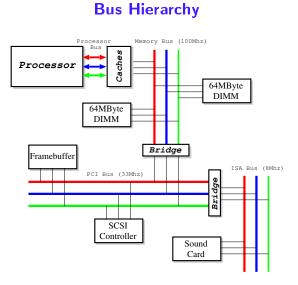

Lecture 4:

Buses and I/O devices

www.cl.cam.ac.uk/Teaching/2001/OSFounds/

Lecture 4: Friday 12th October 2001

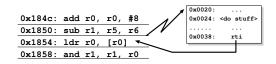
Buses


- Bus = collection of shared communication wires:
- ✓ low cost.
- ✓ versatile / extensible.
- **X** potential bottle-neck.
- Typically comprises address lines, data lines and control lines (+ power/ground).
- Operates in a master-slave manner, e.g.
 - 1 master decides to e.g. read some data.
 - 2. master puts addr onto bus and asserts 'read'
 - 3. slave reads addr from bus and retrieves data.
 - 4. slave puts data onto bus.
 - 5. master reads data from bus.

Today's Lecture

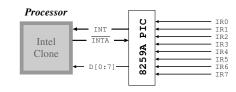
Today we'll cover: The rest of the machine!

- 1. Buses
- 2. I/O devices


Lecture 4: Contents

- In practice, have lots of different buses with different characteristics e.g. data width, max #devices, max length.
- Most buses are **synchronous** (share clock signal).

Interrupts


- Bus reads and writes are transaction based: CPU requests something and waits until it happens.
- But e.g. reading a block of data from a hard-disk takes $\sim 2ms$, which is $\sim 1,000,000$ clock cycles!
- **Interrupts** provide a way to decouple CPU requests from device responses.
 - 1. CPU uses bus to make a request (e.g. *writes* some special values to a device).
 - 2. Device goes off to get info.
 - 3. Meanwhile CPU continues doing other stuff.
 - 4. When device finally has information, raises an interrupt.
 - 5 CPU uses bus to read info from device.
- When interrupt occurs, CPU vectors to handler, then resumes using special instruction, e.g.

Lecture 4: Buses, Interrupts and DMA

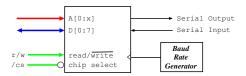
Interrupts cont.

- Interrupt lines ($\sim 4-8$) are part of the bus.
- Often only 1 or 2 pins on chip \Rightarrow need to encode.
- e.g. ISA & x86:

- 1 Device asserts IRx.
- 2. PIC asserts INT.
- 3. When CPU can interrupt, strobes INTA.
- 4 PIC sends interrupt number on D[0:7].
- 5. CPU uses number to index into a table in memory which holds the addresses of handlers for each interrupt.
- 6. CPU saves registers and jumps to handler.

Lecture 4: Buses, Interrupts and DMA

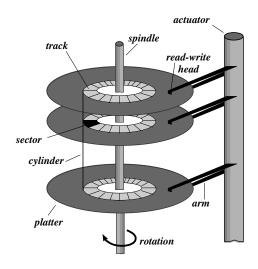
5


Direct Memory Access (DMA)

- Interrupts good, but even better is a device which can read and write processor memory **directly**.
- A generic DMA "command" might include
 - source address
 - source increment / decrement / do nothing
 - sink address
 - sink increment / decrement / do nothing
 - transfer size
- Get one interrupt at end of data transfer
- DMA channels may be provided by devices themselves:
 - e.g. a disk controller
 - pass disk address, memory address and size
 - give instruction to read or write
- Also get "stand-alone" programmable DMA controllers.

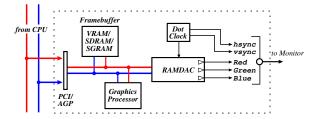
Input/Output Devices

- Devices connected to processor via a bus (e.g. ISA, PCI, AGP).
- Includes a wide range:
 - Mouse.
 - Keyboard,
 - Graphics Card,
 - Sound card,
 - Floppy drive,
 - Hard-Disk,
 - CD-Rom,
 - Network card,
 - Printer.
 - Modem
 - etc.
- Often two or more stages involved (e.g. IDE, SCSI, RS-232, Centronics, etc.)


UARTs

- Universal Asynchronous Receiver/Transmitter:
 - stores 1 or more bytes internally.
 - converts parallel to serial.
 - outputs according to RS-232.
- Various baud rates (e.g. 1,200 115,200)
- Slow and simple. . . and very useful.
- Make up "serial ports" on PC.
- Max throughput \sim 14.4KBytes; variants up to 56K (for modems).

Lecture 4: I/O Devices


Hard Disks

- Whirling bits of (magnetized) metal. . .
- Rotate 3,600 7,200 times a minute.
- Capacity \sim 40 GBytes ($\approx 40 \times 2^{30} bytes$).

Lecture 4: I/O Devices 9

Graphics Cards

- Essentially some RAM (framebuffer) and some digital-to-analogue circuitry (RAMDAC).
- RAM holds array of pixels: picture elements.
- Resolutions e.g. 640x480, 800x600, 1024x768, 1280x1024, 1600x1200.
- Depths: 8-bit (LUT), 16-bit (RGB 555), 24-bit (RGB 888), 32-bit (RGBA 888).
- Memory requirement $= x \times y \times \text{depth}$, e.g. 1024x768 @ 16bpp needs 1536KB.
- \Rightarrow full-screen 50Hz video requires 7.5MBytes/s (or 60Mbits/s).

Summary

You should now understand:

- Buses:
 - Bus hierarchy,
 - Interrupts & Interrupt vectors,
 - Direct Memory Access.
- I/O devices:
 - Different devices

Next lecture: Operating Systems: The Basics Background Reading:

11

- Hennessy/Patterson:
 - Section 8 4—Buses
 - Section 8.3—I/O devices
- Silberschatz et al.:
 - Section 13.2.2—Interrupts
 - Section 13.2.3—DMA

Summary of Part I

- Computers made up of four main parts:
 - 1. Processor (including register file, control unit and execution unit),
 - 2. Memory (caches, RAM, ROM),
 - 3. Devices (disks, graphics cards, etc.), and
 - 4. Buses (interrupts, DMA).
- Information represented in all sorts of formats:
 - signed & unsigned integers,
 - strings,
 - floating point,
 - data structures,
 - instructions.
- Can (hopefully) understand all of these at some level, but gets pretty complex.
- \Rightarrow to be able to actually use a computer, need an **operating system**. (Part II!)

Lecture 4: Part | Summary