Today’s Lecture

Lecture 6: Today we'll cover:

e What is a process?

— Concepts,

Processes |: The Basics — Process states.

e What OS support do we need?

— Process control blocks,
— Context switching,
— Scheduling.

The life of
www.cl.cam.ac.uk/Teaching/2001/0SFounds/ ¢ (he e onaprocess

Lecture 6: Wednesday 17th October 2001 Lecture 6: Contents

Process Concept Process States

From a user’s point of view, the operating system
is there to execute programs:

admit release

— on batch system, refer to jobs
— on interactive system, refer to processes
(we’ll use both terms fairly interchangeably)

timeout
or yield

Process # Program:

— a program is static, while a process is dynamic

] A, . .
— in fact, a process = "a program in execution e As a process executes, it changes state:

(Note: “program” here is pretty low level, i.e. — New: the process is being created
native machine code or ezecutable)

— Running: instructions are being executed

* Process includes: — Ready: the process is waiting for the CPU (and
1. program counter is prepared to run at any time)
2. stack — Blocked: the process is waiting for some event

3. data section to occur (and cannot run until it does)

e Processes execute on virtual processors Exit: the process has finished execution.

e The operating system is responsible for
maintaining the state of each process.

Lecture 6: Processes 2 Lecture 6: Processes

Process Control Block

Process Number (or Process ID)
Current Process State

CPU Scheduling Information

Program Counter

Other CPU Registers

Memory Mangement Information

Other Information
(e.q. list of open files, name of
executable, identity of owner, CPU
time used so far, devices owned)

<= Refs to previous and next PCBs smp-

OS maintains information about every process in a

data structure called a process control block (PCB):

e Unique process identifier

e Process state (Running, Ready, etc.)

CPU scheduling & accounting information
e Program counter & CPU registers

e Memory management information

Context Switching

Process A Operating System Process B

executing |

N

idle

idle
Save State into PCB A

Restore State from PCB B —————>

executing

idle

Save State into PCB B 4

. <—— Restore State from PCB A
executing

e Process Context = machine environment during
the time the process is actively using the CPU.

i.e. context includes program counter, general
purpose registers, processor status register, . . .

e To switch between processes, the OS must:

a) save the context of the currently executing
process (if any), and
b) restore the context of that being resumed.

e Time taken depends on h/w support.

[]
Lecture 6: Processes 4 Lecture 6: Processes
Scheduling Queues Process Creation
Job e Nearly all systems are hierarchical: parent
Queue Ready Queue processes create children processes.

timeout or yield

Wait Queue(s)

—]
event event-wait

create creqe tememetemseemessseessssesssssessssessssssssssenesesssse e d
(batch) (interactive)

e Job Queue: batch processes awaiting admission.

e Ready Queue: set of all processes residing in main
memory, ready and waiting to execute.

e Wait Queue(s): set of processes waiting for an /O
device (or for other processes)

e Long-term & short-term schedulers:

— Job scheduler selects which processes should
be brought into the ready queue.

— CPU scheduler selects which process should be
executed next and allocates CPU.

Lecture 6: Process Life-cycle 6

e Resource sharing:

— parent and children share all resources.
— children share subset of parent’s resources.
— parent and child share no resources.

e Execution:

— parent and children execute concurrently.
— parent waits until children terminate.

e Address space:

— child duplicate of parent.
— child has a program loaded into it.

e eg. Unix:

— fork() system call creates a new process

— all resources shared (child is a clone).

— execlp() system call used to replace the
process’ memory space with a new program.

e NT/2000: CreateProcess() system call includes
name of program to be executed.

Lecture 6: Process Life-cycle

#include <stdio.h>

void main(int argc, char *argv[])

Process Termination

e Process executes last statement and asks the

{ operating system to delete it (exit):
int pid; — return data from child to parent (wait)
— process’ resources are deallocated by the OS.
pid = fork(); . .
e Process performs an illegal operation, e.g.
if (pid < 0) { — makes an attempt to access memory to which it
fprintf(stderr, "Fork failed"); is not authorised,
exit(-1); — attempts to execute a privileged instruction
} . . .
else if (pid == 0) { . Pal:ent n'lalyl/ termmste execution of child processes
execlp("/bin/1s","1s" ,NULL); (abort, kill), e.g. because
} — child has exceeded allocated resources
else { — task assigned to child is no longer required
wait (NULL) ; — parent is exiting (“cascading termination”)
printf ("Child complete"); (many operating systems do not allow a child to
exit(0); continue if its parent terminates)
}
} e e.g. Unix has wait (), exit () and kill()
e e.g. NT/2000 has ExitProcess() for self and
TerminateProcess() for others.
Lecture 6: Process Life-cycle 8 Lecture 6: Process Life-cycle 9
Process Blocking Summary

e In general a process blocks on an event, e.g.

— an 1/0 device completes an operation,
— another process sends a message

e Assume OS provides some kind of general-purpose
blocking primitive, e.g. await ().

o Need care handling concurrency issues, e.g.

if (no key being pressed) {
await (keypress) ;
print("Key has been pressed!\n");

}
// handle keyboard input

What happens if a key is pressed at the first '{" ?
e (This is a big area.)

e In this course we’ll generally assume that problems
of this sort do not arise.

Lecture 6: Process Life-cycle 10

You should now understand:
e What a process is,
e Process states and PCBs,
e Scheduling queues,

e Stages of Process lifecycle.

Next lecture: Processes Il: CPU scheduling

Background Reading:

e Silberschatz et al.: Chapter 4

Lecture 6: Summary 11

