Diploma and Part II(General)

Introduction to

Algorithms

by
Martin Richards mr@cl.cam.ac.uk
http://www.cl.cam.ac.uk/users/mr/

University Computer Laboratory
New Museum Site
Pembroke Street
Cambridge, CB2 3QG

The Course

- This course covers some of the material that the Part 1b students were given in their Discrete Mathematics course of last year.
- These student will be joining you for the course Data Structures and Algorithms that I will be giving later this term.
- The notes were originally written by Arthur Norman and slightly modified by Alan Mycroft.
- The course is not directly examinable, but the material it contains is fundamental to many other courses in Computer Science, particularly Data Structures and Algorithms.

Content

- Proof by induction
- Sets, functions
- Relations, graphs
- Reasoning about programs
- $O(f)$ and $\Theta(f)$ notation
- Solution of recurrence formulae

Logarithms

$\log _{2} x=\lg x$
$2^{y}=x$
$2^{\lg x}=x$
$\lg 1024=10$
$\lg 1000000 \simeq 20$
$\lg 1000000000 \simeq 30$
The base does not matter (much)!

$$
\begin{array}{cc}
a^{y}=x & y=\log _{a} x \\
a=b^{z} & z=\log _{b} a \\
b^{z y}=x & z y=\log _{b} x \\
& y=\frac{\log _{b} x}{\log _{b} a}
\end{array}
$$

More Induction Proofs

Prove Ackermann's function is total

$$
\begin{aligned}
& \operatorname{ack}(0, y)=y+1 \\
& \operatorname{ack}(x, 0)=\operatorname{ack}(x-1,1) \\
& \operatorname{ack}(x, y)=\operatorname{ack}(x-1, \operatorname{ack}(x, y-1))
\end{aligned}
$$

Defined in ML
fun $\operatorname{ack}(0, y)=y+1$
$\mid \operatorname{ack}(x, 0)=\operatorname{ack}(x-1,1)$
| $\operatorname{ack}(x, y)=\operatorname{ack}(x-1, \operatorname{ack}(x, y-1)) ;$

Lexicographic Ordering

Treat the two arguments of ark as a 2 -tuple.

Use lexicographic ordering

$$
\left.\begin{array}{rl}
& (0,0)<(0,1)<(0,2)<\ldots \\
< & (1,0)<(1,1)<(1,2)<\ldots \\
< & <\ldots, 0
\end{array}\right)<\ldots .
$$

Proof

To prove eck (x, y) terminates

Base case: $x=0, y=0$

$$
\operatorname{ack}(x, y)=\operatorname{ack}(0,0)=1
$$

Induction:

Prove eck (x, y) terminates assuming $\operatorname{ack}(\mathrm{p}, \mathrm{q})$ terminates for all $(\mathrm{p}, \mathrm{q})<(\mathrm{x}, \mathrm{y})$
case: $x=0$

$$
\operatorname{ack}(x, y)=\operatorname{ack}(0, y)=y+1
$$

case: $\mathrm{y}=0$

$$
\operatorname{ack}(x, y)=\operatorname{ack}(x, 0)=\operatorname{ack}(x-1,1)
$$

general case:

$$
\operatorname{ack}(x, y)=\operatorname{ack}(x-1, \operatorname{ack}(x, y-1))
$$

So eck (x, y) terminates for all positive (x, y)

Another Example

Consider expressions composed of only

- Even integers
- The operators + and *

Prove that the value of any such expression is even.

Proof

Induction on n, the number of operators in the expression

Base case: $n=0$
The expression is an even number
Induction: $n>0$
Prove for n, assuming true for smaller values of n
case 1: The leading operator is +
The operands have fewer operator so can be assumed to yield even integer. The sum of two even numbers is even.
case 2: The leading operator is *
The product of two even numbers is even.
So all such expressions yield even numbers

Eval in ML

datatype $E=$ Num of int
| Add of E * E
| Mul of $\mathrm{E} * \mathrm{E}$;
val e = Add(Num 10, Mul(Num 4, Num 6));
fun eval (Num k) $=k$
| eval (Add $(x, y))=e v a l x+e v a l y$
| eval (Mul $(x, y))=$ eval x * eval y;
eval e; (* gives the answer: $34 *$)

A set is a collection of zero or more distinct elements.

Examples
$\{1,2,3\}$
\{1, "string", $\{\},\{2\}\}, x\}$
$\left\{x^{2} \mid x \in\{0,1, \ldots\}\right\}$

Sets Operations

- Intersection
- Union
- Cartesian Product
- Power Sets
- Infinite Sets
- Set Construction
- Cardinality

Relations

A binary relation is some property that may or may not hold between elements of two sets A and B, say.

Notation
$x R y$ where x is an element of A, y is and element of B, and R is the name of the relation.

Examples

Relations

Kinds of relation
Reflexive
$x R x$
E.g. $=$

Symmetric
$x R y \Rightarrow y R x$
E.g. \neq or "married to"

Transitive
$x R y \wedge y R z \Rightarrow x R z$
E.g. <

Relations

Equivalence Relations
Reflexive, Symmetric and Transitive
E.g. "same colour as" or "related to"

Partial Order
Reflexive, Anti-symmetric and Transitive
E.g. \leq or "subset of"

Closures

Reflexive Closure

Symmetric Closure

Transitive Closure

Relations as Graphs

Adjacency List

Boolean Matrix

Warshall's Algorithm

Transitive Closure on a Boolean Matrix

$O(f(n))$ and $\Theta(f(n))$ Notation

What does it cost in time/space to solve a problem of size n by a given algorithm.

Examples

- Sort n integers
- Find the shortest path between 2 vertices of a graph with n vertices
- Determine whether a propositional expression of length n is true for all settings of its variables
- Factorise an n-digit decimal number
- Given x, calculate x^{n}

Cost of x^{n}

LET $\exp (\mathrm{x}, \mathrm{n})=$ VALOF
\{ LET res = 1
FOR i $=1$ TO n DO res := res * x RESULTIS res
\}
Cost $=\mathrm{a}+\mathrm{f}+(\mathrm{m}+\mathrm{a}+\mathrm{f}) \mathrm{n}+\mathrm{r}=K_{1}+K_{2} n$ where
$\mathrm{a}=$ cost of assignment
$\mathrm{f}=$ cost of FOR loop test
$\mathrm{m}=$ cost of multiply
$\mathrm{r}=$ cost of returning from a function

$O(f(n))$ Notation

$C_{\max }(n)=$ maximum cost for problem size n
$C_{\text {mean }}(n)=$ mean cost for problem size n
$C_{\min }(n)=$ mimimum cost for problem size n

Cost $=O(f(n))$ means
Cost $\leq k f(n)$, for all $n>N$
i.e. except for a finite number of exceptions

Why the exceptions?

$\Theta(f(n))$ Notation

Cost $=\Theta(f(n))$ means

$$
k_{1} f(n) \leq \mathrm{Cost} \leq k_{2} f(n), \text { for all } n>N
$$

i.e. except for a finite number of exceptions

More formal notation:
$\exists k_{1} \quad \exists k_{2} \quad \exists K \quad \forall n$
$\left(n>K \wedge k_{1}>0 \wedge k_{2}>0\right) \Rightarrow$
$\left(k_{1} f(n) \leq C_{\min }(n) \wedge\left(C_{\max }(n) \leq k_{2} f(n)\right)\right.$
or
$\exists k_{1}>0 \quad \exists k_{2}>0 \quad \exists K \quad \forall n>K$
$\left(k_{1} f(n) \leq C_{\min }(n) \wedge\left(C_{\max }(n) \leq k_{2} f(n)\right)\right.$

