
Comparative
Architectures

CST Part II, 16 lectures

Lent Term 2003

Ian Pratt

Ian.Pratt@cl.cam.ac.uk

OHP slides with extra notes for supervisors

The extra notes contained in this booklet were
originally written for the lecturer’s use, but are
included to provide assistance to supervisors.

2

Course Outline

1. Comparing Implementations

• Developments fabrication technology

• Cost, power, performance, compatibility

• Benchmarking

2. Instruction Set Architecture (ISA)

• Classic CISC and RISC traits

• ISA evolution

3. Microarchitecture

• Pipelining

• Super-scalar

– static & out-of-order

• Multi-threading

• Effects of ISA on µarchitecture and vice versa

4. Memory System Architecture

• Memory Hierarchy

5. Multi-processor systems

• Cache coherent and message passing

Understanding design tradeoffs

3

Course Outline
1. Instruction Set Architecture is the programmer-visible

processor features.

2. ISA = Instruction Set Architecture, not Industry Standard
Architecture (old PC I/O bus).

3. This course looks at processors and memory systems, not
I/O.

4. Examines tradeoffs available to processor architects.

5. Every feature has costs. Some make chip more efficient,
other less so.

Reading material

• OHP slides, articles

• Recommended Book:
John Hennessy & David Patterson,
Computer Architecture: a Quantitative Approach
(3rd ed.) 2002 Morgan Kaufmann

• The Web
http://bwrc.eecs.berkeley.edu/CIC/
http://www.realworldtech.com/
http://www.anandtech.com/
http://www.arstechnica.com/
http://open.specbench.org/
http://www.cs.colorado.edu/~klauser/ilp/ilp.html

• comp.arch News Group

4

Further Reading and
Reference

• M Johnson
Superscalar microprocessor design
1991 Prentice-Hall

• P Markstein
IA-64 and Elementary Functions
2000 Prentice-Hall

• A Tannenbaum,
Structured Computer Organization (2nd ed.)
1990 Prentice-Hall

• A Someren & C Atack,
The ARM RISC Chip,
1994 Addison-Wesley

• R Sites,
Alpha Architecture Reference Manual,
1992 Digital Press

• G Kane & J Heinrich,
MIPS RISC Architecture
1992 Prentice-Hall

• H Messmer,
The Indispensable Pentium Book,
1995 Addison-Wesley

• Gerry Kane and HP,
The PA-RISC 2.0 Architecture book,
Prentice Hall

1. Course uses a range of architectures including
x86,ARM,Alpha,MIPS,PowerPC,PA-RISC,IA-64,Transmeta
and SPARC to illustrate points made

2. all ISA ref manuals are on web, available off Berkeley CPU
Info Centre

5

Course Pre-requisites

• Computer Design (Ib)

– Some ARM/x86 Assembler

– Classic RISC pipeline model

– Load/branch delay slots

– Cache hierarchies

– Memory Systems

• Compilers (Ib/II)

– Code generation

– Linkage conventions

• Structured Hardware Design

– Critical paths

– Memories

• (Concurrent Systems)

6

The Microprocessor
Revolution

• Mainframe / Scalar Supercomputer

– CPU consists of multiple components

– performance improving at 20-35% p.a.

– often ECL or other exotic technology

– huge I/O and memory bandwidth

• Microprocessors

– usually a single CMOS part

– performance improving at 35-50% p.a.

– enabled through improvements in fabrication
technology

– huge investment

– physical advantages of smaller size

– General Purpose Processors

∗ desktop / server

∗ SMP / Parallel supercomputers

– Embedded controllers / SoCs

– DSPs / Graphics Processors

7

The Microprocessor
Revolution

1. Scalar vs. Vector (SIMD) vs. Parallel (MIMD)

2. Many/some applications are unable to benefit from parallel
processing, so fast scalar CPUs are still required

3. This course focuses on ‘General Purpose’ microprocessors
and memory systems, e.g. as used in workstations

4. More I/O pins and specialist packaging techniques allow
greater bandwidth for mainframe CPUs

5. Microprocessors have benefited over mainframe CPUs from
greater financial investment, and from physical limits
imposed by the speed of light benefiting smaller devices.

6. CMOS typically offers reduced time to market (more mature
tools)

7. High performance embedded e.g. AMD 29K, ARM, Intel i960

8. Multiple embedded controllers in everything these days. 20+
in the average family car.

9. This course focuses on General Purpose CPUs and memory
systems (rather than DSPs, embedded etc)

10. SoC : System on a Chip. Complete (simple) CPU (e.g.
ARM) integrated with memory controller, peripherals and
possibly even DRAM. (it is now possible to fabricate DRAM
and logic on same die).

Developments in CMOS

• Fabrication line size reduction

– 1.0µ, 0.8, 0.5, 0.35, 0.25, 0.18, 0.15, 0.13 ...

– 10-20% reduction p.a.

– switching delay reduces with line size

→ increases in clock speed

∗ Pentium 66Mhz @ 0.8µ, 150Mhz @ 0.6µ,
233MHz @ 0.35µ

– density increases at square of 1/line size

• Die size increases at 10-29% p.a.

⇒ Transistor count increase at 55% p.a.

– enables architectural jumps

– 8, 16, 32, 64, 128 bit ALUs

– large caches

∗ PA-8500: 1.5MB on-chip

– new functional units (e.g. multiplier)

– duplicated functional units (multi-issue)

– whole System On a Chip (SoC)

8

Developments in Technology
1. See the Semiconductor Industry Association Technology

Roadmap at the back of booklet. Historically, the predictions
made by this document have been surpassed by the industry!

2. Disclaimer: past performance is not necessarily a good
indicator to the the future....

3. ‘drawn line size’ is the size of smallest drawn feature

4. drawn as opposed to effective (due to depletion) 25%
difference

5. for comparison, wavelength of visible light is 0.6µ

6. people have repeatedly predicted an end to line size
reduction for years, but the technology just keeps
improving... Quantum effects bellow 0.1µ may put an end
to CMOS’s progress. Will another technology be ready to
take over over?

7. first 0.35 Pentium parts were 133MHz, process tweaking,
‘stepping’, and speed-grade binning has enabled 233.
Pentium end of lined at 266MHz

8. ‘stepping’ is the name for creating new processor variants
with minor changes e.g. to fix bugs or optimize a critical
path.

9. continual performance leapfrogging of each of the different
manufacturer’s fab technology

10. But, wire propagation delay INCREASES with reduced line
size. This is becoming increasingly a problem. IBM have
developed a Cu (as opposed to Al) interconnect. 3D
construction would be a better long-term solution.

11. PA-8500 will have greater than 150 million transistors–by far
the vast majority of them will be in the huge 1.5MB L1
caches.

12. See the ‘General Processor Information’ sheet at back of
booklet.

13. SoC means few components in a design, hence smaller,
cheaper, lower power consumption.

Developments in DRAM
Technology

• DRAM density

– increases at 40-60% p.a.

– equivalent to 0.5-1 address bits p.a.

– cost dropping at same rate

– progress usually occurs in steps of x4

∗ 16M, 64M, 256M, 1G

• Consequences for processor architectures:

→ May not be able to address whole of memory from
a single pointer

– segmentation

→ May run out of physical address bits

– banked (windowed) memory

• DRAM performance

– just 35% latency improvement in 10 years!

– new bus interfaces make more sequential b/w
available

∗ SDRAM, RAMBUS, DDR-SDRAM

9

Developments in DRAM
Technology

1. Consume DRAM at same rate as development. Mainly due
to software bloat.

2. Always pay $200 for the ‘standard’ amount of ram in a PC.
Now get over 256MB

3. 64Mb chips currently most common, but 256M chips
ramping up. 1G chips working in the lab. SIA Roadmap says
256G in lab by 2012

4. High-end desktops are 256MB. Days of 32bit CPUS
numbered? (PPro supports 36bit physical addresses, but
only a 32bit flat addressing model)

5. segmentation: can’t address all of memory in one go. Horrid.

6. banked memory: Switch between several banks of memory
via some out-of-band signal. E.g. PC VGA cards/80286
Expanded Memory. Very, very horrid.

7. Fundamental density/latency tradeoff

8. New high clock rate synchronous interfaces
(e.g. SDRAM,RAMBUS) enable much higher bandwidth to
data in the same DRAM ROW.

9. SRAM is lower latency, but much more expensive (6T vs 1).
Hence the need for caching.

10. CPU - Memory gap widening, becoming more of a
performance issue... (iRAM etc.)

µprocessor Development
Cycle

• Fabrication technology has huge influence on
power and performance

→ must use the latest fabrication process

• Full custom design vs. semi custom

• Keep development cycle short (3-4 years)

– Non CMOS technology leads to complications

• Advance teams to research:

– process characteristics

– key circuit elements

– packaging

– floor plan

– required performance

– microarchitecture

– investigate key problems

• Hope ISA features don’t prove to be a handicap

• Keep up or die!

• Alpha architects planned for 1000x performance
improvement over 25 years

10

µprocessor Development
Cycle

1. The performance advantage of using ECL or GaAs is often
squandered through extended time-to-market.

2. CPUs must be fabricated on a modern process to be
competitive.

3. Intel/IBM beginning to get ahead of the competition on fab
process introduction. (Having wads of cash to through at
the problem helps...)

4. At the start of development, CPUs are being designed for a
target manufacturing process that doesn’t yet exist.

5. Most manufacturers aim to produce a new processor ‘core’
every 3 years (same ‘P6’ core in Pentium Pro, Pentium II
and Pentium III). Pentium IV uses a new core. The core
gets ‘shrunk’ for new fab processes, and may be tinkered
with to optimise paths, add new instructions, or re-balance
the cache hierarchy (usually increasing sizes of on-chip
caches as die space becomes available).

6. Costs for each generation of chip are rising almost
exponentially. New fab plant costs almost 5 billion dollars.

7. Ideally, architectures should be designed such that they
contain no features that will hamper the ability of future
implementations to make use of techniques enabled by
developments in fabrication technology. This requires
incredible foresight.

8. The Alpha architects, Sites and Witek, planned a 25 year
life for Alpha, over which they expect to see a >1000x
increase in performance. (10x on multiple issue, 10-100x on
clock, 1-10x on thread level parallelism)

9. Many other architectures were not planned with so much
forethought. They were optimal for the implementation at
the time.

Power Consumption

• Important for laptops, PDAs, mobile phones,
set-top boxes, etc.

• 155W for Digital Alpha 21364 @ 1150MHz

• 72W for Digital Alpha 21264 @ 800MHz

• 70W for AMD Athlon @ 1.2GHz

• 10W for Intel Mobile Pentium III @ 1000Hz

• 420mW for Digital StrongArm @ 233MHz, 2.0V

• 130mW for Digital StrongArm @ 100MHz, 1.65V

• Smaller line size results in lower power

– lower core voltage, reduced capacitance

– greater integration avoids inter-chip signalling

• Reduce clock speed to scale power

– P = CV 2f

– may allow lower voltage

∗ potential for cubic scaling

∗ better than periodic HALTing

Performance per Watt

11

Power Consumption
1. increasingly important in some markets.

2. batteries wouldn’t last too long in a palm top with a 21264!

3. Fan noise from set-top boxes would be a problem

4. Can dissipate up to about 100W in a desktop machine using
heat pipes etc.

5. SIA Roadmap predicts 175W processors in 2012 (running on
0.6-0.9V)

6. Do need significant compute power in PDAs: handwriting
recognition

7. Both SA and 21164 fabricated in Digital’s 0.35µm process.
One designed for all out performance, the other for low
power.

8. ’mobile processors’ are often just ’under-clocked’ desktop
versions, possibly with L2 cache integrated on die to save
inter-chip signalling power.

9. Sleep modes and clock frequency scaling to reduce power.
(Some fully static components enable clock to be stopped)

10. Lowering supply voltage reduces power consumption but
requires reduction of the operating clock speed. Power is
proportional to V**2, so can be very beneficial. This is what
Transmeta do when there isn’t enough work to warrant
clocking the CPU at max.

11. Potential for cubic scaling, whereby a 10% reduction in
clock frequency can produce a 27% reduction in power.

12. Need OS (or other s/w) to set CPU speed according to
prevailing load. More effective than just halting CPU - most
instruction sets include an instruction that halts the
processor until it is awoken by interrupts. OS sets the timer
to wake the CPU up in so many milliseconds unless other IO
activity wakes it beforehand.

Cost and Price

• E.g.:

– $0.50: 8bit micro controller

– $3: StrongArm
(266MHz, 0.35µm, 50mm2, 2.1M[1M])

– $100: Pentium III
(1.2GHz, 0.15µm, 106mm2, 28M[4M])

– $200: Pentium IV
(2.4GHz, 0.13µm, 180mm2, 42M[7M])

– $1500: Alpha 21264A
(900Mhz, 0.18µm, 180mm2, 15.2M[6M])

– $1000: Intanium
(800Mhz, 0.18µm, 325mm2, 24M[7M])

– $2500: McKinley
(1Ghz, 0.18µm, 450mm2, 221M[15M])

• Costs influenced by die size, packaging, testing

• Large influence by manufacturing volume

• Costs reduce over product life (e.g. 40% p.a.)

– Yield improves

– Speed grade binning

– Fab ‘shrinks’ and ‘steppings’

1. logic vs. cache density. Figure in square brackets is number
of core transistors.

2. Number of pins, packaging costs, memory bandwidth.
Current BGA (solder Ball Grid Array) packages allow 600+
pins. 3000 pins by 2012...

3. Need to recover R&D costs, and Fab Plant construction.

4. Design of a new CPU costs >100M. >150 people working
for 3 years

12

5. Component prices aren’t static, they reduce over product
life, as much as factor of 10

6. Speed grade binning and marketing influence. Over clocking

7. ‘Stepping’: making minor changes to a design/layout to fix
bugs and improve yield of higher frequency parts.

8. ‘Shrink’: Re-laying out a design for a new fab process.

Compatibility

• ’Pin’ Compatibility (second sourcing)

• Backwards Binary Compatibility

– 8086, 80286, 80386, 80486, Pentium,
Pentium Pro, Pentium II/III/IV, Itanium

– NexGen, Cyrix, AMD, Transmeta

– typically need to re-optimize

• Typically hard to change architecture

– Users have huge investment in s/w

– Binary translators e.g. FX!32, WABI

∗ typically interface to native OS

– Need co-operation from s/w vendors

∗ multi-platform support costs $’s

– Most computer sales are upgrades

• Platform independence initiatives

– Source, p-Code, JAVA bytecode, .NET

Compatibility is very important

13

Compatibility
1. pin compatible: use same motherboard. (Though Intel have

patented slot-1)

2. AMD K-7 uses ‘Slot A’, the first x86 clone NOT to be pin
compatible with Intel.

3. Need to persuade s/w vendors to optimise their products for
CPU. e.g. the Pentium IV has an entirely new set of FP
instructions. Software flies if you use them, but performs
horribly if you use the old 8087 instructions.

4. WABI is an x86 emulator available for a number of
workstation platforms. FX!32 is Digital’s x86 to Alpha
binary translator.

5. binary2binary translators: hard to get software vendor to
support translated product.

6. Transmeta’s approach is to translate ALL software
(including the OS) rather than just the applications. This
makes sense because the x86 interface is MUCH simpler and
better specified than the Windows API. Products such as
Wine and FX!32 might theoretically offer better
performance through native implementation of OS and API
code, but keeping track of MS developments of the API is
very difficult...

7. binary2binary optimisers: re-write old binary to produce an
optimised one. Used by Digital to optimise Alpha NT
versions of MS products that were compiled with a lousy
compiler.

8. Changing arch e.g. Sun/HP/Apple from 68k, DEC from
VAX and MIPS. Often loose customers.

9. Will we see Java bytecode / .NET versions of MSWord?
How will they perform? I believe they could actually perform
better, after some good virtual machine research...

Performance Measurement

• Try before you buy! (often not possible)

• System may not even exist yet

– use cycle-level simulation

• Real workloads often hard to characterize and
measure improvements

– especially interactive

• Marketing hype

– MHz, MIPS, MFLOPS

• Algorithm kernels

– Livermore Loops, Linpack

• Synthetic benchmarks

– Dhrystones, Whetstones, iCOMP

• Benchmark suites

– SPEC-INT, SPEC-FP, SPEC-HPC, NAS

• Application Benchmarks

– TPC-C/H/R, SPECNFS, SPECWeb, Quake

Performance is application
dependent

14

Performance Measurement
1. Performance is often not particularly critical

2. Often not possible to try application: live system or no
optimized binary available

3. desktop workloads are especially difficult: highly varied, idle
much of the time, response time is important

4. cycle level simulators exist for CPUs long before they’re
actually fabbed. Need a good memory system model too.

5. simulate the ‘kernel’ (inner most loops) of important
applications

6. fallacies of using MHz: 450MHz Alpha 21164 = 180MHz HP
PA-8000

7. fallacies of using MIPS: Rarely able to occupy all functional
units to achieve peak MIPS performance. PA-8000 better at
doing this than Alpha 21164

8. livermore loops: good if that’s your application, won’t tell
you much about anything else. (Livermore loops are an FP
intensive algorithm that forms part of Gaussian elimination)

9. synthetic benchmarks: derived from instruction traces of real
apps. They are usually too small, don’t reward real compiler
optimizations, and allow unrealistic ones.

10. eg. dhystone: 25%discarded by optimizing compiler.
Function inlining had to be forbidden to enable ‘fair’
comparison.

11. whetstone: trick optimization sqrt(exp(x)) = exp(x/2)

12. NAS is a benchmark suite for HPC applications. It’s
interesting in that its a set of algorithms that you can
implement however you like. (With SPEC-HPC you can’t
change the Fortran source) NAS is more realistic to how
Supercomputers are actually used.

13. Application performance is not dependent on just the CPU
performance, but on the compiler and memory system too.

14. Application performance may also depend on IO e.g.
graphics, disk, network performance

15. TPC-C for transaction processing systems, TPC-D for
‘decision support’ database mining.

Standard Performance
Evaluation Corporation

• SPEC is most widely used benchmark

– processor manufactures

– workstation vendors

• CPU INT / FP 89, 92, 95, 2000

• Suite updated to reflect current workloads

• CINT95/2K: 8/12 integer C programs

• CFP95/2K: 10/14 floating point in C&Fortran

• measures:

– processor

– memory system

– compiler

– NOT OS, libc, disk, graphics, network

1. SPEC so important that it used to provide input into CPU
design

2. SPEC-98 due to ship in ’99.

3. execution time in non SPEC supplied code is minimal (i.e.
not OS or libc)

4. disk,video,network performance can be very important—the
CPU is often not the bottleneck.

5. Video performance has an important effect on how fast a
system ‘feels’.

15

Choosing programs for
SPEC2000

• More programs than SPEC95

• Bigger programs than SPEC95

– Don’t fit in on-chip caches

• Reflect some real workloads

• Run for several minutes

– Amortize startup overhead & timing
inaccuracies

• Not susceptible to trick transformations

– Vendors invest huge s/w effort

• Fit in 256MB (95 was 64MB)

• Moving target...

• SPEC92, 95, 2K results not translatable

1. SPEC2000 very new – only a few results available

2. 5K dollar bounty for submitting applications

3. one of the SPEC92 programs was susceptible to a trick
transformation

4. huge amount of effort goes into SPEC benchmarks by
vendors

5. compiler optimization - some may even be useful for real
progs!

6. I&D trace data, processors designed to execute SPEC

7. multiple submissions for same machine as compilers improve

8. Fit in 64MB: Becoming too small to really stretch modern
workstation memory systems.

9. no simple relationship between SPEC 92 and 95 numbers -
95 more demanding on memory systems.

16

CINT95 suite (C)

099.go An AI go-playing program
124.m88ksim A chip simulator for the Motorola 88100
126.gcc Based on the GNU C compiler version 2.5.3
129.compress An in-memory version of the utility
130.li Xlisp interpreter
132.ijpeg De/compression on in-memory images
134.perl An interpreter for the Perl language
147.vortex An object oriented database

CFP95 suite (Fortran)

101.tomcatv Vectorized mesh generation
102.swim Shallow water equations
103.su2cor Monte-Carlo method
104.hydro2d Navier Stokes equations
107.mgrid 3d potential field
110.applu Partial differential equations
125.turb3d Turbulence modelling
141.apsi Weather prediction
145.fpppp Quantum chemistry
146.wave5 Maxwell’s equations

17

CINT95 suite (C)

1. Considerable effort goes into selecting programs for SPEC.
They are all (modified) real applications; Applications that
someone, somewhere cares about the performance of.

2. 126.gcc cross compiles number of programs for SUN, not
native

3. Jpeg and Gcc have large data sets, which do exercise
filesystem I/O (eg. 13% worse over NFS, 5% better with
RAM disk)

4. Which of these apps represent my workload? What will
SPEC say about the performance of emacs, Netscape, MS
Word, Quake?

SPEC reporting

• Time each program to run

• Reproduceability is paramount

– Take mean of ≥ 3 runs

– Full disclosure

• Baseline measurements

– SPECint base95

– Same compiler optimizations for whole suite

• Peak measurements

– SPECint95

– Each benchmark individually tweaked

– Unsafe optimizations can be enabled!

• Rate measurements for multiprocessors

– SPECint rate95, SPECfp rate95

– time for N copies to complete x N

18

SPEC reporting
1. Take median of string of results

2. full disclosure: OS and compiler versions, system
configuration

3. compiler and system must be for sale to be official

4. peak results: great long lists of cryptic compiler flags

5. base results: more likely what a real user would get

6. unsafe optimizations: but, must be correct for any input
data set

7. → Intel accidently cheated on one of the fp benchmarks,
producing code that wouldn’t work for all possible datasets.

8. SPECrate: copies run*reference*seconds in day / elapsed
time=rate in jobs/day

9. SPECrate: important for batch processing systems

Totalling Results

• How to present results?

– Present individual results?

– Arithmetic mean?

– Weighted harmonic mean?

– SPEC uses Geometric mean, normalised
against a reference platform

∗ allows normalization before or after mean

∗ performance ratio can be predicted by
dividing means

• SPEC95 uses Sun SS10/40 as reference platform

19

spec SPEC CINT95 Results
Copyright 1995, Standard Performance Evaluation Corporation

34 Volume: 7 Issue: 4

SPECint95
SPECint_base95

8.09
8.09

=
=

Intel Corporation
Alder System (200MHz, 256KB L2)

SPEC license # 14 Tested By: Intel Test Date: Oct-95 Hardware Avail: May-96 Software Avail: Feb-96

Contact:
Information
For More

Manassas, VA 22110
10754 Ambassador Drive, Suite 201

SPEC

http://www.specbench.org
info@specbench.org

(703) 331-0180

SP
E

C
ra

tio

0
1
2
3
4
5
6
7
8
9

10

099.go 124.m88ksim 126.gcc 129.compress 130.li 132.ijpeg 134.perl 147.vortex

Alder System (200MHz, 256KB L2)
Hardware/Software Configuration for:

Hardware
AlderModel Name:
200MHz Pentium Pro ProcessorCPU:
IntegratedFPU:
1Number of CPU(s):
8KBI+8KBDPrimary Cache:
256KB(I+D)Secondary Cache:
NoneOther Cache:
128MB (60ns fast page)Memory:
2GB ST32550WDisk Subsystem:
AHA-2940W ControllerOther Hardware:

Software
UnixWare 2.0, SDKOperating System:
Intel C Reference Compiler 2.2 BetaCompiler:
ufs, vxfs (/tmp as 8MB /tmpfs)File System:
Single user (root + killall)System State:

Benchmark
and Name

Reference
Time

Base
Run Time

Base
SPEC Ratio Run Time SPEC Ratio

SPECint95 (G. Mean) 8.09

SPECint_base95 (G. Mean) 8.09

4600 567567 8.118.11099.go

1900 243243 7.817.81124.m88ksim

1700 222222 7.657.65126.gcc

1800 258258 6.996.99129.compress

1900 220220 8.628.62130.li

2400 285285 8.438.43132.ijpeg

1900 232232 8.218.21134.perl

2700 295295 9.149.14147.vortex

Notes/Tuning Information
Base and non-base flags are the same and use Feedback Directed Optimization
Pass1: -tp p6 -ipo -xi -prof_gen -ircdb_dir /tmp/IRCDB
Pass2: -tp p6 -ipo -xi -prof_use -ircdb_dir /tmp/IRCDB
-ircdb_dir is a location flag and not an optimization flag
Portability: 124: -DSYSV -DLEHOST 130, 134, 147: -lm 132: -DSYSV 126: -lm -lc -L/usr/ucblib -lucb -lmalloc
Memory subsystem is four-way interleaved.

1. full disclosure of machine / compiler configuration

2. compiler options used

3. Feedback Directed Optimization. Optimization pass uses
the SPEC95 Training input set - not allowed to use the
Reference input set for training.

4. Base SPEC ratio = Ref time / Base run time

5. SPECint base = (r1*r2*r3...r8) ** 1/8

SPEC CINT95 Results
Copyright 1995, Standards Performance Evaluation Corporation

-- Prepared By: --

SPECint95
SPECint_base95

--
6.37

=
=

Intel 440LX motherboard
Pentium Pro 200

SPEC license # 1178 Tested By: Ian Pratt, CUCL Test Date: Date Hardware Avail: Date Software Avail: Date

contact
Information
For More

Fairfax, VA 22031
2722 Merrilee Drive, Suite 200

SPEC c/o NCGA
spec-ncga@cup.portal.com

(703) 698-9604 ext 318

SP
E

C
ra

tio

0
1
2
3
4
5
6
7
8

099.go 124.m88ksim 126.gcc 129.compress 130.li 132.ijpeg 134.perl 147.vortex

Pentium Pro 200
Hardware/Software Configuration for:

Hardware
Intel 440LXModel Name:
Pentium Pro 200 CPU:

FPU:
1Number of CPU(s):
8KB+8KBPrimary Cache:
256KBSecondary Cache:

Other Cache:
128MBMemory:
4GBDisk Subsystem:

Other Hardware:

Software
Linux 20.0.30Operating System:
gcc 2.7.2p Compiler:
ext2File System:
multiuserSystem State:

Benchmark
and Name

Reference
Time

Base
Run Time

Base
SPEC Ratio Run Time SPEC Ratio

SPECint95 (G. Mean) --

SPECint_base95 (G. Mean) 6.37

4600 --595 --7.73099.go

1900 --310 --6.12124.m88ksim

1700 --276 --6.16126.gcc

1800 --357 --5.04129.compress

1900 --277 --6.85130.li

2400 --384 --6.26132.ijpeg

1900 --279 --6.81134.perl

2700 --427 --6.32147.vortex

Notes/Tuning Information
Portability flags were:
Baseline flags were: -O2 -fomit-frame-pointer
Nonbase flags were:

1. Compiler does make a difference: gcc 2.7.2p 20% slower
than the Intel reference compiler shipped with x86 Solaris

Standard Performance Evaluation Corporation
info@spec.org

http://www.spec.org

spec
CINT2000 Result

Copyright 1999-2000, Standard Performance Evaluation Corporation

Compaq Computer Corporation
AlphaServer ES40 Model 6/833

SPECint2000 =
SPECint_base2000 =

544
518

SPEC license #: 2 Tested by: Compaq NH Test date: Oct-2000 Hardware Avail: Jan-2001 Software Avail: Nov-2000

Benchmark
Reference

Time
Base

Runtime
Base
Ratio Runtime Ratio 200 400 600 800

164.gzip 1400 358 392 357 393
175.vpr 1400 309 452 307 456
176.gcc 1100 178 617 160 687
181.mcf 1800 408 441 340 529
186.crafty 1000 144 694 157 637
197.parser 1800 500 360 409 440
252.eon 1300 202 645 202 644
253.perlbmk 1800 342 526 332 543
254.gap 1100 301 365 303 363
255.vortex 1900 282 673 249 763
256.bzip2 1500 268 560 264 568
300.twolf 3000 456 658 451 666

Hardware
CPU: Alpha 21264B
CPU MHz: 833
FPU: Integrated
CPU(s) enabled: 1
CPU(s) orderable: 1 to 4
Parallel: No
Primary Cache: 64KB(I)+64KB(D) on chip
Secondary Cache: 8MB off chip
L3 Cache: None
Other Cache: None
Memory: 16GB
Disk Subsystem: 1x8GB BD0096349A
Other Hardware: Ethernet

Software
Operating System: Tru64 UNIX V5.1 + Patch Kit 1 libc
Compiler: Compaq C V6.3-129-44A8I

Compaq C++ V6.2-033-4298H
File System: AdvFS
System State: Multi-user

Notes/Tuning Information
 Baseline C : cc -arch ev6 -fast GEMFB ONESTEP
 C++: cxx -arch ev6 -O2 ONESTEP

 GEMFB: fdo_pre0 = mkdir /tmp/pb; rm -f /tmp/pb/${baseexe}*
 PASS1_CFLAGS = -prof_gen_noopt -prof_dir /tmp/pb
 PASS2_CFLAGS = -prof_use_feedback -prof_dir /tmp/pb
 (base uses directory /tmp/pb; peak uses /tmp/pp)

 SPIKEFB: fdo_post2 = spike -feedback ${baseexe} -o tmp ${baseexe};
 mv tmp ${baseexe}
 Peak: cc [except eon: cxx] -arch ev6 ONESTEP plus:
 164.gzip: -g3 -fast -O4 +GEMFB
 175.vpr: -g3 -fast -O4 +GEMFB
 176.gcc: -g3 -fast -O4 -xtaso_short +GEMFB
 181.mcf: -g3 -fast -xtaso_short +GEMFB
 186.crafty: -g3 -fast -O4 -inline speed
 197.parser: -g3 -fast -O4 -xtaso_short +GEMFB
 252.eon: -O2
 253.perlbmk: -g3 -fast +GEMFB +SPIKEFB
 254.gap: -g3 -fast -O4 +GEMFB

1. Peak results can be significantly higher than base. Note the
huge list of dodgy compiler options.

spec SPEC CINT95rate Results
Copyright 1995, Standard Performance Evaluation Corporation

94 Volume: 7 Issue: 4

SPECint_rate95

SPECint_rate_base95

642

642

=

=

Digital Equipment Corp.
AlphaServer 8400 5/300

SPEC license # 2 Tested By: Digital PKO Test Date: Oct-95 Hardware Avail: Apr-95 Software Avail: Aug-95

Contact:
Information
For More

Manassas, VA 22110
10754 Ambassador Drive, Suite 201

SPEC

http://www.specbench.org
info@specbench.org

(703) 331-0180

SPECrate
0 100 200 300 400 500 600 700 800 900

099.go
124.m88ksim

126.gcc
129.compress

130.li
132.ijpeg
134.perl

147.vortex

AlphaServer 8400 5/300
Hardware/Software Configuration for:

Hardware
AlphaServer 8400 5/300Model Name:
300 MHz 21164CPU:
IntegratedFPU:
10Number of CPU(s):
8KBI+8KBD on chipPrimary Cache:
4MBSecondary Cache:
noneOther Cache:
1GB Memory:
1 x 2GBDisk Subsystem:
1 x 2GB
EthernetOther Hardware:

Software
Digital UNIX V3.2C (Rev 148)Operating System:
DEC C V5.0-106Compiler:
UFSFile System:
Multi UserSystem State:

Benchmark
and Name

Base
Copies

Base
Run Time

Base
SPEC Ratio Copies Run Time SPEC Ratio

SPECint_rate95 (G. Mean) 642

SPECint_rate_base95 (G. Mean) 642

1010 464464 891891099.go

1010 271271 631631124.m88ksim

1010 291291 526526126.gcc

1010 270270 601601129.compress

1010 280280 611611130.li

1010 350350 617617132.ijpeg

1010 257257 666666134.perl

1010 377377 645645147.vortex

Notes/Tuning Information
Baseline Optimizations: -O5 -ifo -non_shared -om
Portibility Flags: 124.m88ksim: -DLEHOST 134.perl: -DI_TIME
147.vortex: -D__RISC_64__
Compiler invokation: cc -migrate -std1 (DEC C with -std1 for strict ANSI)

1. Running 10 copies on a 10 CPU machine

2. Base SPEC ratio = copies run*reference*seconds in day /
elapsed time (=rate in jobs/day)

Top SPEC2000 Results for each ISA
machine processor cpu MHz cache sizes int base fp base int fp

HP Alpha ES45 21264C 1250 64/64+(16M) 845 1019 928 1365
Intel D850GB Pentium IV 3060 12*/8+256 1099 1077 1107 1091
AMD 2800XP Athlon XP 2250 64/64+256 898 782 933 843

Intel VC820 Pentium III 1130 16/16+256 461 329 464 340
Sun Blade 2050 U-SPARC-IIIcu 1050 32/64+(8M) 537 701 610 827

HP c3750 PA-8700 875 768/1.5M 642 623 678 674
HP rx4610 Itanium 800 16/16+96+(4M) 379 701 379 701
HP rx5670 Itanium2 1000 16/16+256+(3M) 810 1431 810 1431

SGI Orgin 3200 R14000 600 32/32+(8M) 483 499 500 529
IBM p650 Power4 1450 64/32+1.5M+(32M) 909 1218 935 1295

Selected SPEC95 Results
machine processor cpu MHz cache sizes int base fp base int fp

Sun SS10/40 SuprSP 40 20/16 1.00 1.00 − −
Intel 440BX Pentium II 300 16/16+(512) 12.2 8.4 12.2 9.2
Intel 440EX Celeron A 300 16/16+128 11.3 8.3 11.3 9.1
Intel 440EX Celeron 300 16/16 8.3 5.8 8.3 6.9

Compaq PC164LX 21164 533 8/8+96+(4M) 16.8 20.7 16.9 21.7
Compaq PC164SX 21164PC 533 16/16+(1M) 12.2 14.1 12.4 16.1

Intel 440BX Pentium II 450 16/16+(512) 17.2 11.8 17.2 12.9
Intel 440BX Pentium II 400 16/16+(512) 15.8 11.4 15.8 12.4
Intel 440BX Pentium II 350 16/16+(512) 13.9 10.2 13.9 11.2
Intel 440BX Pentium II 330 16/16+(512) 13.0 8.8 13.0 9.6
Intel 440BX Pentium II 300 16/16+(512) 11.9 8.1 11.9 8.8
Intel 440BX Pentium II 266 16/16+(512) 10.7 7.5 10.7 8.2
Intel 440BX Pentium II 233 16/16+(512) 9.4 6.7 9.4 7.4

DEC 4100/5/400 A21164 400/75 8/8+96+4M 10.1 16.0 12.1 17.2
DEC 4100/5/400 2xA21164 400/75 8/8+96+4M 10.1 20.7 12.1 24.2
DEC 4100/5/400 4xA21164 400/75 8/8+96+4M 10.1 26.6 12.1 33.4

Intel XXpress Pentium 200 8/8+1M 5.47 2.92 5.47 3.68
Intel Alder PentPro 200 8/8+256 8.09 5.99 8.09 5.99

2
0

SPEC 95 Results
1. cache sizes L1-I/L1-D + L2 + L3

2. First part of table shows current top scores for a range of
CPUs and architectures. Notice how some RISC chips are
beginning to fall behind...

3. although a uniprocessor benchmark, some auto-parallelizing
compilers manage to reaps benefits from multiple CPUs

4. futility of MHz, even MIPS or FLOPS : compare PA8000
@180 and 21164 @400, or Pentium @200 and PPro @200

5. “Speed demons vs brainiacs”: PA8000 gets better utilization
from its 2 integer pipelines, and executes more expressive
instructions than Alpha.

6. For a given processor core, SPEC does scale reasonably with
MHz, providing Memory b/w is scaled comparably.

7. Note lousy x86 FP performance...

Comparing Implementations
Summary

• Fabrication technology has a huge influence

• Exponential improvement in technology

• Processor for a product chosen on:

– Instruction Set Compatibility

– Power Consumption

– Price

– Performance

• Performance is application dependent

– Avoid MIPS, MHz

– Benchmark suites

21

Instruction Set Architecture

• Processor s/w interface

• Externally visible features

– Word size

– Operation sets

– Register set

– Operand types

– Addressing modes

– Instruction encoding

• Introduction of new ISAs now rare

• ISAs need to last several generations of
implementation

• How do you compare ISAs ?

– yields ‘best’ implementation

∗ performance, price, power

∗ are other factors equal?

– ‘aesthetic qualities’

∗ ‘nicest’ for systems programmers

22

Instruction Set Architecture
1. In the early days, new architectures were introduced on a

regular basis. Today, after IA-64 we’re unlikely to see the
introduction of another main-stream architecture for some
time.

2. difficult to quantitatively compare the effects of architecture
upon implementation: Different implementations have
different goals, different amounts of money spent on them,
different people etc.

Instruction Set Architecture

• New implementations normally backwards
compatible

– Should execute old code correctly

– Possibly some exceptions e.g.

∗ Undocumented/unsupported features

∗ Self modifying code on 68K

– May add new features e.g. FP, divide, sqrt,
SIMD, FP-SIMD

– May change execution timings

– → CPU specific optimization

– Can rarely remove features

∗ Unless never used

∗ software emulation fast enough

– → Layers of architectural baggage

∗ (8086 16bit mode on Pentium IV)

• Architecture affects ease of utilizing new
techniques e.g.

– Pipelining

– Super-scalar (multi-issue)

• But x86 fights real hard!

– more T’s tolerable unless on critical path

23

Instruction Set Architecture
1. 68030 separate I and D cache broke self modifying code.

2. PPro still has to execute self modifying code correctly - Too
many old x86 programs rely on it

3. Can’t remove features, but it may be acceptable to make
them run slowly e.g. 16 bit mode on the PPro - MS assured
Intel that the majority of code would be 32bit. At the time
of the PPro’s launch, this probably wasn’t true...

4. utilizing new techniques made available by more transistors

5. older CISC architectures not ideal for pipelining -¿ more
gates and gate delays

6. Super-scalar processors attempt to issue multiple
instructions per cycle from a single threaded (scalar)
program.

7. RISC was designed to fully utilize pipelining, but some RISC
architectures made decisions which make super-scalar
implementation slightly tricky

8. x86 (IA-32) wasn’t designed to utilize these techniques, but
has succeeded in doing so pretty well – just through
transistors at the problem.

Reduced Instruction Set
Computers

• RISC loosely classifies a number of Architectures
first appearing in the 80’s

• Not really about reducing number of instructions

• Result of quantitative analysis of the usage of
existing architectures

– Many CISC features designed to eliminate the
‘semantic gap’ were not used

• RISC designed to easily exploit:

– Pipelining

∗ Easier if most instructions take same
amount of time

– Virtual Memory (paging)

∗ Avoid tricky exceptional cases

– Caches

∗ Use rest of Si area

• Widespread agreement amongst architects

1. Can be dangerous grouping architectures into CISC and
RISC. Within each classification there are wide differences

2. semantic gap: 1970’s, loop constructs, list and bit-field
operators, procedure calls (these investigated further later
on)

3. pre RISC, there was wide diversity in architecture. Even very
new architectures have firm RISC-like foundations. e.g.
IA-64

24

Amdahl’s Law

• Every ‘enhancement’ has a cost:

– Would Si be better used elsewhere?

∗ e.g. cache

– Will it slow down other instructions?

∗ e.g. extra gate delays on critical path

∗ → longer cycle time

• Even if it doesn’t slow anything else down, what
overall speedup will it give?

• size and delay

speedup = execution time for entire task without using enhancement
execution time for entire task using enhancment when possible

1. using enhancement when possible

25

Amdahl’s Law :2

• How frequently can we use enhancement?

– examine instruction traces e.g. SPEC

– will code require different optimization?

– Fractionenhanced

• When we can use it, what speedup will it give?

– Speedupenhanced

– e.g. cycles before/cycles after

Speedupoverall =
1

(1− Fractionenhanced) + Fractionenhanced
Speedupenhanced

→ Spend resources where time is
spent

Optimize for the common case

26

Amdahl’s Law for
Speedup=10

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

ov
er

al
l s

pe
ed

up
 fa

ct
or

percentage of time speedup is usable

1 / ((1-x) + (x/10))

27

Amdahl’s Law Example

• FPSQRT is responsible for 20% of execution time
in a (fictitious) critical benchmark

• FP operations account for 50% of execution time
in total

• Proposal A:

– New FPSQRT hardware with 10x performance

speedupA =
1

(1− 0.2) + 0.2
10

=
1

0.82
= 1.22

• Proposal B:

– Use Si area to double speed all FP operations

speedupB =
1

(1− 0.5) + 0.5
2

=
1

0.75
= 1.33

• → Proposal B is better

• (Probably much better for other users)

28

Word Size

• Native size of an integer register

– 32bits on ARM, MIPS II, x86 32bit mode

– 64bits on Alpha, MIPS III, SPARC v8,
PA-RISC v2

• NOT size of FP or SIMD registers

– 64 / 128 bit on Pentium III

• NOT internal data-path width

– 64bit internal paths in Pentium III

• NOT external data-bus width

– 8bit Motorola 68008

– 128bit Alpha 21164

• NOT size of an instruction

– Alpha, MIPS, etc instructions 32bit

• But, ‘word’ also used as a type size

– 4 bytes on ARM, MIPS

– 2 bytes on Alpha, x86

∗ longword = 4 bytes, quadword = 8

29

64bit vs 32bit words

• Alpha, MIPS III, SPARC v8, PA-RISC v2

4 Access to a large region of address space from a
single pointer

– large data-structures

– memory mapped files

– persistent objects

4 Overflow rarely a concern

– require fewer instructions

8 Can double a program’s data size

– need bigger caches, more memory b/w

8 May slow the CPU’s max clock speed

• Some programs gain considerably from 64bit,
others get no benefit.

• Some OS’s and compilers provide support for
32bit binaries

1. 64 bits is over 10 million terabytes (1.8E19)

2. There now exists true 64bit versions of a number of
architectures.

3. Alpha has always been 64bit

4. 32bit support: Versions of libc with both 32 and 64 bit
APIs. Pointers are 32bits long.

5. See article on PA-RISC 64bit extensions

30

Byte Sex

• Little Endian camp

– Intel, Digital

• Big Endian camp

– Motorola, HP, IBM

– Sun: ‘Network Endian’, JAVA

• Bi-Endian Processors

– Fixed by motherboard design

– MIPS, ARM

• Endian swapping instructions

ef

de

ad

be

ef

&x+0

de be

0 (lsb)31(msb)

in
cr

ea
si

ng
ad

dr
es

se
s

ad

ef

be

ad

de

32
bi

t w
or

d

Big Endian Little Endian

int x= 0xdeadbeef;
char *p= (char*)&x;
if(*p == 0xde) printf("Big Endian");
if(*p == 0xef) printf("Little Ebdian");

&x+1

&x+2

&x+3

&x+0

&x+1

&x+2

&x+3

31

Byte Sex
1. There is no right or wrong...

2. bit and byte endian. IBM/PowerPC use weird big bit-endian
in manuals

3. Only programs that access the same value as both bytes and
words care, or pass data to other processors.

4. MIPS: little-E on Digital Ultrix, big-E on SGI IRIX

5. processor XORs address bits A0 and A1 based on
endian-mode. Motherboard data bus must also be wired
accordingly. (endian mode cannot be changed on-the-fly)

6. Machines that only access data as words do not have an
endian per se. e.g. Cray

7. Some old machines had 9bit bytes. Should really call a byte
an octet...

8. instructions that swap the endian of a word have been added
to several architectures – particluar for little endian
machines to enable them to translate in and out of ‘Network
endian’ (which is big)

Data Processing Instructions

• 2’s Complement Arithmetic

– add, subtract, multiply, compare, multiply

– some: divide, modulus

• Logical

– and, or, not, xor, bic, . . .

• Shift

– shift left, logical shift right, arithmetic shift
right

– some: rotate left, rotate right

1. add,sub: same ALU operation for signed and unsigned values

2. compare is a subtract in which throws result away

3. add overflow c: ignore, Fortran: need to know about it :
exception vs test

4. divide: example of instruction that got added in Alpha

5. bic = and not

6. barrel shifters vs ALU (1 bit at a time shifts on old CISC
e.g. 6502)

7. no rotate in C, but compilers can still synthesize it

8. rotates not in some RISC, 2 shifts and OR

9. arithmetic shift right replicates msb.

32

Operand Size

• CISC

– 8,16,32 bit operations

– zero/sign extend sources

∗ need unsigned/signed instrs

– merge result into destination

– some even allow mixed size operands

72

49 b3 7a 83

r1.b

ff be

031

ff

83ff ffff

adds r3.w, r1.b, r2.w
(Signed add of r1.b and r2.w to r3.w)

de ad be ef

031

efff beff

r2.w

Sign Extend

a0 b1 c2 d3

31 r3.w 0

a0 b1 be 72

r3.w
Truncate & Merge

32bit ALU

• RISC

– Word size operations only

– (except 64bit CPUs often support 32bit ops)

– Pad char and short to word

33

Operand Size
1. extension and merging can be a right pain on the critical

path.

2. When doing truncation (part of merge), need to check for
overflow

3. VAX and x86 allow operands of different sizes to be used in
the same instruction.

4. Try to make Word size operations the common case

5. Compiler pads chars and shorts into words. (Can’t be done
for arrays).

6. Excluding 32bit ops from 64bit machines would result in too
much performance loss on current code. But, Alpha always
produces a 64bit result, avoiding merging.

(Zero/Sign Extension)

• Unsigned values: zero extend

– e.g. 8bit values to 32bit values
unsigned char a; int b;
and b ← a, #0xff

• Signed values: sign extend

– e.g. 8bit values to 32bit values

– Replicate sign bit
char a; int b;
lsl b ← a, #24
asr b ← b, #24

• C: 32bit to 8bit

– Just truncate
and b ← a, #0xff

1. All RISCs perform operations on 32 bit quantities: CISC

2. Languages other than C: Check for overflow

34

CISC instructions RISC
dropped

• Emulated in RISC:
move r1 ← r2 e.g. or r1 ← r2, r2
zero r1 e.g. xor r1 ← r1, r1
neg r1 e.g. sub r1 ← #0, r1
nop e.g. or r1 ← r1, r1
sextb r1 ← r2 e.g. lsl r1 ← r2, #24;

asr r1 ← r1, #24

• Used too infrequently:

– POLY, polynomial evaluation (VAX)

– BCD, bit-field operations (68k)

– Loop and Procedure call primitives

∗ Not quite right for every HLL

∗ Unable to take advantage of compiler’s
analysis

• Exceptions & interrupts are awkward:

– memcpy/strcmp instructions

35

CISC instructions RISC
dropped

1. NB. Note use of ← to indicate source and destination. Some
assemblers use src,dest other use dest,src. The ←
convention is used in these notes to avoid this ambiguity.

2. nop, mov, zero would have had short instruction encodings
on CISC

3. No execution time or opcode size advantage to be gained
from having dedicated nop,mov,zero instructions on RISC.
(would even result in more complicated decode logic).

4. Assembler may provide macros for mov, neg, clr etc.

5. Many 70’s architectures attempted to close the ‘semantic
gap’ between HLLs and machine code

6. Complex instructions that perform very specific functions

7. Although they are attractive to humans, Compilers often
find them inconvenient to use.

8. Loop and procedure call primitives often weren’t quite right

9. Procedure call primitives often were unable to make use of
the compiler’s static analysis to determine which registers to
save and restore. (leaf procedures, call graph etc)

10. On more recent implementations, it is often slower to use
the complex instruction than to use several standard ones.
E.g. ‘simple’ instructions are executed directly by the
Pentium P6 core, but complicated instructions require
microcode to decode and execute.

11. memcpy: has intermediate state–has to be resumed after an
interrupt or exception rather than restarted. VAX/x86 put
intermediate state in GPRs.

12. However, fast memcpy would be very useful (though
normally limited by memory bandwidth anyway)

New Instructions

• integer divide, sqrt

• popcount, priority encode

• Integer SIMD (multimedia)

– Intel MMX, SPARC VIS, Alpha, PA-RISC MAX

– MPEG, JPEG, polygon rendering

– parallel processing of packed sub-words

– E.g. 8x8, 4x16 bit packed values in 64b word

– arithmetic ops with ’saturation’

∗ s8 case: 125+4 = 127

– min/max, logical, shift, permute

– RMS error estimation (MPEG encode)

– Will compilers ever use these instrs?

• FP SIMD (3D geometry processing)

– E.g. 4x32 bit single precision

– streaming vector processing

– Intel SSE, AMD 3D-Now, PPC AltiVec

• prefetch / cache hints (e.g. non-temporal)

• Maintaining backwards compatiblity

– Use alternate routines

– Query CPU feature set

36

1. divide - Now enough Si to justify it. (though IA64 doesn’t
have integer multiply or divide - it relies on the FP unit)

2. popcount, priority - used by OS, requested on Alpha by Cray

3. multimedia instructions: Probably won’t be generated by
compilers. (Months spent hand coding MPEG routines)

4. x86 MMX uses FP regs so as not to create more user state
(thus no changes to the OS [MS Windows] are required)

5. software trap mechanism is slow–better to detect the new
instructions absence (e.g. via the feature register), and
branch to some code providing similar functionality.

6. MAX- see PA-RISC 2.0 Extensions article

7. Is adding all these instructions still adhering to the RISC
philosophy? Given the increasing importance of multimedia,
the answer is probably yes. It will be interesting to see if
compilers ever manage to use these instructions (some
evidence that they are). In the meantime, people are putting
lots of effort into coding standard libraries with
MMX/KNI/AltiVec instructions e.g. the OpenGL rendering
library. Another alternative is to add language extensions
that enable SIMD/vector operations to be specified in a
HLL.

8. FP Single Instruction Multiple Data (SIMD) (vector)
instructions added to improve 3D geometry processing.
’Streaming SIMD’ on the Pentium III adds the first new
architecturally visible CPU register state since the 386 (eight
new 128bit regs). This will require some modification of the
OS context switch code. Now this has happened, Intel are
bringing out SIMD-2, which effectively replaces the original
MMX.

9. Vector units repeat the same operations to streams
(vectors) of operands. (unlike e.g. MMX which operates on
a small fixed numbers of operands in a word).

10. Better to have an alternate routine than to try software
emulation of the missing instructions. Taking illegal
instruction traps is very slow.

Registers and Memory

• Register set types

– Accumulator architectures

– Stack

– GPR

• Number of operands

– 2

– 3

• Memory accesses

– any operand

– one operand

– load-store only

37

Accumulator Architectures

• Register implicitly specified

• E.g. 6502, 8086 (older machines)

LoadA foo
AddA bar
StoreA res

• Compact instruction encoding

• Few registers, typically ≤ 4 capable of being
operands in arithmetic operations

• Forced to use memory to store intermediate values

• Registers have special functions

– e.g. loop iterators, stack pointers

• Compiler writers don’t like non-orthogonality

1. historical perspective

2. 3 mem locs labelled foo, bar and res. (Offsets calculated by
assembler)

3. registers much faster for storing intermediates. registers not
being used for their special functions can be used as
temporaries.

4. never enough of the right type of register...

38

Stack Architectures

• Operates on top two stack items

• E.g. Transputer, (Java)

Push foo
Push bar
Add
Pop res

• Stack used to store intermediate values

• Compact instruction encoding

• Smaller executable binaries, good if:

– memory is expensive

– downloaded over slow network

• Fitted well with early compiler designs

1. Like accumulator architecture, tricky to make go fast
(especially super-scalar implementations)

2. Stacks are easier to cache then general memory accesses,
but spotting dependencies between instructions is still harder
than with registers.

3. One advantage of stack architectures is that they do not
impose a limit on the number of architecturally visible
‘registers’, thus allowing future scalability.

39

General Purpose Register
Sets

• Post 1980 architectures, both RISC and CISC

• 16,32,128 registers for intermediate values

• Separate INT and FP register sets

– Int ops on FP values meaningless

– RISC: Locate FP regs in FP unit

• Separate Address/Data registers

– address regs used as bases for mem refs

– e.g. Motorola 68k

– not favoured by compiler writers (8 + 8 6= 16)

– RISC: Combined GPR sets

1. x86 32bit mode (IA-32) is basically an 8 register GPR set

2. AMD 29K embedded controller family (used in many laser
printers) has 128 registers, as does Intel’s IA-64 Merced

3. 32 may not be enough (look at register renaming later)

4. FP regs are used by different functional units from INT regs.
Interpreting integers as FP values and vice versa is relatively
rare. Makes sense to keep them separate, enabling a
dedicated register file to be located next to the appropriate
functional units.

5. Some ISAs have instructions to move values between FP
and int regs. Alpha doesn’t: transfer has to be achieved via
a StoreFP followed by a Load (via L1 D-cache)

6. New ‘media processors’ (DSPs) tend to have common int
and FP regs. They believe that conversion between int and
fp will be a common operation.

7. Dedicated address registers may be mildly advantageous to
implementation, as address registers could be located closer
to the load/store unit.

8. But, Separate address and data registers can be a pain, as
for some loops you wish you had more address registers, for
other loops you wish you had more data. End up copying
values back and forth between data and address.

40

Load-Store Architecture

• Only load/store instructions ref memory

• The RISC approach

→ Makes pipelining more straightforward

Load r1 ← foo
Load r2 ← bar
Add r3 ← r1, r2
Store res← r3

• Fixed instruction length (32bits)

• 3 register operands

• Exception: ARM-Thumb, MIPS-16 is two operand

– more compact encoding (16bits)

1. Only one port required on D-cache to avoid stalls due to
structural hazards

41

Register-Memory

• ALU instructions can access 1 or more memory
locations

• E.g. Intel x86 32bit modes

– 2 operands

– can’t both be memory

Load r1←foo
Add r1←bar
Store res←r1

• E.g. DEC VAX

– 2 and 3 operand formats

– fully orthogonal

Add res←bar,foo

• Fewer instructions

– Fewer load/stores

– Each instruction may take longer

– → Increased cycle time

• Variable length encoding

– May be more compact

– May be slower to decode

42

Register-Memory
1. Variable length encoding: Intel 32bit mode 1-17bytes, 16bit

mode 1-9, VAX 1-19

2. orthogonal: any combination is legal

3. each instruction may be slower, harder to pipeline

4. Although most post 1980 architectures use GPR sets, there
are still some special registers...

Special Registers : 1

• Zero register

– Read as Zero, Writes discarded

– e.g. Alpha, Mips, Sparc, IA-64

– Data move: add r2 ← r1, r31

– nop: add r31 ← r31, r31

– prefetch: ldl r31 ← (r1)

– Zero is a frequently used constant

• Program Counter

– NOT usually a GPR

– Usually accessed by special instructions e.g.
branch, branch and link, jump

– But, PC is GPR r15 on ARM

1. zero register: r0 on MIPS, r31 on Alpha

2. prefetch: Allows a value to be pulled into cache without risk
of generating an exception

3. ARM’s visible PC exposes the pipeline depth. This was a
pain on the StrongArm which has a 5 stage pipe instead of
3.

43

Special Registers : 2

• Condition code (Flag) registers

– Carry, Zero, Negative, Overflow

– Used by branches, conditional moves

– Critical for pipelining and super-scalar

– CISC: one CC reg updated by all instructions

– ARM, SPARC: one CC reg, optionally updated

– PowerPC: multiple CC regs (instr chooses)

– IA64: 64 one bit predicate regs

– Alpha, MIPS: no special CC regs

• Link registers

– Subroutine call return address

– CISC: pushed to stack

– RISC: saved to register

∗ register conventions

∗ only push to stack if necessary

– Jump target/link regs (PowerPC, IA-64)

– fixed GPR (r14, ARM) (r31,MIPS)

– GPR nominated by individual branch (Alpha)

44

Special Registers : 2
1. Revision: meanings of the various CC flags.

2. ARM/SPARC: Bit in opcode to determine whether CC
updated.

3. Single CC register poses problems for super-scalar
implementation due to false dependencies.

4. Alpha and MIPS have no CC registers. GPRs used in their
place, thus using the normal dependency analysis logic.
Have to test for carry/overflow etc using ALU instructions.

5. IA64 has 64 single bit predicate registers. Compare
instructions nominate two pred regs: one will be cleared, the
other set.

6. More on the implications of CC regs for control flow later...

7. register conventions: args, result, temps, caller saves, callee
saves

8. push to stack: eg if recursive

9. The link register typically has to be moved to a callee saves
register before making another procedure call. Alpha avoids
this by allowing the current PC to be stored in a nominated
register.

10. IA64 has 8 branch target registers. Special registers are used
in order to give hints to the instruction prefetch unit.

Register Conventions

• Linkage (Procedure Call) Conventions

– Globals: sp, gp etc.

– Args: First (4-6) args (rest on stack)

– Return value: (1-2)

– Temps: (8-12)

– Saved: (8-9) Callee saves

• Goal: spill as few registers as possible in total

• Register Windows (SPARC)

– save and restore

– 2-32 sets of windows in ring

– 16 unique registers per window

– engine spills/fills regs in background to special
stack

globals

in

out

locals

8 globals

in

out

locals8

8

8 new

new

save

• IA-64: Allows variable size frames

– 32 globals, 0-8 args, 0-96 locals

– h/w register stack engine

45

Register Conventions
1. languages can have different conventions for the same CPU

2. Caller saves its own args and temps

3. goal: save as few as possible in total. Don’t save all before
procedure call as callee may not use many. Don’t save all
after as caller may not have used many.

4. Compiler should allocate variables to ‘Saved’ registers, then
put any that are left over in ‘Temps’.

5. Call graph optimization can be used to tune which registers
are actually saved.

6. When SPARC was designed, the Berkeley team felt that the
current compiler technology was not up to the job of
assigning arguments etc to registers.

7. Sparc: don’t have to move incoming args to safety before
making another call–it’s done in hardware.

8. Sparc: running out of windows is bad – normally need to
save the full 16 registers in the window regardless of which
are actually used.

9. Sparc: Total context is very large—painful to context
switch.

Classic RISC Addressing Modes

• Register

– Mov r0 ← r1

– Regs[r0] = Regs[r1]

– Used when value held in register

• Immediate

– Mov r0 ← 42

– Regs[r0] = 42

– Constant value limitations

• Register Indirect

– Ldl r0 ← [r1]

– Regs[r0] = Mem[Regs[r1]]

– Accessing variable via a pointer held in reg

• Register Indirect with Displacement

– Ldl r0 ← [r1, #128]

– Ldl r0 ← 128(r1)

– Regs[r0] = Mem[128 + Regs[r1]]

– Accessing local variables

46

Classic RISC Addressing Modes

1. First two not really addressing modes as don’t access
memory...

2. Different assemblers have different syntax - Even for same
arch!

3. register indirect obviously a special case of register indirect
with displacement - just a more compact encoding on CISC.

4. Pretty much all processors have the RISC addr modes

5. Immediate values: on most CISCs they must be prefixed
with # or $

6. reg indirect with displacement used for accessing local vars
off stack pointer, or global variables from the GP register

7. displacement size is often limited on RISC architectures.

Less RISCy addr modes

• ARM and PowerPC

• Register plus Register (Indexed)

– Ldl r0 ← [r1,r2]

– Regs[r0] = Mem[Regs[r1] + Regs[r2]]

– Random access to arrays

– e.g. r1=base, r2=index

• Register plus Scaled Register

– Ldl r0 ← [r1, r2, asl #4]

– Regs[r0] = Mem[Regs[r1] + (Regs[r2]¿4)]

– Array indexing

– sizeof(element) is power of 2, r2 is loop index

• Register Indirect with Displacement and Update

– Pre inc/dec Ldl r0 ← [r1!, #4]

– Post inc/dec Ldl r0 ← [r1], #4

– C *(++p) and *(p++)

– Creating stack (local) variables

– Displacement with post update is IA-64’s only
addressing mode

47

Less RISCy addr modes
1. can improve instruction density

2. reg+reg requires an extra read port on register file

3. ARM: shift unit can be used to scale one operand for any
instruction.

4. syntax for displacement and update highly variable. For
some architectures, displacement is fixed to the sizeof the
value being loaded.

5. Full descending stack use: pre dec, post inc

6. Empty descending stack use: post dec, pre inc

7. Displacement with update requires an extra write port on
register file.

8. IA-64 ONLY supports reg+disp with compulsory post
update & reg+reg with compulsory update. Accessing
structure members presumably requires the compiler to deal
with a ’moving base pointer’ as different elements are
accessed. Understanding disassembled IA-64 code is going
to be a nightmare...

CISC Addressing Modes

• Direct (Absolute)

– Mov r0 ← (1000)

– Regs[r0] = Mem[1000]

– Offset often large

– x86 Implicit base address

– Most CISCs

• Memory Indirect

– Mov r0 ← @[r1]

– Regs[r0] = Mem[Mem[Regs[r1]]]

– Two memory references,

– C **ptr, linked lists

• PC Indirect with Displacement

– Mov r0 ← [PC, #128]

– Regs[r0] = Mem[PC + 128]

– Accessing constants

48

CISC Addressing Modes
1. Absolute mode: eg. 6502 Zero page

2. absolute mode synthesizable on RISC with zero register

3. absolute mode is not compatible with object oriented
programming

4. Memory indirect: two memory references required, thus two
possibilities for exceptions to occur.

5. Even more complicated modes exist e.g. 68020’s Mem
Indirect Pre Indexed mode: two displacement, a scale, two
registers and two memory accesses. Abandoned on 68040?

6. PC indirect useful for Position Independent code, e.g. for
single address space operating systems, shared libraries etc.

7. branch instructions are typically PC relative – PC indirect
mode enables relative access to data. Particularly useful for
read-only data, which can be placed in the text segment
(usually just after the function in which it is used).

8. Assembler can usually fills in the offset between the
instruction doing the access and the data being accessed.

9. ARM supports PC indirect mode, as PC is just another GPR

10. Other RISC processors generally use other conventions to
access literal constants in a position-independent manner.
e.g. a register containing the ‘procedure variable’

11. PC indirect mode can be synthesized on other RISC
processors by doing a subroutine call to the following
instruction, and using the PC value stored in the link
register.

Why did RISC choose these
addressing modes?

0% 10% 20% 30% 40% 50% 60%

40%
55%

32%

39%
17%

43%

11%
3%

24%

6%
16%

0%

1%
6%

1%TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

Memory Indirect

Register +
register scaled

Register indirect

Immediate

Register indirect
+ displacement

Frequency of addressing modes (VAX)

• RISC

– immediate

– register indirect with displacement

• ARM, PowerPC reduce instruction counts by
adding:

– register + register scaled

– index update

1. Quantitative approach

2. IA-64 allows only register indirect, but forces the base
register to be incremented by either a Reg or an Immediate
AFTER the load.

49

Immediates and
Displacements

• CISC: As instructions are variable length,
immediates and displacements can be any size
(8,16,32 bits)

• RISC: How many spare bits in instruction format?

• Immediates

– used by data-processing instructions

– usually zero extended (unsigned)

∗ add → sub

∗ and → bic

– For traces on previous slide:
50-70% fit in 8bits, 75-80% in 16bits

– IA-64 22/14, MIPS 16, Alpha 8,
ARM 8 w/ shift

• Displacement values in load and stores

– Determine how big a data segment you can
address without reloading base register

– usually sign extended

– MIPS 16, Alpha 16, ARM 12, IA-64 9

1. Immediates that can not fit in instruction must be
synthesized in a register, or loaded from the literal pool code
segment.

2. max size of displacement can limit the size of the global
data area under some linkage conventions.

3. displacement is usually signed because negative
displacements are common.

4. For some destination registers IA-64 allows 22 bit
immediates.

5. IA-64 also has a hack for loading 64bit immediate values
using two of the 41 bit instruction slots.

50

Instruction Encoding
RISC: small number of fixed encodings of same length

Operation Ra Rb Signed Displacement

Operation Ra Rb Function Rdest

Operation Ra Immediate Value Rdest

Zero SBZ

Function

load/
store

operate

operate
immediate

Operation Ra Signed Displacement branch

RISC instruction words are 32 bit

IA-64 packs three 41 bit instructions into a 128 bit
‘bundle’

VAX: fully variable. Operands specified independently

Operation and
of operands

Address
specifier 1

Address
field 1

Address
specifier N

Address
field N

x86: knows what to expect after first couple of bytes

Operation Address
specifier

Address
field

Operation Address
specifier

Address
field1

Address
field2

Operation Address
specifier

Address
field1

Address
field2

Extended
specifier

1. RISC: All instruction accesses must be to aligned addresses

2. Many encodings reserved so as to enable future extensions
e.g. the whole swathe of instructions added to MIPS,
SPARC and PA-RISC for 64 bit processing.

3. Read As Zero, IGNore, Must Be Zero, Should Be Zero :
used to specify instruction encoding in a well defined way.

4. RISC: very regular format, simple to decode. (The example
is Alpha. One more format exists, branch)

5. Alpha: 8bit immediate, 16 displ

6. IA-64: Needed instructions a little bigger than 32 bits, yet
needed to keep alignment. Answer – collect some number of
instructions together into a larger power of 2 sized bundle.

51

Code Density Straw Poll

• CISC: Motorola 68k, Intel x86

• RISC: Alpha, Mips. PA-RISC

• Very rough-figures for 68k and Mips include
statically linked libc

arch text data bss total filename
x86 29016 14861 468 44345 gcc
68k 36152 4256 360 40768
alpha 46224 24160 472 70856
mips 57344 20480 880 78704
hp700 66061 15708 852 82621
x86 995984 156554 73024 1225562 gcc-cc1
alpha 1447552 272024 90432 1810008
hp700 1393378 21188 72868 1487434
68k 932208 16992 57328 1006528
mips 2207744 221184 76768 2505696
68k 149800 8248 229504 387552 pgp
x86 163840 8192 227472 399504
hp700 188013 15320 228676 432009
mips 188416 40960 230144 459520
alpha 253952 57344 222240 533536

• CISC text generally more compact,
but not by a huge amount

• Alpha’s 64bit data/bss is larger

1. data is the initialised data segment, bss is allocated at load
time and zeroed.

2. Shared libraries can make binaries much smaller—just look
at an X application.

3. Alpha’s heap is also likely to be much bigger.

52

Code Density

• Important if:

– Memory is expensive

∗ can be in embedded applications

∗ eg. mobile phones

⇒ ARM Thumb, MIPS-16

– Executable loaded over slow network

∗ Though Java not particularly dense!

• Speed vs. size optimization tradeoffs

– loop unrolling

– function inlining

– brunch/jump target alignment

53

Code Density
1. In an embedded application, the memory is often on the

same ASIC as the processor. It must fit.

2. ARM Thumb decodes 16 bit instructions into normal ARM
32 bit ones which it stores in the on-chip I-cache.

3. Java byte code class section compacters/obfiscators (Kaffe)

Instruction caches

0% 10% 20% 30% 40% 50% 60%

li
gcc

espresso
eqntott

compress

su2cor
mdljdp

hydro2d
ear

doduc

80% of executed instruction
90% of executed instruction

SPEC92
program

Fraction of Program

Fraction of program responsible for 80% and 90% of
instruction executions

• Caches generally solve I-stream b/w requirements

– 4bytes x 1GHz x 2-4 instrs = 8-16GB/s !

– Loops are common! (90% in 10%)

– Internal I-caches often get 95%+ hit-rates

– Code density not usually a performance issue

∗ assuming decent compilers and app design

∗ code out-lining (trace straightening) vs.
function in-lining and loop unrolling

• D-Cache generally much more of a problem

54

Instruction caches
1. 99% hit rate for SPEC92 with 8KB I-cache.

2. Some figures by Sites showing that I-caches get very poor
hit rates with some commercial applications e.g. MS SQL
server. These figures could be greatly improved through use
of better compilers/better structured applications. Should
we spend transistor budget to fix s/w inefficiencies ?

3. D-cache hit rates are usually much lower than I-cache hit
rates, and are thus more likely to limit performance. A
return to CISC-style instruction encodings is unlikely for
general purpose CPUs.

4. function in-lining and loop unrolling are generally good
optimization strategies, unless they lead to an I-stream that
doesn’t fit in the cache.

5. code out-lining is the process of moving code that is rarely
executed out of the straight-line case. This avoids it being
dragged into the cache as part of lines containing useful
instructions. May execute better too as less wasted slots
due to branches.

Instruction Mix

0% 5% 10% 15% 20% 25% 30%

store int

compare int

add int

conditional branch

load int

and

shift

or

Total Dynamic
Count

load immediate

mul/div

call/return

jump

other

Instruction mix for SPEC INT92

0% 5% 10% 15% 20% 25% 30%

add FP

conditional branch

store FP

mul FP

load FP

mov reg FP

compare FP

sub FP

Total Dynamic
Count

shift

other

add int

Instruction mix for SPEC FP92

There are no ‘typical’ programs

55

Instruction Mix
1. SPEC92 instruction mix for a MIPS processor (unknown

compiler)

2. Dynamic vs Static mix - e.g. because compiler often moves
multiplies outside of loops, the dynamic mix % will be lower
than the static mix.

3. There is no such thing as a typical program. There exists a
large degree of variance

4. SPEC 95’s JPEG uses mul a lot - expect to see multiply
getting beefed up on new processors.

5. loads and stores are frequent. On a CISC architecture, many
would be incorporated into arithmetic instructions.

Aligned Loads and Stores

• Address mod sizeof(type) = 0

• Most ISA support 8,16,32,(64)
bit loads and stores in hardware

• Signed and unsigned stores same

• Sub-word loads can be Signed and Unsigned

– CISC: loads merge into dest reg

– RISC: loads extend into dest reg E.g:

F

D

E

F

G

H

I

19

20

21

22

23

24

byte load
from addr=21

unsigned

0 0

result 0 (lsb)31

in
cr

ea
si

ng
ad

dr
es

s

32
bi

t w
or

d

0 F

signed

S S

result 0 (lsb)31

S

1. All byte accesses are (by definition) aligned.

2. On a CISC, loads generally merge into destination

56

Aligned Sub-word Load
Logic

0(lsb)31(msb)

Dest Reg

External
Databus

b h w

3 2 1 0 1 0 a1

sz

a0,1

d24 d16 d8 d0 d16 d0 d0

b h w

3 2 1 0 1 0 a1

sz

a0,1

d31 d23 d15 d7 d24 d8 d8

s usi

sb Z

sb

1 0a1

d31 d15

sh

b h w

s u

sz

sh d16

s usi

sb Z

si

Z

b h w

s u

sz

sh d24

s usi

sb Z

si

Z

A0

A1

a0

a1

0 = Little Endian
1 = Big Endian

d0d7d8d15d16d24d31 d23

si = signed / unsigned
sz = byte / halfword / word

• byte-lane steering

• sign/zero extension

• Big/Little endian modes

1. These days, data value will probably actually be read from a
cache line (16 or 32 bytes long), so require another set of
multiplexers to select the word within the line.

2. Extra multiplexers will be required to perform sign extension
for signed sub-word loads

3. Extra multiplexers will be required to perform half-word loads

4. In big endian mode, byte loads will capture the most
significant byte. NB: I/O devices and other peripherals must
be wired up appropriately for this to work correctly as a big
endian machine.

57

Aligned Sub-word Store
Logic

Src Reg

s0 s8 s8

b h w sz

d0d7d8d15d16d24d31 d23

s0 s0s16

b h w sz

s0 s8s24

b h w sz

we3

a1 a0 sz we3 we2 we1 we0

 0 0 w 1 1 1 1
 0 0 h 0 0 1 1
 1 0 h 1 1 0 0
 0 0 b 0 0 0 1
 0 1 b 0 0 1 0
 1 0 b 0 1 0 0
 1 1 b 1 0 0 0

s31 s0

we2 we1 we0

External Databus

• Replicate bytes/halfwords across bus

• Write enable lines tell memory system which byte
lanes to latch

1. Byte must be steered into the appropriate byte line (or
duplicated across the whole bus

2. Big/Little Endian select can be done for stores in a similar
manner to loads.

3. Modified bytes are merged into cache line/memory

4. Not all machines have individual byte write enables. Need to
read-insert-write.

58

Sub-Word Load/Stores

• Word addressed machines

– Addr bit A0 addresses words

• Alpha (v1):

– Byte addressed, but 32/64 load/stores only

– Often critical path

– Sub-word stores hard with ECC memory

– So, emulate in s/w using special instructions
for efficiency

0(lsb)31

Src Reg

0(lsb)31

ECC
check
bits

ECC
calculation

logic

Error

compare

1. word addressed machines (e.g. super computers) can’t
directly access values smaller than a word.

2. Alpha has had sub-word load/store extensions added into
the architecture from the 21164A (EV56) chip. It turned
out that there was just too much ’legacy’ code that relied
upon byte ops, and the compilers couldn’t make a good
enough job of eliminating the accesses.

3. Whole word has to be written to (easily) calculate ECC bits.
Generally requires a read/merge/write-back.

59

Emulating Byte Loads

1. Align pointer

2. Do word load

3. Shift into low byte

4. Mask

5. (sign extend)

• e.g. 32bit, Little Endian, unsigned

unsigned int temp;
temp = *(p&(~3));
temp = temp >> ((p&3) *8);
reg = temp & 255;

• e.g. 32bit, Big Endian, unsigned

unsigned int temp;
temp = *(p&(~3));
temp = temp >> ((3-(p&3)) * 8);
reg = temp & 255;

• e.g. 64bit, Little Endian, signed

long temp;
temp = *(p&(~7));
temp = temp << ((7-(p&7)) * 8);
reg = temp >> 56;

60

Emulating Byte Loads
1. (p & ∼3) can be done with a bic instruction

2. Above is pseudo code. C syntax would requires casts of p to
(unsigned long) and then (int *)

3. Show how to do it using assembler. Note use of lsr and asr.

Unaligned Accesses

• Address mod sizeof(value) 6= 0

• E.g. :

D

A

C

D

E

F

G

H

I

J

B

16

17

18

19

20

21

22

23

24

25

in
cr

ea
si

ng
ad

dr
es

s

32
bi

t w
or

d

32bit unaligned
load from addr=19

Little Endian

D C B AH G F E

31 0 (lsb)
(p&~3)((p+3)&~3)

D

>>((p&3)*8)

000G F E

<<((4-(p&3))*8)

0

G F E

or

031

G

Big Endian

E F G HA B C D

31 0 (lsb)
*(p&~3) *((p+3)&~3)

G

>>((4-(p&3))*8)

FE0D 0 0

<<((p&3)*8)

0

D E F

or

031

0 (lsb)310 (lsb)31

result

1. 4 byte quantities have four possible alignments : only one is
aligned.

2. show how this can be achieved in hardware using a 2*32 bit
register and 32 four input multiplexers.

61

Unaligned Accesses

• CISC and Power PC support unaligned accesses in
hardware

– Two memory accesses

∗ → Less efficient

– May cross page boundaries

• Most RISCs synthesize in software

– Provide special instructions

• Compilers try to keep data aligned

– struct element padding

• Casting char * to int * dangerous

1. PPC unusual.

2. Many bugs in older CISC processors to do with dealing with
exceptions when crossing page boundaries

3. Sub word unaligned accesses may not require two memory
accesses

4. Some operating systems automatically ‘fix-up’ unaligned
accesses by executing a s/w handler. This is very inefficient,
especially as the trap is usually logged to syslog.

62

MIPS Unaligned Support

• LWR Load Word Right

• LWL Load Word Left

– Only one memory access per instruction

– Does shifting and merging as well as load

→ Unaligned load in 2 instrs

D

A

C

D

E

F

G

H

I

B

16

17

18

19

20

21

22

23

24

in
cr

ea
si

ng
ad

dr
es

s

32
bi

t w
or

d
32bit unaligned

load from addr=19

Little Endian Mode

DLDR Rd,Rp XXX

G F ELDL Rd,Rp

G

Big Endian Mode
31 0 (lsb)

D E F G

X E F

031

LDL Rd,Rp

LDR Rd,Rp

Adds 4 to Rp

Adds 4 to Rp

• STR Store Word Right

• STL Store Word Left

• Uses byte store hardware to merge into
memory/cache

1. LWL/LRL instructions are still quite complicated. Slow the
pipeline?

2. Normal LW/SW instructions trap if address not aligned.

3. See man page in supplied material.

63

Alpha Unaligned Loads

• LDQ trap if not 8byte aligned

• LDQ U ignore a0-a2

• EXTQL Rd ← Rs, Rp
Shift Rs right by Rp&7 bytes and extracts quad
word into Rd.

• EXTQH Rd ← Rs, Rp
Shift Rs left by 8-Rp&7 bytes and extracts quad
word into Rd.

• Alpha requires 5 instrs for arbitrary unaligned load
LDQ U Rd ← Rp
LDQ U Re ← Rp + #7
EXTQL Rd ← Rd, Rp
EXTQH Re ← Re, Rp
OR Rd ← Rd, Re

• EXTBL Rd ← Rs, Rp
Shift Rs right by Rp&7 bytes and extracts low
byte into Rd.

• also EXTLL, EXTLH, EXTWL, EXTWH

• If alignment of pointer is known, may use
optimized sequence
E.g. load 4bytes from address 0x123
LDQ Rd ← -3(Rp)
EXTLL Rd ← Rd, #3

64

Alpha Unaligned Loads
1. Simple shift-and-mask instructions.

2. Q stands for quad word (8 bytes), L for long word (4bytes)

3. Same instructions used for sub-word accesses e.g. unsigned
byte load with LDQ U Rd, Rp; EXTBL Rd, Rd, Rp

4. for signed byte: LDQ U Rd, Rp; add Rp, Rp,1; EXTQL Rd,
Rd, Rp; asr #56

5. See Alpha man pages (attached)

Alpha unaligned stores

• No byte hardware, so load quad words, merge, and
store back

• INSQL Rd ← Rs, Rp
Shift Rs left by Rp&7 bytes

• INSQH Rd ← Rs, Rp
Shift Rs right by 8-Rp&7 bytes

• MSKQL Rd ← Rs, Rp
Zero top 8-Rp&7 bytes

• MSKQH Rd ← Rs, Rp
Zero bottom Rp&7 bytes

• E.g.: Store quad word Rv to unaligned address Rp
LDQ U R1 ← Rp Load both quad words
LDQ U R2 ← Rp + #7
INSQH R4 ← Rv, Rp Slice & Dice Rv
INSQL R3 ← Rv, Rp
MSKQH R2 ← R2, Rp Zero bytes to be replaced
MSKQL R1 ← R1, Rp
OR R2 ← R2, R4 Merge
OR R1 ← R1, R3
STQ U R2 → Rp + #7 Store back
STQ U R1 → Rp Order important:aligned case

1. Also Long word, word and byte versions

2. Unaligned stores are painful without logic to perform
sub-word stores. Probably why they’ve since been added to
Alpha...

3. IA-64 ’architecturally’ supports unaligned accesses though
individual hardware implementations may not. The
instruction set does have some good tools for doing software
synthesising the code, such as a bit field extract instruction
that extracts a 64 bit value from a concatenated pair of
64bit registers.

65

Copying Memory

• Often important:

– OS: user args, IPC, TCP/IP

– user: realloc, pass-by-value

• memmove

– Must deal correctly with overlapping areas

• memcpy

– Undefined if areas overlap

– Enables fixed direction

• copy aligned

– Source and Dest long aligned

– Fastest

• Small copies (< 100 bytes)

– Avoid large start-up costs

• Medium sized copies (100–100KB bytes)

– Use highest throughput method

• Large copies

– Probably memory b/w limited anyway...

1. memmove: may need to reverse copy direction e.g. dest =
src+1

66

copy aligned

• E.g. for 32bit machine

void copy_aligned(int32 *d, const int32 *s, int n)
{

sub n, n, #4
blt n, return ; if n<0 exit

loop:
ldw tmp, (s)
add d, d, #4
sub n, n, #4 ; set branch value early
add s, s, #4
stw tmp, -4(d) ; maximise load-to-use
bgt n, loop ; if n>0 branch (no delay slot)

}

• Use widest datapath

– (64bit FP regs on PPro)

• Maximize cycles before tmp is used

• Update n well in advance of branch

• To further optimize:

– Unroll loop to reduce loop overhead

– Instruction scheduling of unrolled loop

– (software pipelining)

67

copy aligned
1. memcpy function has src as a constant.

2. Utilizing delay slot

3. Unroll loop to reduce per iteration loop overhead

4. Touch the next cache line well in advance of use, thus
avoiding a data dependent stall.

5. Re-order instructions such that they get issued to functional
units without stalls due to structural hazards.

6. Highest throughput copy on some x86’s can be achieved by
using the 64bit data-paths provided by the FP regs. The
dedicated MOVS instruction is actually slower! (has to deal
with all the special cases...)

copy aligned (2)
void copy_8_aligned(int32 d[], const int32 s[], int n)
{

int32 t0,t1,t2,t3,t4,t5,t6,t7;
top:

t0 = s[0]; t1 = s[1];
t2 = s[2]; t3 = s[3];
t4 = s[4]; t5 = s[5];
t6 = s[6]; t7 = s[7];
n = n - 32; s = s + 32;
d[0] = t0; d[1] = t1;
d[2] = t2; d[3] = t3;
d[4] = t4; d[5] = t5;
d[6] = t6; d[7] = t7;
d = d + 32; if (n) goto top;

}

• Need to deal with boundary conditions

– e.g. if n mod 32 != 0

• Get cache line fetch started early

– Issue a load for the next cache line

∗ OK if non-blocking cache

∗ beware exceptions (array bounds)

⇒ prefetch or speculative load & check

⇒ non-temporal cache hints

• IA-64: ’Rotating register files’ to assist software
pipelining without the need to unroll loops

68

copy aligned (2)
1. Use of stylised C to direct compiler — can help considerably,

as current product compilers are not as good as one might
wish/expect.

2. Can issue a load for the following cache line ahead of its
use. Providing the cache is non-blocking execution will
continue until the destination register is actually used
(non-blocking caches are pretty standard these days).

3. However, must be careful to ensure that the load doesn’t
fault by e.g. going off the end of the array. This can be
avoided by the use of special prefetch or speculative load
instructions that effectively suppress exceptions.

4. IA-64 rotating register files enable soft ware pipelining
without the Icache bloat caused by loop unrolling. They also
assist with dealing with the boundary conditions on loop
entry and exit. I recommend wrapping a wet towel around
your head before attempting to read that particular section
of the IA-64 optimization manual...

5. non-temporal hints indicate that the data is unlikely to
exhibit temporal locality. Typically this is implemented by
loading the data into the line in the set that will be evicted
next. Some architecture have a separate small cache to hold
such data.

Unaligned copy

• E.g. 32bit, Little Endian

void memcpy(char *d, const char *s, int n)
{

uint32 l,h,k,*s1,*d1;

/* Align dest to word boundary */
while (((ulong)d&3) && n>0) {*d++ = *s++; n--;}

/* Do main work copying to aligned dest */
if(((ulong)s & 3) == 0) { /* src aligned ? */

k = n & ~3; /* round n down */
copy_aligned(d, s, k);
d+=k; s+=k; n&=3; /* ready for end */

}
else
{

s1 = (uint32 *)((ulong)s & ~3); /* round s down */
d1 = (uint32 *) d; /* d is aligned */
h = *s1++; /* init h */
k = (ulong)s &3; /* src alignment */
for(; n>=4; n-=4) { /* stop if n<4 */

l = *s1++;
*d1++ = (h >> (k*8)) |

(l << ((4-k)*8)) ;
h = l;

}
d = (char *) d1; /* ready for end */
s = ((char *)s1) - 4 + k;

}

/* Finish off if last 0-3 bytes if necessary */
for(; n>0; n--) *d++ = *s++;

}

1. load and store each word once. Align to dest

2. use of copy aligned if (s&3 == d&3)

3. big endian version: simply reverse shifts in inner loop

4. Consider hardware implementation of copy aligned

69

ISA Summary

• RISC

– Quantitative Analysis

– Amdahl’s Law

– Load-Store GPRs

– ALU operates on words

– Relatively simple instructions

– Simple addressing modes

– Limited unaligned access support

• Architecture extensions

– Backwards compatibility

• Copying memory efficiently

Does Architecture matter?

1. So far, haven’t looked at branches. Different kinds of branch
instruction have a big impact on control-flow, and are
examined in the next section.

2. If ISA is hidden behind compiler, does it really matter
anyway?

3. Next, look at how Architecture affects Implementation

70

CPU Performance Equation
T ime for task = C ∗ T ∗ I

C =Average # Cycles per instruction
T =Time per cycle
I =Instructions per task

• Pipelining

– e.g. 3-5 pipeline steps (ARM, SA, R3000)

– Attempt to get C down to 1

– Problem: stalls due to control/data hazards

• Super-Pipelining

– e.g. 8+ pipeline steps (R4000)

– Attempt to decrease T

– Problem: stalls harder to avoid

• Super-Scalar

– Issue multiple instructions per clock

– Attempt to get C below 1

– Problem: finding parallelism to exploit

∗ typically Instruction Level Parallelism (ILP)

71

CPU Performance Equation
1. RISC: reduce C and T. PowerPC, ARM & PA-RISC have

lower I than most

2. super-pipelining: instruction completion latency longer, thus
more forwarding paths required

3. super-scalar: Typically exploits Instruction Level Parallelism

4. other kinds of parallelism too - more later.

5. super-scalar: Issuing 1fp and 1int ALU instruction is easy, as
there are no inter-dependencies. Issuing multiple int or fp is
harder.

6. Most modern high-performance processors are super-scalar.
The challenge is to build machines capable of searching far
ahead into the instruction stream to resolve all the
instruction interdependencies and seek out the available
parallelism.

The classic RISC pipe

4 PC

Instruction
Memory

ADD

Register
FileID

immediate
sign
ext

Dest Reg#

Ra
Rb
Op
PC

d
a

Branch
Test

Data
Memory

Branch target PC
Branch taken?

a

din dout

Data from ALU OP

Data to write back

Instruction
Fetch

Instruction
Decode EXecute Memory

Access
Write
Back

d

d
d

a

a a

IF Send out PC to I-cache. Read instruction into
IR. Increment PC.

ID Decode instruction and read registers in parallel
(possible because of fixed instruction format).
Sign extend any immediate value.

EX Calculate Effective Address for Load/Stores.
Perform ALU op for data processing instruc-
tions. Calculate branch address. Evaluate con-
dition to decide whether branch taken.

MA Access memory if load/store.
WB Write back load data or ALU result to register

file.

72

The classic RISC pipe
1. Basically DLX from H&P’s book, with a few mods where it

suits my purposes

2. Very simple instruction decode. Ra and Rb get accessed
regardless of whether they are needed or not.

3. Register file has 2 read and 1 write port

4. Write Back always occurs at same point for simplicity

The cost of pipelining

• Pipeline latches add to cycle time

• Cycle time determined by slowest stage

– Try to balance each stage

• Some resources need to be duplicated to avoid
some Structural Hazards

– (PC incrementer)

– Multiple register ports (2R/1W)

– Separate I&D caches

⇒ Effectiveness determined by CPI achieved

Pipelining is efficient

1. Modern machines need many ports on register file e.g
5R/3W

73

Non Load-Store
Architectures

• Long pipe with multiple add and memory access
stages

– Lots of logic

– Many stages unused by most instructions

• Or, multiple passes per instruction

– Tricky control logic

• Or, convert architectural instructions into multiple
RISC-like internal operations

– Good for multi-issue

– More ID stages

– Pentium Pro/II/III (µops)

– AMD x86 K7 (r-ops)

Easiest if all instructions do a
similar amount of ‘work’

74

Non Load-Store
Architectures

1. A single-pass pipeline capable of executing a 3 memory
operand instruction (eg VAX) would be long and inefficient

2. Each x86 instruction can only reference one memory
location. On the Pentium, the address is calculated using a
dedicated adder in one of the two instruction decode stages.
The second instruction decode stage and the write back
stage can access the data cache as well as the register file.

3. All modern x86 implementations use simpler instructions
internally. A decode unit translates the architectural
instructions into RISC-like internal instructions, that execute
using a RISC-like execution engine. For some particularly
complicated x86 instructions, microcode is used to
synthesize the necessary internal instruction sequence (eg
FP transcendental functions etc).

4. Different implementations of the same CISC architecture
can use different internal instruction sets. (PPro uses
’u-ops’, AMD K6 ’r-ops’)

5. The extra decode stage adds latency to instruction
execution, but modern dynamic Out-Of-Order execution
engines are relatively effective in hiding this.

6. See the Pentium Pro white paper (additional material)

ALU Result Forwarding

• E.g. 4 forwarding paths to avoid stalls:

a: add r1 ← r8, r9
b: add r2 ← r1, r7
c: add r3 ← r1, r2
d: add r4 ← r1, r2

4 PC

Instruction
Memory

ADD

Register
FileID

immediate
sign
ext

Dest Reg#

Ra
Rb
Op
PC

d
a

Branch
Test

Data
Memory

Branch target PC
Branch taken?

a

din dout

Data from ALU OP

Data to write back

Instruction
Fetch

Instruction
Decode EXecute Memory

Access
Write
Back

d

d
d

a

a a

• Read after Write

• Doubled # mux inputs

• Deeper pipes → more forwarding

– R4000, 8 deep pipe
forward to next 4 instructions

75

ALU Result Forwarding
1. Draw on the 4 forwarding paths

2. Too many MUX inputs will slow cycle

3. Could move WB stage forward for ALU ops, but create
structural hazard

4. R4000 8 forwarding paths just for ALU ops

5. Adding too many pipeline stages can be counter productive.

Load Data Hazards

• Impossible without a stall:

lw r1 ← r9(4)
add r2 ← r1, r6

• New forwarding path saves a cycle

• Re-order code to avoid stall cycle

– Possible for 60-90% of loads

• Software Interlocked

– Compiler must insert nop

– e.g. R2000/R3000

• Hardware Interlocked

– Save nop: better for I-stream density

– Register scoreboard

∗ track location of reg values e.g.:

∗ File, EX, MA, MUL1, MUL2, MemVoid

∗ control issue and operand routeing

– e.g. R4000 and most others

• More stalls for deeper pipes

– 2 stalls and 2 more forwarding paths for R4000

76

Load Data Hazards
1. Draw on forwarding path from WB/dout to ALU a and b

2. Re-ordering to avoid stalls is generally more tractable on FP
programs

3. Maximise number of cycles between load issue and use –
modern CPUs won’t stall until they actually need the data.
If access misses L1 cache, many spare cycles will be needed.
Dynamic super-scalar processors (described later) like the
PPro are able to search ahead past the instruction that uses
the loaded value in order to find other non-dependent
instructions which can be executed.

4. Register scoreboard tracks the status of all the registers –
which are ready to read, which can be forwarded, which are
not ready to read yet (issue logic must stall an instruction
requiring a register that is not ready)

5. Scoreboard is used to determine when instructions can be
issued down the pipe, and where they will collect the
operands from.

6. Even to get 2 stalls for R4K requires speculative use of data
returned from D-cache before tag check to see if
valid/correct

Longer Latency Instructions

• Mul/Div, Floating Point

• Different functional units operating in parallel with
main pipeline

• Extra problems:

– Structural hazards

∗ Unit may not be fully pipelined, eg:

· 21264 FDiv: 16cy latency, not pipelined

· 21164 FMul: 8cy latency, issue every 4cy

→ 21264 FMul: 4cy latency, fully pipelined

∗ Multiple Write Back stages

· more register write ports?

· or, pipeline bubble

– Read after Write hazards more likely

∗ compiler instruction scheduling

– Instruction complete out of order

∗ Write after Write hazards possible

∗ Dealing with interrupts/exceptions

• Use scoreboard to determine when safe to issue

• Often hard to insert stalls after ID stage

– synthesize NOPs in ID to create bubble

– ‘replay trap’ : junk & refetch

77

Longer Latency Instructions
1. Multiply latency of 6-16 cycles was common 5 years ago.

Now, more silicon has been thrown at the problem...

2. No need to fully pipeline a unit unless it is going to be
needed by a number of instructions that are in close
proximity in the code. Divides occur in ‘bunches’ relatively
infrequently, so there is no need to pipeline the unit.

3. 21164 multiply unit has 8cycle latency, and can accept a
new operation every 4 cycles.

4. 21264 multiply unit has 4cycle latency and is fully pipelined

5. Each functional unit either needs its own write port on the
register file (inefficient use of resources), or the issue logic
should insure that the WB stage is not in use by the main
pipe. This can be achieved either by stalling the pipe at the
MEM stage (hard), or by dropping a NOP into the pipe
after the ID stage. The NOP will pass through the pipe and
will arrive at the WB stage just when the other functional
unit wants to use it.

6. Read after Write hazards: The compiler should re-order
code in order to insert cycles between when an instruction is
issued to a high-latency unit, and when the result is first
used.(Just as for loads). The register scoreboard will ensure
the dependent instruction is held in the ID stage until the
result can be made available (send NOPs down the pipe in
the meantime).

7. Write after Write and Write after Read hazards: Issue logic
has to be careful to avoid re-ordering writes to the same
register, and to ensure that writes cannot overtake reads.
This can be a particular problem if the pipeline contains
multiple register write-back points (eg different latency
functional units), or if reads can occur late in the pipe (eg.
the source operand for a store). Some Write after Write
hazards can be solved by aborting the first instruction.

8. This is not “full-blown” out-of-order execution, as all
instructions are still issued in order. (dynamic execution is
described later)

9. Replay traps are a common way of recovering after spotting
that a hazard is about to occur. The newer instructions are
junked and refetched, whereupon the hazard will probably
have cleared (if not, repeat). replay traps are slow, but
relatively easy to implement.

10. exceptions occurring within the pipe can be tricky.... (next
slide)

Exceptions and Pipelining
User SWI/trap ID Precise (easy)
Illegal Instruction ID Precise (easy)
MMU TLB miss IF/MA Precise required
Unaligned Access MA Precise required
Arithmetic EX 1..N Imprecise possible

• Exceptions detected past the point of in-order
execution can be tricky

– FP overflow

– Int overflow from Mul/Div

• Exact arithmetic exceptions

– Appears to stop on faulting instruction

– Need exact PC

∗ care with branch delay slots

– Roll back state/In-order commit (PPro)

• Imprecise arithmetic exceptions

– Exception raised many cycles later

– Alpha: Trap Barriers

– PPC: Serialise mode

– IA-64: Poison (NaT) bits on registers

∗ instructions propagate poison

∗ explicit collection with ’branch if poison’

78

Exceptions and Pipelining
1. Illegal instruction: ID stage, so still in-order

2. Instruction fetch TLB miss: in order, so no problem

3. Data TLB miss/unaligned access: easy on the ‘classic RISC
pipe’, as no other instructions have been committed to
register Write Back yet.

4. Divide by 0 can usually be detected quite early

5. Arithmetic overflow (int and fp pipes): Can be tricky,
particularly if they are generated by instructions executing in
functional units with long latencies—many subsequent
instructions may already have been issued. INT Mul and
Divide, FP instructions

6. Processors supporting exact exceptions need to appear as
though they are executing instructions serially, one after the
other. When a fault occurs, the exception handler is given
the PC of the instruction that caused the fault. As far as
the user is concerned, no instructions after the faulting
instruction were executed. On modern processors, this is not
what happens in reality — other instructions will have been
executed, and there effects must be undone. The PPro
achieves this by committing updates to the user-visible
architectural state (the register contents) in-order. Care
must also be taken to ensure that exceptions are raised
in-order too. Exceptions should not be raised from
instructions that should not have been executed.

7. Watch out for exceptions occurring in Branch delay slots!
Need to re-execute the branch.

8. Newer RISC architectures have an imprecise exception model
for dealing with arithmetic exceptions. When a fault is
detected, rather than appearing to stop on the faulting
instruction, such architectures simply stop issuing new
instructions. Instructions already in the pipe run to
completion as normal. The exception is then raised, giving
the PC on which execution was stopped as the fault address.
The number of instructions between the faulting instruction
and the point where execution stopped is potentially
undefined. Some of these instructions may have been
dependent on the result of the faulting instruction. They
may be executed with an undefined value as one of their
inputs. This can cause havoc eg. causing an invalid memory
location to be accessed, or causing a branch to go to the
wrong place.

9. Some programs rely on being able to trap and fix-up
arithmetic exceptions. This can still be achieved on Alpha
and PPC despite their imprecise exception models.

10. Alpha has the TRAPB instruction, which prevents all
following instructions from being issued until all previous
instructions have advanced beyond the point where they
could possibly generate an arithmetic trap. TRAPB
instructions should be sprinkled around the code to ensure
that exceptions are generated early enough such that the
fault can be fixed-up. i.e. no destruction of important
register or memory contents has occurred in following
instructions, the faulting PC can still be worked out (the
program may have branched or taken another exception in
the meantime).

11. In contrast, PPC can be put into a ‘serialize’ mode, where it
generates exact exceptions by being far less aggressive about
overlapping instruction execution.

12. Operating out of imprecise exception mode can easily loose
a factor of 10 in performance.

13. On a machine that ISSUES instructions out of order, all
exceptions are potentially tricky. (though in actual fact get
dealt with by the same h/w mechanism that allows
speculative execution across multiple branches)

14. IA-64 stores an extra bit with each register called a ’Not A
Thing’. Any faulting instruction (e.g. TLB miss, overflow)
sets the NaT bit in the destination reg. All instrs that use a
source register that is ’NaT’ propagate the NaT to the
destination register. A special branch instruction can later
be used to ’collect’ the exception and jump to some fixup
code. Having 65 bit wide registers is a slight pain when it
comes to spilling them.

Interrupts

• Interrupts are asynchronous

• Need bounded latency

– Real-time applications

– Shadow registers avoid spilling state

∗ Alpha, ARM

• Some CISC instructions may need to be
interruptible

– Resume vs. Restart

∗ eg. overlapping memcpy

– Update operands to reflect progress

∗ VAX MOVC

1. interrupts and SWI traps are not generally no problem on
RISC – treat like a JUMP instruction being added to the very
front of the pipe. Interrupt latency will be determined by
how long it takes everything already in the pipe to complete.

2. Some CISC instructions would take too long to complete -
need to interrupt. But, some instructions can not simply be
re-issued from the beginning, as they have had an
information destructive effect (an overlapping copy would
have this effect). This can be solved if the instruction is
defined to update the contents of it’s source operands to
reflect its progress. It can then simply be re-issued, and will
continue where it left off.

3. Reset: drop everything, get into a well-defined state.

79

Control Flow Instructions

• Absolute jumps

– To an absolute address
(usually calculated by linker)

– Immediate / Register modes

– usage: function pointers, procedure call/return
into other compilation modules, shared libraries

• PC Relative branches

– Signed immediate offset

– Limited range on RISC

∗ Typically same compilation module
(calculated by compiler)

– Conditional

• Branch/Jump to Subroutine

– Save PC of following instruction into:

∗ CISC: stack

∗ most RISC: special register

∗ ALPHA: nominated register

∗ IA-64: nominated Branch Reg

1. (x86 calls all control flow changing instructions jumps)

2. Jump subroutine more common than branch subroutine

3. Some architectures have conditional jumps as well.

4. IA-64 uses special registers to hold PC targets as this can
potentially be used to initiate prefetch etc.

80

Conditional Branches

• Conditional branch types

– most: Test condition code flags

∗ Z, C, N, V

∗ Bxx label

– Alpha/MIPS: Test bits in named reg

∗ msb (sign), lsb, ‘zero’

∗ Bxx Ra, label

– some: Compare two registers and branch

∗ Bxx Ra, Rb, label

∗ (PA-RISC, MIPS, some CISC)

– IA-64: Test one of 64 single bit predicate regs

• Conditional branch stats (for MIPS and SPEC92)

– 15% of executed instructions

∗ 73% forward (if/else)

∗ 27% backward (loops)

– 67% of branches are taken

∗ 60% forward taken

∗ 85% backward taken (loops)

1. Alpha/MIPS branch instructions can test for the following
conditions (and combinations thereof): low bit (set/clear);
high bit (positive/negative); value=0 (special zero bit stored
with each register)

2. In fact, most IA-64 instructions are predicated.

81

Control Hazards

• ‘classic’ evaluates conditional branches in EX

– Identify branch in ID, and stall until outcome
known

– Or better, assume not taken and abort if
wrong

→ 2 stall taken-branch penalty

• If evaluating branch is simple, replicate h/w to
allow early decision

– Branch on condition code

– Alpha/MIPS: Test bits in named reg

∗ Special ‘zero’ bit stored with each reg

– Hard if Bxx Ra, Rb, label

Register
FileID

immediate
sign
ext

Dest Reg#

Ra
Rb
Op

Data
Memory

a

din dout

Data from ALU OP

Data to write back

Instruction
Fetch

Instruction
Decode EXecute Memory

Access
Write
Back

d

d
d

a

a a ADD

Branch
Test4 PC

Instruction
Memory

ADD

d
a

1. register bits: b0, top bit (N), Zero (Implement this by
adding an extra bit to each register that indicates whether
the current value is zero. This bit should be generated by
the ALU and treated like any other register bit, i.e. all
forwarding paths should be 33 bits wide)

2. On classic, need to abort the following two instructions is
branch taken. (Effectively predicts all branches as not taken.
However, statistics show the majority of branches are taken)

3. compare and branch: PA RISC, MIPS (equal)

82

Control Hazards (2)

• Evaluate branches in ID (when possible)

⇒ Only 1 cycle stall if test value ready
(Set flags/reg well before branch)

– Bad if every instruction sets flags (CISC)

– Helps if setting CC optional (SPARC/ARM)

– Good if multiple CC regs (PPC/IA-64), or
none (Alpha/MIPS)

• Branch delay slots avoided the taken branch stall
on early MIPS

– Always execute following instruction

– Can’t be another branch

– Compiler fills slot ∼60% of the time

– Branches with optional slots: avoid nop

• Modern CPUs typically have more stages before
EX, due to complicated issue-control logic, thus
implying a greater taken-branch cost

• Stalls hurt more on a multi-issue machine. Also,
fewer cycles between branch instructions

Control hazards can cripple
multi-issue CPUs

83

Control Hazards (2)
1. set flags early: compiler should be instruction scheduling.

2. better to have > 1 CC reg (PowerPC), or use GPRs instead.

3. IA-64 has 64 one bit predicate registers that have to
explicitly be set by compare instructions. Thus, there is no
opportunity for optimizing the compare out as is sometimes
possible on Alpha e.g. compare equal zero, or compare less
than zero etc

4. Branches are common. multi-issue machines will come
across them more quickly, and the penalties are typically
worse due to the longer front-end to the execution pipe.
Control flow hazards could ruin the CPU’s CPI. Need to use
prediction/speculation.

Static Branch Prediction

• Speculation should not change semantics!

• Simple prediction

– e.g. predict backward as taken, forward not

• Branch instructions with hints

– Branch likely/unlikely

∗ strong/weak hint varients

– Use Feedback Directed Optimization (FDO)

– Fetch I-stream based on hint

• Delayed branch instrs with hints and annulment

– If hint is correct execute following instruction
else don’t

– e.g. new MIPS, PA-RISC

– Compiler able to fill delay slot more easily

1. must be careful about changing semantics: e.g. register
writes, stores, exceptions, wasted mem b/w

2. If backward branches are predicted taken, forward not, the
compiler should endeavour to structure code to assist this.

3. likely/unlikely: If loop, likely. Or use FDO for IF/ELSE
clauses

4. FDO: Many branches turn out to be highly biased one way
or tother. Enables miss prediction rates of less than 20%

5. hints with annulment: Hint hopefully is usually correct, so
do useful work instead of stall. Compiler should still prefer
to use non nullifying

84

Dynamic Branch Prediction
• Static hints help, but need to do better

• Branch prediction caches

– Indexed by significant low order bits of branch
instruction address

– Cache entries do not need tags (they’re only
hints)

– E.g. 512-8K entries

• Bi-modal prediction method

⇒ many branches are strongly biased

– Single bit predictor

∗ Bit predicts branch as taken/not taken

∗ Update bit with actual behaviour

∗ Gets first and last iterations of loops wrong

– Two bit predictors

∗ Counter saturates at 0 and 3

∗ Predict taken if 2 or 3

∗ Add 1 if taken, subtract 1 if not

∗ Little improvement above two bits

∗ ≥90% for 4K entry buffer on SPEC92

1. Some branch prediction caches are actually implemented
within the I-cache, where a number of prediction bits are
stored with each cache line.

2. Aliasing of entries in the prediction cache will not effect
correctness, but will hurt performance.

3. NB: The ‘counters’ are not actually implemented in the
cache entries — they’re just SRAM bits that are
incremented by an adder external to the prediction cache
memory array

4. 2bit predictors: Don’t work with branches that are
alternately taken/not taken (e.g. odd/even iterations).

85

Local History predictors

• Able to spot repetitive patterns

• Copes well with minor deviations from pattern

• E.g. 4 bit local history branch predictor

– 4 bit shift reg stores branch’s prior behaviour

– 16 x 2 bit bi-modal predictors per entry

– use shift reg to select predictor to use

– perfectly predicts all patterns < length 6, as
well as some longer ones (up to length 16)

– used on Pentium Pro / Pentium II

∗ 512 entries x (16 x 2 + 4) = 18K bits
SRAM

– trained after two sequence reps

– other seqs up to 6% worse than random

• An alternative approach is to use two arrays. One
holds branch history, the other is a shared array of
counters indexed by branch history

– branches with same pattern share entries in
2nd array (more efficient)

– 21264 LH predictor: 1024 entries x 10 bits of
history per branch, and shared array of 1024
counters indexed by history

86

Local History predictors
1. Local prediction: See x86 optimization guide in additional

material

2. random branches are (on average) mis-predicted up to 6%
more often than using chance/bi-modal approaches. This is
due to the processor trying to find a sequence where none
exists.

3. PPro 4 bit history is able to perfectly predict any sequence
in which all sub-sequences of length 4 are unique. e.g.

4. 000011 :
0000=1,0001=1,0011=0,0110=0,1100=0,1000=0

5. 000001 :
0000=0,0000=1,0001=0,0010=0,0100=0,1000=0 : two
sub-sequences that are 0000, so prediction not perfect

6. For an N bit history predictor, keeping 2**N 2bit counters
per prediction cache entry is rather inefficient. Better to
have a shared counter array and index it with a hash of (PC,
history). 21264 doesn’t bother with hash; they believe that
10bits of history is enough to disambiguate the branch. See
section 2-4 of the 21264 manual in the additional material
along with the WRL branch prediction technical report

7. Local History is a very effective prediction method.

Global Correlating predictors

• Behaviour of some branches is best predicted by
observing behaviour of other branches

⇒ Keep a short history of the direction that the last
few branch instructions executed have taken

• E.g. Two bit correlating predictor:

– 2 bit shift register to hold processor branch
history

– 4 bi-modal counters in each cache entry, one
for each possible global history

• Rather than using branch address, some GC
predictors use the processor history as the index
into a single bi-modal counter array. Also possible
to use a hash of (branch address, global history)

– Alpha 21264 GC predictor uses a 12 bit history
and 4096 x 2 bit counters

• Combination of Local History and Global
Correlating predictor works well

– ≥95% for 30K bit table on SPEC92

– E.g. Alpha 21264

87

Global History predictors
1. Global correlating: See WRL tech report in additional

material

2. 12 bits of global history actually serves to identify individual
branches reasonably well

3. Multiple if statements often have the same variables in their
clauses

4. Branch may or may not be part of its own global history

5. 21264 uses a ’choice predictor’ to choose whether the LH or
GH predictor will be used for the current prediction. An array
of 4096 2 bit saturating counters are used indexed by the 12
bit global branch history. I don’t understand why they do
this index using the GH rather than the instruction’s address,
but it obviously works better for some reason or other...

Reducing Taken-Branch Penalty

• Branch predictors usually accessed in ID stage,
hence at least one bubble required for
taken-branches

• Need other mechanisms to try and maintain a full
stream of useful instructions:

• Branch target buffers

– In parallel with IF, look up PC in BTB

– if PC is present in BTB, start fetching from
the address indicated in the entry

– Some BTBs actually cache instructions from
the target address

• Next-fetch predictors

– Very simple, early, prediction to avoid fetch
bubbles, used on PPro, A21264

– I-cache lines have pointer to the next line to
fetch

– Update I-cache ptr. based on actual outcome

• Trace caches (Pentium IV)

– Replace traditional I-cache

– Cache commonly executed instr sequences,
crossing basic block boundaires

– Table to map instr address to position in cache

– Instrs typically stored in decoded form

88

Reducing Taken-Branch
Penalty

1. Branch prediction doesn’t provide a target PC early enough
to avoid a wasted cycle. Next fetch predictors are a simple
mechanism to avoid bubbles in the I-fetch stream. The
next-fetch predictor is updated based on the ‘correct’
behaviour. As such it will learn the targets of computed
jumps e.g. to DLLs (shared libraries) or function pointers.

2. Branch target buffers: for branches that are predicted taken,
store a next-fetch target. Some BTB’s actually cache
instruction(s) from the target address

3. Traces caches do a lot more than reduce taken branch
penalty. They store a trace-straightened version of common
‘hot paths’ through the code. A table is required to map
instruction addresses to lines in the trace cache as there is
no direct relationship anymore. Typically, instructions are
stored in a post-decoded form, making control signals
available earlier in the cycle. The Pentium IV uses a trace
cache to store micro-ops decoded from x86 instructions.

Avoiding branches

• Loop Count Register (PowerPC, x86, IA-64)

– Decrement and branch instruction

– Only available for innermost loops

• Predicated Execution (ARM, IA-64)

– Execution of all instructions is conditional

– IA-64: 64 predicate bits
<p5> cmp p1,p2 = r1 == r3
<p1> add r3 = r4,r5

4 Transform control dependency into data dep

4 Instruction ‘boosting’

∗ e.g. hoist a store ahead of a branch

4 Inline simple if/else statements

8 Costs opcode bits

8 Issue slots wasted executing nullified instrs

• Conditional Moves (Alpha, new on MIPS and x86)

– Move if flags/nominated reg set

– Just provides a ‘commit’ operation

∗ beware side effects on ‘wrong’ path

– PA-RISC supports arbitrary nullification

Avoid hard to predict branches

89

Avoiding branches
1. Count Register: bit of a throw back to Extended

Accumulator

2. Count register is decremented by DECB instruction. CPU
knows exactly when loop will terminate, and can thus predict
the exit correctly. There is only one count register, so it can
only be used for inner-most loops (where it really matters).

3. predicated execution consumes 4 or the ARM’s opcode bits

4. predicated execution allows compiler to speculate e.g move
instructions in predicted path ahead of the branch.
(Sometimes referred to as instruction boosting)

5. CMOV: provides similar sort of functionality to predicated
execution, but does not cost opcode bits. Both paths of a
simple if/else statement can be evaluated, and then one
committed. CMOV is not as flexible as predicated
execution. Care has to be taken not to cause side effects on
the ‘wrong’ path e.g. stores etc.

6. CMOV instructions can avoid some control flow problems,
turning them into data flow issues further down the
execution pipe.

7. CMOV was added to the x86 architecture on the PPro.

8. IA-64 cmp instruction will set either p1 or p2 depending on
the outcome of the test. Most instructions can be prefixed
with ¡pn¿ to predicate them. IA-64 also allows the compare
instructions themselves to be predicated, which is handy for
parallel multiway compares.

9. In general, predication is most useful for eliminating hard to
predict branches — branches that are being predicted
accurately are probably more efficient than predication since
only a single path has to be evaluated.

Optimizing Jumps

• Alpha: Jumps have static target address hint

– A16−2 of target instruction virtual address

– Enough for speculative I-cache fetch

• Subroutine Call Returns

– Return address stack

– Alpha: Push/pop hints for jumps

– PowerPC: Dedicated link register

– 8 entry stack gives ≥ 95% for SPEC92

• Next-fetch predictors / BTBs / trace caches help
for jumps too

– Learn last target address of jumps

– Good for shared library linkage

1. Alpha jumps: Linker fills in hint same time it fills in word
containing real procedure address

2. Alpha return addr stack: only enough bits to address I-cache

3. next-fetch/BTB: work well if target doesn’t change.
E.g. shared library address will be a load-time calculated
constant

90

Super-Scalar CPUs

• # execution units (INT/FP)

– Pentium (2/1), P6 (2+/2), P7 (4/2)

– 21164 (2/2), 21264 (4/2)

• Units often specialised e.g 21264:

– Int ALU + multiply

– Int ALU + shifter

– 2x Int ALU + load/store

– FP add + divide + sqrt

– FP multiply

• Max issue rate

– Pentium (2), P6&P7 (3µops)

– 21164 (4), 21264 (4)

– Ideal instruction sequence

∗ Right combination of INT and FP

– Lower than number of exec units

• Two basic types

– Static in-order issue (21164, Pentium, Merced)

– Dynamic out-of-order execution (21264, PPro)

91

Super-Scalar CPUs
1. Function units are specialised according to the expected

instruction mix.

2. PPRO: 5 more specialised units (2 general int ALU, 2 FP, 1
load/store unit [capable of 1 load and 1 store per cycle])

3. The Pentium has two pipelines, U&V. The V pipeline can
only execute a subset of (common) operations.

4. Achieving the max issue rate requires the right instruction
mix, avoiding structural, control and data-flow hazards. In
practice, it is rarely sustained. Dynamic execution is better
at achieving this than static in-order.

5. The current wave of high-performance microprocessors all
use dynamic execution.

Static Scheduled

• All instructions begin execution in-order

1. Fetch and decode a block of instructions

2. ‘Slot’ instructions to pipes based on function unit
capability and current availability

3. Issue checks:

• Data Hazards

– Are the instructions independent?

– Check register scoreboard

∗ Are the source operands ready?

∗ Will write order be preserved?

– Non-blocking missed loads

∗ Do not stall until value is used

– Maintain in-order dispatch

• Control hazards

– Is one of the instructions a predicted-taken
branch?

∗ Discard instructions past branch

– Be prepared to squash speculated instrs

4. move onto next block when all issued

92

Static Scheduled
Super-Scalar

1. Fetch and decode a block of instructions e.g. the 21164
reads a block of 4 16 byte-aligned instructions.

2. Some function units will not be fully pipelined, so will not
currently be available for use. Some units are not capable of
executing all instructions e.g. the Pentium’s V pipe, or the
21164’s E1 pipe.

3. issuing an Int and FP operation simultaneously is easy, since
they generally use different register sets. Doing multiple int
is more challenging.

4. independent instructions have no producer-consumer (RaW)
or producer-producer (WaW) conflicts. If such conflicts
exist, issue of the later instruction must be delayed. [WaR
conflicts are typically not a problem, except if a stores read
their source late in the pipe.

5. Non-blocking loads allow instruction issue to continue until
the first instruction that references the register (as a source
or dest)

6. typically, only one control-flow instruction is dispatched in a
single cycle. Branch prediction is used to drive the
instruction fetch, and to decide whether to discard any
subsequent instructions in the current block.

Static Scheduled Examples

IF D1

D2 EX WB

D2 EX WB
Instruction slotting

V-pipe (reduced capability)

U-pipe

Issue checks.
Access registers
and/or D-cache

Write back to
registers or

D-cache

Pentium pipeline

IF

Instruction fetch
and access BTB

IB SL

AC EX1 EX2 WB

EX1 EX2 WB

RA EX1 EX2 EX3 WB FP Add

FP Mul

INT E0 +(shifts,mul)

INT E1 +(branches)

RA EX1 EX2 EX3 WB

Alpha 21164 pipeline

Access branch prediction
compute new PC

AC

AC

AC
Slot to function

unit

Issue checks.
Access int reg file

FP reg access

INT execute/
start D-cache read

1. See additional material

93

Static Scheduled
Super-Scalar

• Relies greatly on compiler

– Instruction scheduling

∗ slotting

∗ data-dependence

– Issue loads early (or prefetch)

– Reduce # branches and jumps

∗ unroll loops

∗ function inlining

∗ use of CMOV/predication

– Align branches and targets

∗ avoid wasted issue slots

• Optimization can be quite implementation
dependent

• Static analysis is imperfect

– basic blocks can be reached from multiple
sources

– compiler doesn’t know which loads will miss

– Feedback Directed Optimization can help

⇒ On most code, actual issue rate will be << max

1. Compiler should try and assemble instructions into issue
blocks that cause no structural hazards

2. Compiler should try to keep instructions with
data-dependencies in different issue blocks

3. Branches should ideally be at the end of a fetch block. If
fetch blocks need to be aligned (e.g. 16 byte aligned on
21164), branch targets should ideally be the first instruction
of the block

94

Helping the compiler

• Wish to issue loads as early as possible, but

– mustn’t overtake a store/load to same address

– Stack / Global variables solvable

∗ [r12,4] != [r12,16]

– Heap refs harder to disambiguate

∗ [r2,8] != [r4,32] ???

∗ C/C++ particularly bad in this respect

⇒ Data speculation (IA-64, Transmeta)

– allows loads to be moved ahead of possibly
conflicting load/stores

– ld.a r3 = [r5] enters address into Address
Aliasing Table

– any other memory reference to same address
removes entry

– ld.c r3 = [r5] checks entry is still present else
reissues load

• Predication enables load issue to be hoisted ahead
of branch, but not above compare

⇒ Control speculation (IA-64)

– ld.s r3 = [r5] execute load before it is known
if it should actually be executed

– chk.s r3, fixup check poison bit and branch if
load generated an exception

1. loads to the same address are a problem in multiprocessor
systems, as without load-load ordering many locking
strategies would break.

95

Dynamic Scheduling

• Don’t stop at the first stalled instruction, continue
past it to find other non-dependent work for
execution units

• Search window into I-stream

– Data-flow analysis to schedule execution

– Out-of-order execution

– In-order retirement to architectural state

– P6 core ≤ 30 µops, P7 ≤ 126

• Use speculation to allow search window to extend
across multiple basic blocks

– (Loops automatically unrolled)

– Need excellent branch prediction

– Track instructions so they can be aborted if
prediction was wrong

– Try to make branch result available ASAP (to
limit waste caused by mis-prediction)

96

Dynamic Scheduling
1. Whereas a static scheduled processor stops issuing

instructions as soon as one instruction stalls, a processor
with dynamic execution will continue past the stalled
instruction and find other non-dependent work to do. This
is why they achieve a lower CPI than a statically scheduled
CPU with a similar number of function units.

2. On wide-issue machines, it is very difficult for the compiler
to find instructions to avoid interlocks with load delays or
producer-consumer latencies.

3. Cost of a miss-predicted branch depends on how many
instructions past the branch have been issued.

4. Letting the hardware schedule instructions rather than
compiler

5. May eventually come to a halt due to exhausting ILP in
window

6. Instruction timing charts just not possible...

7. Speculate: 20% branch (CMOV), multiple branch, need
damn good prediction, other wise we’ll spend the whole time
executing the wrong instructions. Worse, we might push the
‘right’ instructions and data out of the caches.

Register Renaming

• Register reuse causes false dependencies

• (Often referred to as name-dependencies)

– WaR, WaW: no data transfer

• Undo compiler’s register colouring

• Necessary to unroll loops

⇒ Register renaming

– Large pool of internal physical registers

– P6 40, 21264 80+72, P7 128

– New internal register allocated for the result
operand of every instruction

– Re-mapper keeps track of which internal
registers instructions should use for their
source operands

∗ needs to be able to rollback upon exception
or mispredict

• Architectural register state updated when
instructions retire

1. Compilers use live variable analysis to enable them to re-use
registers for different variables. A dynamically scheduled
processor needs to use register renaming to undo the
register colouring, separating the variables into different
internal registers so that the false dependency is eliminated.

2. Without register renaming loops could not be unrolled due
to name-dependencies

97

Out-of-Order Execution

Arch
registersFetch/

Decode

Register
allocation

Dispatch/
Execute

Retire

ReOrder Buffer

Reservation
station

1. Fetch and decode instructions

2. Re-map source operands to appropriate internal
registers. Allocate a destination register from
register free list. Place instruction in a free
Re-Order Buffer (ROB) slot.

3. Reservation station scans ROB to find
instructions for which all source operands are
available, and a suitable execution unit is free
(Favour older instructions if multiple ready)

4. Executed instructions and results are returned to
the ROB (internal registers which are no longer
needed are placed on free list)

5. Retire unit removes completed instructions from
ROB in-order, and updates architecturally visible
state. Detect exceptions & mis-predicted
branches; Roll-back ROB contents and mapping
register state, start fetch from new PC

1. Stop issuing if there are no ROB slots, or no free registers

2. Try to execute older instructions first

3. There are lots of variations on the above algorithm
dependent on what data structures are actually
implemented. E.g. the 21264 still has a ‘traditional’ file of
internal registers. In contrast, the PPro forwards results
from instructions direct into the reservation stations and
re-order buffer. (See H&P and addition material in notes.)

98

Loads and Stores

• Dyn Exec helps hide latency of L2/L3 cache

– Find other work to do in the meantime

– Allow loads to issue early

• Stores cannot be undone

⇒ Update memory in Retirement stage

– Hold in Store Queue until retirement

• Loads that overtake stores must be checked to
see if they refer to the same location (alias)

– Address of store may not yet be known

⇒ Speculate load and check later:

– Load Queue stores addresses of issued loads
until they retire

– when a store ‘executes’ (target address is
known) it checks the LQ to see whether a
newer load has issued to the same address

– if so, execution is rolled back to the store
instruction (replay load)

∗ 21264 has 32 entry LQ and a 1024 entry
prediction cache to predict which loads to
‘hold back’ and thus avoid replay trap

• Loads overtaking loads treated similarly to
maintain ordering rules with other CPUs/DMA

1. A miss to main memory takes so long that its highly unlikely
that the processor will be able to hide all the latency.

2. loads following stores can be serviced from the SQ.

3. Allowing loads to overtake other loads and stores is
important for performance.

4. Current processors don’t re-ordering stores, or let stores
pass loads. In order to extract more ILP future processors
will have to consider these issues.

99

Out-of-order Execution

• Less dependency on compiler than static-sched

• Better at avoiding wasted issue slots

• But, O-o-O execution uses a lot of transistors

– ReOrder Buffer and Reservation Stations are
large structures incorporating lots of Content
Addressable Memory

– Tend to be at least O(N2) in complexity

– Tend to be on critical path

∗ diminishing returns...

– 20%+ of chip area on 21264

• Factors effecting usable ILP

– Window size

– Number of renamed registers

– Memory reference alias analysis

– Branch and jump prediction accuracy

– Data cache performance

– (Value speculation performance)

• Simulation suggests the ‘perfect’ processor:
18-150 instructions per cycle for SPEC92

• 10 way for int progs feasible, more for FP

• Some code just exhibits very poor ILP...

100

Out-of-Order Execution
1. ILP - Instruction Level Parallelism

2. The perfect processor assumes infinite window size, infinite
number of renamed registers, perfect mem ref analysis,
perfect prediction and a 100% D-cache hit rate.

3. A real 10 way INT processor would need something like: 100
instr window, 100 registers

4. Chasing down long linked lists is just very bad news...

5. Things we’re likely to see in the future include: value
prediction (predicting the outcome of a load based on PC
rather than load address), and split-path execution
(executing both paths of branches that are proving difficult
to predict. This reduces the cost of a mispredict).

6. value prediction : predict instruction result based on PC.
Helps reduce inter-depenedencies

VLIW Architectures
• Very Long Instruction Word (VLIW)

• Each instruction word (or ’packet’) contains fields
to specify an operation for each function unit

• Compiler instruction scheduling:

– allocates sub-instructions to function units

– avoids any resource restrictions

– ensures producer-consumer latencies satisfied
(delay slots)

4 CPU doesn’t need to worry about issue-checks

⇒ High clock speed

8 Relies heavily on compiler / assembler programmer

– loop unrolling

– trace scheduling

8 Stall in any function unit causes whole processor
to stall

– D-cache misses a big problem

8 Often sparse I-stream (lots of nops)

8 Exposes processor internals

– Typically no binary compatibility

1. CPU can issue all of the sub-instructions without issue
checks—the compiler has guaranteed them to be
independent.

2. trace scheduling : select likely execution path (across
multiple basic blocks) then optimise trace as a whole.

3. VLIW now somewhat out of fashion, except with DSPs and
alike. This is perhaps due to the importance of binary
compatibility, and realization that static scheduling by
compilers is hard.

101

Intel EPIC (VLIW-like)

• Intel: Explicitly Parallel Instruction Computer

– Merced (Itanium) , McKinley

• Three 41 bit instrs packed into 128 bit ’bundle’
with 5 template bits

• Template determines function unit dispatch

– restricted set of possibilities simplifies
instruction dispersement hardware

∗ e.g. [Mem,Int,Branch], no [Int,Int,Int]

• Stop bits: barriers between independent
instructions groups

– groups can cross multiple bundles

• Compiler collects instrs into independent groups

• Hardware interlock of longer-latency instructions
as well as load-use latencies

4 Reduces issue-check complexity for CPU

4 Retains binary compatibility

• Need good compilers

– hope extensive use of load speculation
instructions enables hoisting of loads to avoid
stalling whole CPU

• Optimization for new implementations important?

102

Intel EPIC (VLIW-like)
1. IA-64 puts far greater onus on the compiler, just like in the

early days of RISC. They’re banking on compiler technology
being good enough to schedule the instructions...

2. Only a very restricted set of the potential templates are
valid. Memory accesses always go in slot 0, (and slot 1 if
there are two). There can be at most 2 integer (or memory)
ops in every bundle, and at most one FP

3. Optimising compilers may try and group instructions
according to the number of function units its knows the
current generation of processor has. If a future processor
increases this number such code may execute rather poorly.
Ideally the compiler should create independent groups that
are as big as possible, but this may not be optima for the
current hardware...

Transmeta ‘Code Morphing’

• VLIW core hidden behind x86 emulation

• Uses combination of interpretation, translation
and on-line feedback-directed optimization

• Only ‘code morphing’ s/w written for VLIW

– Apps, OS and even BIOS are x86

• Keeps an in-memory translation cache

• Translate and optimise along frequently executed
paths (trace scheduling)

– speculative load instrs increase trace length

• Hardware features to assist translation:

– Shadow registers with commit instruction

∗ assist rollback upon x86
exceptions/mispredicts

– hold-back stores until commit

• Performance counters assist re-optimization

4 Binary compatibility, High clock speed, Low power

4 Potential for more complex scheduling than h/w

8 Overhead of performing translation

8 Less dynamic than h/w scheduling

103

Transmeta ‘Code Morphing’
1. Transmeta reckon their current code morphing engine runs

in 16MB, including the translation cache.

2. Has to detect writes to x86 code space and invalidate
translations appropriately.

3. ‘gated store buffer’ : hold back stores until commit
instruction

4. Low power due to simple hardware

5. Apparently, the VLIW core is quite ‘general purpose’ and
isn’t particularly x86 specific.

6. Rather than doing this with an x86 ISA, perhaps we should
be using a higher-level, typed, intermediate form???

Beyond ILP

• Diminishing returns for further effort extracting
ILP from a single thread?

• System-level parallelism

– some workloads naturally parallel

∗ multi-user machine

∗ application plus XServer

∗ application plus asynchronous I/O

• Process/Thread-level parallelism

– Some applications already multithreaded

∗ database, HTTP server, NFS server

∗ fork, pthreads

– may have smaller cache footprint

– may be same Virtual address space

• Loop-level parallelism

– generated by auto-parallelizing compilers

– co-operative threads

– need fast synchronization, communication, fork

104

Beyond ILP
1. Auto-parallelisation far more attractive if

locking/synchronization and communication overheads are
cheap

2. Use of traditional SMP mechanisms is good for ‘ease of
use’, but you may wish to have something more efficient to
increase the class of applications that see benefit.

3. ‘fork’ means ‘create thread’ in this context, not full Unix
semantics.

Exploiting Parallelism

• Multiple CPUs on a chip

– Exploit thread/process level parallelism

– Use traditional SMP mechanisms

8 Need correspondingly bigger caches and
external memory bandwidth

– IBM Power4 2-way SMP on a chip

• Multi-threading

– Use one CPU to execute multiple threads

– Replicate PCs, architectural register file

– Different virtual address spaces?

• Static multi-threading

– Round-robin issue from a large # threads

4 No instruction dependencies

4 Hides memory latency

∗ No expensive caches

4 Fast synchronization / fork possible

8 Requires many register files

8 Progress of an individual thread is slow

∗ Poor SPEC marks (great SPEC Rate)

– Tera/Cray MTA, 128 threads

• Course-grained multi-threading

– Switch between threads on a major stall

– e.g. cache miss on Stanford SPARCLE

105

Beyond ILP
1. IBM have released a 2way SMP-on-a-chip PowerPC. Other

manufacturers are rumoured to be following suit.

2. (separate L1s, pooled L2s possible)

3. Multi-threading relies on having lots of thread-level
parallelism in the application. Auto-parallelising compilers
are supposed to seek this out and create light-weight
threads. The TERA machine supports many threads and
executes one instruction from each in turn. In contrast, the
SPARCLE processor (not a true M-T) concentrates on a
single thread until an L1 cache miss, which causes it to
change thread.

Simultaneous
Multi-Threading (SMT)

• Work on a small number of threads at once,
aiming to keep all function units busy

• Duplicate architectural state

• Duplicate instruction fetch units

• Need to control allocation of resources

– priority . fair share

– (prioritising can be counter productive)

4 Progress of individual threads is pretty good

4 Cooperating threads may have smaller cache
footprint than independent ones

4 Potential for register-register synchronization and
communication

4 Potential for lightweight thread create

• Pentium IV Xeon uses 2-way “hyperthreading”

– 2 virtual CPUs per chip

– looks like SMP - separate VM contexts

– Staticly partitions resources if both active

– SMT halt and pause instructions

– OS scheduler should understand SMT

1. Xeon uses a fixed allocation of resources between threads,
but executes based on src operand availability.

2. 5% increase in core size to store extra state. Rumoured to
have been on P IV since day one put hidden...

3. Xeon does not have lightweight sync primitives.

4. See article in additional material

5. http://www.cs.washington.edu/research/smt/

106

Other techniques

• Data-flow processors

– Fine-grained control-flow, course-grained
data-flow (opposite of standard super-scalar)

– Begin execution of a block of sequential
instructions when all inputs become available

8 Inputs are memory locations. The matching
store required to figure out when all inputs are
ready is large and potentially slow. (matching
is easier with a small number of registers a la
out-of-order execution)

1. x

107

Caching

• Caches exploit the temporal and spatial locality of
access exhibited by most programs

• Cache equation:

Access T imeAvg = (1− P) ∗ CostHit + P ∗ CostMiss

Where P consists of:

– Compulsory misses

– Capacity misses (size)

– Conflict misses (associativity)

– Coherence misses (multi-proc/DMA)

8 Caches can increase CostMiss

• Build using fast (small and expensive) SRAM

• Tag RAM and Data RAM

1. Spatial locality is exploited through fetching a block of data
rather than the word requested.

2. Compulsory misses occur when a block is requested for the
first time. The number of compulsory misses is independent
of cache size and associativity. However, increasing the line
size may reduce the number of compulsory misses.

3. Capacity misses: was in cache once, but was replaced.

4. Conflict misses are highest for a direct mapped (1-way)
cache, and zero for a fully associative cache.

5. Most modern system architectures demand hardware cache
coherence for both multiprocessor and I/O transactions.

6. Tag ram and data ram are typically implemented in
physically separate blocks. (e.g. see the 21164 floor plan in
the additional material)

108

Associativity

• Direct Mapped (1-way, no choice)

– potentially fastest: tag check can be done in
parallel with speculatively using data

• n-way Set Associative (choice of n e.g. 2/4/8)

• Fully associative (full choice)

– many-way comparison is slow

3821

0

511

12499024

8x64 bits21bits 21bits21bits

8:1 mux 8:1 mux 8:1 mux

480

3:1 mux
hit/miss

hit result

0

511

025143440
Tag

e.g.1249
Index

e.g.480
Line

IndexAddress

A 96KB 3-way set associative cache with 64 byte lines
(supporting 2 bytes of cacheable memory)35

64

data1 data2 data3

valid?

3920

ignored

32KB 32KB 32KB
8x64 bits 8x64 bits

109

Associativity
1. Beware terminology: An n-way cache has size/(n*line size)

sets, not n.

2. Associative caches require extra gate delays due to the
multiplexors to select between the different banks. Data
cannot be speculatively forwarded to the CPU in parallel
with the tag lookup, since the tag comparisons are necessary
to select the appropriate block.

3. When associative caches are implemented external to the
CPU, implementing the multiplexors can be troublesome due
to the large number of input pins. Instead, a tristate bus is
often used, but this can impair the cache access frequency.

4. Some systems do not have wide enough tag fields to enable
the entire physical address space to be cached. Many
Pentium motherboards would only cache the first 64MB of
physical memory; references beyond this forced to miss.

Replacement Policy

• Associative caches need a replacement policy

• FIFO

8 Worse than random

• Least Recently Used (LRU)

8 Expensive to implement

8 Bad degenerate behaviour

∗ sequential access to large arrays

• Random

– Use an LFSR counter

4 No history bits required

4 Almost as good as LRU

4 Degenerate behaviour unlikely

• Not Last Used (NLU)

– Select randomly, but NLU

4 log2n bits per set

4 Better than random

1. LFSR: Linear Feedback Shift Register (pseudo random
number generator)

2. Random replacement requires no per line or per set, and
performs rather well. NLU is potentially better, and still
relatively simple—just a single pointer to the last line used
in each set.

110

Caching Writes

• Write-Back vs. Write Through

• Read Allocate vs. Read/Write Allocate

• Allocate only on reads and Write-Through

– Writes update cache only if line already present

– All writes are passed on to next level

– Normally combined with a Write Buffer

• Read/Write Allocate and Write-Back

– On write misses: allocate and fetch line, then
modify

– Cache holds the only up-to-date copy

– Dirty bit to mark line as modified

4 Helps to reduce write bandwidth to next level

– Line chosen for eviction may be dirty

∗ Victim writes to next level

∗ e.g. write victim, read new line, modify

111

Caching Writes
1. Allocation policy and write through/back are orthogonal

parameters, but in general, only Read-only Allocate
combined with Write-Through and Read-Write Allocate
combined with Write-Back are useful.

2. Write back caches reduce the number of stores seen by the
next level (the next level may only ever see victim writes).
This is essential in multiprocessor systems to reduce traffic
on the interprocessor bus, but requires a coherence
mechanism.

3. Write through caches avoid some of the coherence problems
of write back caches, and are generally simpler.
Write-through is generally the desired behaviour when
communicating with memory mapped peripherals e.g. frame
buffers. For this reason, many architectures allow control of
cache-ability on a per page basis e.g. the x86 allows pages
to be marked as un-cacheable, write-back cacheable and
write-through cacheable.

4. Write through can actually be a win over write back for
certain operations. E.g. Consider scanning over a large array
initialising it to zero. The initial line fetch will be a waste of
bandwidth, since all the words will be updated. Some
architectures provide a write-line invalidate instruction that
allocates a line in the cache without the initial fetch; the
program guarantees to update all words in the line.
Alternatively, some architectures provide store instructions
that force write-through behaviour.

Write Buffers

• Small high-bandwidth resource for receiving
store data

• Give reads priority over writes to reduce load
latency

– All loads that miss must check write buffer

– If RaW hazard detected:

∗ flush buffer to next level cache and replay

∗ or, service load from buffer (PPro, 21264)

• Merge sequential writes into a single transaction

• Collapse writes to same location

• Drain write buffer when bus otherwise idle

• 21164: 6 addresses, 32 bytes per address

• ARM710: 4 addresses, 32 bytes total

1. Write buffers accept store data from the CPU core at
full-rate, and attempt to hide the lower throughput of the
underlying memory system. By allowing loads to pass stores
they also result in reduced average load latency.

2. On a cache miss, the write buffer must be examined to see
whether it contains a write to the requested load address. In
theory, a write buffer could service the requested load
address directly, but in practise, the write buffer is normally
flushed to the next level of the memory hierarchy and the
load replayed.

3. If a write buffer becomes full, the next store will cause a
stall until a slot becomes available. The 21164 write buffer
has slots for six addresses and 32 data bytes per address.
Other current CPUs are similar.

112

Cache Miss Rate E.g.

• SPEC 92 on MIPS

• 32 byte lines

• LRU replacement

• Write allocate/write back

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8 16 32 64 128

Capacity Misses

Compulsory Misses

8-way

4-way

2-way

1-way

M
is

s
ra

te
 p

er
 ty

pe

Cache size (KB)

A direct-mapped cache of size N has about the same
miss rate as a 2-way set-associative cache of size N/2

1. Compulsory miss rate is independent of size or associativity.

2. The Capacity miss rate was calculated by considering a fully
associative cache of size n.

3. Little advantage is gained with associativity greater than
4-way for caches >16KB (most current generation CPUs
have 16KB or more L1 caches)

113

L1 Caches

• L1 I-cache

– Single-ported, read-only (but may snoop)

– Wide access (e.g. block of 4 instrs)

– (trace caches)

• L1 D-cache

– Generally 8-64KB 1/2/4-way on-chip

∗ Exception: HP PA-8200

– Fully pipelined, Low latency (1-3cy),
multi-ported

– Size typ constrained by propagation delays

– Trade miss rate for lower hit access time

∗ May be direct-mapped

∗ May be write-through

– Often virtually indexed

∗ Access cache in parallel with TLB lookup

∗ Need to avoid virtual address aliasing

· Enforce in OS

· or, Ensure index size < page size
(add associativity)

114

L1 Caches
1. All current high-performance processors have separate L1

I&D caches—It’s much better to have separate caches
rather a single double size cache with an extra read port.

2. x86 I-cache snoops D-cache (as does the rest of the pipeline)

3. Some new processors employ ’trace caches’. Rather than
storing the original ISA instructions they store instructions in
a pre-decoded internal form. Some trace caches are even
laid out according to the predicted execution path i.e. the
contents of cache lines may not be from sequential ISA
instructions.

4. Dynamic execution can hide D-cache latency better,
enabling larger more complex caches with longer latency but
lower miss rate.

5. A few years ago L1 cache size may have been constrained by
available die area, but now performance is generally the
limiting factor.

6. The exception is the PA-RISC machines, which in the past
have had large off-chip L1 caches. HP’s assertion has been
that their execution engines have been able to hide the
load-use latency, and that their machines perform better on
‘commercial applications’ that have worse locality of
reference than SPEC95.

7. Multi-porting L1 D-caches is often emulated by building the
cache out of two or more banks that operate independently.
Providing concurrent requests need to access different banks
they can proceed in parallel

8. Cache complexity (and thus miss rate) is often traded for hit
access time. Direct mapped caches are often used to enable
the tag check to be done in parallel with speculatively
feeding the data to the CPU (hence reducing load-use
penalties). Modern dynamic-issue CPUs tend to be less
sensitive to such stalls, thus the complexity of L1 caches is
increasing. (see the point below also—adding associativity
can help to keep the cache virtually indexed without special
OS support)

9. Address aliasing in a virtually indexed cache occurs when
two VAs which map to the same physical address map to a
different set in the cache. The OS can prevent this by
ensuring that the virtual to physical mappings of all pages
have sufficient low-order address bits in common i.e.
log2(cache size/associativity). Keeping pages so aligned also
has the benefit of allowing a competent programmer to have

more control over where his or her data is placed in the
cache.

10. Alternatively, the aliasing problem can be solved in hardware
by adding sufficient associativity to the cache to reduce the
number of virtual address bits used as the index until there
are no more than log2(page size) (since the VA and PA
must be identical within a page). E.g. x86’s have a 4KB
page size. The Pentium Pro has an 8KB 2-way L1 D-cache,
the Pentium II a 16KB 4-way.

Enhancing Performance :1

• Block size (Line size)

– Most currently 32 or 64

4 Increasing block size reduces # compulsory
misses

4 Typically increases bandwidth

8 Can increase load latency and # conflict
misses

• Fetch critical-word-first and early-restart

– Return requested word first, then wrap

– Restart execution as soon as word ready

4 Reduces missed-load latency

– Widely used. Intel order vs. linear wrap

• Nonblocking caches

– Allow hit under miss (nonblocking loads)

– Don’t stall on first miss: allow multiple
outstanding misses

∗ merge misses to same line

– Allow memory system to satisfy misses
out-of-order

4 Reduces effective miss penalty

115

Enhancing Performance :1
1. High memory system bandwidth is typically very important

for FP programs. In contrast, integer programs often benefit
more from reduced latency. (Sequential vector (array)
operations vs. pointer chasing (e.g. scanning linked lists))

2. Many systems use ‘linear wrap’, where the word requested
(signalled by the low-order address bits) is returned first, and
then cache fill proceeds sequentially, wrapping at the end of
the block back to the beginning. Rather than linear wrap,
Intel use a bizarre ordering that is supposed to optimize the
likelihood that the subsequent word requested by the CPU is
the second word in the fill order.

3. Most memory systems now allow transactions to be serviced
out-of-order. The 21264 is particularly aggressive, allowing
up to 16 transactions.

Enhancing Performance :2

• Victim caches

– Small highly associative cache to backup up a
larger cache with limited associativity

4 Reduces the cost of conflict misses

• Victim buffers

– A small number of cache line sized buffers
used for temporarily holding dirty victims
before they are written to Ln+1

– Allows victim to be written after the requested
line has been fetched

4 Reduces average latency of misses that evict
dirty lines

• Sub-block presence bits

– Allows size of tag ram to be reduced without
increasing block size

– Sub-block dirty bits can avoid cache line fills
on write misses

∗ (would break coherence on multiprocessors)

116

Enhancing Performance :2
1. Victim caches are employed on some systems with large

off-chip direct-mapped L1 caches. Adding a normal L2
cache would not help much (the L1 is already big), but the
extra associativity of the victim cache can help. (E.g. The
HP PA-7200)

2. The contents of victim buffers can be written out when the
memory system is otherwise idle. If the victim buffers are
already full when a dirty line is evicted, the victim must be
written before the fill can occur. Victim buffers don’t help if
large numbers of victims are being generated, e.g. by a
program performing sequential writes to a very large array
(memset).

3. As with write buffers, missed loads must check the contents
of the victim buffer before proceeding.

4. Victim buffers are particularly useful if the latency of the
Ln+1 memory system is high. (Alternatively, some systems
use an address routing trick to ensure that both the victim
and the line that is to be fetched must come from the same
DRAM page, reducing the total transaction time.)

5. Another way of enhancing performance is to use a L2 (or
L3) cache to reduce average miss time...

L2 caches

• L2 caches help hide poor DRAM latency

– large write-back cache

• L2 caches used to share the system bus pins
(e.g. Pentium)

8 electrical loading limits performance

• now, a dedicated ‘backside bus’ is used

• L2 on same die (21164)

4 low latency and wider bus

4 associativity easier

8 limited die size, so may need an L3

∗ (e.g. 21164 has 2-16MB L3)

• L2 in CPU package (Pentium Pro)

4 lower latency than external

• L2 in CPU ‘cartridge’ (Pentium II)

4 controlled layout

4 use standard SSRAM

• L2 on motherboard

8 requires careful motherboard design

• L1/L2 inclusive vs. exclusive

117

L2 caches
1. Large write-back L2 caches are essential for good SPEC95

results

2. Unless an L3 cache can be made substantially (e.g. >16x)
bigger than the L2 it is unlikely to be of much benefit (it
may even increase the main memory access time).

3. The backside bus is typically not a bus, but a point-to-point
link between CPU pins and cache RAM pins. The
point-to-point links typically use high speed low voltage
signalling and care is taken to control skew and propagation
delays.

4. The dual cavity packaging approach used on the Pentium
Pro is expensive to manufacture, hence the Pentium II.
However, PPro cache runs at core speed compared to the
PII’s half speed. (Xeon back to full speed)

5. Intel introduced cartridge to avoid the burden of cache
layout falling to motherboard designers (and to maximise
their own profits...)

6. Older caches used ‘wave pipelining’ to maximise throughput.
This is effectively using propagation delay to provide
asynchronous pipelining. Now, modern Synchronous SRAMs
(SSRAMs) have inputs and outputs synchronous to a clock
input, and are pipelined internally.

7. Some systems use an inclusive L1/L2 policy whereby all
lines that are in the L1 must be in the L2. Hence, SMP
coherency probes only need to look in the L2. However, the
effective cache size is improved if there is no inclusivity rule.

Hierarchy Examples

Pentium

L1-D
8KB

2-way
WT
16B

L1-I
8KB

2-way
16B

L2
256KB
1-way
WB
32B

64b
66MHz

Pentium Pro

L1-D
8KB

2-way
WB
32B

L1-I
8KB

2-way
32B

64b
66MHz

L2, 256KB, 4-way,
WB 32B

64b 200Mhz

L1-D
16KB
4-way
WB
32B

L1-I
16KB
4-way
32B

L2, 512KB, 4-way,
WB 32B

64b 150Mhz

64b
66/100MHz

dual cavity
package

cartridge
slot-1

Pentium II

L1-D
8KB

1-way
WT
32B

L1-I
8KB

1-way
32B

128b
100MHz

Alpha 21164

L2, 96KB, 3-way
WB 64B

L3
2MB

1-way
WB
64B

L1-D
8KB

1-way
WT
32B

L1-I
16KB
1-way
32B

128b
100MHz

Alpha 21164-PC

L2, 2MB, 1-way,
WB 64B

128b 150Mhz

L1-D
64KB
2-way
WT
64B

L1-I
64KB
2-way
64B

64b
300MHz

Alpha 21264

L2, 8MB, 1-way,
WB 64B

128b 300Mhz

cartridge
slot-A

1. Conventional system buses are 64-128 bits wide and run at
66-100MHz. Bus signals have multiple electrical loads. New
CPUs (e.g. the 21264 and AMD K7) will have point-to-point
system ‘buses’ clocked at >150MHz. ‘Switch chips’ will be
used to provide the connections to the I/O and memory
sub-systems. (This is done for the same reasons as having a
dedicated backside bus for the external cache).

2. Next generation chips like the 21364 are implementing the
memory system controller on-chip. Rambus strings will hang
directly off the CPU, and CPUs will directly be connected
together by virtue of four high-speed ‘network connections’
on each processor.

118

Performance Examples

��� �����	� ��
����� ������� ��������� ��������� �"! �������#��� ! ��$���%'&�(��)! ������%*&+(,� !
�.- /102& - 354 687 - 9 -�4�:<; =�9>;
�?4 =1@502& 3 @�9 68& A 4�@ @<;B9 =�9>;
�C3 4�:�9</102& - @�9 68& 414 /13 3195: 3D-�;
%*%

 =1@ 35@D- -E95: -1-�3

266MHz 21164 EB164 (Alcor/CIA)

��� �����	� �D
F�G�E� �����H� �������I� �J�B���F� �"! �J�B���#��� ! �J$K��%*&+(,� ! �����F%'&�(�� !
�.- /10L& 4 -E@ 687 - ; @13�9 /54
�?4 41;�@502& - 354 687 -5- ;5; -E=13 /54
%*%

 41/ -	95: -�4�3 /D-

200MHz Pentium 430HX

��� �����	� �D
F�G�E� �����H� �������I� �J�B���F� �"! �J�B���#��� ! �J$K��%*&+(,� ! �����F%'&�(�� !
�.- /10L& 4 354 68& 4 -�: @1=5; 9�A>-
�?4 41;�@502& 9 354 68& @ 35: 9<4�@ 9>4�@
%*%

 959 414�: -,A,= />A

200MHz PPro 440FX

��� �����	� �D
F�G�E� �����H� �������I� �J�B���F� �"! �J�B���#��� ! �J$K��%*&+(,� ! �����F%'&�(�� !
�.- -�@102& 9 354 68& 4 A -E:195/ AB35;
�?4 ;�-�4102& 9 354 68& -�; ;1: ;B9<; 41/54
%*%

 @19 4�-E3 4�3D- -5-E@

300MHz PII 440LX

119

Performance Examples
1. This table refers only to data caches. All the data was

collected using a test program written by the author. Care
was taken to perform ‘reasonable optimization’ of the loops
for each of the different systems. Despite this, the numbers
reported are in some cases rather lower than might be
expected from reading the system documentation. Achieving
the documented figures often requires ‘tricks’ that are not
generally applicable, hence these figures represent the sort of
memory system performance that real programs might hope
to achieve.

2. The load bandwidth test simply reads words sequentially
from an array of size n (where n is the size of the cache to
be tested). When testing the L2 bandwidth, the L1 cache
does not interfere since almost all loads will miss due to
capacity misses; any useful data the cache holds will be
pushed out before it is needed on the next iteration.
(likewise for testing L3 and main memory)

3. Store bandwidth is measured by writing sequentially to an
array of size n.

4. The latency tester creates a linked list of cache line sized
elements, of total size n. It then accurately measures the
time to chases down the list multiple times, and computes
the load-to-use latency.

5. Many Pentium systems have write back L2 caches; I’m not
sure why the BIOS hadn’t enabled write-back on this system.

6. Note how the 21164’s L1 cache is write through, and thus
how the L1 store bandwidth is the same as the L2.
(Likewise for both caches on the Pentium system).

7. The Pentium Pro and PII have longer latency L1 D-caches
(enabled by the dynamic execution engine. Despite the two
cycle latency, both are fully pipelined)

8. The Pentium II’s off-chip L2 cache has longer latency than
the Pentium Pro’s L2 in the 2nd die. However, The PII’s
cache is made from off-the-shelf SSRAM parts, and is thus
cheaper. (The use of SSRAM enables the throughput to be
the same despite the latency being greater).

9. Larger caches sometimes benefit from larger line sizes
(compare 21164 L1 and L2, or Pentium L1 and L2).

0

200

400

600

800

1000

1200

1400

1000 10000 100000 1e+06

M
B

/s

Array size in bytes

Alpha 21164 275MHz. 8KB L1, 96KB L2, 2MB L3

’load-loop’
’store-loop’
’sum-loop’

Main Memory

• Increasing sequential bandwidth

– Wide memory bus

– Interleave memory chips

⇒ DDR SDRAM or RAMBUS

• Access latency can impair bandwidth

– Larger cache block sizes help

• Reducing average latency

– Keep memory banks ‘open’

∗ Quick response if next access is to same
DRAM Row

– Multiple independent memory banks

∗ Access to an open row more likely

∗ SDRAM/RAMBUS chips contain multiple
banks internally

– System bus that supports multiple outstanding
transaction requests

∗ Service transactions out-of-order as banks
become ready

120

Main Memory
1. Wide memory systems (e.g. 256 bits on Alpha EB164)

typically require a large number of memory modules
(e.g. SIMMs/DIMMs) to be installed. This results in a large,
expensive memory configuration which is often hard to
upgrade due to a limited number of motherboard SIMM
slots.

2. Wide memory systems are expensive. The higher clock rate
of SDRAM has helped to reduce the need for wide memory
systems in many applications. Pentium II and Pentium Pro
systems make do with 64 bit memory systems. Alpha
SDRAM systems are 128-256 bits wide.

3. Intel are committed to using RAMBUS on future processors.
This will result in main memory connecting directly to the
processor rather than system support chips. Each CPU will
probably support 4-16 separate RAMBUS buses (known as
‘strings’)operating concurrently.

4. With a simple memory system, DRAM latency often results
in the system bus laying idle much of the time, waiting for
the row access to complete. Increasing the cache line size
increases the percentage of cycles where useful work is done.

5. With independent memory banks, each cache line is serviced
from a single memory bank (no word-level interleaving). The
memory system typically accepts multiple transactions from
the CPU, and services them out-of-order depending on the
availability of each bank. Each bank is kept ‘open’ after an
access, enabling subsequent accesses to the same DRAM
page to continue with low latency. This type of scheme is
becoming increasingly popular due to the fact that individual
SDRAM/RAMBUS parts are now able to deliver relatively
high sequential bandwidth—it’s just the latency that’s the
real problem. Having multiple banks helps to reduce the
average latency. Individual SDRAM and RAMBUS parts now
contain multiple banks internally as well; the memory
controller must keep track of which rows are currently
latched and thus available for rapid access.

6. The STREAM benchmark is often used to measure memory
system bandwidth. lmbench is often used to measure
latency.

Programming for caches

• Design algorithms so working set fits in cache

– Large lookup tables may be slower than
performing the calculation

• Organise data for spatial locality

– Merge arrays accessed with the same index

• Fuse together loops that access the same data

• Prefer sequential accesses to non-unit strides

– innermost loop should access array sequentially

• If row and column access to 2D arrays is
necessary, use cache blocking

– divide problem into sub-matrices that fit cache

– e.g. matrix multiply C = C +A×B

for (kb=0;kb<N;kb+=b){
for (jb=0;jb<N;jb+=b){

for (ib=0;ib<N;ib+=b){
for(k=kb;k<kb+b;++k){

for(j=jb;j<jb+b;++j){
for(i=ib;i<ib+b;++i){

C[k][i] = C[k][i] + (A[k][j] * B[j][i]);
} } } } } }

• Avoid access patterns that are likely to cause
conflict misses (aliasing)

– e.g. large powers of 2

• Large strides can thrash the TLB

121

Programming for caches
1. Caches can lead to large performance variances on different

machines—possibly even on the same machine due to
different physical page placement for different runs.

2. Organise data for spatial locality, e.g. collect elements of
different arrays that are accessed together into a single
struct array. This will also reduce the possibility of aliasing.

3. Fuse loops that access the same data in the same pattern
into a single loop.

4. Large strides can cause cause thrashing of the TLB

5. Large strides that are powers of 2 are more likely to cause
aliasing.

6. Two good articles on programming for caches are included
in the additional material. (one for the 21164, one for x86).
H&P is also very good.

7. Big Wins for cache optimizations

Special Instructions

• Prefetch

– fetch data into L1, suppressing any exceptions

– enables compiler to speculate more easily
e.g. Alpha: ld r0 ← [r1]

• ‘Two-part loads’ (e.g. IA-64)

– speculative load suppresses exceptions

– ‘check’ instruction collects any exception

– enables compiler to ‘hoist’ loads to as early as
possible, across multiple basic blocks

– ld.s r4 ← [r5]
chk.s r4

• Load with bypass hint

– indicates that the load should bypass the
cache, and thus not displace data already there

– e.g. random accesses to large arrays

• Load with spatial-locality-only hint

– fetch line containing the specified word into a
special buffer aside from the main cache

∗ or, into set’s line that will be evicted next

• Write invalidate

– allocate a line in cache, & mark it as modified

– avoids mem read if whole line is to be updated

1. Cache manipulation instructions have been added as part of
most architecture’s ‘Multimedia’ extensions

2. spatial-locality-only (non-temporal) loads are often
implemented by loading the line into the set’s line that will
be evicted next.

122

Multiprocessor Architectures

• Message Passing - multiple address spaces

– explicit communication

∗ send/receive : often RPC

∗ put/get : requires more trust &
co-ordination

– Interconnect nodess w/ GigE, Myrinet, VIA

– e.g. Beowulf cluster

• Shared Memory - cache coherent

– hardware maintains coherence

∗ implements shared & exclusive cache line
ownership states

∗ CPU must have exclusive ownership to write
: must invalidate shared copies

– centralised memory

∗ 2/4/8 way SMP systems

∗ bus and crossbar architectures

– distributed memory

∗ each node has memory attached

∗ accesses to remote memory slower

∗ ccNUMA - Non Uniform Memory Access

∗ 32+ way systems

∗ hypercube, torus, mesh

1. false sharing

123

Course Conclusions
• Modern CPUs are impressive feats of engineering

• Rely heavily on ‘common case’ assumptions

– potential for large performance variance

– need better compilers

– on-line feedback-directed optimization

• Extracting loop and thread-level parallelism will be
increasingly important

– auto-parallelising compilers

– functional / declarative languages

• ISA compatibility is currently very important

– MSIL / Java byte code

Questions
• How much ILP will be economically exploitable?

• Will we succeed in exploiting other forms of
parallelism?

• Hardware vs. software scheduling?

• What will we do with 1 billion transistors?

• Will x86 ever die?

1. bugs surprisingly rare in modern processors...

2. I expect to see 8-way integer SMT systems in 5 years time.

3. I believe multi-processor SMP motherboards (2 and 4 way)
will become more common place too.

4. Will other architectures be sufficiently better than x86 to
finally kill it?

5. SIA Roadmap for 2010: 1B logic transistors, 27x27mm
chips, 5GHz local clock speeds, 64GB main memories

124

