Buses and 1/0 devices

www.cl.cam.ac.uk/Teaching/2001/0SFounds/

Lecture 4: Friday 12th October 2001

Lecture 4:

Today’s Lecture

Today we'll cover: The rest of the machine!

1. Buses
2. 1/0 devices

Lecture 4: Contents

Buses

ADDRESS

Processor

(€= DATA

e Bus = collection of shared communication wires:

v low cost.

v versatile /

CONTROL T
A 4

Other Devices

extensible.

) 4 potential bottle-neck.

e Typically comprises address lines, data lines and
control lines (+ power/ground).

Memory

e Operates in a master-slave manner, e.g.

1. master decides to e.g. read some data.

oW

master puts addr onto bus and asserts 'read’
slave reads addr from bus and retrieves data.
slave puts data onto bus.

master reads data from bus.

Lecture 4: Buses, Interrupts and DMA

Bus Hierarchy
Processor Memory Bus (100Mhz)
Bus
0
9 JE—
Processor |e—»| §
<D 8
64MByte
DIMM
64MByte
DIMM
Brid
Framebuffer [Z2og? l
—— ISA Bus (8Mhz)
PCI Bus (33Mhz)
&
T
"
N
q
SCSI
Controller
Sound
Card

e In practice, have lots of different buses with
different characteristics e.g. data width, max
#devices, max length.

e Most buses are synchronous (share clock signal).

Lecture 4: Buses, Interrupts and DMA

Interrupts Interrupts cont.

e Bus reads and writes are transaction based: CPU e Interrupt lines (~ 4 — 8) are part of the bus.

requests something and waits until it happens. e Often only 1 or 2 pins on chip = need to encode.

e But e.g. reading a block of data from a hard-disk)
takes ~ 2ms, which is ~ 1,000, 000 clock cycles! o eg I5A & x86:

e Interrupts provide a way to decouple CPU Processor —

. 0 [e———— IR0
requests from device responses. — v — B ———
) Intel f— IVTR —» DIE———
1. CPU uses bus to make a request (e.g. writes Cllesie 8 ——— RS

. . n —
some special values to a device). — b0 — & f——— e
[¢————————— IR7

2. Device goes off to get info.

Meanwhile CPU continues doing other stuff.

4. When device finally has information, raises an
interrupt.

5. CPU uses bus to read info from device.

w

Device asserts IRx.

PIC asserts INT.

When CPU can interrupt, strobes INTA.

PIC sends interrupt number on D[0:7].

CPU uses number to index into a table in
memory which holds the addresses of handlers

x00207 for each interrupt.
0x184c: add r0, r0, #8 0x0024: <do stuff> R .
0x1850: sub rl, r5, r6 / ------ 6. CPU saves registers and jumps to handler.

0x0038: rti
0x1854: 1ldr r0, [rxO0] t
0x1858: and rl, rl, r0

e When interrupt occurs, CPU vectors to handler,
then resumes using special instruction, e.g.

ARl

Lecture 4: Buses, Interrupts and DMA 4 Lecture 4: Buses, Interrupts and DMA 5
Direct Memory Access (DMA) Input/Output Devices
e Interrupts good, but even better is a device which e Devices connected to processor via a bus (e.g. ISA,
can read and write processor memory directly. PCl, AGP).
o A generic DMA “command” might include e Includes a wide range:
— source address — Mouse,
— source increment / decrement / do nothing — Keyboard,
— sink address — Graphics Card,
— sink increment / decrement / do nothing — Sound card,
— transfer size — Floppy drive,
e Get one interrupt at end of data transfer — Hard-Disk,
— CD-Rom,
e DMA channels may be provided by devices — Network card
themselves: — Printer,
— e.g. a disk controller — Modem
— pass disk address, memory address and size — etc.
~ give instruction to read or write e Often two or more stages involved (e.g. IDE, SCSI,
e Also get “stand-alone” programmable DMA RS-232, Centronics, etc.)
controllers.

Lecture 4: Buses, Interrupts and DMA 6 Lecture 4: 1/O Devices 7

» A[0:x] [—— Serial Output
| D) [0 27] Je——— Serial Input
Baud
r/w »| read/write Rate
/cs Ol chip select Generator

e Universal Asynchronous Receiver/Transmitter:

— stores 1 or more bytes internally.
— converts parallel to serial.
— outputs according to RS-232.

e Various baud rates (e.g. 1,200 — 115,200)
e Slow and simple. . . and very useful.
e Make up “serial ports” on PC.

e Max throughput ~ 14.4KBytes; variants up to 56K
(for modem:s).

Lecture 4: 1/0 Devices 8

Hard Disks

actuator

spindle

read-write

sector

cylinder—" -

platter

e Whirling bits of (magnetized) metal. . .
e Rotate 3,600 — 7,200 times a minute.
e Capacity ~ 40 GBytes (~ 40 x 23%ytes).

Lecture 4: 1/O Devices

Graphics Cards

| | Framebuffer

P .
from CPU : VRAM/ Cll)ooctk
vsync | +to Monitor
I l >—>Red
) e T RAMDAC >—> Green
1 | DF—>Blue
v Graphics
* PCI/
©AGP Processor

e Essentially some RAM (framebuffer) and some
digital-to-analogue circuitry (RAMDAC).

e RAM holds array of pixels: picture elements.

e Resolutions e.g. 640x480, 800x600, 1024x768,
1280x1024, 1600x1200.

e Depths: 8-bit (LUT), 16-bit (RGB 555), 24-bit
(RGB 888), 32-bit (RGBA 888).

e Memory requirement = x X yX depth, e.g.
1024x768 @ 16bpp needs 1536KB.

= full-screen 50Hz video requires 7.5MBytes/s (or
60Mbits/s).

Lecture 4: 1/0 Devices 10

Summary

You should now understand:

e Buses:

— Bus hierarchy,
— Interrupts & Interrupt vectors,
— Direct Memory Access.

e 1/0 devices:

— Different devices

Next lecture: Operating Systems: The Basics
Background Reading:

e Hennessy/Patterson:

— Section 8.4—Buses
— Section 8.3—I1/0 devices

e Silberschatz et al.:

— Section 13.2.2—Interrupts
— Section 13.2.3—DMA

Lecture 4: Summary

11

Summary of Part |

e Computers made up of four main parts:

1. Processor (including register file, control unit
and execution unit),

2. Memory (caches, RAM, ROM),

3. Devices (disks, graphics cards, etc.), and

4. Buses (interrupts, DMA).

Information represented in all sorts of formats:

— signed & unsigned integers,
— strings,

— floating point,

— data structures,

— instructions.

Can (hopefully) understand all of these at some
level, but gets pretty complex.

= to be able to actually use a computer, need an
operating system. (Part II!)

Lecture 4: Part | Summary

12

