Reference ref = new WeakReference (obj, rq);

After clearing reference objects the garbage collector will
(possibly some time later) append those associated with
reference queues to the appropriate queue

➤ it is the reference object (ref ), not the referent (obj ),
that is appended to the queue

✔ This prevents the problem of ‘resurrected’ objects

A reference queue supports three operations:

➤ poll() attempts to remove a reference object from the
queue, returning null if none is available

➤ remove(x) attempts to remove a reference object,
blocking up to x milliseconds

➤ remove() attempts to remove a reference object,
blocking indefinitely
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Reference objects (4)

There are actually three different classes defining
successively weaker kinds of reference object:

➤ SoftReference – a soft reference may be cleared by
the GC if memory is tight, so long as the referent is not
reachable by ordinary references. Useful for
memory-sensitive caches

➤ WeakReference – may be cleared by the GC once the
referent is not reachable by ordinary references or soft
references. Useful for hashtables from which data can be
discarded when no longer in use elsewhere in the
application

➤ PhantomReference – useful in combination with
reference queues as a more flexible alternative to
finalizers. Enqueued once the referent is not reachable
through ordinary, soft or weak references and once it has
been finalized (if necessary). get always returns null

In practice PhantomReference would be sub-classed
and instances of those sub-classes would maintain any
information needed for clean-up
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Exercises

6-1 The ‘HotSpot’ JVM has a command-line option to control
the maximum size of the heap, e.g. -Xmx:5M to set it to
5MB. Investigate the effect different settings have on
performance using the MMExampleprogram (or any
other that allocates significant numbers of objects). Also
investigate the -Xincgc option for incremental
collection.

6-2 Describe how soft references can be used to implement a
hashtable that discards objects when memory is tight.
How can the implementation be extended to
approximate a LRU (least-recently-used) policy for
discard?

6-3 Compare and contrast object finalizers and phantom
references as mechanisms to clean-up after objects that
have become otherwise-unreachable. For each approach
indicate, along with any specific problems or benefits:

(i ) in which class the clean-up code is located,

(ii ) in which thread or threads it may be executed,

(iii ) what happens if the code blocks or takes a long
time to execute.

Past exam questions: 2002 Paper 4 Q1
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Lecture 7: Graphical interfaces (1)

Previous lecture

➤ Garbage collection

➤ Finalizers

➤ Reference objects

Overview of this lecture

➤ Model-view-controller pattern

➤ Components & containers

➤ API specs are available on-line
(http://www.java.sun.com/products/jfc )
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Java Foundation Classes

➤ AWT refers to the original set of GUI classes in Java

➤ They’re widely supported in web browsers but the newer
‘Swing’ components are more flexible and usually look
nicer. JFC also adds pluggable look & feel, accessibility
API, 2D rendering API, drag ’n’ drop

➤ AWT GUI components each had peers responsible for
their rendering, e.g.:

Scrollbar

Component ComponentPeer

ScrollbarPeer

MScrollbarPeer

➤ A Toolkit class puts all this together following the
abstract factory pattern – e.g. MToolkit for Motif
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Java Foundation Classes (2)

➤ A particular implementation of AWT provides classes
implementing these interfaces – typically using native
code

What are the problems here?

➤ What happens on a system that lacks some component?

➤ What if the system doesn’t have an existing GUI toolkit?

➤ What about non-graphical forms of input?

➤ Should portability include the exact mode of interacting
with applications?

Swing GUI components are rendered in Java

✔ Flexibility over look and feel

✘ ...this may not exactly match native applications
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Model-View-Controller

Swing components follow a model-view-controller pattern
(derived from Smalltalk-80)

ViewModel

Controller

Display

Input devices

This separates three aspects of the component:

➤ The view, responsible for rendering it to the display

➤ The controller, responsible for receiving input

➤ The model, the underlying logical representation

Multiple views may be based on the same model (e.g. a
table of numbers and a graphical chart). This separation
allows views can hopefully be changed independently of
application logic
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Model-View-Controller (2)

For simplicity the controller and view are combined in Swing
to form a delegate

The component itself (here JButton ) contains references to
the current delegate and current model

MotifButtonUI

ComponentUI

ButtonUI

JButton

ButtonModel

DefaultButtonModel

ItemSelectable

MacButtonUI

... (+ other models)

Delegate Model
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Graphics

➤ Basic rendering primitives are available on instances of
Graphics , e.g. using Java applets:

import java.awt.*;

public class E1 extends java.applet.Applet

{

public void paint (Graphics g) {

g.drawLine (0, 0, 100, 100);

}

}

In E1.html :

<html><body>

<applet code="E1.class" width=100 height=100>

</applet>

</body></html>
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Graphics (2)

➤ Here the rendering is performed by making invocations
on an object of type Graphics

➤ Simple primitives are available, e.g.

void setColor (Color c);

void copyArea (int x, int y, int w,

int h, int dx, int dy);

void drawLine (int x1, int y1,

int x2, int y2);

void drawArc (int x, int y, int w, int h,

int start, int end);

➤ More abstractly, an instance of Graphics represents the
component on which to draw (more on those later), a
translation origin, the clipping mask, the font, etc

➤ Translation allows components to assume that they’re
placed at (0,0)

(Notice the running similarity between basic AWT functions
as X11 / Motif...)
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Components

void setMenuBar()
void init()
void start()

void start()

void stop()
void destroy()

void show()
void dispose()

String getText()
void setText(String s)

Component add(Component g)

void paint(Graphics g)
void setSize(int w, int h)

Container getContentPane()
String getDirectory()
String getFile()

Panel

Frame
Applet

ScrollPane

TextField
TextAreaJComponent

JButton, ...

Window

TextComponentContainer
Button

CheckBox Canvas

ScrollbarList
LabelChoice

Component

JFrame

Dialog

FileDialog

➤ There’s no correspondence between Button &
JButton , FileDialog & JFileChooser etc
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Components (2)

➤ In general a graphical interface is built up from
components and containers

➤ Components represent the building blocks of the
interface, for example buttons, check-boxes or text boxes

➤ Each kind of component is modelled by a separate Java
class (e.g. javax.swing.JButton ). Instances of those
classes provide particular things in particular windows –
e.g. to create a button bar the programmer would
instantiate the JButton class multiple times

➤ As you might expect, new kinds of component can be
created by sub-classing existing ones – e.g. sub-classing
JPanel (a blank rectangular area of the screen) to define
how that component should be rendered by overriding its
paintComponent method:

public void paintComponent (Graphics g) {

super.paintComponent (g);

...

}

➤ In AWT this would sub-class Canvas and override
paint
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Containers

➤ Containers are a special kind of component that can
contain other components – as expected, the abstract
class java.awt.Container extends
java.awt.Component

Notice how JComponent extends Container and then
the Swing components extend JComponent

➤ Containers implement an add method to place
components within them

➤ Containers are used to model top-level windows – for
example javax.swing.JWindow (a plain window,
without title bar or borders) and javax.swing.JFrame
(a ‘decorated’ window with a title bar etc)

➤ Other containers allow the programmer to control how
components are organized – in the simplest case
javax.swing.JPanel

➤ In fact, java.applet.Applet is actually a sub-class of
Panel
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Containers (2)

➤ Components are organized within a container under the
control of a layout manager, e.g.

import java.awt.*;1

import javax.swing.*;2

public class ButtonsFrame extends JFrame {3

public ButtonsFrame() {4

super();5

Container cp;6

cp = getContentPane ();7

cp.setLayout(new BorderLayout());8

cp.add("North", new JButton("North"));9

cp.add("South", new JButton("South"));10

cp.add("East", new JButton("East"));11

cp.add("West", new JButton("West"));12

cp.add("Center", new JButton("Center"));13

}14

15

public static void main (String args[]) {16

ButtonsFrame b = new ButtonsFrame();17

b.pack(); b.setVisible(true);18

}19

}20

➤ A JFrame has a root pane which contains the main
content pane and the menu bar
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Containers (3)

➤ BorderLayout , shown above, contains up to 5
components

➤ CardLayout treats each component in the container as
a card. 1 card is visible at a time. Methods first and
next flip through them

➤ FlowLayout lays out components in horizontal
left-to-right lines – e.g. for button bars. A new line is
started when the current one becomes full (BoxLayout
does not wrap)

➤ GridLayout places components on a rectangular grid
of equal-sized cells, e.g. setLayout (new
GridLayout (3,2)) creates a 3x2 grid

➤ GridBagLayout is a more flexible layout manager: the
rectangular cells may vary in size and instances of
GridBagConstraints are used to describe how
particular cells scale

Usually nesting containers to define a spatial hierarchy is
preferable to using a complex layout manager: it promotes
re-use of the nested components
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Lecture 8: Graphical interfaces (2)

Previous lecture

➤ Graphical interfaces (1)

➤ Model-view-controller pattern

➤ Components & containers

Overview of this lecture

➤ Receiving input

➤ Overview of different components

➤ Accessibility API
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Receiving input

➤ An event-based mechanism is used for delivering input to
applications, broadly following the observer pattern

➤ Different kinds of event are represented by sub-classes of
java.awt.AWTEvent . These are all in the
java.awt.event package. e.g. MouseEvent is used
for mouse clicks, KeyEvent for keyboard input, etc.

➤ The system delivers events by invoking methods on a
Listener. e.g. instances of MouseListener are used to
receive MouseEvent :

public interface MouseListener

extends EventListener

{

public void mouseClicked(MouseEvent e);

...

}

Components provide methods for registering listeners
with them, e.g. addMouseListener on Component

➤ AWTEvent has a getSource() method, so a single
listener can disambiguate events from different sources.
Sub-classes add methods to obtain other details – e.g.
getX() and getY() on a MouseEvent
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Receiving input (2)

➤ All components can generate:

1. ComponentEvent when it is resized, moved, shown or
hidden

2. FocusEvent when it gains or loses the focus

3. KeyEvent when a key is pressed or released

4. MouseEvent when mouse buttons are pressed or
released

5. MouseMotionEvent when the mouse is dragged or
moved

➤ Containers can generate ContainerEvent when
components are added or removed

➤ Windows can generate WindowEvent when opened,
closed, iconified etc
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Input using inner classes

➤ Anonymous inner classes can be used as an effective way
of handling some forms of input, e.g.

addActionListener (new ActionListener () {

public void actionPerformed (ActionEvent e)

{

...

}

});

➤ A further idiom is to define inner classes that extend
adapter classes from the java.awt.event package.
These provide ‘no-op’ implementations of the associated
interfaces

➤ The programmer just needs to override the methods for
the kinds of event that they are interested in: there is no
need to define empty methods for the entire interface

addMouseMotionListener

(new MouseMotionAdapter () {

public void mouseDragged (MouseEvent e)

{

...

}

};
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JButton

➤ Instances of javax.swing.JButton represent labelled
buttons:

ImageIcon b_icon = new ImageIcon("example.gif");

JButton b = new JButton ("Quit", b_icon);

b.setHorizontalTextPosition(AbstractButton.CENTER);

b.setVerticalTextPosition(AbstractButton.BOTTOM);

b.setMnemonic(KeyEvent.VK_Q);

b.setToolTipText("Click this to quit");

➤ Input is delivered using ActionEvent supporting
getActionCommand (defaults to the button’s label) and
getModifiers (e.g. if SHIFT /CTRL/ALT were pressed).
An ActionListener has a single actionPerformed
method

➤ AWT equivalent: java.awt.Button
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JCheckBox

➤ A check box is a graphical component that can be in
either a selected or a deselected state. For example:

JCheckBox b1 = new JCheckBox ("One");

JCheckBox b2 = new JCheckBox ("Two");

JCheckBox b3 = new JCheckBox ("Three");

b1.setMnemonic(KeyEvent.VK_1);

b2.setMnemonic(KeyEvent.VK_2);

b3.setMnemonic(KeyEvent.VK_3);

b1.setSelected(true);

b3.setEnabled(false);

➤ An ItemListener receives input events through an
itemStateChanged method

➤ AWT equivalent: java.awt.Checkbox
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JRadioButton

➤ Instances of javax.swing.JRadioButton represent
selectable items that usually represent disjoint choices:

JRadioButton l = new JRadioButton ("Left");

JRadioButton r = new JRadioButton ("Right", true);

l.setHorizontalTextPosition(AbstractButton.LEFT);

r.setHorizontalTextPosition(AbstractButton.RIGHT);

ButtonGroup bg = new ButtonGroup ();

bg.add (l);

bg.add (r);

➤ Input is delivered as with JCheckBox (in fact both
sub-class JToggleButton which sub-classes
JAbstractButton )

➤ AWT equivalent: java.awt.Checkbox used with
java.awt.CheckboxGroup
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JLabel

➤ Label objects represent short text strings, images or both

➤ They don’t receive input (but the contents can be updated
by the application, e.g. to indicate progress). For
example:

ImageIcon b_icon = new ImageIcon("back.gif");

ImageIcon f_icon = new ImageIcon("forward.gif");

JLabel b = new JLabel (b_icon, JLabel.CENTER);

JLabel l1 = new JLabel ("101");

JLabel l2 = new JLabel ("102");

JLabel l3 = new JLabel ("103");

JLabel f = new JLabel (f_icon, JLabel.CENTER);

➤ The text string maybe passed to the constructor, or
controlled using setText and getText methods

➤ AWT equivalent: java.awt.Label
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JList

➤ A component that allows the user to select one or more
items from a list

➤ An associated list model holds the contents of the list
(and provides methods for adding / removing them if
appropriate to the model), e.g.:

DefaultListModel lm = new DefaultListModel ();

for (int i = 0; i < 100; i ++)

lm.addElement ("Item " + i);

JList l = new JList (lm);

l.setSelectionMode(

ListSelectionModel.SINGLE_SELECTION);

JScrollPane lsp = new JScrollPane (l);

➤ Input delivered using ListSelectionListener
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JSlider

➤ These classes embody scrolling sliders, for example:

JLabel sl = new JLabel ("Crashes per day",

JLabel.CENTER);

sl.setAlignmentX (Component.CENTER_ALIGNMENT);

JSlider s = new JSlider (JSlider.HORIZONTAL,

0, 100, 50);

s.setMajorTickSpacing (25);

s.setMinorTickSpacing (5);

s.setPaintTicks(true);

s.setPaintLabels(true);

➤ The parameters control the orientation, minimum,
maximum and initial values

➤ A ChangeListener receives input events via a
stateChanged method

➤ AWT equivalent: java.awt.Scrollbar
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JTextComponent

➤ This super-classes:
� JTextField – a single-line text region
� JTextArea – multi-line plain text input region

➤ They define methods getText and setText , control
over whether the text is editable by the user and whether
some portion of the text is selected

JTextField tf = new JTextField (20);

JTextArea ta = new JTextArea (5, 20);

JScrollPane sp =

new JScrollPane(ta,

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,

JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED);

➤ AWT equivalent: TextArea & TextField

Further Java topics Slide 8-11



JMenu, JMenuItem, JMenuBar

➤ In Swing (unlike AWT) menu bars are a kind of
component and the items on them are a kind of button:

JAbstractButton JSeparator

JComponent

JMenuItem

JCheckboxMenuItem JMenuJRadioButtonMenuItem

JMenuBar

JPopupMenu

➤ Add a menu to a JFrame using setJMenuBar , e.g.

JMenuBar mb = new JMenuBar();

JMenu fm = new JMenu ("File");

fm.add (new JMenuItem ("Open"));

mb.add (fm);

setJMenuBar (mb);

➤ Detect input using an ActionEvent listener (remember:
the items sub-class AbstractButton )
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Other components

➤ There are many more components...

➤ JTree & JTable – shown above

➤ JSplitPlane – splits one container into two halves
separated by a partition

➤ JComboBox – a drop-down menu

➤ JProgressBar – indicates completion of some task

➤ JDescktopPane & JInternalFrame

➤ JColorChooser & JFileChooser – dialog boxes
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Accessibility (javax.accessibility )

Intended to allow interaction with Java applications through
technologies such as screen readers and screen magnifiers

➤ Swing UI components implement Accessible , defining
a single method getAccessibleContext() returning
an AccessibleContext

➤ That instance describes and is used to interact with a
particular UI component. It defines methods to retrieve
associated instances of

� AccessibleAction – representing operations that
may be done on the component, named by strings

� AccessibleComponent – represents the current
visual appearance of the component. Allows colours,
fonts, focus settings to be overridden

� AccessibleSelection – e.g. items in a menu,
table or tabbed pane

� AccessibleRole – in terms of generic roles such as
SCROLLPANEor SLIDER

� AccessibleState – e.g. CHECKED, FOCUSED,
VERTICAL

� AccessibleText – represents textual information
� AccessibleValue – represents numerical values

(e.g. scroll bar positions)
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Exercises

8-1 Describe the model for handling graphical output and
interactive input using the Swing components. Your
answer should cover the use of

� hierarchies of classes,
� overriding methods,
� interfaces,
� inner classes,
� spatial hierarchy.

8-2 Define simple example classes, as with those in the
slides, for the JComboBox, JProgressBar ,
JDesktopPane and JInternalFrame components.

8-3 Describe the advantages and disadvantages of rendering
components in Java (as with Swing) rather than using
native components provided by system hosting the JVM
(as with AWT).
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Exercises (2)

8-4 Define a class that uses the
getAccessibleContext() method to extract a
text-based description of a user interface, indicating the
components that it comprises, their nesting within one
another and their current state – for example whether or
not a button is pressed.

How does your class perform when dealing with a kind
of component for which you have not already tested it?

What are the advantages and disadvantages of having a
separate AccessibleContext interface rather than
using the reflection API?
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Lecture 9: Miscellany

Previous lecture

➤ Graphical user interfaces

Overview of this lecture

➤ Native methods

➤ Class loaders

Further Java topics Slide 9-1



Native methods

The Java Native Interface (JNI) allows you to define method
implementations in some other langauge (e.g. C or directly
in assembly language) and to call them from Java

It might be useful

➤ to access facilities not provided by the standard APIs –
e.g. some special hardware device,

➤ to re-use an existing well-engineered library,

➤ to allow careful optimization of part of an application

The latter reason is become less important

➤ Modern JVMs will compile Java bytecode to native code
at run-time

➤ It can benefit from profile-directed optimization

➤ It is often hard to recoup the cost of making a JNI call
(and accessing Java objects from within it)

The details of writing native methods in C are not examinable
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Native methods (2)

class HelloWorld {1

public native void displayHelloWorld();2

3

static {4

System.loadLibrary("hello");5

}6

7

public static void main(String[] args) {8

new HelloWorld().displayHelloWorld();9

}10

}11

➤ Line 2 defines the signature of a native method

➤ Lines 4-6 are a static initializer, executed by the JVM
when the class is loaded

➤ Line 9 instantiates the class and calls the native method

➤ Compile the Java and create the C function signatures:

$ javac HelloWorld.java

$ javah -jni HelloWorld

➤ Creates HelloWorld.class , HelloWorld.h
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Native methods (3)

/* DO NOT EDIT THIS FILE - it is machine generated */1

#include <jni.h>2

/* Header for class HelloWorld */3

4

#ifndef _Included_HelloWorld5

#define _Included_HelloWorld6

#ifdef __cplusplus7

extern "C" {8

#endif9

/*10

* Class: HelloWorld11

* Method: displayHelloWorld12

* Signature: ()V13

*/14

JNIEXPORT void JNICALL15

Java_HelloWorld_displayHelloWorld16

(JNIEnv *, jobject);17

18

#ifdef __cplusplus19

}20

#endif21

#endif22

➤ Line 16 declares the function we must define for the
dispalyHelloWorld method
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Native methods (4)

➤ Now write HelloWorldImp.c :

#include <jni.h>1

#include "HelloWorld.h"2

#include <stdio.h>3

4

JNIEXPORT void JNICALL5

Java_HelloWorld_displayHelloWorld(JNIEnv *env, jobject o b6

{7

printf("Hello world!\n");8

return;9

}10

➤ On Linux or Solaris, we must build this to make the
shared library libhello.so (the one named in the
System.loadLibrary call)

$ JINCLUDE=/usr/java/jdk1.3.0_02/include

$ gcc HelloWorldImp.c -I$JINCLUDE \

-I$JINCLUDE/linux -shared \

-fpic -o libhello.so

$ export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

$ java HelloWorld

➤ On Win32, we’d build hello.dll
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Native methods (5)

➤ The header file jni.h defines the C or C++ functions
that can be used within native methods and the
correspondence between Java types and native types

➤ The JNIEnv parameter refers to an environment structure
containing function pointers for these operations, e.g.

� FindClass to get the jclass for a specified name
� GetSuperclass to map one jclass to its parent
� NewObject to allocate and object and execute a

constructor on it
� CallObjectMethod , CallBooleanMethod ,

CallVoidMethod etc for method calls
� Similarly GetObjectField , GetCharField etc

and corresponding Set...Field operations

➤ In C, references to Java objects (local references) are
represented by structures of type jobject . The JVM
tracks which objects have been passed to active native
methods. These cannot be collected by the GC

➤ If a Java object is to be kept alive through references from
native data structures then a global reference must be
created for each of them (NewGlobalRef ) and removed
when they may be collected (DeleteGlobalRef )
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Class loaders

➤ The examples we’ve seen so far are based on compiling a
number of .java files to get .class files placed in
per-package directories

➤ Class loaders can be used to supply the JVM with class
definitions from other sources – e.g. across the network,
or dynamically generated

➤ Class loaders are Java objects extending
java.lang.ClassLoader

➤ c.loadClass(name) requests that c loads the named
class, returning a java.lang.Class object. The
default implementation:
� tests whether the class is already loaded,
� delegates to a parent class loader to load it,
� otherwise calls c.findClass(name)

➤ A new kind of class loader should override findClass
so that the delegation model remains consistent

➤ findClass can then call c.defineClass(name, b,
off, len) to create a new Class object from the
bytes at off ! off+len
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Class loaders (2)

An aside:

➤ findClass is a good example of the use of a
protected method – note how the modifier prevents
on kind of class loader calling findClass on a different
kind

Within the JVM classes are identified by the pair of their
fully-qualified name and the class loader that created them

➤ i.e. there can be several different classes of the same
name

➤ If a class A refers to a class B (e.g. its superclass, a field of
that type, etc) then the class loader that defined A is
requested for B

➤ The delegation model ensures that all classes agree on
e.g. java.lang.System

A good library for creating class definitions at run time:
http://jakarta.apache.org/bcel/

Further Java topics Slide 9-8



Hosting separate applications

Class loaders provide part of a solution for hosting separate
applications within one JVM

✔ Each application can have a separate class loader so
name-space clashes are avoided...

✘ ...but they will still share static fields in the standard
libraries (e.g. System.out )

✘ ...and there’s no resource management at all

while (true) { /* Nothing */ }

while (true) {

Thread t = new Thread ();

t.start ();

}

while (true) {

int a[] = new int[1000000];

}
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Exercises

9-1 Describe an example situation in which it might be
appropriate to use JNI. Suggest how the Java
programming language, or the standard libraries that it
supports, could be extended so that Java could be used
instead of native code.

9-2 Implement a simple class loader that prints a list of the
class names for which it is requested.

9-3* If you are familiar with C or C++ then experiment with
calls to a simple JNI method to determine the overhead
introduced by invoking a native method when compared
with an ordinary Java method. Similarly, compare the
time taken to access a Java field from Java code and from
native code.
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Exercises (2)

9-4* A class C1, loaded and defined by classloader L1 ,
contains the code

S s_object = C2.getS ();

calling a static method on C2 to receive an object of type
S, again loaded by L1 . C2 has been defined by a different
class loader, L2 and contains the definition:

S getS ( ) { return new S(); }

(i ) Show how the type safety of the JVM could be
compromised if the class named S in C2 is loaded by
L2 .

(ii ) Implement classes C1, C2, L1 , L2 and the two
versions of S (to be loaded by L1 and L2 respectively).

(iii ) Is L2 actually requested to load S? If so then what
happens if it supplies a different Class object from
the one already loaded by L1?

The paper Dynamic Class Loading in the JVM (on the
teaching material web site) discusses this problem more
formally and various solutions that were proposed – it
was a long-standing type safety problem in early versions
of the JVM
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Lecture 10: Threads

Previous section

➤ Reflection & serialization

➤ Memory management

➤ Swing and AWT

Overview of this section

➤ Multi-threaded programming

➤ Concurrent data structures
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Concurrency

The next section of the course concerns different ways of
structuring systems in which concurrency is present and, in
particular, co-ordinating multiple threads, processes and
machines accessing shared resources and data

Two main scenarios:

➤ Tasks operating with a shared address space – e.g.
multiple threads created within a Java application

➤ Tasks communicating between address spaces – e.g.
different processes, whether on the same or separate
machine

In each case we must consider

➤ How shared resources and data are named and referred
to by the participants

➤ Conventions for representing shared data

➤ How access to resources and data is controlled

➤ What kinds of system failure are possible
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Concurrency (2)

➤ Previous examples have been implemented using a single
thread that runs the main method of a program

➤ Java supports lightweight concurrency within an
application – multiple threads can be running at the same
time

➤ Can simplify code structuring and aid interactive
response – e.g. one thread deals with user interaction,
another thread deals with computation

� Easier to add additional tasks as new threads?

➤ Can benefit from multi-processor hardware

� e.g. the new HPCF machines have 106 processors...

➤ Implementation schemes vary substantially. We’ll look at
how multiple threads are available to the Java
programmer, and what you can assume when writing
portable code
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Concurrency (3)

Most OS introduce a distinction between processes (as
discussed in Part 1A) and threads

Processes are the unit of protection and resource allocation.
For each process have a process control block (PCB):

➤ Identification (e.g. PID, UID, GID)

➤ Memory management information

➤ Accounting information

➤ (Refs to) one or more TCBs. . .

Threads are the entities considered by the scheduler. For
each thread have a thread control block (TCB):

➤ Thread state

➤ Context slot (perhaps in h/w)

➤ Refs to user (and kernel?) stack

➤ Scheduling parameters (e.g. priority)
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Creating threads in Java

➤ There are two ways of creating a new thread. The
simplest is to define a sub-class of java.lang.Thread
and to override the run() method, e.g.

MyThread

Thread

class MyThread extends Thread {1

public void run() {2

while (true) {3

System.out.println ("Hello from " +4

this);5

Thread.yield ();6

}7

}8

9

public static void main (String args[]) {10

Thread t1 = new MyThread ();11

Thread t2 = new MyThread ();12

t1.start (); t2.start ();13

}14

}15
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Creating threads in Java (2)

➤ The run method of the class MyThread defines the code
that the new thread(s) will execute. Just defining such a
class does not create any threads

➤ Lines 11–12 instantiate the class to create two objects
representing the two threads that will be executed

➤ Line 13 actually starts the two threads executing

➤ The program continues to execute until all ordinary
threads have finished, even after the main method has
completed

Hello from Thread[Thread-5,5,main]

Hello from Thread[Thread-4,5,main]

Hello from Thread[Thread-5,5,main]

etc...

➤ A daemon thread will not prevent the application from
exiting:

t1.setDaemon(true);
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Creating threads in Java (3)

➤ The second way of creating a new thread is to define a
class that implements the java.lang.Runnable
interface, e.g.

void run()

MyCode

Runnable

Thread

class MyCode implements Runnable {1

public void run() {2

while (true) {3

System.out.println ("Hello from " +4

Thread.currentThread());5

Thread.yield ();6

}7

}8

public static void main (String args[]) {9

MyCode mt = new MyCode ();10

Thread t_a = new Thread (mt);11

Thread t_b = new Thread (mt);12

t_a.start (); t_b.start ();13

}14

}15
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Creating threads in Java (4)

➤ As before, Lines 2–8 define the code that the new threads
will execute

➤ Lines 11–12 instantiate two Thread objects, passing a
reference to an instance of MyCode to them as their target

➤ Line 13 starts these two threads executing

➤ Note that here the run methods of the two threads are
being executed on the same MyCode object, whereas
two separate MyThread objects were required

➤ The second way of creating threads is more complex, but
also more flexible

➤ Generally, fields in the class containing the run method
will hold per-thread state – e.g. which part of a problem a
particular thread is tackling
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Creating threads in Java (5)

➤ In some cases anonymous inner classes can be used to
simplify thread creation, e.g.

class Example {1

public static void main (String args[]) {2

Thread t = new Thread () {3

public void run () {4

System.out.println ("Hello world!");5

}6

};7

8

t.start ();9

}10

}11

➤ Recall that Lines 3–7 define and instantiate a new
anonymous class that extends Thread

➤ As before, line 9 actually starts the thread executing
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Terminating a thread

➤ A thread can be forced to exit by invoking the stop
method on it. This method throws an exception into the
thread – the thread behaves as if the exception had
suddenly been thrown at the point at which it was
executing

� Usually, an instance of java.lang.ThreadDeath
is thrown. The programmer may pass some other
object as a parameter to stop

Thread t = new MyThread ();

t.start ();

t.stop ();

➤ stop is now deprecated: it should not be used. The
exception may be delivered to the target thread when it is
executing a finally block

➤ The correct approach is to use the interrupt()
method on java.lang.Thread

➤ A thread is responsible for periodically calling
isInterrupted()
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Terminating a thread (2)

➤ In some situations a thread is interrupted immediately if it
is blocked – e.g. sleep may throw
InterruptedException . For example:

class Example {1

public static void main (String args[])2

{3

Thread t = new Thread () {4

public void run () {5

try {6

do {7

Thread.sleep (1000); // sleep 1s8

} while (true);9

} catch (InterruptedException ie) {10

// Interrupted: exit11

}12

}13

};14

t.start (); // Start...15

t.interrupt (); // ...interrupt16

}17

}18

➤ If the thread didn’t block then line 9 could perhaps be

} while (!isInterrupted());9
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Join

➤ The join method on java.lang.Thread causes the
currently running thread to wait until the target thread
dies

class Example {1

public void startThread (void)2

throws InterruptedException3

{4

Thread t = new Thread () {5

public void run () {6

System.out.println ("Hello world!");7

}8

};9

10

t.start (); // Start thread...11

t.join (0); // ...wait for it to exit12

}13

}14

➤ Line 12 waits for the thread started at Line 11 to finish.
The parameter specifies a time in milliseconds (0) wait
forever)

➤ The throws clause in line 3 is required: the call to join
may be interrupted
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Priority controls

➤ Methods setPriority and getPriority on
java.lang.Thread allow the priority to be controlled

➤ A number of standard priority levels are defined:
MIN PRIORITY, NORMPRIORITY, MAXPRIORITY

➤ The programmer can also try to influence thread
scheduling using the yield method on
java.lang.Thread . This is a hint to the system that it
should try switching to a different thread – note how it
was used in the previous examples

� In a non-preemptive system even low priority threads
may continue to run unless they periodically yield

➤ Selecting priorities becomes complex when there are
many threads or when multiple programmers are working
together

Although it may work on some systems, the variation in
behaviour between different JVMs means that it is never
correct to use thread priorities to control access to shared
data in portable code
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Thread scheduling

➤ The choice of exactly which thread(s) execute at any
given time can depend both on the operating system and
on the JVM

➤ Some systems are preemptive – i.e. they switch between
the threads that are eligible to run. Typically these are
systems in which the OS supports threads directly, i.e.
maintaining separate PCBs and TCBs

➤ Other systems are non-preemptive – i.e. they only switch
when the running thread yields, becomes blocked or
exits. Typically these systems implement threads within
the JVM

➤ The Java language specification says that, in general,
threads with high priorities will run in preference to those
with lower priorities

To write correct portable code it’s therefore important to
think about what the JVM is guaranteed to do – not just
what it does on one system. Different behaviour may occur
at different nodes within a distributed system
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The volatile modifier

static boolean signal = false;

public void run() {

while (!signal) {

doSomething();

}

}

If some other thread sets the signal field to true then
what will happen?

➤ The thread running the code above may keep executing
the while loop

➤ This might happen if the JVM produces machine code
that loads the value of signal into a processor register
and just tests that register value each time around the
loop

! Such behaviour is valid and may help performance
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The volatile modifier (2)

volatile is a modifier that can be applied to fields, e.g.

volatile static boolean signal = false;

When a thread reads or writes a volatile field it must
actually access the memory location in which that field’s
value is held

The precise rules about when a value held in a register may
be re-used are still being formulated. However, in general, if
a shared field is being accessed then either:

➤ the thread updating the field must release a mutual
exclusion lock that the thread reading from the field
acquires,

➤ or the field should be volatile .

Note that the first condition is satisfied by the usual use of
synchronized methods! volatile is therefore rarely
seen in practice

For more details: section 2.2. of Doug Lea’s book (online at
http://gee.cs.oswego.edu/dl/cpj/jmm.html )
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Exercises

10-1 Describe the facilities in Java for creating multiple threads
of execution.

10-2 What is the difference between a preemptive and a
non-preemptive scheduler? Write a Java class containing
a method

boolean probablyPreemptive();

which returns true if the JVM running it appears to be
preemptive. (Hint: your solution will probably need to
start multiple threads which then perform some kind of
experiment)

10-3 Examine the behaviour that one or more JVMs provides
for the following aspects of thread management:

(i ) whether scheduling is preemptive,

(ii ) whether the highest-priority runnable thread is
guaranteed to run,

(iii ) the impact on performance of making a
frequently-accessed field volatile .
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Lecture 11: Mutual exclusion

Previous lecture

➤ Creating & termination of threads

➤ volatile

Overview of this lecture

➤ Shared data structures

➤ Mutual exclusion locks
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Safety

In concurrent environments we must ensure that the system
remains safe no matter what the thread scheduler does – i.e.
that ‘nothing bad happens’

➤ Unlike type-soundness, this cannot usually be checked
automatically by compilers or tools (although some exist
to help)

➤ It’s often useful to think of safety in terms of invariants –
things that must remain true, no matter how different
parts of the system evolve during execution
� e.g. a ‘transfer’ operation between bank accounts

preserves the total amount in them

➤ We can then identify consistent object states in which all
invariants are satisfied

➤ ...and aim that all of the operations available on the
system keep it consistent

➤ Therefore many of the problems we’ll see come down to
deciding when different threads can be allowed access to
objects in various ways

Communication within an address space Slide 11-2



Liveness

As well as safety, we’d also like liveness – i.e. ‘something
good eventually happens’. We often distinguish per-thread
and system-wide liveness

Standard problems include:

➤ Deadlock – a circular dependency between processes
holding resources and processes requiring them.
Typically the resources will be access to
mutual-exclusion locks

➤ Livelock – a thread keeps executing instructions, but
makes no useful progress, e.g. busy-waiting on a
condition that will never become true

➤ Missed wake-up (wake-up waiting) – a thread misses a
notification that it should continue with some operation

➤ Starvation – a thread is waiting for some resource but
never receives it – e.g. a thread with a very low
scheduling priority

➤ Distribution failures – of nodes or network connections
in a distributed system
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Shared data

➤ Most useful multi-threaded applications will share data
between threads

➤ Sometimes this is straightforward e.g. data passed to a
thread through fields in the object containing the run
method

➤ More generally, threads may share state through...
� static fields in mutually-accessible classes, e.g.

System.out
� objects to which multiple threads have references

➤ What happens to field o.x :

Thread A Thread B

o.x = 17; o.x = 42;

➤ Most fields accesses are atomic – the value read from
o.x after those updates will be either 17 or 42

➤ The only exceptions are numeric fields of type double
or type long – some third value may be read in that case
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Shared data (2)

➤ This is an example of a race condition: the result depends
on the uncontrolled interleaving of the threads’ execution

➤ We need some way of controlling how threads are
executed when accessing shared data

➤ The basic notion is of critical regions: parts of a program
during which a thread should have exclusive access to
some data structures while making a number of
operations on them

� e.g. if it was doing o.x++ then the read and
subsequent write form a critical region

➤ Careful programming is rarely sufficient, e.g.

boolean busy;1

int x;2

3

...4

5

while (busy) { /* nothing */ }6

busy = true;7

x = x + 1;8

busy = false;9
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Locks in Java

➤ Simple shared data structures can be managed using
mutual exclusion locks (‘mutexes’) and the
synchronized keyword to delimit critical regions

➤ The JVM associates a separate mutex with each object. It
acts like the ’busy’ flag except
� There’s no need to spin while waiting for it – the

thread is blocked
� The race condition in lines 6–7 is avoided

➤ The synchronized keyword can be used in two ways –
either applied to a method or applied to a block of code

➤ For example, suppose we want to maintain an invariant
between multiple fields:

class BankAccounts {

private int balanceA;

private int balanceB;

synchronized void transferToB (int v) {

balanceA = balanceA - v;

balanceB = balanceB + v;

}

}
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Locks in Java (2)

➤ When a synchronized method is called, the thread must
take out a mutual exclusion lock on the object

➤ If the lock is already held by another thread then the
caller is blocked until the lock becomes available

➤ Locks operate on a per-object basis – that is, only one
synchronized method can be called on a particular
object at any time
� ...similarly, it is OK for multiple threads to be calling

the same method, so long as they do so on different
objects

➤ Locks are re-entrant, meaning that a thread may call one
synchronized method from another

➤ If a static synchronized method is called then the
thread must acquire a lock on the class rather than on an
individual object

➤ The synchronized modifier cannot be used directly on
classes or on fields
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Locks in Java (3)

➤ The second form of the synchronized keyword allows
it to be used within methods, e.g.

void methodA (Object x) {1

synchronized (x) {2

System.out.println ("1");3

}4

5

...6

7

synchronized (x) {8

System.out.println ("2");9

}10

}11

➤ The synchronized region at line 2 acquires a lock on
the object referred to by x , performs the println
operation at line 3 and then releases the lock at line 4

➤ The lock must be re-acquired at line 8

This kind of usage is good if an intervening operation, not
requiring mutual exclusion, may take a long time to execute:
other threads may acquire the lock
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Exercises

11-1 Describe how mutual-exclusion locks provided by the
synchronized keyword can be used to control access
to shared data structures.

11-2 Describe what a race condition is, with the aid of
example code.

“A Java class is safe for use by multiple threads if all of its
methods are synchronized.”

To what extent do you agree with this statement?

11-3 Suppose that, instead of using mutual exclusion locks, a
programmer attempts to support critical regions by
manipulating the running thread’s scheduling priority in a
class extending java.lang.Thread :

void enterCriticalRegion {

oldPriority = getPriority ();

setPriority (Thread.MAX_PRIORITY);

}

void exitCriticalRegion {

setPriority (oldPriority);

}

What assumptions are needed to guarantee this works?
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Lecture 12: Deadlock

Previous lecture

➤ Safety & liveness requirements

➤ Mutual exclusion locks

Overview of this lecture

➤ Deadlock

➤ Automatic detection

➤ Avoidance
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Deadlock

Suppose that a and b refer to two different shared objects,

Thread P Thread Q

synchronized (a)

synchronized (b)

{

...

}

synchronized (b)

synchronized (a)

{

...

}

➤ If P locks both a and b then it can complete its operation
and release both locks, thereby allowing Q to acquire
them

➤ Similarly, Q may acquire both locks, then release them
and then allow P to continue

✘ If P locks a and Q locks b then neither thread can
continue: they are deadlocked waiting for the resources
that the other has
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Deadlock (2)

Whether this deadlock actually occurs depends on the
dynamic behaviour of the applications. We can show this
graphically in terms of the threads’ progress:

lock(a) unlock(a)unlock(b)lock(b)

Progress of P

lock(b)

unlock(b)

lock(a)

unlock(a)

of Q
Progress (1)

(2)

(3)

➤ In the horizontal area one thread is blocked by the other
waiting to lock a. In the vertical area it is lock b

➤ Paths (1) and (2) show how these threads may be
scheduled without reaching deadlock

➤ Deadlock is inevitable on path (3) (but hasn’t yet
occurred in the position indicated)
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Requirements for deadlock

If all of the following conditions are true then deadlock
exists:

1. A resource request can be refused – e.g. a thread cannot
acquire a mutual-exclusion lock because it is already
held by another thread

2. Resources are held while waiting – e.g. when a thread
blocks waiting for a lock it does not have to release any
others it holds

3. No preemption of resources – e.g. once a thread acquires
a lock then it’s up to that thread to choose when to
release it

4. Circular wait – a cylce of threads exist such that each
holds a lock requested by the next process in the cycle,
and that request has been refused

In the case of mutual exclusion locks in Java, 1–3 are always
true, and so the existence of a circular wait leads to deadlock
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Object allocation graphs

An object allocation graph shows the various tasks in a
system and the resources that they have acquired and are
requesting. We’ll use a simplified form in which resources
are considered to be individual objects

a is held by thread P and P is requesting object b:

a P b

a is held by P, b is held by Q:

a P

bQ

Should r2 be allocated to S or T?

S

Tr1 r2
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Deadlock detection

Deadlock can be detected by looking for cycles (as in the
second example on the previous slide)

Let A be the object allocation matrix, with one thread per
row and one column per object. A(i;j) indicates whether
thread i holds a lock on object j

Let R be the object request matrix. R(i;j) indicates whether
thread i is waiting to lock object j

We proceed by marking rows of A indicating threads that are
not part of a deadlocked set. Initially no rows are marked. A
working vector W indicates which objects are available

1. Select an unmarked row i such that Ri � W – i.e. a
thread whose requests can be met. Terminate if none

2. Set W =W +Ai, mark row i, and repeat

This identifies when deadlock has occurred – we may be
interested in other properties such as whether deadlock is

➤ inevitable (must happen in some possible execution path)

➤ possible (may happen in some path)
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Deadlock detection (2)

A =

0
BB@

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

1
CCA

R =

0
BB@

0 1 0 0 1

0 0 1 0 1

0 0 0 0 1

1 0 0 0 1

1
CCA

1. W = (0; 0; 0; 1; 1)

2. Thread 3’s requests can be met) it’s not deadlocked, so
can continue and may release object 1

3. W = (1; 0; 0; 1; 1)

4. Thread 4’s requests can now be met) it’s not
deadlocked

5. W = (1; 0; 0; 1; 1)

✘ Nothing more can be done: threads 1 and 2 are both
deadlocked
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Deadlock avoidance

A conservative approach:

➤ Require that each process identifies the maxmium set of
resources that it may ever lock, C(i;j)

➤ When thread i requests a resource then construct a
hypothetical allocation matrix A0 in which it has been
made and a hypothetical request matrix B0 in which
every other process makes its maximum request

➤ If A0 and B0 do not indicate deadlock then the allocation
is safe

✔ It does avoid deadlock – may be preferable to deadlock
recovery

✘ Need to know maximum requests

✘ Run-time overhead

✘ What if there are no safe states?

✘ Objects are instantiated dynamically...

Communication within an address space Slide 12-8



Deadlock avoidance (2)

It’s often more practical to prevent deadlock by careful
design. How else can we tackle the four requirements for
deadlock?

➤ Use locking schemes that allow greater concurrency –
e.g. multiple-readers, single-writer in preference to
mutual exclusion

➤ Do not hold resources while waiting – e.g. acquire all
necessary locks at the same time

➤ Allow preemption of locks and roll-back (not a primitive
in Java if using built-in locks)

Two practical schemes that are widely applicable:

➤ Coalesce locks so that only one ever needs to be held –
e.g. have one lock protecting all bank accounts

➤ Enforce a lock acquisition order, making it impossible for
circular waits to arise, e.g. lock 2 ‘bank account’ objects
in account number order

...trade-off between simplicity of implementation and
possible concurrency
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Priority inversion

Another liveness problem in priority-based systems:

➤ Consider low, medium and high priority threads called
Plow, Pmed and Phigh respectively.
1. First Plow starts, and acquires a lock on object a.
2. Then the other two processes start.
3. Phigh runs since highest priority, tries to lock a and

blocks.
4. Then Pmed gets to run, thus preventing Plow from

releasing a, and hence Phigh from running.

➤ Usual solution is priority inheritence:
� associate with every lock the priority p of the highest

priority process waiting for it.
� then temporarily boost priority of holder of the lock up

to p.
� can use handoff scheduling to implement.

➤ Windows 2000 “solution”: priority boosts
� checks if 9 ready thread not run � 300 ticks.
� if so, doubles quantum & boosts priority to 15

➤ What happens in Java?
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Priority inversion (2)

➤ With basic priority inheritance we can distinguish
(assuming a uni-processor with strict-priority scheduling)

� Direct blocking of a thread waiting for a lock
� Push-through blocking of a thread at one priority by an

origionally-lower-priority thread that has inherited a
higher priority

➤ A thread Phigh can be blocked by each lower priority
thread Plow for at most one of Plow’s critical sections

➤ A thread Phigh can experience push-through blocking for
any lock accessed by a lower-priority thread and by a job
which has (or can inherit) a priority� Phigh

This can give an upper bound on the total blocking delay a
thread encounters, but

➤ chains of blocking may limit bounded & practical
performance: the former a particular problem for
real-time systems

➤ remember: does not prevent deadlock
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Priority inversion (3)

The priority ceiling protocol addresses both these concerns

➤ Basic idea: guarantee that if a thread pre-empts another’s
critical section then the new critical section will execute
at a strictly higher priority than the pre-empted one

➤ A thread only has to wait for at most one
lower-original-priority critical section to complete

Do this by combining priority inheritance with a scheme for
holding off entry to critical sections:

➤ Associate each lock with a priority ceiling: the highest
priority of any thread that may attempt to acquire it

➤ A lock can only be acquired if a thread’s priority is strictly
higher than the priority ceilings of all semaphores locked
by other threads

➤ A thread inherits the maximum of the priorities of any
threads it is blocking
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Priority inversion (4)

P_high: synchronized (o1) {

synchronized (o2) { ... }

}

P_med: synchronized (o1) { ... }

P_low: synchronized (o2) { ... }

➤ Both objects’ priority ceilings are the priority of Phigh

➤ If, say, o2 is held by one thread then o1 cannot be held
concurrently by a different thread

P_low

P_med

P_high

t1 t2

➤ With ordinary priority inheritance, P high might have to
wait for both locks
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Exercises

12-1 In the dining philosophers problem, five philosophers
spend their time alternately thinking and eating. The each
have a chair around a common, circular table. In the
centre of the table is a bowl of spaghetti and the table is
set with five forks, one between each pair of adjacent
chairs. From time to time philosophers may get hungry
and try to pick up the two closest forks. A philosopher
may only pick up one fork at a time. It is an axiom of
philosophic thought that one is only allowed to eat with
the aid of two forks and that, of course, both forks are put
down while thinking.

Model this problem in Java using a separate thread for
each philosopher.

Does your simulation illustrate either deadlock or
livelock? If so then what changes could you make to
avoid it?

12-2 Write a Java class that attempts to cause priority inversion
with a medium-priority thread preventing a high-priority
thread from making progress. Do you observe priority
inversion in practise?
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Exercises (2)

12-3 Show how the deadlock detection algorithm can be
extended to manage locks that support a separate write
mode (in which it can be held by at most one thread at a
time) and a read mode (in which it can be held by
multiple threads at once). The lock cannot be held in
both modes at the same time.

12-4 How would the priority ceiling protocol prevent the
deadlock shown on slide 12-2 ?. Sketch a proof that it
prevents deadlock in general.

12-5* One way to avoid deadlock is for a thread to
simultaneously acquire all of the locks it needs for an
operation. However, Java’s synchronized keyword can
only acquire or release a single lock at a time.
Sketch the design of a class LockManager that
implements the LockManagerIfc interface (below) so
that the doWithLocks operation:

1. appears to atomically acquire locks on all of the
objects in the array o,

2. invokes op.do(arg) keeping the result of that
method as the eventual result of doWithLocks ,

3. releases all of the locks initially acquired.
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Exercises (3)

interface Operation {

Object do(Object arg);

}

interface LockManagerIfc {

Object doWithLocks (Object o[],

Operation op,

Object arg);

}

[Hint: one approach is to assume initially some
mechanism for mapping each object to a unique integer
value and to then examine how to provide that
mechanism.]

Past exam questions: 1998 Paper 4 Q2
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Lecture 13: Condition synchronization

Previous lecture

➤ Deadlock

➤ Ordered acquisition

➤ Priority inversion & inheritance

Overview of this lecture

➤ Condition synchronization

➤ wait , notify , notifyAll
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Limitations of mutexes

➤ Suppose we want a one-cell buffer with a put operation
(store something if cell empty) and a remove operation
(read something if anything there):

class Cell {1

private int value;2

private boolean full;3

4

public synchronized int removeValue () {5

if (full) {6

full = false;7

return value;8

} else {9

/* ??? */10

}11

12

...13

14

}15

➤ What can we put in line 10?
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Limitations of mutexes (2)

➤ We could keep testing full (a ‘spin lock’)...

class Cell { /* Incorrect */1

private int value;2

private boolean full;3

4

public int removeValue () {5

while (full) {6

/* Nothing */7

}8

synchronized (this) {9

full = false;10

return value;11

}12

}13

}14

But this is:

✘ Incorrect: if multiple threads try to remove values then
they may both see full false at line 6 and independently
execute 9–12

✘ Inefficient: threads consume CPU time while waiting)
this may impede a thread about to put a value into the
cell
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Limitations of mutexes (3)

➤ Another problem: what if we want to enforce some other
kind of concurrency control?

➤ e.g. if we identify read-only operations which can be
executed safely by multiple threads at once

➤ e.g. if we want to control which thread gets next access
to the shared data structure

� perhaps to give preference to threads performing
update operations

� or to enforce a first-come first-served regime

� or to choose on the basis of the threads’ scheduling
priority?

➤ All that mutexes are able to do is to prevent more than
one thread from running the code on a particular object
at the same time
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Condition synchronization

➤ What we might like to write:

class Cell { /* Not valid Java */1

private int value;2

private boolean full;3

4

public synchronized int removeValue () {5

wait_until (full);6

full = false;7

return value;8

}9

➤ Line 6 would have the effect of

� If full is false blocking the caller atomically with
doing the test and releasing the lock on the cell (to
allow another thread to put items into it)

� Unblocking the thread if full becomes and the lock
can be re-acquired (so the lock prevents multiple
‘removes’ of the same value)

➤ We can’t directly implement wait until in Java

� Call-by-value) full would only be evaluated once
� We’d need some way of releasing releasing the lock on

the Cell
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Condition variables

➤ Condition variables provide one solution to this kind of
situation

➤ In general, condition variables support two kinds of
operation:
� a cv.CVWait(m) operation causes the current thread to

atomically release a lock on mutex mand to block
iteself on condition variable cv

� a cv.CVNotify() operation that causes threads blocked
on cv to continue

➤ Such operations would be more cumbersome in this
simple example than a general wait until

class Cell { /* Not valid Java */1

private int value;2

private boolean full;3

private ConditionVariable cv =4

new ConditionVariable();5

6

public synchronized int removeValue () {7

while (full) cv.CVWait (this);8

full = false;9

cv.CVNotify ();10

return value;11

}12
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Condition variables in Java

➤ Java doesn’t (currently) provide individual condition
variables in this way

➤ Instead, each object o has an associate condition variable
which is accessed by

� o.wait()
� o.notify()
� o.notifyAll()

➤ o.wait() acts as the equivalent of cv.CVWait(o) on
the condition variable associated with o

➤ This means that o.wait() always releases the mutual
exclusion lock held on o

➤ ...and therefore that the caller may only use o.wait()
when holding that lock (otherwise
IllegalMonitorStateException is thrown)

➤ notify() unblocks exactly one thread (if any are
waiting), otherwise it does nothing

➤ notifyAll() unblocks all waiting threads
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Condition variables in Java (2)

class Cell {1

private int value;2

private boolean full = false;3

4

public synchronized int removeValue ()5

throws InterruptedException6

{7

while (!full) wait ();8

9

full = false;10

notifyAll ();11

return value;12

}13

14

public synchronized void putValue (int v)15

throws InterruptedException16

{17

while (full) wait ();18

19

full = true;20

value = v;21

notifyAll ();22

}23

}24
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Condition variables in Java (3)

➤ Line 8 causes a thread executing removeValue to block
on the condition variable until the cell is full

➤ Line 10 updates the object to mark it empty

➤ Line 11 notifies all threads currently blocked on the
condition variable

➤ Similarly, line 18 causes a thread executing putValue to
block on the condition variable until the cell is empty

➤ Lines 20–21 update the fields to mark the cell full and
store the value in it, 22 notifies waiting threads

InterruptedException will be thrown in the thread is
interrupted while waiting. In general it should be propagated
until it can be handled. Be wary of writing:

try {

while (full) wait ();

} catch (InterruptedException ie) {

/* Nothing */

}
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Condition variables in Java (4)

➤ Note how there are now two different ways that a thread
may be blocked:

lock

unlock
wait

notify
Waiting for

the lock

the lock
Holding

Waiting to
be notified

➤ It may have entered a synchronized region for an
object and found that the associated mutual exclusion
lock is already held

➤ It may have called wait on an object and blocked until
the associated condition variable is notified

➤ When notified, the thread must compete for the lock
once more
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Condition variables in Java (5)

➤ When should notify() be used, when should
notifyAll() be used?

➤ With notifyAll() the programmer must ensure that
every thread blocked on the condition variable can
continue safely
� e.g. line 8 in the example surrounds the wait()

operation with a while loop
� if a ‘removing’ thread is notified when there is no work

for it, then it just waits again

➤ notify() selects arbitrarily between the waiting
threads: the programmer must therefore be sure that the
exact choice does not matter

➤ In the Cell example we can’t use notify() because
although only one thread is to be woken
� a successful removeValue must allow a call blocked

in putValue to proceed

notify() does not guarantee to wake the longest waiting
thread

Communication within an address space Slide 13-11



Suspending threads

➤ The suspend and resume methods on
java.lang.Thread allow one thread to temporarily
stop and start the execution of another

Thread t = new MyThread ();

t.suspend ();

t.resume ();

➤ As with stop , the suspend and resume methods are
deprecated

➤ This is because the use of suspend can lead to
deadlocks if the target thread is holding locks. It also risks
race conditions:

public int removeValue () {1

if (!full) {2

Thread.suspend (Thread.currentThread());3

}4

The status may change between executing 2 and 3) a
lost wakeup problem

suspend should never be used: even if the program does
not explicitly take out locks the JVM may use locks in its
implementation
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Exercises

13-1 Describe the facilities in Java for restricting concurrent
access to critical regions. Explain how shared data can be
protected through the use of objects.

13-2 Consider the following class definition:

class Example implements Runnable {

public static Object o = new Object();

int count = 0;

public void run() {

while (true) {

synchronized (o) {

count ++;

}

}

}

}

(i ) Show how to start two threads, each executing this
run method on separate instances of Example .

(ii ) When this program runs, only one of the count
fields is found to increment, even though threads are
scheduled preemptively. Why might this be?

Past exam questions: 2002 Paper 5 Q4, 1999 Paper 4 Q3
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Lecture 14: Worked examples

Previous lecture

➤ Condition synchronization

➤ wait , notify , notifyAll in Java

Overview of this lecture

➤ Further examples of how to use these facilities

➤ Common design features
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Design

Suppose that we wish to have a shared data structure on
which multiple threads may make read-only access, or a
single thread may make updates

➤ How can this be implemented using the facilities of Java,
� In terms of a well-designed OO structure?
� In terms of the concurrency-control features?

One option is based on delegation and the Adapter
pattern,

operation() operation()

operation()

MTImpl BasicImpl

Client Interface

➤ BasicImpl provides the actual data structure
implementation, conforming to Interface . The class
MTImpl wraps each operation with appropriate code for
its use in a multi-threaded application, delegating calls to
an instance of BasicImpl
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Design (2)

➤ How does that compare with:

operation()

operation()

operation()

Client Interface

BasicImpl

MTImpl

✔ Sub-classes enforce encapsulation and mean that only
one instance is needed

✔ Delegation may be easier, just use
super.operation()

✘ Separate sub-classes are needed for each implementation
of Interface

✘ Composition of wrappers is fixed at compile time
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Design (3)

In each of these cases the class MTImpl will define methods
that can be split into three sections:

1. An entry protocol responsible for concurrency control –
usually waiting until it is safe for the operation to
continue

2. Delegation to the underlying data structure
implementation (either by an ordinary method invocation
on an instance of BasicImpl or a call using the super
keyword)

3. An exit protocol – generally selecting the next thread(s)
to perform operations on the structure

This common structure often motivates further separation of
concurrency control protocols from the data structure
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Design (4)

operation() operation()

operation()

enter()
exit()

MTImpl BasicImpl

Client Interface

CCInterface

CCImpl

MTImpl now just deals with delegation, wrapping each
invocation on Interface with appropriate calls to
enter() and exit() on a general concurrency-control
interface (CCInterface ).

Sub-classes, e.g. CCImpl , provide specific entry/exit
protocols. A factory class may be used to instantiate and
assemble these objects

✔ Concurrency-control protocols can be shared

✔ Only a single MTImpl class is needed per data structure
interface
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Multiple readers, single writer

➤ As a more involved example:

interface MRSW {

public void enterReader ()

throws InterruptedException;

public void enterWriter ();

throws InterruptedException;

public void exitReader ();

public void exitWriter ();

}

➤ This could be used as:

class MTHashtable implements Dictionary {1

...2

Object get (Object key) {3

object result;4

cc.enterReader ();5

try {6

result = ht.get (key);7

} finally {8

cc.exitReader ();9

}10

}11

➤ Why is try ... finally used like this? How should
InterruptedException be managed?
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Multiple readers, single writer (2)

➤ We’ll now look at implementing an example protocol,
MRSW

class MRSWImpl1 implements MRSW {

int numReaders = 0;

int numWriters = 0;

➤ A reader must wait until numWriters is zero. A writer
must wait until both fields are zero:

synchronized void enterReader ()

throws InterruptedException

{

while (numWriters > 0)

wait ();

numReaders ++;

}

synchronized void enterWriter ()

throws InterruptedException

{

while ((numWriters > 0) ||

(numReaders > 0))

wait ();

numWriters ++;

}
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Multiple readers, single writer (3)

The exit protocols are more straightforward:

synchronized void exitRead () {

numReaders --;

notifyAll ();

}

synchronized void exitWrite () {

numWriters --;

notifyAll ();

}

}

✔ Simple design: (1) create a class containing the necessary
fields (2) write entry protocols that keep checking these
fields and waiting (3) write exit protocols that cause any
waiting threads to assess whether they can continue.

✘ notifyAll() may cause too many threads to be woken
– the code is safe but may be inefficient

Is that efficiency likely to be a problem?

Could notify() be used instead?

➤ 1999 Paper 4 Q3
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Giving writers priority

➤ ...how else could MRSWbe implemented?

class PrioritizedWriters implements MRSW {1

int numReaders = 0;2

int numWriters = 0;3

int waitingWriters = 0;4

5

synchronized void enterReader ()6

throws InterruptedException7

{8

while ((numWriters > 0) || (waitingWriters > 0))9

wait ();10

numReaders ++;11

}12

13

synchronized void enterWriter ()14

throws InterruptedException15

{16

waitingWriters ++;17

while ((numWriters > 0) || (numReaders > 0))18

wait ();19

waitingWriters --;20

numWriters ++;21

}22

➤ What about interruptions at 19?
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First-come first-served ordering

➤ Suppose now we want an ordinary lock that provides
FCFS semantics – the longest waiting thread is given
access next

class FCFSImpl implements CCInterface {

int currentTurn = 0;

int nextTicket = 0;

Threads take a ticket and wait until it becomes their turn:

synchronized void enter ()

throws InterruptedException

{

int myTicket = nextTicket ++;

while (currentTurn < myTicket)

wait ();

}

synchronized void exit ()

{

currentTurn ++;

notifyAll ();

}

}
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First-come first-served ordering (2)

✔ The implementation is simple

✘ If a thread is interrupted during wait then its ticket is lost

✘ notifyAll() will wake all threads waiting in enter()
on this object – in this case we know that only one can
continue

✘ What happens if the program runs for a long time and
nextTicket overflows?

Resolving these issues in an effective way depends on the
context in which the class is being used, e.g.

➤ Lots of waiting threads and frequent contention: have an
explicit queue of per-thread objects and use notify()
on the object at the head of the queue

➤ Safe with arbitrary interruption: allow the enter()
method to manage aborted waiters, e.g. using a queue as
above with an abandoned field in each entry

➤ No undetected failures: would long s ever overflow here?
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N-slot buffer

class NSlotBuffer {

int spacesFree = SIZE; int spacesUsed = 0;

Object empty = new Object ();

Object full = new Object ();

void insert (int x) throws InterruptedException {

synchronized (full) {

while (spacesFree == 0) full.wait ();

spacesFree --;

...

}

synchronized (empty) {

spacesUsed ++; empty.notify ();

}

}

int remove () throws InterruptedException {

synchronized (empty) {

while (spacesUsed == 0) empty.wait ();

spacesUsed --;

...

}

synchronized (full) {

spacesFree ++; full.notify ();

}

}

}
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N-slot buffer (2)

This example illustrates a couple of points,

➤ Firstly, it generalizes the previous one into allow up to
SIZE insert() operations to be performed without
intervening invocations of remove()

➤ Secondly, it shows how multiple objects can be used to
indicate different conditions

➤ Each Java object has an associated mutex and condition
variable, so instances of java.lang.Object are often
used for this purpose

➤ Remember that a thread must acquire a lock on the object
before invoking wait() , notify() or notifyAll()

➤ Do insert(...) and remove(...) still need to be
synchronized ?
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Exercises

14-1 In the PrioritizedWriters example the
numWriters field is supposed to be a count of the
number of threads executing in the body of the
enterWriter method. How can this invariant be
broken? Correct the code.

14-2 Update the FCFSImpl class so that it

(i ) allows threads to safely be interrupted during wait

(ii ) uses notify() instead of notifyAll()

(iii ) will not suffer from the ticket counter overflowing.

How does the performance of your new implementation
compare with that of the basic one?

14-3 Update the FCFSImpl class so that the lock can be held
recursively: i.e. a thread already holding the lock can
make subsequent calls to enter() without blocking.
The lock is released only when a matched number of
calls to exit() have been made.

14-4 Complete the implementation of the NSlotBuffer class
using an array to hold the buffer’s contents and fields
in ctr and out ctr to identify where to insert and
remove values.
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Lecture 15: Low-level synchronization

Previous lecture

➤ Integrating concurrency control

➤ Several examples: MRSW, FCFS

➤ General design methods for other cases

Overview of this lecture

➤ Semaphores

➤ Building mutexes & condvars from semaphores

➤ Building semaphores

➤ Alternative language features
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Primitives for concurrency

➤ These examples have used the language-level mutexes
and condition variables exposed in Java.

➤ Semaphores provide simpler operations on which the
language-level features could be based. In Java-style
pseudo-code:

class CountingSemaphore {

CountingSemaphore (int x) {

...

}

native void P();

native void V();

}

➤ P (sometimes called wait) decrements the value and then
blocks if it is less than zero

➤ V (sometimes called signal ) increments the value and
then, if it is zero or less, selects a blocked thread and
unblocks it
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Programming with semaphores

➤ Typically the integer value is used to represent the
number of instances of some resource that are available,
e.g.:

class Mutex {

CountingSemaphore sem;

Mutex () {

sem = new CountingSemaphore (1);

}

acquire () {

sem.P();

}

release () {

sem.V();

}

}

➤ The mutex is considered unlocked when the value is 1 (it
is initialized unlocked)

➤ ...and locked when the value is 0 or less

➤ How does this mutex differ from a Java-style one?
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Programming with semaphores (2)

class CondVar {1

int numWaiters = 0;2

Mutex cv_lock = new Mutex();3

CountingSemaphore cv_sleep =4

new CountingSemaphore (0);5

6

void CVWait (Mutex m) {7

cv_lock.acquire ();8

numWaiters ++;9

m.release ();10

cv_lock.release ();11

cv_sleep.P ();12

m.acquire ();13

}14

15

void CVNotify () {16

cv_lock.acquire ();17

if (numWaiters > 0) {18

cv_sleep.V();19

numWaiters --;20

}21

cv_lock.release ();22

}23

}24
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Programming with semaphores (3)

Why doesn’t Java just provide semaphores?

➤ They can be implemented using mutexes and condition
variables

➤ Using semaphores directly is intricate – the programmer
must ensure P() /V() are paired correctly

➤ Many OS provide mutexes and condition variables
directly

There are other general problems both with semaphores and
with the facilities in Java:

➤ wait() and notify() still need care from the
programmer

➤ The usual interfaces do not provide isLocked() ,
tryToLock() , tryToLockUntil(...) or
lockAny(...) operations

— how could these be implemented?
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Implementing semaphores

Uni-processor only: disable thread switches during the
implementation of P() and V()

All systems: rely on atomic primitive operations provided by
the processor to implement simple spin-locks

V() sem.lock()
sem.val += 1
if sem.val<=0 unblock a thread
sem.unlock()

P() sem.lock()
sem.val -= 1

sem.unlock()
if sem.val<0 block thread

Each semaphore has an associated value, boolean lock field
and blocked-thread queue. The block operation

1. adds the current thread to the blocked-thread queue

2. updates the thread control block (TCB)

3. unlocks the semaphore
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Implementing semaphores (2)

How are lock and unlock implemented?

Almost all processors have atomic operations such as tas
(test-and-set), cas (compare-and-swap) or ll/sc
(load-linked / store-conditional, not covered here)

if failed
lock() cas &(lock.held), 0 −> 1

unlock () store 0 −> lock.held

This spin lock is not a good solution in general:

✘ uni-processor non-preemptive case...

✘ threads waiting to acquire the lock are continually
attempting cas operations – they do not block

Spin locks tend to be used when blocking is unlikely or for
only short durations, so the time spent spinning is much less
than the time taken to block and unblock a thread

➤ Most practical solutions spin briefly and then cause the
scheduler to block the thread

Communication within an address space Slide 15-7



Mutexes without hardware support

➤ What can we do if there isn’t a cas or tas instruction,
just atomic read and write? (e.g. the ARM7 only has a
swap operation)

➤ ‘Bakery’ algorithm due to Lamport (1974)

for (j=0; j<i; j++) {
  while (taking[j]) { }
  while ((ticket[j] != 0) &&
               (ticket[j] <= ticket[i])) { }
}

exi t() t icket[ i] = 0;

taking[i] = true;

taking[i] = false;

enter()
ticket[i]=max(ticket[0],..., ticket[n−1])+1

  while (taking[j]) { }
  while ((ticket[j] != 0) &&

}

for (j=i; j<n; j++) {

               (ticket[j] < ticket[i])) { }

2

1

➤ Threads enter the critical region in ticket order, using
their IDs (i ) as a tie-break

➤ This algorithm is an example: not for practical use!
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Recap

e.g. Mutexes, Condition
Language-level features,

Variables

Application-specific
concurrency control
(e.g. MRSW)

Primitive atomic
operations

Semaphores or event-
counts & sequencers

S
cheduler

support?

The details of exactly what is implemented where vary
greatly between systems, e.g.

➤ Whether the thread scheduler is implemented in
user-space or in the kernel

➤ Which synchronization primitives can be used between
address spaces

➤ Whether mutexes, condition variables are provided
directly as primitives
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Event counts and sequencers

The bakery algorithm suffers the same efficiency concerns as
a spin-lock using cas .

What happens if n changes?

However, a similar algorithm can easily be built from event
count and sequencer primitives, proposed as an alternative
to semaphores

➤ An event count is represented by a positive integer,
initialized to zero, supporting the following atomic
operations:

� advance() – increment the value by one, returning
the new value

� read() – return the current value
� await(i) – wait until the value is greater than or

equal to i

➤ A sequencer is again represented by a positive number,
initialized to zero, supporting a single atomic operation:

� ticket() – increment the value by one, returning
the old value
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Event counts and sequencers (2)

➤ Mutual exclusion is easy: a thread takes a ticket entering
a critical region and then invokes await to receive its
turn (c.f. FCFSImpl )

➤ The values returned by await can be used directly in
implementing a single-producer single-consumer N-slot
buffer: they give the modulo-N indices to read/write

➤ A general N-slot buffer is more difficult. Two sequencers
are used to order producers and consumers to ensure
slots are read/written in order

➤ Note that many operations on event counts and
sequencers have a straightforward implementation using
cas – as before with semaphores, care is needed to avoid
missed wake-ups between await and advance

cas x,y -> z atomically compares the contents of
location x against the value y : if they match then z is
written to x , otherwise x is unchanged. It’s a primitive
operations on IA-32, IA-64 and SPARC processors
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Monitors

A monitor is an abstract data type in which mutual exclusion
is enforced between invocations of its operations. Often
depicted graphically showing the internal state and external
interfaces, e.g. in pseudo-code

if busy wait(free);
busy=true;

allocator: monitor

busy: boolean

free: condition variable

busy = false;
notify(free);

When looking at a definition such as this, independent of a
specific language, it’s important to be clear on what
semantics are required of wait and notify

➤ Does notify wake at most one, exactly one or more
than one waiting thread?

➤ Does notify cause the resumed thread to continue
immediately (if so, must the notifier exit the monitor)?
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Active objects

An active object achieves mutual exclusion between
operations by (at least conceptually) having a dedicated
thread that performs them on behalf of external callers, e.g.

loop

SELECT

when count < buffer-size

ACCEPT insert(param) do

[insert item into buffer]

end;

increment count;

[manage ref to next slot for insertion]

or when count > 0

ACCEPT remove(param) do

[remove item from buffer]

end;

decrement count;

[manage ref to next slot for removal]

end SELECT

end loop

➤ Guarded ACCEPTstatements provide operations and
pre-conditions that must hold for their execution

➤ Management code occurs outside the ACCEPTstatements
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Exercises

15-1 Using the CountingSemaphore class (and not the
synchronized keyword) implement a sequencer. The
sequencer should hold a single positive number,
initialized to zero, and support an atomic operation
ticket() which increments the value by one and
returns the old value.

15-2 Using the example EventCount and Sequencer
classes, implement a single-cell buffer supporting an
arbitrary number of producers and consumers, but
holding only a single value at once.

15-3* A binary semaphore in a simplified version of the
counting semaphore from the slides. Rather than an
integer count value it has a binary flag. Pb blocks (if
necessary) until the flag is set and then atomically clears
it. Vb sets the flag (atomically unblocking one process, if
any, blocked in Pb on that semaphore).

(i ) In pseudo-code, show how a binary semaphore
can be built using atomic compare-and-swap (cas ) or
test-and-test (tas ).

(ii ) In pseudo-code, show how a counting semaphore
can be built using binary semaphores. Your solution
may need more than one binary semaphore and
another field to hold the count value.
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Exercises (2)

15-4* Some data structures can be implemented directly using
the cas primitive without needing mutual exclusion
locks. Suppose that a Java-like language supports a cas
operation on fields. Show how a single-ended queue
could be defined (implemented using a singly-linked list)
supporting push and pop operations at the head of the
queue.

Past exam questions: 1998 Paper 3 Q2
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Lecture 16: Distributed systems

Previous section

➤ Multi-threaded programs

➤ Communication between threads

Overview of this section

➤ Distributed systems

➤ Naming

➤ Network communication
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Communication between processes

What problems emerge when communicating

➤ between separate address spaces

➤ between separate machines?

How do those environments differ from previous examples?

Recall that

➤ within a process, or with a shared virtual address space,
threads can communicate naturally through ordinary data
structures – object references created by one thread can
be used by another

➤ failures are rare and at the granularity of whole processes
(e.g. SIGKILL by the user)

➤ OS-level protection is also performed at the granularity of
processes – as far as the OS is concerned it’s running on
behalf of one user
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Communication between processes (2)

Introducing separate address spaces means that data is not
directly shared between the threads involved

➤ At a low-level the representation of different kinds of data
may vary between machines – e.g. big endian v little
endian

➤ Names used may require translation – e.g. object
locations in memory (at a low-level) or file names on a
local disk (at a somewhat higher level)

Any communicating components need

➤ to agree on how to exchange data – usually by the sender
marshalling from a local format into an agreed common
format and the receiver unmarshalling

— similar to using the serialization API to
read/write an object to a file on disk

➤ to agree on how to name shared (or shareable) entities
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Distributed systems

More generally, four recurring problems emerge when
designing distributed systems:

➤ Components execute in parallel

— maybe on machines with very different performance

➤ Communication is not instantaneous

— and the sender does not know
when/if a message is received

➤ Components (and/or their communication links) may fail
independently

— usually need explicit failure detection and
robustness against failed components/links restarting

➤ Access to a ‘global clock’ cannot be assumed

— different components may observe
events in a different order

To varying degrees we can provide services to address these
problems. Is complete transparency possible?
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Distributed systems (2)

Focus here is on basic naming and communication. Other
courses cover access control (Part 1B: OS, Intro. Security)
and algorithms (Part 2: Distributed Systems, Additional
Systems Topics)

We’ll look at two different communication mechanisms:

➤ Remote method invocation

✔ Remote invocations look substantially like local calls:
many low-level details are abstracted

✘ Remote invocations look substantially like local calls:
the programmer must remember the limits of this
transparency and still consider problems such as
independent failures

✘ Not well suited to streaming or multi-casting data

➤ Low-level communication using network sockets

✔ A ‘lowest-common-denominator’: the TCP & UDP
protocols are available on almost all platforms

✘ Much more for the application programmer to think
about; many wheels to re-invent
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Interface definition

The provider and user of a network service need to agree on
how to access it and what parameters / results it provides. In
Java RMI this is done using Java interfaces

✔ Easy to use in Java-based systems

✘ What about interoperability with other languages?

Java RMI is rather unusual in using ordinary language
facilities to define remote interfaces. Usually a specific
Interface Definition Language (IDL) is used

➤ This provides features common to many languages

➤ The IDL has language bindings that define how its
features are realized in a particular language

➤ An IDL compiler generates per-language stubs (contrast
with the rmic tool that only generates stubs for the JVM)

(An aside: they must also agree on what the service does, but
that needs human intervention!)
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Interface definition: OMG IDL

We’ll take OMG IDL (used in CORBA) as a typical example

//POS Object IDL example1

module POS {2

typedef string Barcode;3

4

interface InputMedia {5

typedef string OperatorCmd;6

void barcode_input(in Barcode item);7

void keypad_input(in OperatorCmd cmd);8

};9

};10

➤ A module defines a namespace within which a group of
related type definitions and interface definitions occur

➤ Interfaces can be derived using multiple inheritance

➤ Built-in types include basic integers (e.g. long holding
�231 : : : 231 � 1 and unsigned long holding
0 : : : 232 � 1), floating point types, 8-bit characters,
boolean s and octet s

➤ Parameter modifiers in , out and inout define the
direction in which parameters are copied
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Interface definition: OMG IDL (2)

Type constructors allow structures, discriminated unions,
enumerations and sequences to be defined:

struct Person {

string name;

short age;

};

union Result switch(long) {

case 1 : ResultDataType r;

default : ErrorDataType e;

};

enum Color { red, green, blue };

typedef sequence<Person> People;

Interfaces can define attributes (unlike Java interfaces), but
these are just shorthand for pairs of method definitions:

attribute long value;

!

long _get_value();

void _set_value(in long v);
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Interface definition: OMG IDL (3)

IDL construct Java construct
module package

interface interface + classes
constant public static final

boolean boolean
char , wchar char

octet byte
string , wstring java.lang.String

short short
unsigned short short

long long
unsigned long long

float float
double double

eunm, struct , union class
sequence , array array

exception class
readonly attribute Read-accessor method

attribute Read,write-accessor methods
operation Method

➤ ‘Holder classes’ are used for out and inout parameters
– these contain a field appropriate to the type of the
parameter
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Interface defintion: .NET

Instead of defining a separate IDL and per-language
bindings, the Microsoft .NET platform defines a common
language subset and programming conventions for making
definitions that conform to it

Many familiar features: static typing, objects (classes, fields,
methods, properties), overloading, single inheritance of
implementations, multiple implementation of interfaces, . . .

Metadata describing thse definitions is available at run-time,
e.g. to control marshalling

➤ Interfaces can be defined in an ordinary programming
language and do not need an explicit IDL compiler

➤ Languages vary according to whether they can be used to
write clients or servers in this system – e.g. JScript and
COBOL vs VB, C#, SML
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Naming

How should processes identify which resources they wish to
access?

Within a single address space in a Java program we could use
object references to identify shared data structures and either

➤ pass them as parameters to a thread’s constructor

➤ access them from static fields

When communicating between address spaces we need
other mechanisms to establish

➤ unambiguously which item is going to be accessed

➤ where that item is located and how communication with
it can be achieved

Late binding of names (e.g. elite.cl.cam.ac.uk ) to
addresses (128.232.8.50 ) is considered good practice –
i.e. using a name service at run-time to resolve names, rather
than embedding addresses directly in a program
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Names

Names are used to identify things and so they should be
unique within the context that they are used. (A directory
service may be used to select an appropriate name to look
up – e.g. “find the nearest system providing service xyz”)

When a namespace contains a single naming domain then
simple unique IDs (UIDs) may be used – e.g. process IDs in
UNIX

➤ UIDs are simply numbers in the range 0:::2N � 1 for an
N -bit namespace. (Beware: UID 6= user ID in this
context!)

✔ Allocation is easy if N is large – just allocate successive
integers

✘ Allocation is centralized (designs for allocating process
IDs on highly parallel UNIX systems are still the subject
of research)

✘ What can be done if N is small? When can/should UIDs
be re-used?
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Names (2)

More usually a hierarchical namespace is formed – e.g.
filenames or DNS names

✔ The hierarchy allows local allocation by separate
allocators if they agree to use non-overlapping prefixes

✔ The hierarchy can often follow administrative delegation
of control

✔ Locality of access within the structure may help
implementation efficiency (if I lookup one name in
/usr/bin/ then perhaps I’m likely to lookup other
names in that same directory)

✘ Lookups may be more complex. Can names be arbitrarily
long?
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Names (3)

We can also distinguish between pure and impure names

A pure name yields no information about the identified
object – where it may be located or where its details may be
held in a distributed name service

– e.g. a UNIX process ID on a multi-processor
system does not say on which CPU the process

should run, or which user created it

An impure name contains information about the object – e.g.
e-mail to tlh20@cam.ac.uk will always be sent to a mail
server in the University

➤ Are DNS names, e.g. elite.cl.cam.ac.uk pure or
impure?

➤ Are IPv4 addresses, e.g. 128.232.8.50 pure or impure?

Names may have structure while still being pure – e.g.
Ethernet MAC addresses are structured 48-bit UIDs and
include manufacturer codes, and broadcast/multicast flags.
This structure avoids centralized allocation

In other schemes, pure names may contain location hints.
Crucially, impure names prevent the identified object from
changing in some way (usually moving) without renaming
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Name services

1. Register

2. Resolve

4. Access

3. Address

Server

Client Name service

➤ A namespace is a collection of names recognised by a
name service – e.g. process IDs on one UNIX system, the
filenames that are valid on a particular system or the
Internet DNS names that are defined

➤ A naming domain is a section of a namespace operated
under a single administrative authority – e.g.
management of the cl.cam.ac.uk portion of the DNS
namespace is delegated to the Computer Lab

➤ Binding or name resolution is the process of making a
lookup on the name service

How does the client know how to contact the name service?

Communication between address spaces Slide 16-15



Name services (2)

Although we’ve shown the name service here as a single
entity, in reality it may

➤ be replicated for availability (lookups can be made if any
of the replicas are accessible) and read performance
(lookups can be made to the nearest replica)

➤ be distributed, e.g. separate systems may manage
different naming domains within the same namespace
(updates to different naming domains require less
co-ordination)

➤ allow caching of addresses by clients, or caching of
partially resolved names in a hierarchical namespace
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Security

In a distributed system, access control is needed to:

➤ control communication to/from the various components
involved,
� e.g. consider an industrial system with a component

on one computer recording the temperature and
responding to queries from another computer that
controls settings on a machine its attached to

� how does the controller know that the temperature
readings come from the intended probe?

� how does the probe know that it’s being queried by
the intended controller?

➤ control operations that one component does on behalf of
users,
� e.g. a file server may run as the privileged root on a

UNIX machine

� when accessing a file on behalf of a remote client it
needs to know who that client is and either cause the
OS to check access would be OK, or to do those
checks itself

➤ Again, covered more fully in the security and distributed
systems courses
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Security (2)

We’ll look at basic sensible things to do when writing
distributed systems in Java

➤ use a security manager class to limit what the JVM is able
to do

— e.g. limiting the IP addresses to which it can connect
or whether it is permitted to write to your files

➤ if using network sockets directly then make the program
robust to unexpected input

— less of a concern in Java then in C...

A security manager provides a mechanism for enforcing
simple controls

➤ A security manager is implemented by
java.lang.SecurityManager (or a sub-class)

➤ An instance of this is installed using
System.setSecurityManager(...) (itself an
operation under the control of the current security
manager)
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Security (3)

➤ Most checks are made by delegating to a
checkPermission method, e.g. for dynamically
loading a native library

checkPermission(

new RuntimePermission(

"loadLibrary."+lib));

➤ Decisions made by checkPermission are relative to a
particular security context. The current context can be
obtained by invoking getSecurityContext and
checks then made on behalf of another context

➤ Permissions can be granted in a policy definition file,
passed to the JVM on the command line with
-Djava.security.policy= filename

grant {

permission java.net.SocketPermission

"*:1024-65535", "connect,accept";

};

http://java.sun.com/products/jdk/1.2/docs/
guide/security/index.html
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Exercises

16-1 If you have access both to a big-endian (e.g. SPARC) and
a little-endian machine (e.g. Intel) then test whether an
object serialized to disk on one is able to be recreated
successfully on the other. Examine what happens if the
object refers to facilities intrinsic to the originating
machine – e.g. if it contains an open
FileOutputStream or a reference to System.out .

16-2 Suppose that two people are communicating by sending
and receiving mobile-phone text messages. Messages are
delayed by varying amounts. Some messages are lost
entirely. Design a way to get reliable communication (so
far as is possible). You may need to add information to
each message sent, and possibly create further messages
in addition to those sent ordinarily.

16-3 Convert the POSmodule definition from OMG IDL into a
Java interface that provides similar RMI functionality.

16-4* Suppose that frequent updates are made to part of a
hierarchical namespace, while other parts are rarely
updated. Lookups are made across the entire namespace.
Discuss the use of replication, distribution, caching or
other techniques as ways of providing an effective name
service.
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Lecture 17: network sockets (TCP & UDP)

Previous lecture

➤ Distributed systems

➤ Interface definitions

➤ Naming

Overview of this lecture

➤ Communication using network sockets

➤ UDP

➤ TCP
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Low-level communication

Two basic network protocols are available in Java:
datagram-based UDP and stream-based TCP

UDP sockets provide unreliable datagram-based
communication that is subject to:

➤ Loss: datagrams that are sent may never be received,

➤ Duplication: the same datagram is received several times,

➤ re-ordering: datagrams are forwarded separately within
the network and may arrive out of order

What is provided:

➤ A checksum is used to guard against corruption (corrupt
data is discarded by the protocol implementation and the
application perceives it as loss)

➤ The framing within datagrams is preserved – a UDP
datagram may be fragmented into separate packets within
the network, but these are reassembled by the receiver
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Low-level communication (2)

Communication occurs between UDP sockets which are
addressed by giving an appropriate IP address and a UDP
port number (0..65535, although 0 not accessible through
common APIs, 1..1023 reserved for privileged use)

15345

elite.cl.cam.ac.uk

128.232.8.50131.111.202.88

1234

penny.chu.cam.ac.uk

Network

Naming is handled by

➤ Using the DNS to map textual names into IP addresses,
InetAddress.getByName("elite.cl.cam.ac.uk")

➤ Using ‘well-known’ port numbers for particular UDP
services which wish to be accessible to clients (See the
/etc/services file on a UNIX system)

As far as we’re concerned here, the network acts as a ‘magic
cloud’ that conveys datagrams – see Digital Communication
I for layering in general and examples of how UDP is
implemented over IP and IP over ethernet
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UDP in Java

➤ UDP sockets are represented by instances of
java.net.DatagramSocket . The 0-argument
constructor creates a new socket that is bound to an
available port on the local host machine. This identifies
the local endpoint for the communication

➤ Datagrams are represented in Java as instances of
java.net.DatagramPacket . The most elaborate
constructor:

DatagramPacket(byte buf[], int length,

InetAddress address, int port)

specifies the data to send (length bytes from within
buf ) and the destination address and port

➤ MulticastSocket defines a UDP socket capable of
receiving multicast packets. The constructor specifies the
port number and then methods

joinGroup (InetAddress g);

leaveGroup (InetAddress g);

join and leave a specified group operating on that port

➤ Multicast group addresses are a designated subset of the
IPv4 address space. Allocation policies are still in flux)
check the local policy before using
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UDP example

import java.net.*;

public class Send {

public static void main (String args[]) {

try {

DatagramSocket s = new DatagramSocket ();

byte[] b = new byte[1024];

int i;

for (i = 0; i < args.length - 2; i ++)

b[i] = Byte.parseByte (args[2 + i]);

DatagramPacket p = new DatagramPacket (

b, i,

InetAddress.getByName (args[0]),

Integer.parseInt (args[1]));

s.send(p);

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}
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UDP example (2)

import java.net.*;

public class Recv {

public static void main (String args[]) {

try {

DatagramSocket s = new DatagramSocket ();

byte[] b = new byte[1024];

DatagramPacket p =

new DatagramPacket (b, 1024);

System.out.println("Port: " +

s.getLocalPort());

s.receive(p);

for (int i = 0; i < p.getLength (); i ++)

System.out.print ("" + b[i] + " ");

System.out.println ("\nFrom: " +

p.getAddress () + ":" + p.getPort ());

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}
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Problems using UDP

Many facilities must be implemented manually by the
application programmer:

✘ Detection and recovery from loss

✘ Flow control (preventing the receiver from being
swamped with too much data)

✘ Congestion control (preventing the network from being
overwhelmed)

✘ Conversion between application data structures and
arrays of bytes (marshalling )

Of course, there are situations where UDP is directly useful

✔ Communication with existing UDP services (e.g. some
DNS name servers)

✔ Broadcast and multicast are possible (e.g. address
255.255.255.255) all machines on the local network –
but note problems of port assignment and more generally
of multicast group naming)
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TCP sockets

The second basic form of inter-process communication is
provided by TCP sockets

➤ Naming is again handled using the DNS and well-known
port numbers as before. There is no relationship between
UDP and TCP ports having the same number

➤ TCP provides a reliable bi-directional connection-based
byte-stream with flow control and congestion control

What doesn’t it do?

➤ Unlike UDP the interface exposed to the programmer is
not datagram based: framing must be provided explicitly

➤ Marshalling must still be done explicitly – but
serialization may help here

➤ Communication is always one-to-one

In practice TCP forms the basis for many internet protocols –
e.g. FTP and HTTP are both currently deployed over it
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TCP sockets (2)

Two principal classes are involved in exposing TCP sockets
in Java:

➤ java.net.Socket represents a connection over which
data can be sent and received. Instantiating it directly
initiates a connection from the current process to a
specified address and port. The constructor blocks until
the connection is established (or fails with an exception)

➤ java.net.ServerSocket represents a socket
awaiting incoming connections. Instantiating it starts the
local machine listening for connections on a particular
port. ServerSocket provides an accept operation
that blocks the caller until an incoming connection is
received. It then returns an instance of Socket
representing that connection

The system will usually buffer only a small (5) number of
incoming connections if accept is not called

Typically programs that expect multiple clients will have one
thread making calls to accept and starting further threads
for each connection
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TCP example

import java.net.*;

import java.io.*;

public class TCPSend {

public static void main (String args[]) {

try {

Socket s = new Socket (

InetAddress.getByName (args[0]),

Integer.parseInt (args[1]));

OutputStream os = s.getOutputStream ();

while (true) {

int i = System.in.read();

os.write(i);

}

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}
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TCP example (2)

import java.net.*;

import java.io.*;

public class TCPRecv {

public static void main (String args[]) {

try {

ServerSocket serv = new ServerSocket (0);

System.out.println ("Port: " +

serv.getLocalPort ());

Socket s = serv.accept ();

System.out.println ("Remote addr: " +

s.getInetAddress());

System.out.println ("Remote port: " +

s.getPort());

InputStream is = s.getInputStream ();

while (true) {

int i = is.read ();

if (i == -1) break;

System.out.write (i);

}

} catch (Exception e) {

System.out.println("Caught " + e);

}

}

}
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Server design

The examples have only illustrated the basic use of the
operations on DatagramSocket , ServerSocket and
Socket :

➤ Typically a server would be expected to manage multiple
clients

Doing so efficiently can be a problem if there are lots of
clients:

➤ Could have one thread per client:

✔ Can exploit multi-processor hardware

✘ Many active clients) frequent context switches

✘ The JVM (+ usually the OS) must maintain state for all
clients, whether active or not

➤ Could have a single thread which services each client in
turn:

✔ Simple, avoids context switching

✘ No ‘wait for any input stream’ operation in java (cf
select in UNIX): must poll each client whether
needed or not

➤ Future versions of Java will support asynchronous I/O

Communication between address spaces Slide 17-12



Exercises

17-1 Write a class UDPSender which sends a series of UDP
packets to a specified address and port at regular 15
second intervals. Write a corresponding UDPReceiver
which receives such packets and records the inter-arrival
time. How does the performance differ if (i ) both
programs run on the same computer, (ii ) both run on
computers on the University network or (iii ) one runs on
the University network and another on a dial-up internet
connection. Do you see packets that are lost, duplicated
or re-ordered? Do the packets arrive regularly spaced?

17-2 Write similar classes TCPSender and TCPReceiver
which establish a TCP connection over which single
bytes are sent at 15 second intervals. How does the
performance compare with the UDP implementation. Is
it necessary to call flush on the OutputStream after
sending each byte?

17-3 Consider a server for a noughts-and-crosses game. The
two players communicate with it over UDP. Describe a
possible structure for the server – in terms of the major
data structures, the threads used, the format of the
datagrams sent and the concurrency-control techniques.
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Lecture 18: RPC & RMI

Previous lecture

➤ UDP: connectionless, unreliable

➤ TCP: connection-oriented, reliable

Overview of this lecture

➤ Java RMI

➤ Implementing RPC
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Remote method invocation

Using UDP or TCP it was necessary to

➤ Decide how to represent data being sent over the
network – either packing it into arrays of bytes (in a
DatagramPacket ) or writing it into an OutputStream
(using a Socket )

➤ Use a rather inflexible naming system to identify servers –
updates to the DNS may be difficult, access to a specific
port number may not always be possible

➤ Distribute the code to all of the systems involved and
ensure that it remains consistent

➤ Deal with failures (e.g. the remote machine crashing –
something a ‘reliable’ protocol like TCP cannot mask)

Java RMI presents a higher level interface that addresses
some of these concerns. Although it is remote method
invocation, the principles are the same as for remote
procedure call (RPC) systems

Communication between address spaces Slide 18-2



Remote method invocation (2)

12
4

3
1

client server

web server

registry

1. A server registers a reference to a remote object with the
registry (a basic name service) and deposits associated
.class files with a web server

2. A client queries the registry to obtain a reference to a
remote object

3. (If needed) the client obtains the .class files needed to
access the remote object from a web server

4. The client makes an RMI call to the remote object

The registries act as a name service, with names of the form
rmi://linux2.pwf.cl.cam.ac.uk/tlh20-
example-1.2
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Remote method invocation (3)

Parameters and results are generally passed by making deep
copies when passed or returned over RMI

➤ i.e. copying proceeds recursively on the object passed,
objects reachable from that etc () take care to reduce
parameter sizes)

➤ The structure of object graphs is preserved – e.g. data
structures may be cyclic

➤ Remote objects are passed by reference and so both
caller and callee will interact with the same remote
object if a reference to it is passed or returned

Note that Java only supports remote method invocation –
changes to fields must be made using get /set methods

Other implementation choices:

➤ Perform a shallow copy and treat other objects reachable
from that as remote data (as above, would be hard to
implement in Java) or copy them incrementally

➤ Emulate ‘pass by reference’ by passing back any changes
with the method results (what about concurrent updates?)
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RMI - Interfaces

Suppose that we wish to define a simple remote object on
which a single method spell is defined:

package tlh20.rmi;1

2

import java.rmi.*;3

4

public interface Phonetic extends Remote {5

6

public final static String URL =7

"rmi://linux2.pwf.cl.cam.ac.uk/tlh20-example-1.2";8

9

public String [] spell (String s)10

throws RemoteException;11

}12

➤ All RMI invocations are made across remote interfaces
extending java.rmi.Remote

➤ The field URL in Lines 7–8 will be used to name a
particular remote object implementing this interface. It’s
included here for easy access by both client and server

➤ All remote methods must throw RemoteException
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RMI - Client

package tlh20.rmi;1

2

import java.rmi.*;3

4

public class PhoneticClient {5

6

public static void main (String [] args) {7

try {8

System.setSecurityManager (9

new RMISecurityManager ());10

11

Phonetic p = (Phonetic)12

Naming.lookup (Phonetic.URL);13

14

String [] results = p.spell ("Example");15

16

for (int r = 0; r < results.length; r++)17

System.out.println (results [r]);18

}19

catch (Exception e) {20

System.out.println ("Exception: " + e);21

}22

}23

}24
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RMI - Client (2)

Note how few differences there are in the client compared
with local invocations on an instance of a class
implementing Phonetic :

➤ The security manager installed in lines 9–10 is an
example one for use by RMI applications that use
downloaded code

➤ Lines 12–13 obtain an instance of a class implementing
the Phonetic interface. Invocations on this instance
will be made on a remote object registered under the
name Phonetic.URL

➤ The exception handler in lines 20–22 may see

� NotBoundException – no remote object has been
associated with the name Phonetic.URL

� RemoteException – if the RMI registry could not be
contacted (12–13) or if there was a problem with the
call (15)

� AccessException – if the operation has not been
permitted
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RMI - Server

package tlh20.rmi;1

2

import java.net.*;3

import java.rmi.*;4

import java.rmi.server.*;5

6

public class PhoneticServer7

extends UnicastRemoteObject8

implements Phonetic9

{10

public static void main (String [] args) {11

try {12

System.setSecurityManager (13

new RMISecurityManager ());14

15

PhoneticServer s = new PhoneticServer ();16

17

Naming.rebind (Phonetic.URL, s);18

System.out.println (Phonetic.URL +19

" server running");20

}21

catch (Exception e) {22

System.out.println ("Exception: " + e);23

};24

}25
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RMI - Server (2)

public PhoneticServer () throws RemoteException {26

super ();27

}28

29

private final static String [] WORDS = { "alfa",30

"bravo", "charlie", "delta", "echo", "foxtrot",31

"golf", "hotel", "India", "Juliet", "kilo",32

"Lima", "Mike", "November", "Oscar", "papa",33

"Quebec", "Romeo", "sierra", "tango", "uniform",34

"victor", "whiskey", "x-ray", "yankee", "zulu" };35

36

public String [] spell (String s)37

throws RemoteException38

{39

String source = s.toUpperCase ();40

String [] reply = new String [s.length ()];41

for (int i = 0; i < s.length (); i++) {42

try {43

int w = (int) source.charAt (i) - (int) ’A’;44

reply [i] = WORDS [w];45

}46

catch (Exception e) {reply [i] = "?";}47

}48

return reply;49

}50

}51
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Putting it all together

➤ Compile the remote interface class, client and server:

$ javac tlh20/rmi/Phonetic.java

$ javac tlh20/rmi/PhoneticClient.java

$ javac tlh20/rmi/PhoneticServer.java

➤ Generate stub classes from the server:

$ EXPORTED_CLASSES=~/public_html\

/java/classes/

$ rmic -v1.2 -d $EXPORTED_CLASSES \

tlh20.rmi.PhoneticServer

➤ Generate a security policy file, e.g. security.policy :

grant {

permission java.net.SocketPermission

"*:1024-65535", "connect,accept";

permission java.net.SocketPermission

"*:80", "connect";

permission java.util.PropertyPermission

"java.rmi.server.codebase", "read";

permission java.util.PropertyPermission

"user.name", "read,write";

};
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Putting it all together (2)

➤ Make sure that the RMI registry is running. If not then:

$ rmiregistry

➤ Start the server running:

$ export CODEBASE=http://linux2.pwf.cl.cam.ac.uk\

/~tlh20/java/classes/

$ java -cp $EXPORTED_CLASSES:. \

-Djava.rmi.server.codebase=$CODEBASE \

-Djava.security.policy=security.policy \

tlh20.rmi.PhoneticServer

➤ Start the client running:

$ java -Djava.security.policy=security.policy \

tlh20.rmi.PhoneticClient

echo

x-ray

alfa

Mike

papa

Lima

echo
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RMI implementation

PhoneticServer_Stub

PhoneticClient PhoneticServer

UnicastRef

TCPConnection

UnicastServerRef

TCPTransport

Method

➤ The Stub class is the one created by the rmic tool – it
transforms invocations on the Phonetic interface into
generic invocations of an invoke method on
UnicastRef

➤ UnicastRef is responsible for selecting a suitable
network transport for accessing the remote object – in
this case TCP

➤ UnicastServerRef uses the ordinary reflection
interface to dispatch calls to remote objects
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RMI implementation (2)

With the TCP transport RMI creates a new thread on the
server for each incoming connection that is received

➤ A remote object should be prepared to accept concurrent
invocations of its methods

➤ Remember: the synchronized modifier applies to a
method’s implementation. It must be applied to the
definition in the server class, not the interface

✔ This avoids deadlock if remote object A invokes an
operation on remote object B which in turn invokes an
operation on A

✘ The application programmer must be aware of how many
threads might be created and the impact that they may
have on the system
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RMI implementation (3)

1. Marshal

2. Generate ID

3. Set timer

5. Record ID

8. Unmarshal

6. Marshal

4. Unmarshal

7. Set timer

9. Acknowledge

Caller Called
method

RMI ServiceRMI Service

Client Server

What could be done without TCP?

We need to manually implement:

➤ Reliable delivery of messages subject to loss in the
network

➤ Association between invocations and responses – shown
here using a per-call RPC identifier with which all
messages are tagged
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RMI implementation (4)

Even this simple protocol requires multiple threads: e.g. to
re-send lost acknowledgements after the client-side RMI
service has returned to the caller

What happens if a timeout occurs at 3? Either the message
sent to the server was lost, or the server failed before replying

➤ At-most-once semantics) return failure indication to
the application

➤ ‘Exactly’-once semantics) retry a few times with the
same RPC id (so server can detect retries)

What happens if a timeout occurs at 7? Either the message
sent to the client was lost, or the client failed

No matter what is done, the client cannot distinguish, on
the basis of these messages, server failures before / after
making some change to persistent storage
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Exercises

18-1 Compile and execute the RMI example yourself. Use it
with the stub class held on a web server (as in the slides)
and with the stub class available directly to the client.
How can the security policy be restricted in that case?

18-2 Modify the UDPSender and UDPReceiver example so
the sender initiates an RMI call to the receiver at regular
15 second intervals. How does the performance compare
now to the UDP and TCP examples?

18-3 To what extent can the fact that a method invocation is
remote be made transparent to the programmer? In what
ways is complete transparency not possible?

18-4 A client and a server are in frequent communication
using the RPC protocol described in the slides and
implemented over UDP. Design and outline an alternative
protocol that sends fewer datagrams when loss is rare.

18-5* All remote method invocations in Java may throw
RemoteException because of the failure modes
introduced by distribution. Do you agree that
RemoteException should be a checked exception
rather than an unchecked exception (such as
NullPointerException ) which is usually fatal?
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Lecture 19: Transactions

Previous section

➤ Communication using UDP or TCP

➤ Remote method invocation

➤ ...and before that concurrency control between threads

Overview of this section

➤ Transactions

➤ Correctness requirements

➤ Implementation
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Transactions

We’ve now seen mechanisms for

➤ Controlling concurrent access to objects

➤ Providing access to remote objects

Using these facilities correctly, and particularly in
combination, is extremely difficult. What improved
abstractions could be provided?

Ideally the programmer may wish to write something like

transactionally {

if (source.balance() >= amount) {

source.withdraw (amount);

destination.deposit (amount);

return true;

} else {

return false;

}

}
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Transactions (2)

The intent is that code within a transactionally block
will execute without interference from other activities, in
particular

➤ system crashes (this lecture)

➤ other operations on the same objects (next 2 lectures)

We’ll say that a transaction either commits (i.e. succeeds) or
aborts (i.e. fails).

Of course, we can’t provide complete resilience to system
crashes, but we can say that

➤ if enough of the system keeps working

➤ then the results of committed transactions are not lost

➤ and the effects of non-committed transactions are not
seen
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Transactions (3)

In more detail we’d like committed transactions to satisfy
four ACID properties:

A tomicity – either all or none of the transaction’s operations
are performed

— programmers do not have to worry about ‘cleaning up’
after a transaction aborts; the system ensures that it has no

visible effects

Consistency – a transaction transforms the system from one
consistent state to another

— essentially the transaction must be implemented to
preserve desired invariants, e.g. totals across accounts

I solation – each committed transaction executes isolated from
the concurrent effects of others

— e.g. another transaction shouldn’t read the source and
destination amounts mid-transfer and then commit

Durability – the effects of committed transactions endure
subsequent system failures

— when the system confirms the transaction has committed
it must ensure any changes will survive faults
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Transactions (4)

These requirements can be grouped into two categories:

➤ Atomicity and durability refer to the persistence of
transactions across system failures.

We want to ensure that no ‘partial’ transactions are
performed (atomicity) and we want to ensure that system
state does not regress by apparently-committed
transactions being lost (durability)

➤ Consistency and isolation concern ensuring correct
behaviour in the presence of concurrent transactions

As we’ll see there are trade-offs between the ease of
programming within a particular transactional
framework, the extent that concurrent execution of
transactions is possible and the isolation that is enforced

In some cases – where data is held entirely in main memory
– we may just be concerned with controlling concurrency

➤ Note the distinction with the concurrency control
schemes based (e.g.) on mutexes and condition variables:
here the system enforces isolation, previously the
programmer did
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Persistent storage

Assume a fail-stop model of crashes in which

➤ the contents of main memory (and above in the memory
hierarchy) is lost

➤ non-volatile storage is preserved (e.g. data written to disk)

If we want the state of an object to be preserved across a
machine crash then we must either

➤ ensure that sufficient replicas exist on different machines
that the risk of losing all is tolerable (Part-II Distributed
Systems)

➤ ensure that the enough information is written to
non-volatile storage in order to recover the state after a
restart

Can we just write object state to disk before every commit?
(e.g. invoking flush() on any kind of Java
OutputStream )

✘ Not directly: the failure may occur part-way through the
disk write (particularly for large amounts of data)
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Persistent storage – logging

We could split the update into stages:

1. Write details of the proposed update to an write-ahead
log – e.g. in a simple case giving the old and new values
of the data, or giving a list of smaller updates as a set of
(address; old ; new) tuples

0 1 2 3 4 5 6

48 65 6C 6C 6F 21 00

1: 65 -> 45
2: 6C -> 4C
3: 6C -> 4C
4: 6F -> 4F

Log

2. Proceed through the log making the updates

0 1 2 3 4 5 6

6C 6F 21 00

1: 65 −> 45
2: 6C −> 4C
3: 6C −> 4C
4: 6F −> 4F

Log

48 4C45

Crash during 1) no updates performed

Crash during 2) re-check log, either undo (so no changes)
or redo (so all changes made)
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Persistent storage – logging (2)

More generally we can record details of multiple
transactions in the log by associating each with a transaction
id. Complete records, held in an append-only log, may be of
the form:

➤ (transaction; operation; old ; new)

➤ or (transaction; start=abort=commit)

T2, START

T1, START

T2, z.add(2), 40, 42

T0, COMMIT

T0, x.add(1), 1, 2

T0, START

Log entriesObject values

y = 17

x = 3

C
ac

h
e

D
is

k

Object values

y = 17

x = 2

z = 42

T2, ABORT

O
ld

er lo
g

N
ew

er lo
g

T2, y.add(10), 17, 27

T1, x.add(1), 2, 3
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Persistent storage – logging (3)

We can cache values in memory and use the log for recovery

➤ A portion of the log may also be held in volatile storage,
but records for a transaction must be written to
non-volatile storage before that transaction commits

➤ Values can be written out lazily

This allows a basic recovery scheme by processing log
entries in turn (oldest! youngest)

➤ Note the need for an idempotent record of an update –
e.g. for add we keep the new & old values as well as the
difference

➤ The old value lets us undo a transaction that’s either
logged as aborted...

➤ ...or for which the log stops before we know its outcome

The naïve recovery algorithm can be inefficient
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Persistent storage – logging (4)

A checkpoint mechanism can be used, e.g. every x seconds
or every y log records. For each checkpoint:

➤ Force log records out to non-volatile storage

➤ Write a special checkpoint record that identifies the
then-active transactions

➤ Force cached updates out to non-volatile storage

Log entriesObject values

y = 17

x = 3

C
ac

h
e

D
is

k

Object values

y = 17

x = 2

z = 42

Restart file

Checkpoint:

T2, START

T2, ABORT

O
ld

er lo
g

N
ew

er lo
g

T1, START

T1,T2 active
T2, z.add(2), 40, 42

T2, y.add(10), 17, 27

T1, x.add(1), 2, 3
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Persistent storage – logging (5)
T

ra
n

sa
ct

io
n

s

Checkpoint Failure

time

T
S

R
Q

P

P already committed before the checkpoint – any items
cached in volatile storage must have been flushed

Q active at the checkpoint but subsequently committed –
log entries must have been flushed at commit, REDO

R active but not yet committed – UNDO

S not active but has committed – REDO

T not active, not yet committed – UNDO
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Persistent storage – logging (6)

A general algorithm for recovery:

➤ The recovery manager keeps UNDO and REDO lists

➤ Initialize UNDO with the set of transactions active at the
last checkpoint

➤ REDO is initially empty

➤ Search forward from the checkpoint record:

� Add transactions that start to the UNDO list
� Move transactions that commit from the UNDO list to

the REDO list

➤ Then work backwards through the log from the end to the
checkpoint record:

� UNDOing the effect of transactions on the UNDO list

➤ Then work forwards from the log from the checkpoint
record:

� REDOing the effect of transactions in the REDO list
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Persistent storage – shadowing

An alternative to logging: create separate old and new
versions of the data structures being changed

48 65 6C 6C 6F 21 00

0 1 2 3 4 5 6Old meta-data

An update starts by constructing a new ‘shadow’ version of
the data, possibly sharing unchanged components:

New meta−data

Old meta−data

48 65 6C 6C 6F 21 00

0 1 2 3 4 5 6

45 4C 4C 4F

7 8 9 A

The change is committed by a single in-place update to a
location containing a pointer to the current version. This last
change must be guaranteed atomic by the system

How can this be extended for persistent updates to multiple
objects?
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Exercises

19-1 Define the ACID properties for transactions using a
simple example (such as transfers between a number of
bank accounts) as illustration. For each property, give a
possible (incorrect) execution which violates it.

19-2 Consider the basic logging algorithm (without
checkpointing). Show how it enforces atomicity and
durability of committed transactions.

While it is not necessary to construct a formal proof, you
should be methodical and consider the different
operations that the system may perform (e.g. updating
objects in memory, starting and concluding transactions,
transfers between disk and the in-memory object cache
and writing of log entries). Consider the effect of failure
and recovery after each one.

19-3 Suppose that you wish to augment the Slime Volleyball
game with a high-score table held on disk. Is it necessary
to use any of the schemes presented here for persistent
storage? If so then suggest which would be most
appropriate. If not then say why none is needed.
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Exercises (2)

19-4* If Java were to support a transactionally keyword
then its semantics would need to be defined carefully.
Describe what it could do when the transactional code:

(i ) accesses local variables

(ii ) accesses fields

(iii ) throws exceptions

(iv ) makes method calls

(v ) uses mutexes and condition variables

(vi ) creates threads

There is no need to say how to implement the keyword.
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Lecture 20: Isolation, serializability, 2PL

Previous lecture

➤ ACID properties for transactions

➤ ’A’, ’C’ & ’D’

➤ Logging & checkpointing

Overview of this lecture

➤ ’I’ during concurrent execution

➤ Correctness requirement: serializability

➤ Two-phase locking
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Isolation

Recall our original example:

transactionally {

if (source.balance() >= amount) {

source.withdraw (amount);

destination.deposit (amount);

return true;

} else {

return false;

}

}

What can the system do in order to enforce isolation
between transactions specified in this manner and initiated
concurrently?

A simple approach: have a single lock that’s held while
executing a transaction, allowing only one to operate at once

✔ Simple, ‘clearly correct’, independent of the operations
performed within the transaction

✘ Does not enable concurrent execution, e.g. two of these
operations on separate sets of accounts

✘ What happens if operations can fail?
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Isolation – serializability

This idea of executing transactions serially provides a useful
correctness criteria for executing transactions in parallel:

➤ A concurrent execution is serializable if there is some
serial execution of the same transactions that gives the
same result

Suppose we have two transactions:

T1: transactionally {

int s = A.read ();

int t = B.read ();

return s + t;

}

T2: transactionally {

A.credit (100);

B.debit (100);

}

If we assume that the individual read , credit and debit
operations are implemented atomically (e.g. by
synchronized methods) then an execution without further
concurrency control can proceed in 6 ways
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Isolation – serializability (2)

Both of these concurrent executions are OK:

T1:

T2:

A.read B.read

A.credit B.debit

T1:

T2: B.debit

A.read

A.credit

B.read

Neither of these concurrent executions is valid:

T1:

T2:

A.read

A.credit

B.read

B.debit

T1:

T2: A.credit

A.read B.read

B.debit

In each case some – but not all – of the effects of T2 have
been seen by T1, meaning that we have not achieved
isolation between the transactions
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Isolation – serializability (3)

We can depict a particular execution of a set of concurrent
transactions by a history graph

➤ Nodes in the graph represent the operations comprising
each transaction, e.g. T1: A.read

➤ A directed edge from node a to node b means that a
happens before b

� Operations within a transaction are totally ordered by
the program order in which they occur

� Conflicting (i.e. non-commutative) operations on the
same object are ordered by the object’s
implementation

For clarity we usually omit edges that can be inferred by the
transitivity of happens before

Suppose again that we have two objects A and B associated
with integer values and run transaction T1 that reads values
from both and transaction T2 that adds to A and subtracts
from B
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Isolation – serializability (4)

These histories are OK. Either both the read operations see
the old values of A and B:

T1:

T2:

start commit

start commit

A.read B.read

B.debitA.credit

or both read operations see the new values:

T1:

T2:

start

start commit

commitA.read B.read

B.debitA.credit
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Isolation – serializability (5)

These histories show non-serializable executions in which
one read sees an old value and the other sees a new value:

T1:

T2:

A.read B.read

B.debitA.credit

start

start commit

commit

T1:

T2:

A.read B.read

B.debitA.credit

start

start commit

commit

In general, cycles are caused by three kinds of problem:

➤ Lost updates (e.g. by another transaction overwriting
them before they are commmitted)

➤ Dirty reads (e.g. of updates before they are committed)

➤ Unrepeatable reads (e.g. before an update by another
transaction that commits)
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Isolation & strict isolation

Here we’re interested in avoiding all three kinds of problem
so that committed transactions built from simple read and
update operations satisfy serializable execution

➤ NB: in some situations weaker guarantees are accepted
for higher concurrency

— In systems using locks to enforce isolation: so long
as all transactions avoid lost updates, the decision to
avoid dirty & unrepeatable reads can be made on a

per-transaction bases

We can distinguish between enforcing:

➤ Strict isolation: actually ensure that transactions are
isolated during their execution from the concurrent
effects of others

➤ Non-strict isolation: ensure that a transaction was so
isolated before it is allowed to commit

Non-strict isolation may permit more concurrency but can
lead to cascading aborts (e.g. if it saw un-committed updates
from a transaction which later aborts)
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Isolation – two-phase locking

We’ll now look at some mechanisms for ensuring that
transactions are executed in a serializable manner while
allowing more concurrency than an actual serial execution
would achieve

In two-phase locking (2PL) each transaction is divided into

➤ a phase of acquiring locks

➤ a phase of releasing locks

Locks must exclude other operations that may conflict with
those to be performed by the lock holder. Simple mutual
exclusion locks may suffice, but could limit concurrency. In
the example we could use a MRSW lock, held in read mode
for read and write mode for credit and debit

➤ If Ta performs an operation that comes before a
conflicting one by Tb then Ta must have released a lock
on the object and Tb acquired one

➤ At that point Ta must have entered its releasing phase – it
can’t acquire locks on further objects that Tb may have
previously updated
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Isolation – two-phase locking (2)

How does the system know when (and how) to acquire and
release locks if transactions are defined in the form:

transactionally {1

if (source.balance() >= amount) {2

source.withdraw (amount);3

destination.deposit (amount);4

return true;5

} else {6

return false;7

}8

}9

➤ Could require explicit invocations by the programmer,
e.g. additional operations to

� acquire a read lock on source before 2, release if the
else clause is taken,

� upgrade to a write lock on source before 3,
� acquire a write lock on destination before 4,
� release the lock on source any time after acquiring

both locks,
� release the lock on destination after 4
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Isolation – two-phase locking (3)

How well would this form of two-phase locking work?

✔ Ensures serializable execution if implemented correctly

✔ Allows arbitrary application-specific knowledge to be
exploited, e.g. using MRSW for increased concurrency
over mutual exclusion locks

✔ Allowing other transactions to access objects as soon as
they have been unlocked increases concurrency

✘ Complexity of programming (e.g. 2PL) MRSW needs
an upgrade operation here)

✘ Risk of deadlock

✘ If Ta ! Tb then isolation requires that
– Tb cannot commit until Ta has
– Tb must abort if Ta does (‘cascading aborts’)

Some of these problems can be addressed by Strict 2PL in
which all locks are held until commit/abort: transactions
never see partial updates made by others
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Exercises

20-1 Slide 20-3 says that there are 6 ways in which execution
can proceed, but Slide 20-4 depicts only 4. Illustrate the
remaining 2 possible executions and construct history
graphs for them.

20-2 A system is to support abortable transactions that operate
on a data structure held only in main memory.

(a) Define and distinguish the properties of isolation and
strict isolation.

(b) Describe strict two-phase locking (S-2PL) and how it
enforces strict isolation.

(c) What impact would changing from S-2PL to ordinary
2PL have (i) during a transaction’s execution, (ii) when
a transaction attempts to commit and (iii) when a
transaction aborts?

20-3 A transaction reads values from a large number of objects
and then performs a long-running computation based on
those values in order to select a single object to update.
What problem does this pose for S-2PL? Would using
ordinary 2PL alleviate the problem?
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Exercises (2)

20-4* A system is using S-2PL to ensure the serializable
execution of a group of transactions. Suppose that a new
kind of transaction is to be supported which is tolerant to
dirty reads and to unrepeatable reads.

(a) Describe how the new transaction could proceed, in
terms of when it must acquire and release locks on the
objects from which it (i ) reads and (ii ) updates.

(b) Does supporting this new kind of transaction have any
impact on the S-2PL algorithm used by the existing
ones?

Past exam questions: 1999 Paper 4 Q2
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Lecture 21: TSO & OCC

Previous lecture

➤ Serializability

➤ Isolation, strict isolation

➤ Two-phase locking

Overview of this lecture

➤ Timestamp ordering

➤ Optimistic concurrency control
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Isolation – timestamp ordering

Timestamp ordering (TSO) is another mechanism to enforce
isolation:

➤ Each transaction has a timestamp – e.g. of its start time.
These must be totally ordered

➤ The ordering between these timestamps will give a
serializable order for the transactions

➤ If Ta and Tb both access some object then they must do
so according to the ordering of their timestamps

Implementation:

➤ Augment each object with fields holding:

– the timestamp of the transaction that most recently
invoked an operation on it,

– the operation that was performed

➤ Each time an operation is invoked that conflicts with the
previous one on the object:

✔ It is allowed to proceed if it is from a transaction with
a later timestamp

✘ It is rejected as too late if it is from an earlier
transaction
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Isolation – timestamp ordering (2)

One serializable order is achieved: that of the timestamps of
the transactions, e.g.

T1,1: start T2,1: start

T1,2: A.read() T2,2: A.credit()

T1,3: B.read() T2,3: B.debit()

✔ T1,1 executes,! timestamp 17

✔ T1,2 executes, A: 17,read

✔ T2,1 executes,! timestamp 42

✔ T2,2 executes, OK (later) A: 42,credit

✔ T2,3 executes, B: 42,debit

✘ T1,3 attempted: too late 17 earlier than 42 and read
conflicts with credit

In this case both transactions could have committed if T1,3
had been executed before T2,3
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Isolation – timestamp ordering (3)

✔ The decision of whether to admit a particular operation is
based on information local to the object

✔ Simple to implement – e.g. by interposing the checks on
each invocation (contrast with 2PL)

✔ Avoiding locking may increase concurrency (but see
below: the work performed may not be useful)

✔ Deadlock is not possible

✘ Cascading aborts are possible – e.g. if T1,2 had updated
A then it would need to be undone and T2 would have to
abort because it may have been influenced by T1

— could delay T2,2 until T1 either
commits or aborts (still avoiding deadlock)

✘ Serializable executions can be rejected if they do not
agree with the transactions timestamps (e.g. executing T2
in its entirety, then T1)

Generally: the low overheads and simplicity make TSO good
when conflicts are rare

Transactions Slide 21-4



Isolation – OCC

Optimistic Concurrency Control (OCC) is the third kind of
mechanism we will look at for enforcing isolation

➤ Optimistic schemes assume that concurrent transactions
rarely conflict

➤ Rather than ensuring isolation during execution a
transaction proceeds directly and serializability is
checked at commit time

➤ Assuming this check usually succeeds (and is itself fast)
then OCC will perform well

➤ ...if the check often fails then performance may be poor
because the work done executing the transaction is
wasted

For instance consider implementing a shared counter using
atomic compare and swap:

do {

old_val = counter;

new_val = old_val + 1;

} while (CAS (&counter, old_val -> new_val));
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Isolation – OCC (2)

More generally, a transaction proceeds by taking shadow
copies of each object it uses (e.g. when it accesses it for the
first time). It works on these shadows so changes remain
local.

Upon commit it must:

➤ Validate that the the shadows were consistent...

➤ ...and no other transaction has committed an operation
on an object which conflicts with one intended by this
transaction

✔ If OK then commit the updates to the persistent objects,
in the same transaction-order at every object

✘ If not OK then abort: discard shadows and retry

Note that abort is easy: just discard the shadows

No cascading aborts or deadlock

But conflicts force transactions to retry
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Isolation – OCC (3)

➤ The first step of validation avoids unrepeatable reads, e.g.:

Validate

T2

Validate −> OK

T1

Object A Object B

➤ The second step avoids lost updates, e.g.:

T1

T2
Validate

Validate −> OK

Object A Object B
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Implementing validation

Validation is the complex part of OCC. As usual there are
trade-offs between the implementation complexity,
generality and likelihood that a transaction must abort

We’ll consider a validation scheme using

➤ a single-threaded validator

➤ the usual distinction between conflicting and
commutative operations

Transactions are assigned timestamps when they pass
validation, defining the order in which the transactions have
been serialized. We’ll assign timestamps when validation
starts and then either

➤ confirm during validation that this gives a serializable
order, or

➤ discover that it does not and abort the transaction

Elaborate schemes are probably unnecessary: OCC assumes
transactions do not usually conflict
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Implementing validation (2)

The validator maintains a preceding transactions list:

Validated Validation Objects Committed
transaction timestamp updated

T1 10 A, B, C Yes

T2 11 D Yes

T3 12 A, E

Transactions T1 and T2 have been validated and their
updates committed to persistent storage. T3 has been
accepted by the validator but its updates to objects A and E
not yet committed

A current timestamp is maintained by each object, holding
the validation timestamp of the most recent transaction
committed to it:

Object Timestamp
A 12
B 10
C 10
D 11
E 10

The update to E remains to take place
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Implementing validation (3)

Before execution:

➤ Record the validation timestamp of the most recently
validated but not committed transaction – in this case 12.
This will be the base timestamp

Validation phase 1:

➤ Compare each shadow’s timestamp against the base
timestamp

✔ Shadow earlier (B,C,D,E): part of a consistent snapshot
at the base timestamp

✘ Otherwise (A): it may have seen a subsequent update
not seen by other shadows

Validation phase 2:

➤ Compare the transaction Tnew against each entry Told:

✔ Told before the base timestamp

✔ Told has no conflicting updates

✘ Otherwise abort Tnew
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Isolation – recap

We’ve seen three schemes:

1. 2PL uses explicit locking to prevent concurrent
transactions performing conflicting operations. Strict 2PL
enforces strict isolation and avoids cascading aborts.
Both may allow deadlock

✔ Use when contention is likely and deadlock
avoidable. Use strict 2PL if transactions are short or
cascading aborts problematic

2. TSO assigns transactions to a serial order at the time they
start. Can be modified to enforce strict isolation. Does
not deadlock but serializable executions may be rejected

✔ Simple and effective when conflicts are rare.
Decisions are made local to each object: suitable for
distributed systems

3. OCC allows transactions to proceed in parallel on
shadow objects, deferring checks until they try to commit

✔ Good when contention is rare. Validator may allow
more flexibility than TSO
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Exercises

21-1 Consider the system described in question 19-2. You
discover that the system does not perform as well as
intended using S-2PL (measured in terms of the mean
number of transactions that commit each second).
Suggest why this may be in the following situations and
describe an enhancement or alternative mechanism for
concurrency control for each:

(a) The workload generates frequent contention for locks.
The commit rate sometimes drops to (and then
remains at) zero.

(b) Contention is extremely rare.

Past exam questions: 1994 Paper 6 Q7, 1995 Paper 3 Q1,
1997 Paper 4 Q2, 2001 Paper 3 Q1

Transactions Slide 21-12


