
Diploma and Part II(General)

Introduction to

Algorithms

by

Martin Richards

mr@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/mr/

University Computer Laboratory

New Museum Site

Pembroke Street

Cambridge, CB2 3QG

1



The Course

� This course covers some of the material that

the Part 1b students were given in their

Discrete Mathematics course of last year.

� These student will be joining you for the

course Data Structures and Algorithms that I

will be giving later this term.

� The notes were originally written by Arthur

Norman and slightly modi�ed by Alan

Mycroft.

� The course is not directly examinable, but

the material it contains is fundamental to

many other courses in Computer Science,

particularly Data Structures and Algorithms.

2



Content

� Proof by induction

� Sets, functions

� Relations, graphs

� Reasoning about programs

� O(f) and �(f) notation

� Solution of recurrence formulae

3



Logarithms

log2 x = lg x

2y = x

2lg x = x

lg 1024 = 10

lg 1000000 ' 20

lg 1000000000 ' 30

The base does not matter (much)!

ay = x y = log
a
x

a = bz z = log
b
a

bzy = x zy = log
b
x

y =
log

b
x

log
b
a

4



More Induction Proofs

Prove Ackermann's function is total

ack(0, y) = y+1

ack(x, 0) = ack(x-1, 1)

ack(x, y) = ack(x-1, ack(x, y-1))

De�ned in ML

fun ack(0, y) = y+1

| ack(x, 0) = ack(x-1, 1)

| ack(x, y) = ack(x-1, ack(x, y-1));

5



Lexicographic Ordering

Treat the two arguments of ack as a 2-tuple.

Use lexicographic ordering

(0,0) < (0,1) < (0,2) < ...

< (1,0) < (1,1) < (1,2) < ...

< (2,0) < ...

< ...

6



Proof

To prove ack(x,y) terminates

Base case: x=0, y=0

ack(x,y) = ack(0,0) = 1

Induction:

Prove ack(x,y) terminates assuming

ack(p,q) terminates for all (p,q) < (x,y)

case: x=0

ack(x,y) = ack(0, y) = y+1

case: y=0

ack(x,y) = ack(x, 0) = ack(x-1,1)

general case:

ack(x,y) = ack(x-1, ack(x, y-1))

So ack(x,y) terminates for all positive (x,y)

7



Another Example

Consider expressions composed of only

� Even integers

� The operators + and *

Prove that the value of any such expression is

even.

8



Proof

Induction on n, the number of operators in the

expression

Base case: n = 0

The expression is an even number

Induction: n > 0

Prove for n, assuming true for smaller values of n

case 1: The leading operator is +

The operands have fewer operator so can be

assumed to yield even integer. The sum of two

even numbers is even.

case 2: The leading operator is *

The product of two even numbers is even.

So all such expressions yield even numbers

9



Eval in ML

datatype E = Num of int

| Add of E * E

| Mul of E * E;

val e = Add(Num 10, Mul(Num 4, Num 6));

fun eval (Num k) = k

| eval (Add(x,y)) = eval x + eval y

| eval (Mul(x,y)) = eval x * eval y;

eval e; (* gives the answer: 34 *)

10



Sets

A set is a collection of zero or more distinct

elements.

Examples

f1; 2; 3g

f1; "string"; ffg; f2gg; xg

fx2jx�f0; 1; : : :gg

11



Sets Operations

� Intersection

� Union

� Cartesian Product

� Power Sets

� In�nite Sets

� Set Construction

� Cardinality

12



Relations

A binary relation is some property that may or

may not hold between elements of two sets A and

B, say.

Notation

xRy where x is an element of A, y is and element

of B, and R is the name of the relation.

Examples

13



Relations

Kinds of relation

Reexive

xRx

E.g. =

Symmetric

xRy ) yRx

E.g. 6= or \married to"

Transitive

xRy ^ yRz ) xRz

E.g. <

14



Relations

Equivalence Relations

Reexive, Symmetric and Transitive

E.g. \same colour as" or \related to"

Partial Order

Reexive, Anti-symmetric and Transitive

E.g. � or \subset of"

15



Closures

Reexive Closure

Symmetric Closure

Transitive Closure

16



Relations as Graphs

Adjacency List

Boolean Matrix

17



Warshall's Algorithm

Transitive Closure on a Boolean Matrix

18



O(f(n)) and �(f(n)) Notation

What does it cost in time/space to solve a

problem of size n by a given algorithm.

Examples

� Sort n integers

� Find the shortest path between 2 vertices of a

graph with n vertices

� Determine whether a propositional expression

of length n is true for all settings of its

variables

� Factorise an n-digit decimal number

� Given x, calculate xn

19



Cost of xn

LET exp(x, n) = VALOF

{ LET res = 1

FOR i = 1 TO n DO res := res * x

RESULTIS res

}

Cost = a + f + (m+a+f)n + r = K1 +K2n

where

a = cost of assignment

f = cost of FOR loop test

m = cost of multiply

r = cost of returning from a function

20



O(f(n)) Notation

Cmax(n) = maximum cost for problem size n

Cmean(n) = mean cost for problem size n

Cmin(n) = mimimum cost for problem size n

Cost = O(f(n)) means

Cost � kf(n), for all n > N

i.e. except for a �nite number of exceptions

Why the exceptions?

21



�(f(n)) Notation

Cost = �(f(n)) means

k1f(n) � Cost � k2f(n), for all n > N

i.e. except for a �nite number of exceptions

More formal notation:

9k1 9k2 9K 8n

(n > K ^ k1 > 0 ^ k2 > 0))

(k1f(n) � Cmin(n) ^ (Cmax(n) � k2f(n))

or

9k1 > 0 9k2 > 0 9K 8n > K

(k1f(n) � Cmin(n) ^ (Cmax(n) � k2f(n))

22


